US3562097A - Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio - Google Patents

Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio Download PDF

Info

Publication number
US3562097A
US3562097A US3562097DA US3562097A US 3562097 A US3562097 A US 3562097A US 3562097D A US3562097D A US 3562097DA US 3562097 A US3562097 A US 3562097A
Authority
US
United States
Prior art keywords
paper
mineral
fibers
sheet
ply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Romulus S Von Hazmburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Gypsum Co
Original Assignee
United States Gypsum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Gypsum Co filed Critical United States Gypsum Co
Application granted granted Critical
Publication of US3562097A publication Critical patent/US3562097A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/043Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of plaster
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • C04B2111/0062Gypsum-paper board like materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31634Next to cellulosic

Definitions

  • the board is then cut to desired size and dried in a kiln.
  • the board In use the board is cut to fit by scoring and snapping or by sawing and is applied by means of clips, nails, screws or adhesives.
  • the strength of the finished gypsum board depends to considerable extent on the paper covers employed, which paper cover sheets must be of such nature as to have characteristics to enable the board to be manufactured to close dimensional specifications, have suitable surface quality, be readily dried and form a good bond with the gypsum core.
  • Another object of this invention is to provide paper cover sheets which have good strength, can be readily cut and have good dimensional stability over a Wide range of relative humidities.
  • improved gypsum boards are prepared by encasing a cast gypsum (calcium sulfate dihydrate) core within a multi-ply paper cover sheet in which at least one of the plies thereof comprises a major amount of cellulosic fibers and a minor amount of mineral fibers.
  • mineral fibers as used herein means rock Wool, slag wool and spun or drawn glass fibers and the term cellulosic fibers includes lignocellulosic fibers.
  • the mineral fibers are employed in the paper cover sheet in an amount from about 2 to about 20% by Weight of the entire sheet with no single ply thereof containing more than about 43% by weight of mineral fibers.
  • the mineral fibers are employed within a paper cover sheet within the range from about 5 to 17% by weight thereof.
  • the specific amount of mineral fiber to employ in a particular case will vary somewhat depending upon the size and type of mineral fibers employed and also the characteristics desired in the finished gypsum board.
  • Excellent paper cover sheets result when the mineral fiber content thereof ranges from about 7 to 15% by weight and this is a particularly preferred range for the mineral fiber content of the paper cover sheet.
  • multi-ply paper cover sheets are made by separately dispersing a mass of cellulosic fibers and mineral fibers in water, combining the two dispersions of said fibers in desired proportion and finally forming the combined fibers into a web of paper on a paper-making cylinder machine.
  • Standard paper mill accessory equipment is suitable.
  • the paper cover sheet of the invention is of multi-ply nature with at least one of the plies thereof containing mineral fibers in the specified amounts. It is often advantageous to omit mineral fibers from the ply or plies at the finished paper surface to improve surface smoothness and the like. However, if desired all of the paper plies can contain mineral fibers in an amount within the specified range with the amount being the same or varied from ply to ply.
  • the length of the mineral fibers is important in achieving the desired results and a substantial proportion, that is about or more of the mineral fibers present in the paper cover sheet, should not greatly exceed the length of the cellulosic fibers. It is to be understood, of course, that some attrition of fiber length may occur during the paper-making process.
  • the strength and handling characteristics of the paper covered gypsum board are, of course, influenced by the compressive strength, density and brittleness of the gypsum corebut the physical characteristics of the paper cover sheet exert a significant influence on the overall properties of the finished board.
  • a substantial portion of the paper used in gypsum board manufacture is formed on cylinder machines which characteristically produce paper which is considerably stronger in the machine direction (direction normal to the axis of the cylinder) than in the cross direction (direction parallel to the axis of the cylinder) with the tensile strength ratio usually being greater than about 4:1. Because of this directional strength differential, paper cover sheets must be made having enough longitudinal strength to provide adequate cross direction strength.
  • the machine direction strength can be so high as to cause difficulty in scoring and cutting the board in the field (at the job site).
  • addition of mineral fibers to paper cover sheets Without any deviation in the normal paper-making machine operation tends to lessen the differential in the tensile strength of the paper in the machine direction and the cross direction thereof.
  • use in gypsum board of paper cover sheets containing a minor proportion of mineral fibers therein results in significant improvement in quality.
  • Improved gypsum boards in accordance with the present invention are obtained when mineral fibers are incorporated in one or more plies of the paper sheets employed to encase the cast gypsum core. It is generally preferred that both the face and back cover sheets of the gypsum board contain a minor proportion of mineral fibers in one or more plies thereof.
  • the paper plies in contact with the cast gypsum core contain a percentage of mineral fibers and the paper plies forming the surface of the gypsum board have little or no mineral fiber content, particularly when the surface of the gypsum board is to be decorated other than by application of plaster thereto.
  • EXAM PLE l A seven ply paper sheet was prepared on a cylinder machine.
  • the furnish for the exposed or liner plies was 73% newspaper and 27% magazines.
  • the furnish for the five filler plies was basically 85% corrugated paperboard and 15% newspaper to which was added the amount of mineral wool indicated in Table I below.
  • Mineral wool was produced on an apparatus similar to that shown in U.S. Pats. Nos. 2,587,710 and 2,646,593 and was treated lightly with an anti-dusting mineral oil and contained about 50% shot.
  • the fibers were about 3.5 to 5 microns in diameter and a substantial proportion thereof were less than one half inch long.
  • the paper was prepared in a mill having separate stock systems and the liner furnish was prepared in normal manner.
  • the mineral wool was dispersed in a hydropulper to a consistency of about 2.4% with minimum refining to avoid undue reduction in fiber length. However, hydropulping was sufficient to insure that the mineral fibers were well dispersed and did not agglomerate into bundles or clots.
  • Example 1 The papers of Example 1 having plies containing 28% and 46% mineral wool were made into gypsum board using normal board forming machinery and processing. No difficulty was encountered in forming the board with either paper when used as face and back paper. Width expansion was slightly less with the mineral wool papers than with regular paper which might have been expected since the shrinkage had been less with the mineral wool paper on the paper machine. Because of the increased porosity of the mineral wool paper the board dried more easily and the temperature in the drying kiln can be 15 to 20 F. lower than normal. Board made with 28% mineral wool plies was generally satisfactory but that made with 46% mineral wool was below specifications as set forth in ASTM-C-36 when measured parallel to the long edge of the board although the strength measured across the board was satisfactory.
  • the bond of the paper to the core was good and there was no tendency for the mineral wool paper to cockle either in the face sheet or back sheet.
  • the lack of cockles in the face sheet is extreme- 1y desirable in a quality board and their absence on the back sheet was highly surprising as some cockles are usually present when board is made with all cellulosic fibers in the back sheet.
  • cockle is applied to a quality defect in finished board and refers to a depression having its length parallel to the machine direction which probably results from the presence of more lineal inches of paper in the depressed area than in the adjacent flat portions.
  • the excess of paper may occur because of non-uniform formation on the paper machine or from an excess of moisture which has caused the paper to expand unevenly. Variation of moisture content may result from poor drying of the sheet on the paper machine or from some paper defect which permits moisture from the gypsum slurry to penetrate the sheet more freely in some places than in others.
  • the increased uniformity of formation resulting from the addition of mineral fibers to the board paper enables the production of quality board with a minimum of cockles.
  • the porosity of paper as determined using a Gurley Densometer in accordance with Technical Association of the Pulp and Paper Industry Standards T460m49 is reported as the number of seconds required for a specified quantity of gas to pass through a specified area of the sheet; a numerically higher porosity value therefore indicates a more dense sheet.
  • the porosity of the paper cover sheets is very important in gypsum board manufacture because to considerable extent it controls the ease with which finished wallboard can be dried in the kiln since all of the free water contained in the gypsum board core must be driven through the sheet of paper as water vapor. A sheet which is too dense will be blown off the board in the kiln by the pressure built up beneath it.
  • the inclusion of 2% or more of mineral fiber in the paper sheets produced a highly desirable reduction in the resistance to passage of gas through the sheet.
  • EXAMPLE 2 Two hundred square centimeter handsheets weighing 2.4 grams were prepared by the Technical Association of the Pulp and Paper Industry method T205 from a furnish made up of 65% corrugated paperboard and 35% newspaper; the corrugated paperboard having been beaten for 6 EXAMPLE 4 Lath paper was made from furnish similar to that used in Example 3 with the exception that the top liner (2 plies) contained 25% mineral wool in one case and 43% mineral wool in a second case. The amount of wool in the entire paper sheets was 16% and 22% respectively.
  • the mineral wool fibers were uniformly distributed and were about 5 microns in diameter and had an average length of about inch; the diameter of the glass fibers showed some variation but generally were less than about 5 microns with an average of 2.5 microns and a length of & inch.
  • the fibers were reduced to such relatively short lengths by the action of the beater in dispersing them in water since they had been considerably longer when introduced into the system.
  • the glass fibers were present as individual elements and not as bundles or groups.
  • EXAMPLE 3 Using a multicylinder paper machine a seven ply sheet with a basis weight of about 72 pounds per 1000 square feet was made in which the top liner consisted of two plies made from a furnish comprising 73% newspaper and 27% magazine paper; the four filler plies and the bond ply, i.e. the ply eventually to lie next to the board core, comprised 80% corrugated paperboard and newspaper to which was added about 12 /2% mineral wool. This paper was made into satisfactory board without difficulties and there were no cockles on either the face or back of the boards and the bond to the core was good.
  • a second and heavier paper with a basis weight of about 120 pounds per 1000 square feet was made with 31% mineral wool in the four filler plies and bond ply and it too was satisfactorily made into board, although there were indications that the extra weight of this paper resulted in gypsum board so strong that some difiiculty could perhaps be encountered in installing the board.
  • Example 3 The properties of papers made according to Example 1 and Example 3 are summarized in Table III and illustrate the reduction in differential between the tensile strength of the paper in the machine direction and cross machine direction. The change in ratio is very evident in the paper of Example 3 wherein addition of 12.5% mineral wool reduced this tensile strength ratio from 4.0 to
  • Example 4 The papers of Example 4 were formed into paper covered gypsum lath with no cockling. It was noted, however, that the papers appeared to be somewhat rougher than paper without mineral fiber and the board with 43% mineral fiber in the top liner was noted to cause some skin irritation. Nodifficulty was encountered with handling and nailing the laths and the bond of sanded plaster was good.
  • the lath papers of Example 4 possessed desirable water absorption characteristics without the addition of a surface active agent regularly required for this purpose with cellulosic paper. Elimination of this ingredient is advantageous because its concentration must be carefully controlled and its effect tends to diminish with age and on passage through the drying kiln, thus causing undesirable variation in paper quality.
  • the proper amount of absorption is important on lath paper; if absorption is too low plaster will not stick to the lath when it is applied and if absorption is too high, the lath will remove so much water from the plaster that the plaster will be difficult to trowel and not set properly.
  • the paper was 157 inches wide at which width a shrinkage on the paper machine up to 2 inches is considered normal. It was observed that when the paper sheet contained mineral fibers the shrinkage was only about 1 inch. Moreover, in order to control sheet dryness it was possible to reduce the steam pressure to about 50% of normal value while maintaining the machine speed.
  • An uncreped multi-ply cylinder machine paper sheet having a ratio of machine-to-cross direction dry tensile strength between about 3.35:1 and about 4.121, said sheet containing in at least one ply thereof mineral fibers selected from the group consistin of rock wool, slag wool, and glass fibers, said mineral fibers being present in an amount between about 7 and about 20% by weight of said sheet and with no ply of said sheet containing mineral fibers in an amount exceeding about 43% by weight of 3.35 and 31% mineral wool reduced it further to 2.62. said ply.
  • Machine direction 106 107 123 115 112 98 45 112 87 Cross direction 25 27 30 28 27. 8 26 20 28 26 38 Ratio 4. 25 3. 96 4. 1 4.1 4 0 3. 76 2. 25 4. 0 3.35 2. 62
  • a process of making at least one ply of multi-ply paper of reduced drying shrinkage on a cylinder papermaking machine which consists of dispersing in Water cellulosic and mineral fibers selected from the group consisting of rock wool, slag wool and glass fibers and supplying to the cylinder forming at least one ply of said paper a stock containing mineral and cellulosic fibers, the mineral fibers being employed in an amount so as to provide a paper containing between about 7 to about 20% by weight, and no ply thereof containing more than about 43 mineral fibers by Weight.

Abstract

AN UNCREPED, MULTI-PLY CYLINDER MACHINE PAPER SHEET AND PROCESS OF MAKING IT HAVING A RATIO OF MACHINE-TOCROSS DIRECTION DRY TENSILE STRENGTH BETWEEN ABOUT 3.35:1 AND 4.1:1 SAID SHEET CONTAINING 7-20% MINERAL-FIBERS WITH NO MORE THAN 43% MINERAL FIBERS IN ANY ONE PLY.

Description

United States Patent 3,562,097 MULTI-PLY CYLINDER PAPER 0F REDUCED MACHINE-TO-CROSS DIRECTION TENSILE STRENGTH RATIO Romulus S. von Hazmburg, Laguua Hills, Calif., assignor to United States Gypsum Company, Chicago, Ill., a corporation of Delaware Filed Jan. 30, 1967, Ser. No. 612,351 Int. Cl. D21f 11/08 US. Cl. 162129 4 Claims ABSTRACT OF THE DISCLOSURE An uncreped, multi-ply cylinder machine paper sheet and process of making it having a ratio of machine-tocross direction dry tensile strength between about 3.35:1 and 4.1:1, said sheet containing 720% mineral-fibers with no more than 43% mineral fibers in any one ply.
I The board is then cut to desired size and dried in a kiln.
In use the board is cut to fit by scoring and snapping or by sawing and is applied by means of clips, nails, screws or adhesives.
The strength of the finished gypsum board depends to considerable extent on the paper covers employed, which paper cover sheets must be of such nature as to have characteristics to enable the board to be manufactured to close dimensional specifications, have suitable surface quality, be readily dried and form a good bond with the gypsum core.
It is an object of this invention therefore to provide an improved gypsum board having paper cover sheets having included therein a minor proportion of mineral fibers and a process for the manufacture of this board.
It is a further object of the invention to produce a plasterboard having paper cover sheets of a multi-ply nature in which at least some of the paper plies have incorporated therein mineral fibers.
It is another object of this invention to provide paper cover sheets which form a good bond with the core of the gypsum board and which afford economies in the manufacture of the board.
It is a still further object of this invention to provide a paper sheet of enhanced physical characteristics comprising a major portion of cellulose fibers and a minor portion of short mineral fibers.
Another object of this invention is to provide paper cover sheets which have good strength, can be readily cut and have good dimensional stability over a Wide range of relative humidities.
In accordance with the present invention, improved gypsum boards are prepared by encasing a cast gypsum (calcium sulfate dihydrate) core within a multi-ply paper cover sheet in which at least one of the plies thereof comprises a major amount of cellulosic fibers and a minor amount of mineral fibers. The term mineral fibers as used herein means rock Wool, slag wool and spun or drawn glass fibers and the term cellulosic fibers includes lignocellulosic fibers. The mineral fibers are employed in the paper cover sheet in an amount from about 2 to about 20% by Weight of the entire sheet with no single ply thereof containing more than about 43% by weight of mineral fibers. More preferably, the mineral fibers are employed within a paper cover sheet within the range from about 5 to 17% by weight thereof. However, the specific amount of mineral fiber to employ in a particular case will vary somewhat depending upon the size and type of mineral fibers employed and also the characteristics desired in the finished gypsum board. Excellent paper cover sheets result when the mineral fiber content thereof ranges from about 7 to 15% by weight and this is a particularly preferred range for the mineral fiber content of the paper cover sheet.
According to one preferred embodiment of the invention multi-ply paper cover sheets are made by separately dispersing a mass of cellulosic fibers and mineral fibers in water, combining the two dispersions of said fibers in desired proportion and finally forming the combined fibers into a web of paper on a paper-making cylinder machine. Standard paper mill accessory equipment is suitable.
The paper cover sheet of the invention is of multi-ply nature with at least one of the plies thereof containing mineral fibers in the specified amounts. It is often advantageous to omit mineral fibers from the ply or plies at the finished paper surface to improve surface smoothness and the like. However, if desired all of the paper plies can contain mineral fibers in an amount within the specified range with the amount being the same or varied from ply to ply.
The length of the mineral fibers is important in achieving the desired results and a substantial proportion, that is about or more of the mineral fibers present in the paper cover sheet, should not greatly exceed the length of the cellulosic fibers. It is to be understood, of course, that some attrition of fiber length may occur during the paper-making process.
The strength and handling characteristics of the paper covered gypsum board are, of course, influenced by the compressive strength, density and brittleness of the gypsum corebut the physical characteristics of the paper cover sheet exert a significant influence on the overall properties of the finished board. A substantial portion of the paper used in gypsum board manufacture is formed on cylinder machines which characteristically produce paper which is considerably stronger in the machine direction (direction normal to the axis of the cylinder) than in the cross direction (direction parallel to the axis of the cylinder) with the tensile strength ratio usually being greater than about 4:1. Because of this directional strength differential, paper cover sheets must be made having enough longitudinal strength to provide adequate cross direction strength. When this is done, the machine direction strength can be so high as to cause difficulty in scoring and cutting the board in the field (at the job site). I have now found, in accordance with the present invention, that addition of mineral fibers to paper cover sheets Without any deviation in the normal paper-making machine operation tends to lessen the differential in the tensile strength of the paper in the machine direction and the cross direction thereof. Thus, use in gypsum board of paper cover sheets containing a minor proportion of mineral fibers therein results in significant improvement in quality.
Improved gypsum boards in accordance with the present invention are obtained when mineral fibers are incorporated in one or more plies of the paper sheets employed to encase the cast gypsum core. It is generally preferred that both the face and back cover sheets of the gypsum board contain a minor proportion of mineral fibers in one or more plies thereof. Preferably the paper plies in contact with the cast gypsum core contain a percentage of mineral fibers and the paper plies forming the surface of the gypsum board have little or no mineral fiber content, particularly when the surface of the gypsum board is to be decorated other than by application of plaster thereto.
The advantages of the invention will be apparent from the following specific examples which are not limitative but illustrative only.
EXAM PLE l A seven ply paper sheet was prepared on a cylinder machine. The furnish for the exposed or liner plies was 73% newspaper and 27% magazines. The furnish for the five filler plies was basically 85% corrugated paperboard and 15% newspaper to which was added the amount of mineral wool indicated in Table I below.
Mineral wool was produced on an apparatus similar to that shown in U.S. Pats. Nos. 2,587,710 and 2,646,593 and was treated lightly with an anti-dusting mineral oil and contained about 50% shot. The fibers were about 3.5 to 5 microns in diameter and a substantial proportion thereof were less than one half inch long.
The paper was prepared in a mill having separate stock systems and the liner furnish was prepared in normal manner. The mineral wool was dispersed in a hydropulper to a consistency of about 2.4% with minimum refining to avoid undue reduction in fiber length. However, hydropulping was sufficient to insure that the mineral fibers were well dispersed and did not agglomerate into bundles or clots.
At the beginning of the paper-making operation only cellulosic fibers were used in both liner and filler plies. Mineral wool was then added to the cellulosic fibers in a filler cylinder vat in an amount of about to of the furnish going to that vat and soon thereafter to the balance (4) of the filler cylinder vats. As the mineral wool was blended with the filler stock at the screen head box, the stock became freer and additional water was added.
Sodium aluminate together with alum was added to the filler plies to set the size. The paper containing mineral wool dried easily. The ease with which the sheets having high mineral wool concentrations were dried is illustrated by the moisture values reported in Table I.
For purposes of analysis, a small sheet of tissue paper was periodically placed between the mineral wool-free liner plies and the filler plies so that later, when the sheet had been dried, the liner plies could be readily removed. The filler plies were then ignited at 1000 F. and the ash reported as percent mineral wool in Table I. The values have been rounded off so the figures reported are consistent with the accuracy of the analysis.
TABLE I.MINERAL WOOL PAPER CHARACTERISTICS Percent wool:
Filler Plies 0 10-12 16-17 18-20 28 33-46 Total Sheet 0 7-9 11-12 13-14 20 27-33 Basis weight (pounds per thousand sq. ft.) 73.1 70. 74 3 72. 7 68. 7 68.1
Caliper in 0. 001 in 20 21 21 21 21 21 Tensile strength (pounds/ inch of width machine direction 107 123 115 112 08.3 45 Corrected to uniform basis weight 127 113 113 10G 49 Tensile strength (pounds/ inch cross direction) 27 30 28 27.8 26.3 20 Corrected to uniform basis Shot, percent of ash 14. 3 19. 6 1G. 0 20. 1
*Porosity determined using a Gurley Densometer in accordance with Ticlllllcilg Association of the Pulp and Paper Industry Standards T 60m- Referring to Table I it will be noted that the tensile strength of the paper in the machine direction and also in the cross direction when these values are corrected for the weight of the sheet increased when mineral wool in an amount between about 10 and 20% was utilized and the 4 tensile strength did not decrease until the percentage of mineral wool in the plies was greater than 28%.
A considerable amount of shot was separated from the mineral wool when it was dispersed in water in the hydropulper. The remaining shot, reported in Table I, was determined by gently brushing the residual matrix of mineral fibers from the ignited ash through a 325 mesh screen, and recovering the shot on the screen. The fibers recovered were about to inch long.
The papers of Example 1 having plies containing 28% and 46% mineral wool were made into gypsum board using normal board forming machinery and processing. No difficulty was encountered in forming the board with either paper when used as face and back paper. Width expansion was slightly less with the mineral wool papers than with regular paper which might have been expected since the shrinkage had been less with the mineral wool paper on the paper machine. Because of the increased porosity of the mineral wool paper the board dried more easily and the temperature in the drying kiln can be 15 to 20 F. lower than normal. Board made with 28% mineral wool plies was generally satisfactory but that made with 46% mineral wool was below specifications as set forth in ASTM-C-36 when measured parallel to the long edge of the board although the strength measured across the board was satisfactory. The bond of the paper to the core was good and there was no tendency for the mineral wool paper to cockle either in the face sheet or back sheet. The lack of cockles in the face sheet is extreme- 1y desirable in a quality board and their absence on the back sheet was highly surprising as some cockles are usually present when board is made with all cellulosic fibers in the back sheet.
The term cockle is applied to a quality defect in finished board and refers to a depression having its length parallel to the machine direction which probably results from the presence of more lineal inches of paper in the depressed area than in the adjacent flat portions. The excess of paper may occur because of non-uniform formation on the paper machine or from an excess of moisture which has caused the paper to expand unevenly. Variation of moisture content may result from poor drying of the sheet on the paper machine or from some paper defect which permits moisture from the gypsum slurry to penetrate the sheet more freely in some places than in others. The increased uniformity of formation resulting from the addition of mineral fibers to the board paper enables the production of quality board with a minimum of cockles.
The porosity of paper as determined using a Gurley Densometer in accordance with Technical Association of the Pulp and Paper Industry Standards T460m49 is reported as the number of seconds required for a specified quantity of gas to pass through a specified area of the sheet; a numerically higher porosity value therefore indicates a more dense sheet. The porosity of the paper cover sheets is very important in gypsum board manufacture because to considerable extent it controls the ease with which finished wallboard can be dried in the kiln since all of the free water contained in the gypsum board core must be driven through the sheet of paper as water vapor. A sheet which is too dense will be blown off the board in the kiln by the pressure built up beneath it. The inclusion of 2% or more of mineral fiber in the paper sheets produced a highly desirable reduction in the resistance to passage of gas through the sheet.
The improvement in porosity which is achieved with the addition of small amounts of mineral wool fibers is illustrated by the following example.
EXAMPLE 2 Two hundred square centimeter handsheets weighing 2.4 grams were prepared by the Technical Association of the Pulp and Paper Industry method T205 from a furnish made up of 65% corrugated paperboard and 35% newspaper; the corrugated paperboard having been beaten for 6 EXAMPLE 4 Lath paper was made from furnish similar to that used in Example 3 with the exception that the top liner (2 plies) contained 25% mineral wool in one case and 43% mineral wool in a second case. The amount of wool in the entire paper sheets was 16% and 22% respectively.
TABLE II.-P R0 SIIY OF PAPE R [Mineral wool fibers added to cellulosic fibers (65% corrugated paperboard, 35% newspaper)] Corrugated beat, minutes Mineral wool, percent 2 8 16 50 0 2 8 16 50 0 2 8 16 50 Porosity (resistance to gas passage 16 12 6 1 24 26 14 7 1 31 25 14 8 1 Ash 3. 3 9. 8 19. 6 54. 1. 3 3. 2 9. 9 18. 4 50. 9 1. 0 3. 1 9. 6 20. 4 53. 2 Glass fiber, percent 0 2 8 16 50 0 2 8 16 50 0 2 16 50 Porosity (resistance to gas passage) 18 15 6 l 24 19 8 1 28 22 15 9 1 Ash 1. 7 3. 2 9. 7 18. 2 52. 1
*Porosity determined using a Gnrley Densometer in accordance with Technical Association of the Pulp and Paper Industry Standards T460m-49.
It will be noted that the sheet became much more porous as the percentage of mineral fiber added was increased and that as little as 2% mineral fiber produced a significant reduction in the resistance to gas passage.
Samples of the paper were ignited and the mineral fiber mat recovered and examined to determine the mineral fiber length and diameter. The mineral wool fibers were uniformly distributed and were about 5 microns in diameter and had an average length of about inch; the diameter of the glass fibers showed some variation but generally were less than about 5 microns with an average of 2.5 microns and a length of & inch. The fibers were reduced to such relatively short lengths by the action of the beater in dispersing them in water since they had been considerably longer when introduced into the system. The glass fibers were present as individual elements and not as bundles or groups.
EXAMPLE 3 Using a multicylinder paper machine a seven ply sheet with a basis weight of about 72 pounds per 1000 square feet was made in which the top liner consisted of two plies made from a furnish comprising 73% newspaper and 27% magazine paper; the four filler plies and the bond ply, i.e. the ply eventually to lie next to the board core, comprised 80% corrugated paperboard and newspaper to which was added about 12 /2% mineral wool. This paper was made into satisfactory board without difficulties and there were no cockles on either the face or back of the boards and the bond to the core was good.
A second and heavier paper with a basis weight of about 120 pounds per 1000 square feet was made with 31% mineral wool in the four filler plies and bond ply and it too was satisfactorily made into board, although there were indications that the extra weight of this paper resulted in gypsum board so strong that some difiiculty could perhaps be encountered in installing the board.
The properties of papers made according to Example 1 and Example 3 are summarized in Table III and illustrate the reduction in differential between the tensile strength of the paper in the machine direction and cross machine direction. The change in ratio is very evident in the paper of Example 3 wherein addition of 12.5% mineral wool reduced this tensile strength ratio from 4.0 to
The papers of Example 4 were formed into paper covered gypsum lath with no cockling. It was noted, however, that the papers appeared to be somewhat rougher than paper without mineral fiber and the board with 43% mineral fiber in the top liner was noted to cause some skin irritation. Nodifficulty was encountered with handling and nailing the laths and the bond of sanded plaster was good.
The lath papers of Example 4 possessed desirable water absorption characteristics without the addition of a surface active agent regularly required for this purpose with cellulosic paper. Elimination of this ingredient is advantageous because its concentration must be carefully controlled and its effect tends to diminish with age and on passage through the drying kiln, thus causing undesirable variation in paper quality. The proper amount of absorption is important on lath paper; if absorption is too low plaster will not stick to the lath when it is applied and if absorption is too high, the lath will remove so much water from the plaster that the plaster will be difficult to trowel and not set properly.
In making the sheet of Examples 3 and 4 the paper was 157 inches wide at which width a shrinkage on the paper machine up to 2 inches is considered normal. It was observed that when the paper sheet contained mineral fibers the shrinkage was only about 1 inch. Moreover, in order to control sheet dryness it was possible to reduce the steam pressure to about 50% of normal value while maintaining the machine speed.
It will be understood that the examples set out above are intended to be illustrative and not limiting and that modifications and variations may be effected without departing from the spirit and scope of the novel concepts of the present invention.
I claim:
1. An uncreped multi-ply cylinder machine paper sheet having a ratio of machine-to-cross direction dry tensile strength between about 3.35:1 and about 4.121, said sheet containing in at least one ply thereof mineral fibers selected from the group consistin of rock wool, slag wool, and glass fibers, said mineral fibers being present in an amount between about 7 and about 20% by weight of said sheet and with no ply of said sheet containing mineral fibers in an amount exceeding about 43% by weight of 3.35 and 31% mineral wool reduced it further to 2.62. said ply.
TABLE III [Machine direction/cross direction tensile ratio] Ply orientation Example 1 Example 3 Percent wool:
Filler plies O 0 10-12 15-17 18-20 28 38-46 0 12. 5 31 Total sheet 0 0 7-9 11-12 13-14 20 27-33 0 9 22 Tensile:
Machine direction 106 107 123 115 112 98 45 112 87 Cross direction 25 27 30 28 27. 8 26 20 28 26 38 Ratio 4. 25 3. 96 4. 1 4.1 4 0 3. 76 2. 25 4. 0 3.35 2. 62
2. The multi-ply paper sheet claimed in claim 1 wherein the mineral fibers are present in a plurality of the plies of said sheet.
3. The multi-ply paper sheet claimed in claim 1 wherein at least one surface ply of said sheet contains substantially no mineral fibers.
4. A process of making at least one ply of multi-ply paper of reduced drying shrinkage on a cylinder papermaking machine which consists of dispersing in Water cellulosic and mineral fibers selected from the group consisting of rock wool, slag wool and glass fibers and supplying to the cylinder forming at least one ply of said paper a stock containing mineral and cellulosic fibers, the mineral fibers being employed in an amount so as to provide a paper containing between about 7 to about 20% by weight, and no ply thereof containing more than about 43 mineral fibers by Weight.
References Cited FOREIGN PATENTS 4/1962 Canada 162145 S. LEON BASHORE, Primary Examiner E. FREI, Assistant Examiner US. Cl. X.R.
US3562097D 1967-01-30 1967-01-30 Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio Expired - Lifetime US3562097A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US61235167A 1967-01-30 1967-01-30

Publications (1)

Publication Number Publication Date
US3562097A true US3562097A (en) 1971-02-09

Family

ID=24452793

Family Applications (1)

Application Number Title Priority Date Filing Date
US3562097D Expired - Lifetime US3562097A (en) 1967-01-30 1967-01-30 Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio

Country Status (5)

Country Link
US (1) US3562097A (en)
DE (1) DE1696269A1 (en)
FR (1) FR1562088A (en)
GB (1) GB1221821A (en)
SE (2) SE321784B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725196A (en) * 1970-04-08 1973-04-03 Congoleum Ind Inc Fibrous base felt containing cellulosic fibers, 10% to 50% asbestos fibers, and 1% to 5% of water soluble cationic polyacrylic resin as a drainage aid
US3952130A (en) * 1972-11-17 1976-04-20 United States Gypsum Company Mineral wool paper
US4448639A (en) * 1982-06-24 1984-05-15 United States Gypsum Company Mineral fiber-containing paper for the production of gypsum wallboard product prepared therewith
US4557973A (en) * 1983-12-28 1985-12-10 United States Gypsum Company Fire resistant gypsum board containing mineral wool fibers and method
US5011741A (en) * 1990-03-20 1991-04-30 Green Bay Packaging, Inc. Linerboard containing recycled newsprint
AU629739B2 (en) * 1990-03-20 1992-10-08 Green Bay Packaging Inc. Multiple ply paperboard product and method of making the same
US5401588A (en) * 1992-12-23 1995-03-28 Georgia-Pacific Resins Inc. Gypsum microfiber sheet material
US20060016569A1 (en) * 2004-07-20 2006-01-26 Sonoco Development, Inc. High strength paperboard and method of making same
US20060155245A1 (en) * 2002-07-04 2006-07-13 Kevin Woehr Catheter insertion device
EP2230075A1 (en) * 2009-03-17 2010-09-22 Lafarge Gypsum International Surface-treated nonwoven facer for gypsum wallboard
CN112679177A (en) * 2020-12-10 2021-04-20 北新集团建材股份有限公司 Paper-surface gypsum board and preparation method thereof
CN112876187A (en) * 2021-01-29 2021-06-01 肇庆北新建材有限公司 Reinforced moisture-resistant gypsum board and preparation method thereof
US11104614B2 (en) 2016-12-20 2021-08-31 Knauf Gips Kg Gypsum plasterboard

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH661275A5 (en) * 1984-08-22 1987-07-15 Ciba Geigy Ag METHINE AZO CONNECTIONS.
FR2683233B1 (en) * 1991-11-06 1994-02-18 Arjo Wiggins Sa PAPER AND ITS APPLICATION TO A NEW PLASTERBOARD.
CN101143456B (en) * 2006-09-16 2010-08-11 铜陵化学工业集团有限公司 Method for manufacturing papered gypsum board with high kalium sodium content ardealite and additive therefor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725196A (en) * 1970-04-08 1973-04-03 Congoleum Ind Inc Fibrous base felt containing cellulosic fibers, 10% to 50% asbestos fibers, and 1% to 5% of water soluble cationic polyacrylic resin as a drainage aid
US3952130A (en) * 1972-11-17 1976-04-20 United States Gypsum Company Mineral wool paper
US4448639A (en) * 1982-06-24 1984-05-15 United States Gypsum Company Mineral fiber-containing paper for the production of gypsum wallboard product prepared therewith
US4557973A (en) * 1983-12-28 1985-12-10 United States Gypsum Company Fire resistant gypsum board containing mineral wool fibers and method
US5011741A (en) * 1990-03-20 1991-04-30 Green Bay Packaging, Inc. Linerboard containing recycled newsprint
AU629739B2 (en) * 1990-03-20 1992-10-08 Green Bay Packaging Inc. Multiple ply paperboard product and method of making the same
US5401588A (en) * 1992-12-23 1995-03-28 Georgia-Pacific Resins Inc. Gypsum microfiber sheet material
US20060155245A1 (en) * 2002-07-04 2006-07-13 Kevin Woehr Catheter insertion device
US7736339B2 (en) 2002-07-04 2010-06-15 B.Braun Melsungen Ag Catheter insertion device
US20060016569A1 (en) * 2004-07-20 2006-01-26 Sonoco Development, Inc. High strength paperboard and method of making same
EP2230075A1 (en) * 2009-03-17 2010-09-22 Lafarge Gypsum International Surface-treated nonwoven facer for gypsum wallboard
WO2010106444A1 (en) * 2009-03-17 2010-09-23 Lafarge Gypsum International Surface-treated nonwoven facer for gypsum wallboard
US11104614B2 (en) 2016-12-20 2021-08-31 Knauf Gips Kg Gypsum plasterboard
CN112679177A (en) * 2020-12-10 2021-04-20 北新集团建材股份有限公司 Paper-surface gypsum board and preparation method thereof
CN112876187A (en) * 2021-01-29 2021-06-01 肇庆北新建材有限公司 Reinforced moisture-resistant gypsum board and preparation method thereof

Also Published As

Publication number Publication date
DE1696269A1 (en) 1971-11-18
GB1221821A (en) 1971-02-10
SE321784B (en) 1970-03-16
FR1562088A (en) 1969-04-04
SE321785B (en) 1970-03-16

Similar Documents

Publication Publication Date Title
US4020237A (en) Paper covered gypsum board and process of manufacture
US3562097A (en) Multi-ply cylinder paper of reduced machine-to-cross direction tensile strength ratio
EP0006362B1 (en) Process for the production of non-combustible asbestos-free board products
US4470877A (en) Paper having calcium sulfate mineral filler for use in the production of gypsum wallboard
US4548676A (en) Paper having calcium sulfate mineral filler for use in the production of gypsum wallboard
CA1192709A (en) Mineral fiber-containing paper for the production of gypsum wallboard and wallboard product prepared therewith
US3379608A (en) Water-felted mineral wool building and insulation product including nonfibrous cellulose binder
CA1212506A (en) Neutral sized paper for use in the production of gypsum wallboard
US4269886A (en) Novel glass fiber mat
US2806811A (en) Paper-covered gypsum board
US4311767A (en) Gypsum wallboard and method for producing same
US3701672A (en) Bituminous fibrous building product and method of preparing same
US3004884A (en) Sheeted fibrous materials and processes for the manufacture thereof
GB2047766A (en) Paper and board
EP0004833B1 (en) Paper-like fibre product and method of manufacturing such a product
US4364795A (en) Gypsum wallboard and method for producing same
US1914526A (en) Paper manufacture
SU1189920A1 (en) Method of producing paper and board
SU1647066A1 (en) Method for manufacturing paper used as inner ply of decorative paper laminated plastic
US1756722A (en) Pulp product and process of making the same
FI98749C (en) Paper and its use in new gypsum board
SU867985A1 (en) Paper-making method
RU2100508C1 (en) Method for aerodynamic manufacture of cardboard and writing or printing paper
ES2002607A4 (en) PROCEDURE FOR MANUFACTURING PAPERS RESISTANT TO YELLOWING, PARTICULARLY AGAINST THE ACTION OF HEAT.
US3463685A (en) Process for pre-treating facing sheets for gypsum boards