US3207637A - Structural steel and process for making same - Google Patents

Structural steel and process for making same Download PDF

Info

Publication number
US3207637A
US3207637A US160990A US16099061A US3207637A US 3207637 A US3207637 A US 3207637A US 160990 A US160990 A US 160990A US 16099061 A US16099061 A US 16099061A US 3207637 A US3207637 A US 3207637A
Authority
US
United States
Prior art keywords
weight
steel
temperature
stock
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US160990A
Inventor
Matuschka Bernhard
Morini Giovanni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US160990A priority Critical patent/US3207637A/en
Application granted granted Critical
Publication of US3207637A publication Critical patent/US3207637A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/08Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires for concrete reinforcement

Definitions

  • Our present invention relates to the production of structural reinforcing rods and the like from steel.
  • Another specific object of the invention is to provide a ribbed rod, known as deformed bar, having the physical characteristics set forth above.
  • a further object of this invention is to provide a process for producing structural steel of such fine grain size that the aforestated desiderata of high elastic limit and deformability in the cold state can be realized along with a correspondingly great tensile strength, a large rate of resilient elongation and the ability of the cold-deformed element to return without rupture to its original state.
  • composition when hot-rolled into a rod as more particularly described hereinafter, exhibits without further treatment the following physical characteristics:
  • a rolling process according to the present invention which has been found to result in an extraordinary refine- 3,207,037 Patented Sept. 21, 1955 ment of the grain structure of the steel and a corresponding toughness thereof, requires for instance the following working conditions to be maintained:
  • a very high roller pressure that produces a 12% to 15% reduction in the cross-sectional area of the Work piece in the terminal rolling stage, preferably during each of the last three finishing passes;
  • a rapid cooling after rolling the temperature being reduced from a level of substantially 800 C. at the last rollers to about 500 C. by forced cooling (e.g. with circulating air, water sprays and/0r refrigerated supporting surfaces) at a rate which for rods of the usual diameters (e.g. from 6 to 40 mm.) should be at least 30% faster than the cooling time under normal ambient conditions; thus, with rods of 10 mm. diameter, for example, approximately seconds of cooling time are desirable in lieu of the usual seconds.
  • forced cooling e.g. with circulating air, water sprays and/0r refrigerated supporting surfaces
  • FIG. 1 a diagrammatic illustration of the preferred rolling process according to the invention and in FIG. 2 a deformed bar produced by this process and bent about a mandrel.
  • the bar stock 10, of diameter d is passed successively between roller pairs 13' and 13", 12 and 12", 11' and 11" which in practice form part of a single pair of cylinders and represent the last three stages of a rolling mill, only the rollers effective in one dimension of compression being visible.
  • the stock 10 is successively reduced by these rollers to diameters d d and d, the latter being its final diameter and being assumed to be about 10 mm.
  • the rollers also serve to impress upon the surface of the stock a ribbed profile to produce a so-called deformed bar 10.
  • the successive compressions of the stock to diameters d d and d involve each a step-down ratio of about 14: 13 corresponding to the aforestated cross-sectional reduction. This takes place in the temperature range of 800 to 900 C. with subsequent air cooling to 500 C. in about 100 seconds through suitable control of ambient conditions.
  • FIG. 2 shows how the bar 10' produced by the process of FIG. 1 can be bent through 180 about a mandrel 20 Whose diameter D is only five times as great as the bar diameter d
  • the bar so bent can also be returned to its original straight position, shown in dot-dash lines, without cracking.
  • a process for making a bar of fine-grain structural steel comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by Weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of .silicon, and iron as substantially the entire remainder, to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
  • each of three final rolling steps involves a reduction in crosssectional area of said stock by substantially 12 to 15 3.
  • a process for making a bar of fine-grain structural steel comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
  • a process for making a bar of weldable fine-grain structural steel comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of: three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
  • a process for making a bar of fine-grain structural steel comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by Weight of manganese, 0.50 to 1.50% by weight of silicon, 0.10 to 0.20% by weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
  • a process for making a bar of weldable fine-grain structural steel comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, 0.10 to 0.20% by weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in crosssectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
  • said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, and iron as substantially the entire remainder produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 5 00 C.
  • a bar of Weldable fine-grain alloy steel with a tensile strength of at least kg./mm., a yield point of at least 50 kg./mrn. and a high degree of cold deformability said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by Weight of silicon, 0.15 to 0.50% by weight of chromium, and iron as substantially the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
  • a bar of fine-grain alloy steel with a tensile strength of at least 75 kg./mm., a yield point of at least 50 kg./ mm. and a high degree of cold deformability said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by Weight of silicon, 0.10 to 0.20% by Weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron substantially as the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
  • a bar of weldable fine-grain alloy steel with a tensile strength of at least 75 kg./mm., a yield point of at least 50 kg./mm. and a high degree of cold deformability said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, 0.10 to 0.20% by Weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Sept. 21, 1965 B. MATUSCHKA ETAL 3,207,637
STRUCTURAL STEEL AND PROCESS FOR MAKING SAME Filed Dec. 21. 1961 F IG. 2
BERNHARD MATUSCHKA GIOVANNI MORINI INVENTORS.
United States Patent "ice 3,207,637 STRUCTURAL STEEL AND PROCESS FOR MAKING SAME Bernhard Matuschka, Spohrstrasse 49, Vienna, Austria, and Giovanni Morini, Giornico, Ticino, Switzerland Filed Dec. 21, 1961, Ser. No. 160,990 11 Claims. (Cl. I ls-12.4)
Our present invention relates to the production of structural reinforcing rods and the like from steel.
Heretofore the use of high-strength steels in prestressing or reinforcing rods for concrete structures or similar elements has been limited by the lack of ductility of such steels and their rupture when bent cold to a small radius. When they were used it was necessary to perform them at elevated temperatures before delivery to the building site. The inability to make on-the-job changes in the shape of these elements often required expensive reworking and resulted in delays in construction.
It is an object of this invention to provide an improved ferrous composition adapted to be used particularly for structural reinforcements of the type described.
More particularly, it is an object of the invention to provide a low-alloy steel which, when formed into a rod, will have an elastic limit greater than 45 and preferably 50 kg./mm. while being capable of cold bending through 180 and back about a mandrel whose diameter is less than seven times the rod diameter.
Another specific object of the invention, allied to the preceding one, is to provide a ribbed rod, known as deformed bar, having the physical characteristics set forth above.
It is also an object of the instant invention to provide a ferrous composition of the character described which can be easily welded.
A further object of this invention is to provide a process for producing structural steel of such fine grain size that the aforestated desiderata of high elastic limit and deformability in the cold state can be realized along with a correspondingly great tensile strength, a large rate of resilient elongation and the ability of the cold-deformed element to return without rupture to its original state.
The foregoing objects are realized, in accordance with the present invention, with the use of a steel alloy having substantially the following composition by weight:
Percent C 0.15 to 0.40 Mn 0.70 to 1.80 Si 0.50 to 1.50
Fe, remainder.
This composition, when hot-rolled into a rod as more particularly described hereinafter, exhibits without further treatment the following physical characteristics:
Tensile strength-above 75 kg./mm.
Yield pointabove 50 kg./mm.
Elastic elongation-15 to in a specimen five diameters long.
These values compare favorably with those of hitherto available concrete-reinforcing rods of steel which have a yield point of 40 to 45 kg./n1m. while being bendable in the cold state through only 120, with a reverse bending of only 20, about a mandrel whose diameter equals seven times the diameter of the rod. Steel produced according to this invention, however, can be bent through an angle of 180, on a mandrel whose diameter is only five times the rod diameter, and bent back to its original position without any sign of cracking.
A rolling process according to the present invention, which has been found to result in an extraordinary refine- 3,207,037 Patented Sept. 21, 1955 ment of the grain structure of the steel and a corresponding toughness thereof, requires for instance the following working conditions to be maintained:
(1) A very high roller pressure that produces a 12% to 15% reduction in the cross-sectional area of the Work piece in the terminal rolling stage, preferably during each of the last three finishing passes;
(2) A relatively low rolling temperature at this stage which lies near or even below the upper (but above the lower) temperature limit of the pearlite-austenite transition range i.e. between substantially 800 and 900 C.;
(3) A rapid cooling after rolling, the temperature being reduced from a level of substantially 800 C. at the last rollers to about 500 C. by forced cooling (e.g. with circulating air, water sprays and/0r refrigerated supporting surfaces) at a rate which for rods of the usual diameters (e.g. from 6 to 40 mm.) should be at least 30% faster than the cooling time under normal ambient conditions; thus, with rods of 10 mm. diameter, for example, approximately seconds of cooling time are desirable in lieu of the usual seconds.
It has also been surprisingly found in accordance with a feature of this invention that an addition of about 0.15 to 0.50% of chromium, by weight, further improves the .aforedescribed characteristics of fineness of the grain and toughness of the steel.
Moreover, it was found that the addition of about 0.10 to 0.20% of aluminum and about 0.05 to 0.20% of either titanium or vanadium, by Weight, produces a still further refinement of the grain and yields a steel, especially for low-temperature uses, that readily lends itself to welding. This admixture may be used in a steel with or without the chromium component mentioned above.
The accompanying drawing shows in FIG. 1 a diagrammatic illustration of the preferred rolling process according to the invention and in FIG. 2 a deformed bar produced by this process and bent about a mandrel.
In FIG. 1 the bar stock 10, of diameter d is passed successively between roller pairs 13' and 13", 12 and 12", 11' and 11" which in practice form part of a single pair of cylinders and represent the last three stages of a rolling mill, only the rollers effective in one dimension of compression being visible. The stock 10 is successively reduced by these rollers to diameters d d and d, the latter being its final diameter and being assumed to be about 10 mm. The rollers also serve to impress upon the surface of the stock a ribbed profile to produce a so-called deformed bar 10.
The successive compressions of the stock to diameters d d and d involve each a step-down ratio of about 14: 13 corresponding to the aforestated cross-sectional reduction. This takes place in the temperature range of 800 to 900 C. with subsequent air cooling to 500 C. in about 100 seconds through suitable control of ambient conditions.
FIG. 2 shows how the bar 10' produced by the process of FIG. 1 can be bent through 180 about a mandrel 20 Whose diameter D is only five times as great as the bar diameter d The bar so bent can also be returned to its original straight position, shown in dot-dash lines, without cracking.
What is claimed is:
1. A process for making a bar of fine-grain structural steel, comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by Weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of .silicon, and iron as substantially the entire remainder, to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
2. A process according to claim 1 wherein each of three final rolling steps involves a reduction in crosssectional area of said stock by substantially 12 to 15 3. A process according to claim 1 wherein the air cooling from said temperature to said level is carried out at a rate substantially 30% faster than cooling under normal ambient conditions.
4. A process for making a bar of fine-grain structural steel, comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
5. A process for making a bar of weldable fine-grain structural steel, comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of: three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
6. A process for making a bar of fine-grain structural steel, comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by Weight of manganese, 0.50 to 1.50% by weight of silicon, 0.10 to 0.20% by weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in cross-sectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
7. A process for making a bar of weldable fine-grain structural steel, comprising the steps of successively rolling a stock of steel alloy, consisting essentially of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, 0.10 to 0.20% by weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, to progressively smaller diameters with a reduction in crosssectional area by substantially 12 to 15% at each of three final rolling steps, at a temperature of substantially 800 to 900 C., and cooling the rolled stock from said temperature to a level of approximately 500 C. at a rate substantially 30% faster than cooling under normal ambient conditions.
8. A bar of fine-grain alloy steel with a tensile strength of at least 75 kg/mm., a yield-point of at least 50 kg./
mm. and a high degree of cold deformability, said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, and iron as substantially the entire remainder produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 5 00 C.
9. A bar of Weldable fine-grain alloy steel with a tensile strength of at least kg./mm., a yield point of at least 50 kg./mrn. and a high degree of cold deformability, said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by Weight of silicon, 0.15 to 0.50% by weight of chromium, and iron as substantially the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
10. A bar of fine-grain alloy steel with a tensile strength of at least 75 kg./mm., a yield point of at least 50 kg./ mm. and a high degree of cold deformability, said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by Weight of silicon, 0.10 to 0.20% by Weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron substantially as the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
11. A bar of weldable fine-grain alloy steel with a tensile strength of at least 75 kg./mm., a yield point of at least 50 kg./mm. and a high degree of cold deformability, said steel being essentially composed of 0.15 to 0.40% by weight of carbon, 0.70 to 1.80% by weight of manganese, 0.50 to 1.50% by weight of silicon, 0.15 to 0.50% by weight of chromium, 0.10 to 0.20% by Weight of aluminum, 0.05 to 0.20% by weight of a metal selected from the group which consists of titanium and vanadium, and iron as substantially the entire remainder, produced by rolling a stock of steel alloy of the stated composition to progressively smaller diameters at a temperature of substantially 800 to 900 C., and rapidly cooling the rolled stock from said temperature to a level of approximately 500 C.
References Cited by the Examiner UNITED STATES PATENTS 2,576,223 11/51 Hofmann 148l2.4 2,716,080 8/55 Schwarz 148-12 2,901,346 8/59 Huddle et al 75-124 2,933,424 4/60 Canney 148-l2 2,987,394 6/61 Mueller 75124 FOREIGN PATENTS 609,730 10/48 Great Britain.
DAVID L. RECK, Primary Examiner.
RAY K. WINDHAM, Examiner.

Claims (1)

1. A PROCESS FOR MAKING A BAR OF FINE-GRAIN STRUCTURAL STEEL, COMPRISING THE STEPS OF SUCCESSIVELY ROLLING A STOCK OF STEEL ALLOY, CONSISTING ESSENTIALLY OF 0.15 TO 0.40% BY WEIGHT OF CARBON, 0.70 TO 1.80% BY WEIGHT OF MANGANESE, 0.50 TO 1.50% BY WEIGHT OF SILICON, AND IRON AS SUBSTANTIALLY THE ENTIRE REMAINDER, TO PROGRESSIVELY SMALLER DIAMETERS AT A TEMPERATURE OF SUBSTANTIALLY 800* TO 900*C., AND RAPIDLY COOLING THE ROLLED STOCK FROM SAID TEMPERATURE TO A LEVEL OF APPROXIMATELY 500*C.
US160990A 1961-12-21 1961-12-21 Structural steel and process for making same Expired - Lifetime US3207637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US160990A US3207637A (en) 1961-12-21 1961-12-21 Structural steel and process for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US160990A US3207637A (en) 1961-12-21 1961-12-21 Structural steel and process for making same

Publications (1)

Publication Number Publication Date
US3207637A true US3207637A (en) 1965-09-21

Family

ID=22579335

Family Applications (1)

Application Number Title Priority Date Filing Date
US160990A Expired - Lifetime US3207637A (en) 1961-12-21 1961-12-21 Structural steel and process for making same

Country Status (1)

Country Link
US (1) US3207637A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1921168B1 (en) * 1969-04-25 1970-07-09 Huettenwerk Oberhausen Ag Process for the production of welded wire mesh
DE1583803B1 (en) * 1967-06-15 1971-07-01 Louis Lille Lamendin External tensioning device for rock bolts
US3656917A (en) * 1966-09-10 1972-04-18 Nippon Kokan Kk Steel alloy tubes
US3661537A (en) * 1969-07-16 1972-05-09 Jones & Laughlin Steel Corp Welded pipe structure of high strength low alloy steels
US3753796A (en) * 1968-12-20 1973-08-21 Bethlehem Steel Corp Rolled steel having high strength and low impact transition temperature and method of producing same
JPS5112567B1 (en) * 1970-12-29 1976-04-20
DE2201855C2 (en) * 1972-01-15 1982-03-04 Estel Hoesch Werke Ag, 4600 Dortmund Process for the production of high-strength, easily weldable and cold-deformable heavy and medium plates and their use
EP0058016A1 (en) * 1981-01-27 1982-08-18 Kabushiki Kaisha Kobe Seiko Sho Process for producing steel wire or rods of high ductility and strength

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB609730A (en) * 1944-10-30 1948-10-06 Axel Frokjer Jensen Improvements in and relating to the production of cold-treated reinforcing steel
US2576223A (en) * 1948-02-17 1951-11-27 Hofmann Fritz Method of producing wear resistant steel rails
US2716080A (en) * 1950-10-13 1955-08-23 Schwarz Johannes Process for increasing the strength of steel
US2901346A (en) * 1956-05-04 1959-08-25 Consett Iron Company Ltd Mild steel
US2933424A (en) * 1957-05-08 1960-04-19 United States Steel Corp Method of making cold headed wire
US2987394A (en) * 1959-03-25 1961-06-06 John J Mueller Iron-aluminum base alloys

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB609730A (en) * 1944-10-30 1948-10-06 Axel Frokjer Jensen Improvements in and relating to the production of cold-treated reinforcing steel
US2576223A (en) * 1948-02-17 1951-11-27 Hofmann Fritz Method of producing wear resistant steel rails
US2716080A (en) * 1950-10-13 1955-08-23 Schwarz Johannes Process for increasing the strength of steel
US2901346A (en) * 1956-05-04 1959-08-25 Consett Iron Company Ltd Mild steel
US2933424A (en) * 1957-05-08 1960-04-19 United States Steel Corp Method of making cold headed wire
US2987394A (en) * 1959-03-25 1961-06-06 John J Mueller Iron-aluminum base alloys

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3656917A (en) * 1966-09-10 1972-04-18 Nippon Kokan Kk Steel alloy tubes
DE1583803B1 (en) * 1967-06-15 1971-07-01 Louis Lille Lamendin External tensioning device for rock bolts
US3753796A (en) * 1968-12-20 1973-08-21 Bethlehem Steel Corp Rolled steel having high strength and low impact transition temperature and method of producing same
DE1921168B1 (en) * 1969-04-25 1970-07-09 Huettenwerk Oberhausen Ag Process for the production of welded wire mesh
US3661537A (en) * 1969-07-16 1972-05-09 Jones & Laughlin Steel Corp Welded pipe structure of high strength low alloy steels
JPS5112567B1 (en) * 1970-12-29 1976-04-20
DE2201855C2 (en) * 1972-01-15 1982-03-04 Estel Hoesch Werke Ag, 4600 Dortmund Process for the production of high-strength, easily weldable and cold-deformable heavy and medium plates and their use
EP0058016A1 (en) * 1981-01-27 1982-08-18 Kabushiki Kaisha Kobe Seiko Sho Process for producing steel wire or rods of high ductility and strength

Similar Documents

Publication Publication Date Title
US4619714A (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
US4533401A (en) Process for producing steel wire or rods of high ductility and strength
US5496425A (en) Cold formed high-strength steel structural members
US5200005A (en) Interstitial free steels and method thereof
KR930017636A (en) Manufacturing method of steel plate for high strength can
US3207637A (en) Structural steel and process for making same
JP2005256020A (en) Low yield ratio type high strength cold rolled steel sheet having excellent shape freezability and manufacturing method therefor
JPH10280088A (en) Steel product for building structural use and its production
US5330594A (en) Method of making cold formed high-strength steel parts
US3795550A (en) Heat treatment process for non-alloyed low-carbon structural steel
JPS6479345A (en) High-strength hot rolled steel plate excellent in workability and its production
JPS59166651A (en) Two-phase high tensile hot rolled steel plate comprising two-phase structure of ultra-fine grain ferrite phase and hardening phase and preparation tehereof
KR890003401B1 (en) High strength low carbon dual phase steel rods and wires and process for making same
JP2837056B2 (en) Method for producing low carbon equivalent rolled section steel by controlled rolling
JP3119122B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3252905B2 (en) Fine grain martensitic steel
JP2001247931A (en) Non-heattreated high strength seamless steel pipe and its production method
JP3022279B2 (en) Manufacturing method of steel for rebar with excellent earthquake resistance
JPH066740B2 (en) Low yield ratio thick wall high strength steel manufacturing method
JP3350945B2 (en) High tensile hot rolled steel sheet with excellent ductility and corrosion resistance and manufacturing method
RU2393261C1 (en) Procedure for fabricating anti-seismic reinforced rod
JP2576254B2 (en) Manufacturing method of seamless steel pipe with ultrafine structure
JPH09111342A (en) Production of low yield ratio steel pipe
JPH01132717A (en) Production of high-strength austenitic stainless seamless steel pipe
KR930021801A (en) Manufacturing Method of High Strength Building for Resistance Complex Construction