US20140262606A1 - Sound absorbing body and device - Google Patents

Sound absorbing body and device Download PDF

Info

Publication number
US20140262606A1
US20140262606A1 US14/196,597 US201414196597A US2014262606A1 US 20140262606 A1 US20140262606 A1 US 20140262606A1 US 201414196597 A US201414196597 A US 201414196597A US 2014262606 A1 US2014262606 A1 US 2014262606A1
Authority
US
United States
Prior art keywords
sound absorbing
absorbing body
dense part
density
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/196,597
Other languages
English (en)
Inventor
Kiyoshi Tsujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Assigned to SEIKO EPSON CORPORATION reassignment SEIKO EPSON CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TSUJINO, KIYOSHI
Publication of US20140262606A1 publication Critical patent/US20140262606A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/14Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by a layer differing constitutionally or physically in different parts, e.g. denser near its faces
    • B32B5/145Variation across the thickness of the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4023Coloured on the layer surface, e.g. ink
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • B32B2307/4026Coloured within the layer by addition of a colorant, e.g. pigments, dyes

Definitions

  • the present invention relates to a sound absorbing body and a device.
  • the present invention was created to address at least a portion of the problems described above, and can be realized as the modes or aspects below.
  • a sound absorbing body includes fibers as a main constituent.
  • a density of the sound absorbing body differs for one surface side and the other surface side in a thickness direction.
  • a color of the sound absorbing body differs for the one surface side and the other surface side.
  • the sound absorbing body is constituted as one unit. Specifically, it is formed as an integral unit.
  • the color of the one surface and the color of the other surface are different. Specifically, the color corresponding to the dense part and the color corresponding to the non-dense part are different. By doing this, it is easy to distinguish with the sound absorbing body which surface corresponds to the dense part and which surface corresponds to the non-dense part. Therefore, for example when arranging the sound absorbing body on an apparatus of some sort, it is possible to reliably attach it without making an error in the non-dense/dense direction of the sound absorbing body.
  • the sound absorbing body of the aspect noted above is preferably attached to an apparatus.
  • One of the one surface and the other surface of the sound absorbing body attached to the apparatus preferably corresponds to a dense part for which the density is high, and coloring is preferably implemented on the one of the one surface and the other surface of the sound absorbing body corresponding to the dense part.
  • the surface having the dense density part is arranged on the apparatus side, so the non-dense part with rough density becomes the front surface side.
  • the side of the surface by which the sound absorbing body is attached to that apparatus is colored, so when attaching the sound absorbing body to that apparatus, it is possible to arrange it without making an error in the sound absorbing body attachment surface.
  • the colored surface side of the sound absorbing body is hidden by being attached to the apparatus, it is not possible to visually recognize the colored surface. Because of that, it is not particularly necessary to restrict the color used for coloring, and it is possible to use an inexpensive coloring material.
  • the apparatus to which the sound absorbing body is attached it is possible to apply this to case members of various types of devices, as well as to drive heads, motors and the like.
  • the density of the sound absorbing body is preferably the density of the fibers, and the fibers are preferably colored.
  • the sound absorbing body preferably includes the dense part and a non-dense part with a lower density than the dense part.
  • the dense part preferably includes more fibers for which a fiber length is shorter than that of the non-dense part.
  • the sound absorbing body preferably includes flame retardant.
  • the density of the sound absorbing body is preferably the density of the flame retardant, and the flame retardant is preferably colored.
  • the flame retardant contained in the sound absorbing body is colored, so the dense part looks darker than the non-dense part.
  • the colors of the surface having the dense part and the surface having the non-dense part look different, making it possible to distinguish them. Also, it is not necessary to do coloring after the sound absorbing body is formed, so it is possible to reduce the man hours.
  • the sound absorbing body preferably includes molten resin.
  • the density of the sound absorbing body is preferably the density of the molten resin, and the molten resin is preferably colored.
  • the molten resin contained in the sound absorbing body is colored, so the dense part looks darker than the non-dense part.
  • the colors of the surface having the dense part and the surface having the non-dense part look different, making it possible to distinguish them. Also, it is not necessary to do coloring after the sound absorbing body is formed, so it is possible to reduce the man hours.
  • coloring is preferably done by writing a symbol on the one of the one surface and the other surface of the sound absorbing body attached to the apparatus.
  • the sound absorbing body of the aspect noted above is preferably attached to an apparatus.
  • One of the one surface and the other surface of the sound absorbing body attached to the apparatus preferably corresponds to a dense part with high density, and coloring is preferably implemented on the other of the one surface and the other surface of the sound absorbing body corresponding to a non-dense part which has a lower density than the dense part.
  • the surface having the dense density part is arranged on the apparatus side, so the non-dense part with rough density becomes the front surface side. Then, since the front surface side of the sound absorbing body in relation to the apparatus is colored, when attaching the sound absorbing body to the apparatus, it is possible to prevent making an error in the sound absorbing body attachment surface. Also, since the front surface side is colored, it is possible to improve the design characteristics.
  • the color used for coloring is preferably similar to a color of the apparatus attachment surface
  • a device includes the sound absorbing body noted above, and an apparatus.
  • the device includes various electronic devices that emit sound such as a printer or the like, as well as other various types of apparatus.
  • FIGS. 1A to 1D are pattern diagrams showing the constitution of a sound absorbing body of the first embodiment.
  • FIG. 2 is a cross section diagram showing the constitution of the printer.
  • FIGS. 3A to 3D are pattern diagrams showing the constitution of a sound absorbing body of the second embodiment.
  • FIGS. 4A to 4D are pattern diagrams showing the constitution of a sound absorbing body of the third embodiment.
  • FIGS. 1A to 1D are pattern diagrams showing the constitution of the sound absorbing body of this embodiment.
  • the sound absorbing body 200 is an item for which fibers are the main constituent, and for example, is an item attached to the surface of a case member of an apparatus, for absorbing noise generated from the apparatus (doing sound absorption).
  • FIG. 1A is a lateral cross section view. As shown in FIG. 1A , the density differs between one surface side and the other surface side in the thickness direction T of the rectangular solid form sound absorbing body 200 , and the color also differs between one surface and the other surface.
  • the sound absorbing body 200 is formed as one unit (one item), and the one surface 200 a side in the thickness T direction of that sound absorbing body 200 is the dense part 210 with the high density, and the other surface 200 b side is the non-dense part 200 with lower density than the dense part 210 . Then, the dense part 210 includes many fibers with shorter fiber length than the non-dense part 220 .
  • the sound absorbing body 200 constituted in this way, for example, when sound enters from the non-dense part 220 , the entered sound passes through the non-dense part 220 and is reflected by the dense part 210 . Then, the reflected sound is again propagated in the non-dense part 220 . Then, the sound is attenuated by this process. By doing this, it is possible to obtain a sound absorption effect.
  • the sound absorbing body 200 is an item formed from a mixture including cellulose fiber, molten resin, and flame retardant, and the density of the non-dense parts 220 and the dense parts 210 is stipulated by the density of at least one of the cellulose fiber, the molten resin, or the flame retardant.
  • the cellulose fiber is an item for which a pulp sheet or the like is fibrillated into fiber form using a dry type defibrating machine such as a rotary crushing device, for example.
  • the molten resin is an item that binds between cellulose fibers, maintains suitable strength (hardness or the like) for the sound absorbing body 200 , prevents paper powder and fiber from scattering, and contributes to maintaining the shape of the sound absorbing body 200 .
  • the molten resin it is possible to use various modes such as fiber form, powder form and the like. Then, by heating the mixture with cellulose fiber and molten resin mixed, it is possible to melt the molten resin, and to fuse the cellulose fibers and harden them.
  • the molten resin be in a fiber form that easily entwines with cellulose fibers in the fibrillated material.
  • the flame retardant is an item added to give flame resistance to the sound absorbing body 200 .
  • the flame retardant for example, it is possible to use inorganic materials such as aluminum hydroxide, magnesium hydroxide and the like, or phosphorous based organic materials (e.g. aromatic phosphate such as triphenylphosphate or the like).
  • the sound absorbing body 200 forming method for example, a mixture for which cellulose fiber, molten resin, and flame retardant are mixed are placed in a sieve, and this is deposited on a mesh belt arranged beneath the sieve to form a deposit. At this time, for example, depositing is done while suctioning using a suction device. By doing this, it is possible to deposit while biasing the short fibers to one surface side, and to form the dense part at one surface side. Then, the formed deposited substance undergoes pressurization heat treatment. By doing this, the molten resin is melted, and this is formed to a desired thickness. Furthermore, by die cutting to a desired dimension, the sound absorbing body 200 is formed.
  • FIG. 1B is a plan view of the sound absorbing body 200 seen from one surface 200 a side
  • FIG. 1C is a plan view of the sound absorbing body 200 seen from the other surface 20013 side.
  • the color is different with the one surface 200 a and the other surface 200 b .
  • coloring is implemented on the one surface 200 a .
  • coloring is implemented on the surface corresponding to the dense part 210 .
  • the cellulose fiber, molten resin, or flame retardant is colored.
  • As a coloring agent for example, it is possible to suitably use carbon black, a pigment power or the like.
  • the coloring method is not particularly restricted. For example, it is possible to do coloring by depositing a mixture for which cellulose fiber, molten resin, and flame retardant are mixed on a colored layer for which a coloring agent was laminated, and by doing pressurization heat treatment of the deposited material made by the colored layer and the mixture. Also, after the sound absorbing body 200 is formed, it is possible to color the one surface 200 a using a printing device, or to write using spraying or various writing instruments or the like. Also, as the coloring method, it is possible to color the entire one surface 200 a , or to implement coloring on only a portion of the one surface 200 a . Also, coloring can be constituted using only one color, or with a plurality of colors.
  • a symbol is not particularly restricted as long as it is colored, including letters, numbers, marks or the like. It is also possible to note as a symbol the specified position and sequence for attaching to the apparatus. By working in this way, it is possible to improve workability.
  • FIG. 1D is a pattern diagram showing the method of attaching the sound absorbing body 200 to an apparatus M.
  • the surface corresponding to the dense part 210 of the sound absorbing body 200 specifically, the one surface 200 a
  • the case surface 1 a of the case member 1 of the apparatus M is attached to the case surface 1 a of the case member 1 of the apparatus M. Therefore, the other surface 200 b corresponding to the non-dense part 220 is arranged on the front surface side.
  • the one surface 200 a in relation to the dense part 210 is attached to the apparatus M side, so sound easily passes through from the non-dense part 220 which is the front surface side, and it is possible to do sound absorption. Furthermore, because coloring is implemented on the one surface 200 a side which is the surface of the sound absorbing body 200 attached to the apparatus M, when attaching the sound absorbing body 200 to the apparatus M, it is possible to prevent making errors in the attachment surface of the sound absorbing body 200 . Also, the colored one surface 200 a is hidden from the surface of the sound absorbing body 200 by being attached to the apparatus, so it is no longer possible to visually recognize the colored surface. Because of this, there is no longer a need to specifically limit the color for coloring, and it is possible to use inexpensive coloring materials.
  • FIG. 2 is a cross section diagram showing the constitution of the printer.
  • the printer 10 of this embodiment performs printing by giving an impact using a printing wire (not illustrated) provided inside the printing head 3 via an ink ribbon 13 on printing paper 6 as a printing medium arranged between a platen 2 and the printing head 3 .
  • the printing paper 6 is fed from the paper feeding port 7 provided in the case 1 of the printer 10 and wound on the platen 2 , printing is performed by the printing head 3 (in addition to numbers, letters and the like, this is a broad concept also including printing graphs using dots or the like), and the paper is ejected from a paper ejection port 9 .
  • a carriage 4 can be guided by a guide shaft 5 and moved in the axial direction.
  • the ink ribbon 13 is interposed between the printing head 3 and the printing paper 6 , and the printing head 3 fixed to the carriage 4 performs printing by driving a plurality of printing wires provided inside the printing head 3 at a desired timing while moving in the axial direction.
  • a freely openable/closable cover 11 and a paper ejection port cover 12 are attached to a case member 1 , and the paper ejection port cover 12 is rotatably connected to the cover 11 .
  • the paper ejection port cover 12 is constituted with a transparent, light member, so the printing paper 6 is easy to see, and it is easy to take it out. Then, the printed printing paper 6 is ejected from the paper ejection port 9 along a paper guide 8 .
  • the printer 10 is equipped with the sound absorbing body 200 that absorbs noise (does sound absorption).
  • the constitution of the sound absorbing body 200 is the same as the constitution in FIG. 1 , so we will omit a description.
  • the sound absorbing body 200 is arranged at the part corresponding to the periphery of the printing head 3 of the case member 1 . In specific terms, it is arranged at the case surface 1 a of the part corresponding to the side opposite to the drive part of the printing head 3 of the case member 1 . Furthermore, the sound absorbing body 200 is also arranged on the cover 11 corresponding to above the printing head 3 .
  • the specific arrangement method is to attach such that the surface corresponding to the dense part 210 of the sound absorbing body 200 , specifically, the one surface 200 a , contacts the case surface 1 a .
  • the sound absorbing body 200 has a dense part 210 and a non-dense part 220 , and when sound enters the sound absorbing body 200 , sound is reflected by the dense part 210 , and sound is propagated by the non-dense part 220 . By doing this, it is possible to attenuate the sound. Then, it is possible to increase the sound absorption effect without making the thickness of the sound absorbing body 200 thicker.
  • the sound absorbing body 200 is constituted as one unit. Specifically, it is formed as an integrated unit. Because of that, for example compared to an item for which the dense parts 210 and the non-dense parts 220 are formed separately and alternately laminated, management of the adhesion of the lamination boundaries and the like is unnecessary, and it is possible to perform handling easily.
  • Coloring is implemented on the one surface 200 a corresponding to the dense part 210 of the sound absorbing body 200 , so it is easy to distinguish between the one surface 200 a and the other surface 200 b . By doing this, when attaching to some type of apparatus or device, it is possible to prevent making an error in the attachment direction of the sound absorbing body 200 .
  • FIGS. 3A to 3D are pattern diagrams showing the constitution of the sound absorbing body of this embodiment.
  • the sound absorbing body 201 is an item for which fibers are the main constituent, and for example, is an item attached to the surface of a case member of an apparatus, for absorbing noise generated from the apparatus (doing sound absorption).
  • FIG. 3A is a lateral cross section view. As shown in FIG. 3A , the density differs between one surface side and the other surface side in the thickness direction T of the rectangular solid form sound absorbing body 201 , and the color also differs between one surface and the other surface.
  • the constitution is such that the one surface 201 a side in the thickness T direction of the sound absorbing body 201 formed as one unit (one item) is the dense density part 210 , and the other surface 201 b side is the non-dense part 220 .
  • the dense part 210 includes many of the fibers for which the fiber length is shorter than that of the non-dense part 220 .
  • the sound absorbing body 201 is an item formed from a mixture including cellulose fiber, molten resin, and flame retardant, and the density of the non-dense part 220 and the dense part 210 is the density of the cellulose fiber, the molten resin, or the flame retardant.
  • the cellulose fibers, molten resin, and flame retardant are the same as for the first embodiment, so a description will be omitted.
  • the method for forming the sound absorbing body 201 is also the same as with the first embodiment, so a description will be omitted.
  • FIG. 3B is a plan view of the sound absorbing body 201 seen from one surface 201 a side
  • FIG. 3C is a plan view of the sound absorbing body 201 seen from the other surface 201 b side.
  • the color is different with the one surface 201 a and the other surface 201 b .
  • coloring is implemented on the other surface 201 b .
  • coloring is implemented on the surface corresponding to the non-dense part 220 .
  • the cellulose fiber, molten resin, or flame retardant is colored.
  • As a coloring agent for example, it is possible to suitably use carbon black, a pigment power or the like.
  • the coloring method is not particularly restricted.
  • the sound absorbing body 201 After the sound absorbing body 201 is formed, it is possible to color the other surface 201 b using a printing device, or to write using spraying or various writing instruments or the like.
  • the coloring method it is possible to color the other surface 201 b in its entirety, or to implement coloring on only a portion of the other surface 201 b .
  • coloring can be constituted using only one color, or with a plurality of colors.
  • a symbol is not particularly restricted as long as it is colored, including letters, numbers, marks or the like. It is also possible to note as a symbol the specified position and sequence for attaching to the apparatus. With this embodiment, coloring was done using a color similar to the color of the apparatus attachment surface.
  • FIG. 3D is a pattern diagram showing the method of attaching the sound absorbing body 201 to an apparatus M.
  • the surface corresponding to the dense part 210 of the sound absorbing body 201 specifically, the one surface 201 a , is attached to the case surface 1 a of the case member 1 of the apparatus M. Therefore, the other surface 201 b corresponding to the non-dense part 220 is arranged on the front surface side.
  • the one surface 201 a in relation to the dense part 210 is arranged on the apparatus M side, so sound easily passes through from the non-dense part 220 which is the front surface side, and it is possible to do sound absorption. Also, because coloring is implemented on the other surface 201 b side which is the front surface side of the sound absorbing body 201 in relation to the apparatus M, when attaching the sound absorbing body 201 to the apparatus M, it is possible to prevent making errors in the attachment surface of the sound absorbing body 201 . Furthermore, by having the color of the other surface 201 b of the sound absorbing body 201 be similar to the color of the apparatus M (case surface 1 a ), it is possible to not have the existence of the sound absorbing body 201 stand out. The constitution of the device in which the apparatus is placed is the same as that of the first embodiment, so a description will be omitted.
  • the other surface 201 b corresponding to the non-dense part 220 of the sound absorbing body 201 is colored, and the colors of the one surface 201 a and the other surface 201 b are different. By doing this, it is possible to prevent making errors in the attachment direction of the sound absorbing body 201 to the case surface 1 a of the printer 10 as the device. Furthermore, because the color of the other surface 201 b is made to be similar to that of the apparatus M (case surface 1 a ), it is possible to make the existence of the sound absorbing body 201 not stand out.
  • FIGS. 4A to 4D are pattern diagrams showing the constitution of the sound absorbing body of this embodiment.
  • the sound absorbing body 202 is an item for which fibers are the main constituent, and for example, is an item attached to the surface of a case member of an apparatus, for absorbing noise generated from the apparatus (doing sound absorption).
  • FIG. 4A is a lateral cross section view. As shown in FIG. 4A , the density differs between one surface side and the other surface side in the thickness direction T of the rectangular solid form sound absorbing body 202 , and the color also differs between one surface and the other surface.
  • the constitution is such that the one surface 202 a side in the thickness T direction of the sound absorbing body 202 formed as one unit (one item) is the dense density part 210 , and the other surface 202 b side is the non-dense part 220 .
  • the dense part 210 includes many of the fibers for which the fiber length is shorter than that of the non-dense part 220 .
  • the sound absorbing body 202 is an item formed from a mixture including cellulose fiber, molten resin, and flame retardant, and the density of the non-dense part 220 and the dense part 210 is the density of the cellulose fiber, the molten resin, or the flame retardant.
  • the cellulose fibers, molten resin, and flame retardant are the same as for the first embodiment, so a description will be omitted.
  • FIGS. 4B and 4C are plan views of the one surface 202 a side and the other surface 202 b side. As shown in FIGS. 4B and 4C , the color is different with the one surface 202 a and the other surface 202 b . With this embodiment, the cellulose fiber is colored when the sound absorbing body 202 is formed, so the dense part of the one surface 202 a side is formed to appear darker in color than the non-dense part of the other surface 202 b side.
  • the sound absorbing body 202 forming method for example, a mixture for which cellulose fiber, molten resin, flame retardant, and a coloring agent are mixed are placed in a sieve, and this is deposited on a mesh belt arranged beneath the sieve to form a deposit.
  • depositing is done while suctioning using a suction device. By doing this, it is possible to deposit while biasing the short fibers to one surface side, to form the dense part at one surface side, and to form a darker color part.
  • the deposited deposit substance undergoes pressurization heat treatment. By doing this, the molten resin is melted, and this is formed to a desired thickness. Furthermore, by die cutting to a desired dimension, the sound absorbing body 202 is formed.
  • FIG. 4D is a pattern diagram showing the method of attaching the sound absorbing body 202 to an apparatus M.
  • the surface corresponding to the dense part 210 of the sound absorbing body 202 specifically, the one surface 202 a , is attached to the case surface 1 a of the case member 1 of the apparatus M. Therefore, the other surface 202 b corresponding to the non-dense part 220 is arranged on the front surface side.
  • the one surface 202 a in relation to the dense part 210 is arranged at the apparatus M side, so sound easily passes through from the non-dense part 220 which is the front surface side, and it is possible to do sound absorption. Furthermore, the one surface 202 a which is the surface of the sound absorbing body 202 attached to the apparatus M has a darker color than the other surface 202 b . By doing this, when attaching the sound absorbing body 202 to the apparatus M, it is possible to prevent making errors in the attachment surface of the sound absorbing body 202 .
  • the constitution of the device in which the apparatus M is placed is the same as for the first embodiment, so a description will be omitted.
  • the one surface 202 a corresponding to the dense part 210 is colored with a darker color than the other surface 202 b corresponding to the non-dense part 220 . By doing this, it is possible to prevent making errors in the attachment direction of the sound absorbing body 202 to the case surface 1 a of the printer 10 . Also, it is not necessary to do separate coloring after the sound absorbing body 202 is formed, so it is possible to reduce the man hours.
  • a pulp sheet cut into several cm using a cutting machine was fibrillated into floc using a turbo mill (made by Turbo Kogyo Co., Ltd.).
  • coloring agent was deposited on a mesh belt. Then, 100 weight parts of cellulose fiber, 15 weight parts of molten fiber, and 5 weight parts of flame retardant were air mixed, and the mixed mixture C1 was passed through a sieve and deposited on the coloring agent deposited material. At this time, so that the flame retardant that was smaller than the cellulose fibers and molten resin, as well as cellulose fibers of shorter length among the cellulose fibers, would be gathered at the lower side, depositing on the mesh belt was done while controlling suction using a suction device. Then, the deposited deposit substance underwent pressurization heat treatment at 200° C. After that, this was cut to ⁇ 29 mm and 10 mm thick to form sound absorbing body A.
  • the density of the one surface side and the other surface side in the thickness direction were not uniform, but rather the density of the lower layer side corresponding to the one surface side deposited on the mesh belt side was 0.17 g/cm 3 , and the density of the upper layer side corresponding to the other surface side was 0.15 g/cm 3 , and the density of the lower layer side corresponding to the one surface side was higher than the density of the upper layer side corresponding to the other surface side. Also, many shorter length cellulose fibers and shorter length molten resin were distributed on the lower layer side corresponding to the one surface side. Then, coloring was implemented on the high density one surface side.
  • a mixture C2 for which 100 weight parts of cellulose fiber, 25 weight parts of molten fiber (average fiber length 3 mm), 10 weight parts of flame retardant, and 3 weight parts of coloring agent were air mixed was formed.
  • mixture C3 for which 100 weight parts of cellulose fiber, 15 weight parts of molten fiber (average fiber length 5 mm), and 10 weight parts of flame retardant were air mixed was formed. Then, without using a suction device, these were deposited on the mesh belt. First, the mixture C2 was passed through a sieve and allowed to fall freely, and it was deposited by its own weight on the mesh belt.
  • the mixture C3 was passed through a sieve facing above the deposited mixture C2 and allowed to fall freely, with the mixture C3 deposited by its own weight on the mixture C2. Then, the deposited deposit material underwent pressurization heat treatment at 200° C. After that, this was cut to ⁇ 29 mm and 10 mm thick to form sound absorbing body B.
  • the density of that sound absorbing body B was measured, the density of the one surface side and the other surface side in the thickness direction were not uniform, but rather the density of the lower layer side corresponding to the one surface side deposited on the mesh belt side (0.17 g/cm 3 ) was higher than the density of the upper layer side corresponding to the other surface side (0.15 g/cm 3 ). Also, many shorter length cellulose fibers and shorter length molten resin were distributed on the lower layer side corresponding to the one surface side. Furthermore, coloring was implemented on the lower layer side.
  • cellulose fiber 100 weight parts of cellulose fiber, 15 weight parts of molten fiber, and 5 weight parts of flame retardant were air mixed, and the mixed mixture C1 was passed through a sieve and deposited. At this time, depositing was done on a mesh belt while controlling suction using a suction device. Then, the deposited deposit material underwent pressurization heat treatment at 200° C. After that, this was cut to ⁇ 29 mm and 10 mm thick to form sound absorbing body R.
  • the density of the one surface side and the other surface side in the thickness direction were not uniform, but rather the density of the lower layer side corresponding to the one surface side deposited on the mesh belt side was 0.17 g/cm 3 , and the density of the upper layer side corresponding to the other surface side was 0.15 g/cm 3 , and the density of the lower layer side corresponding to the one surface side was higher than the density of the upper layer side corresponding to the other surface side.
  • the sound absorbing body 200 , 201 , and 202 were a rectangular solid, but the invention is not limited to this. It is also possible to have a notch or recess in a portion of the rectangular solid, or to have a circular arc part or a sloped part rather than a rectangular solid.
  • lamination was done such that the thickness of the layer corresponding to the non-dense parts 220 was thicker than the thickness of the layer corresponding to the dense parts 210 , but the invention is not limited to his constitution.
  • the thickness of the layer corresponding to the non-dense parts 220 be the same thickness as the thickness of the layer corresponding to the dense parts 210 . Even when set in this way, it is possible to increase the sound absorbing effect.
  • densities are numbers for the greatest locations and the least locations.
  • the pulp sheet includes wood pulp such as of conifer trees, broad leafed trees and the like, non-wood plant fibers such as of hemp, cotton, kenaf and the like, and used paper and the like.
  • cellulose fiber was the main constituent, but as long as it is a material that absorbs sound, and can be given density differences, this is not limited to cellulose fiber. It is also possible to use fiber with a raw material of a plastic such as polyurethane or polyethylene terephthalate (PET) or the like, or another fiber such as wool or the like.
  • a plastic such as polyurethane or polyethylene terephthalate (PET) or the like
  • PET polyethylene terephthalate
  • the method for forming the sound absorbing body is not limited to the method noted with the embodiments noted above. As long as the features of this application can be presented, another manufacturing method such as a wet method or the like can also be used.
  • the printer 10 as an example of the device for attaching the sound absorbing body 200 , 201 , and 202 , but the invention is not limited to this, and it is possible to use this on other various devices.
  • the type of apparatus for attaching the sound absorbing body 200 , 201 , and 202 for example, it is also possible to attach to the printing head 3 of the printer 10 in FIG. 2 .
  • the sound absorbing body 200 , 201 , and 202 are attached so as to cover a part or all of the printing head 3 . By working in this way, it is possible reduce the noise generated from the printing head 3 .
  • it is also possible to attach to various types of drive devices such as a motor or the like. Working in this way as well, it is possible to obtain the same effects as noted above.
  • the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps.
  • the foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives.
  • the terms “part,” “section,” “portion,” “member” or “element” when used in the singular can have the dual meaning of a single part or a plurality of parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)
US14/196,597 2013-03-14 2014-03-04 Sound absorbing body and device Abandoned US20140262606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-051380 2013-03-14
JP2013051380A JP6015502B2 (ja) 2013-03-14 2013-03-14 吸音体、機器

Publications (1)

Publication Number Publication Date
US20140262606A1 true US20140262606A1 (en) 2014-09-18

Family

ID=51503701

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/196,597 Abandoned US20140262606A1 (en) 2013-03-14 2014-03-04 Sound absorbing body and device

Country Status (3)

Country Link
US (1) US20140262606A1 (ja)
JP (1) JP6015502B2 (ja)
CN (1) CN104050960B (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652360A (en) * 1965-05-12 1972-03-28 Us Plywood Champ Papers Inc Method for manufacturing mass particles in a viscoelastic matrix
US4213516A (en) * 1978-11-29 1980-07-22 American Seating Company Acoustical wall panel
US4214646A (en) * 1978-06-19 1980-07-29 Conwed Corporation Space divider and acoustic panel
US4428454A (en) * 1981-09-24 1984-01-31 Capaul Raymond W Acoustical panel construction
US4590114A (en) * 1984-04-18 1986-05-20 Personal Products Company Stabilized absorbent structure containing thermoplastic fibers
US5149920A (en) * 1989-11-09 1992-09-22 Fiber-Lite Corporation Acoustical panel and method of making same
US5684278A (en) * 1994-11-18 1997-11-04 Lockheed Missiles & Space Co., Inc. Acoustical ceramic panel and method
US6296075B1 (en) * 2000-06-02 2001-10-02 Lear Corporation Lightweight acoustical system
US20040050619A1 (en) * 2002-09-13 2004-03-18 Matthew Bargo Sound absorbing material and process for making
US7070848B2 (en) * 2002-10-21 2006-07-04 Cascade Engineering, Inc. Vehicle acoustic barrier
US7080712B2 (en) * 2001-01-23 2006-07-25 Kasai Kogyo Co., Ltd. Soundproof material for vehicle and method of manufacturing the material
US7605097B2 (en) * 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
US20110226547A1 (en) * 2010-03-17 2011-09-22 Groz-Beckert Kg Fiber Composite Acoustic Damping Material
US8051950B2 (en) * 2006-08-03 2011-11-08 Glacier Bay, Inc. System for reducing acoustic energy
US8256572B2 (en) * 2010-03-09 2012-09-04 Autoneum Management Ag Automotive insulating trim part
US8496088B2 (en) * 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
US20140224572A1 (en) * 2013-02-14 2014-08-14 Seiko Epson Corporation Sound absorbing body and printing device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021916A (en) * 1959-04-06 1962-02-20 William G Kemp Reinforced acoustical unit
US3977492A (en) * 1975-01-09 1976-08-31 Acon, Inc. Acoustical material for use in association with noise generating machinery
CN86100457B (zh) * 1986-01-18 1988-06-22 黑龙江省劳动保护科学技术研究所 隔声、阻尼、防辐射材料的制造方法
JPH03218991A (ja) * 1990-01-24 1991-09-26 Minoru Sugisawa 軽量化して利用範囲を広げた屋上防水工法
JPH03221435A (ja) * 1990-01-29 1991-09-30 Nippon Steel Chem Co Ltd 無機繊維質成形部材の製造方法
JPH10103728A (ja) * 1996-09-26 1998-04-21 Matsushita Seiko Co Ltd 消音装置
JPH114010A (ja) * 1997-06-13 1999-01-06 Canon Inc 太陽電池モジュールの製造方法及び設置方法
JP2002079598A (ja) * 2000-09-07 2002-03-19 Toray Ind Inc 吸音材およびそれを用いた吸音板
US20040002274A1 (en) * 2002-06-27 2004-01-01 Tilton Jeffrey A. Decorative laminate for fibrous insulation products
JP4133154B2 (ja) * 2002-09-19 2008-08-13 株式会社リコー インクカートリッジ及びインクジェットプリンタ
CN2641961Y (zh) * 2003-07-04 2004-09-15 张伟颖 低频吸音体
JP2005134769A (ja) * 2003-10-31 2005-05-26 San Chem Kk 防音材料
JP4242302B2 (ja) * 2004-02-03 2009-03-25 トヨタ車体株式会社 木質成形体の製造方法
JP2006306381A (ja) * 2005-03-31 2006-11-09 Toyoda Gosei Co Ltd 車両の外装材、同外装材を具備する車両の吸音構造、並びに同吸音構造の吸音周波数特性調整方法
CN201430173Y (zh) * 2009-06-25 2010-03-24 宁波金雄塑料有限公司 蓄电池极柱密封胶盖
CN201459943U (zh) * 2009-08-06 2010-05-12 卢耀成 轻型环保防火吸音体

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3652360A (en) * 1965-05-12 1972-03-28 Us Plywood Champ Papers Inc Method for manufacturing mass particles in a viscoelastic matrix
US4214646A (en) * 1978-06-19 1980-07-29 Conwed Corporation Space divider and acoustic panel
US4213516A (en) * 1978-11-29 1980-07-22 American Seating Company Acoustical wall panel
US4428454A (en) * 1981-09-24 1984-01-31 Capaul Raymond W Acoustical panel construction
US4590114A (en) * 1984-04-18 1986-05-20 Personal Products Company Stabilized absorbent structure containing thermoplastic fibers
US5149920A (en) * 1989-11-09 1992-09-22 Fiber-Lite Corporation Acoustical panel and method of making same
US5684278A (en) * 1994-11-18 1997-11-04 Lockheed Missiles & Space Co., Inc. Acoustical ceramic panel and method
US6296075B1 (en) * 2000-06-02 2001-10-02 Lear Corporation Lightweight acoustical system
USRE39010E1 (en) * 2000-06-02 2006-03-14 Lear Corporation Lightweight acoustical system
US7080712B2 (en) * 2001-01-23 2006-07-25 Kasai Kogyo Co., Ltd. Soundproof material for vehicle and method of manufacturing the material
US20040050619A1 (en) * 2002-09-13 2004-03-18 Matthew Bargo Sound absorbing material and process for making
US7070848B2 (en) * 2002-10-21 2006-07-04 Cascade Engineering, Inc. Vehicle acoustic barrier
US7605097B2 (en) * 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
US8051950B2 (en) * 2006-08-03 2011-11-08 Glacier Bay, Inc. System for reducing acoustic energy
US8256572B2 (en) * 2010-03-09 2012-09-04 Autoneum Management Ag Automotive insulating trim part
US20110226547A1 (en) * 2010-03-17 2011-09-22 Groz-Beckert Kg Fiber Composite Acoustic Damping Material
US8496088B2 (en) * 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
US20140224572A1 (en) * 2013-02-14 2014-08-14 Seiko Epson Corporation Sound absorbing body and printing device

Also Published As

Publication number Publication date
JP2014178413A (ja) 2014-09-25
CN104050960B (zh) 2020-09-11
CN104050960A (zh) 2014-09-17
JP6015502B2 (ja) 2016-10-26

Similar Documents

Publication Publication Date Title
US9038768B2 (en) Sound absorbing body and printing device
EP1009705B1 (en) Wet-laid nonwoven web from unpulped natural fibers and composite containing same
US9038769B2 (en) Sound absorbing body and electronic device
KR20110114608A (ko) 천연 섬유 트림 패널
JP6155747B2 (ja) 液体吸収体、液体タンク、液体吐出装置
US9038767B2 (en) Sound absorbing body and printing device
EP2739469A1 (de) Innenausstattungsteil aufweisend pflanzliche naturstoffe
US20140262606A1 (en) Sound absorbing body and device
FI944088A (fi) Komposiittimateriaaleja ja menetelmiä ja sideaineita niiden valmistamiseksi
JP6332382B2 (ja) 吸音体、印刷装置
JP2011181714A (ja) 電磁波シールドシート及びその製造方法
JP6332381B2 (ja) 吸音体、印刷装置
JP7501282B2 (ja) 磁性体シートおよびその製造方法
KR20060041147A (ko) 날염인쇄 마감된 흡음보드
EP3297871B1 (de) Stirnwand
JP6345551B2 (ja) 抄き込み部材形成用シート、抄き込み部材形成用シートの製造方法、抄き込み部材の製造方法、および、偽造防止用紙の製造方法
JP2003001782A (ja) 化粧板
DE202011000321U1 (de) Textiler Stoff für Leuchtzwecke in Form eines Gewirks oder Gestricks

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEIKO EPSON CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TSUJINO, KIYOSHI;REEL/FRAME:032347/0041

Effective date: 20140228

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION