US20130345220A1 - Compounds and compositions as lxr modulators - Google Patents

Compounds and compositions as lxr modulators Download PDF

Info

Publication number
US20130345220A1
US20130345220A1 US14/013,482 US201314013482A US2013345220A1 US 20130345220 A1 US20130345220 A1 US 20130345220A1 US 201314013482 A US201314013482 A US 201314013482A US 2013345220 A1 US2013345220 A1 US 2013345220A1
Authority
US
United States
Prior art keywords
alkyl
och
halo
substituted
oxc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/013,482
Inventor
Valentina Molteni
Xiaolin Li
Juliet Nabakka
David Archer Ellis
Beth Anaclerio
Enrique Saez
John Wityak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRM LLC
Original Assignee
IRM LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRM LLC filed Critical IRM LLC
Priority to US14/013,482 priority Critical patent/US20130345220A1/en
Publication of US20130345220A1 publication Critical patent/US20130345220A1/en
Assigned to IRM LLC reassignment IRM LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELLIS, DAVID A., MOLTENI, VALENTINA, SAEZ, ENRIQUE, WITYAK, JOHN, ANACLERIO, BETH, LI, XIAOLIN, NABAKKA, JULIET
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D285/00Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
    • C07D285/01Five-membered rings
    • C07D285/02Thiadiazoles; Hydrogenated thiadiazoles
    • C07D285/04Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
    • C07D285/121,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/433Thidiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the invention provides compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with the activity of liver X receptors (LXRs).
  • LXRs liver X receptors
  • LXRs Liver X receptors
  • LXR ⁇ is nuclear receptors that regulate the metabolism of several important lipids, including cholesterol and bile acids. While LXR ⁇ is expressed ubiquitously in the body, LXR ⁇ is expressed in the liver and to a smaller degree in the kidneys, small intestine, adipose tissue, spleen and adrenal glands.
  • LXRs bind to the ATP binding cassette transporter-1 (ABCA1) promoter and increase expression of the gene to produce ABCA1 protein.
  • ABCA1 is a membrane bound transport protein that is involved in the regulation of cholesterol efflux from extra-hepatic cells onto nascent high-density lipoprotein (HDL) particles. Mutations in the ABCA1 gene result in low levels of HDL and an accompanying increased risk of cardiovascular diseases such as atherosclerosis, myocardial infarction and ischemic stroke.
  • LXR ⁇ and ⁇ agonists have been shown to increase ABCA1 gene expression thereby increasing HDL cholesterol and, as a consequence, decreasing both the net absorption of cholesterol and the risk of cardiovascular disease.
  • LXR agonists also upregulate macrophage expression of apolipoprotein E (apoE) and ABCG1, both of which contribute to the efflux of cellular cholesterol.
  • apoE apolipoprotein E
  • ABCG1 apolipoprotein E
  • LXR agonists influence plasma lipoproteins.
  • novel compounds of this invention modulate the activity of LXRs and are, therefore, expected to be useful in the treatment of LXR-associated diseases such as cardiovascular diseases, inflammation and disorders of glucose metabolism such as insulin resistance and obesity.
  • the present invention provides compounds of Formula I:
  • the present invention provides a pharmaceutical composition which contains a compound of Formula I or a N-oxide derivative, individual isomers and mixture of isomers thereof; or a pharmaceutically acceptable salt thereof, in admixture with one or more suitable excipients.
  • the present invention provides a method of treating a disease in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula I or a N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof.
  • the present invention provides the use of a compound of Formula I in the manufacture of a medicament for treating a disease in an animal in which LXR activity contributes to the pathology and/or symptomatology of the disease.
  • the present invention provides a process for preparing compounds of Formula I and the N-oxide derivatives, prodrug derivatives, conjugates, protected derivatives, individual isomers and mixture of isomers thereof, and the pharmaceutically acceptable salts thereof.
  • Alkyl as a group and as a structural element of other groups, for example halo-substituted-alkyl and alkoxy, can be either straight-chained or branched.
  • C 1-6 alkoxy includes, methoxy, ethoxy, and the like.
  • Halo-substituted alkyl includes trifluoromethyl, pentafluoroethyl, and the like.
  • Aryl means a monocyclic or fused bicyclic aromatic ring assembly containing six to ten ring carbon atoms.
  • aryl can be phenyl or naphthyl, preferably phenyl.
  • Arylene means a divalent radical derived from an aryl group.
  • Heteroaryl is as defined for aryl where one or more of the ring members are a heteroatom.
  • heteroaryl includes pyridyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, benzofuranyl, benzopyranyl, benzothiopyranyl, benzol[1,3]dioxole, imidazolyl, benzo-imidazolyl, pyrimidinyl, furanyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, thienyl, etc.
  • C 6-10 arylC 0-4 alkyl means an aryl as described above connected via a alkylene grouping.
  • C 6-10 arylC 0-4 alkyl includes phenethyl, benzyl, etc.
  • Cycloalkyl means a saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly containing the number of ring atoms indicated.
  • C 3-10 cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • Heterocycloalkyl means cycloalkyl, as defined in this application, provided that one or more of the ring carbons indicated, are replaced by a moiety selected from —O—, —N ⁇ , —NR—, —C(O)—, —S—, —S(O)— or —S(O) 2 —, wherein R is hydrogen, C 1-4 alkyl or a nitrogen protecting group.
  • C 3-8 heterocycloalkyl as used in this application to describe compounds of the invention includes morpholino, pyrrolidinyl, piperazinyl, piperidinyl, piperidinylone, 1,4-dioxa-8-aza-spiro[4.5]dec-8-yl, etc.
  • Halogen (or halo) preferably represents chloro or fluoro, but can also be bromo or iodo.
  • modulate refers to regulation of the LXR receptor and its biological activities associated with the LXR pathway (e.g., transcription regulation of a target gene). Modulation of LXR receptor can be up-regulation (i.e., agonizing, activation or stimulation) or down-regulation (i.e. antagonizing, inhibition or suppression).
  • the mode of action of an LXR modulator can be direct, e.g., through binding to the LXR receptor as a ligand.
  • the modulation can also be indirect, e.g., through binding to and/or modifying another molecule which otherwise binds to and activates the LXR receptor, or by stimulating the generation of an endogenous LXR ligand.
  • modulation of LXR includes a change in the bioactivities of an LXR agonist ligand (i.e., its activity in binding to and/or activating an LXR receptor) or a change in the cellular level of the ligand.
  • Treating refers to a method of alleviating or abating a disease and/or its attendant symptoms.
  • the present invention provides compounds, compositions and methods for the treatment of diseases in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula I.
  • compounds of the invention are of Formula Ia:
  • R 1 is selected from fluoro, chloro, methyl and —C(O)OCH 3 ; and R 2 is selected from phenyl, cyclohexyl, cyclopentyl, pyrrolyl, pyrazolyl, naphthyl, benzol[1,3]dioxolyl, thienyl, furanyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R 2 is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethyl-amino, methoxy, trifluoromethyl, trifluoromethoxy and —OC(O)CH 3 .
  • R 3 is selected from phenyl, benzol[1,3′]dioxolyl, pyridinyl, 2,2-difluoro-benzol[1,3′]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R 3 is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, —OCH 2 C(O)NH 2 , —OCH 2 C(O)OCH 3 , —OCH 2 C(O)NHCH 3 , —OCH 2 C(O)N(CH 3 ) 2 , —R 9 , —OR 9 , —OCH 2 R 9 , —OCH 2 C(O)R 9 , —OCH 2 C(O)NHR 9 , —OCH 2 C(O)N(CH 3 )R 9 , —OCH 2 C
  • Preferred compounds of Formula I are detailed in the Examples and Table I, infra.
  • LXR mediated diseases or conditions include inflammation, cardiovascular disease including atherosclerosis, arteriosclerosis, hypercholesteremia, hyperlipidemia and disorders of glucose homeostasis, including insulin resistance, type II diabetes, and obesity.
  • Lipoprotein metabolism is a dynamic process comprised of the production of triglyceride and cholesterol rich particles from the liver as very low-density lipoprotein (VLDL), modification of these lipoprotein particles within the plasma (VLDL to intermediate density (IDL) to low-density lipoprotein (LDL)) and clearance of the particles from the plasma, again by the liver.
  • VLDL very low-density lipoprotein
  • IDL intermediate density
  • LDL low-density lipoprotein
  • the process is carried out by high-density lipoprotein (HDL) cholesterol.
  • HDL high-density lipoprotein
  • VLDL, HDL lipoprotein production
  • modification of particles (all) within the plasma and subsequent clearance back to the liver accounts for the steady state cholesterol concentration in plasma.
  • Compounds of this invention increase reverse cholesterol transport by increasing cholesterol efflux from the arteries.
  • This invention includes the use of compounds of this invention for the preparation of a medicament for increasing reverse cholesterol transport. Additionally, this invention provides compounds for inhibiting cholesterol absorption and the use of compounds of this invention for the preparation of a medicament for inhibiting net cholesterol absorption.
  • the compounds of this invention can also be useful for the prevention or treatment of inflammation and neurodegenerative diseases or neurological disorders. Accordingly, this invention also provides a method for preventing or treating inflammation and a method for preventing or treating neurodegenerative diseases or neurological disorders, particularly neurodegenerative diseases or disorders characterized by neuron degeneration, neuron injury or impaired plasticity or inflammation in the CNS.
  • Particular diseases or conditions that are characterized by neuron degeneration, inflammation, cholesterol and lipid abnormalities in the brain and thus benefiting from the growth and/or repair of neurons include stroke, Alzheimer's disease, fronto-temporal dementias (tauopathies), peripheral neuropathy, Parkinson's disease, dementia with Lewy bodies, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis and Niemann-Pick disease.
  • Diseases or conditions that are characterized by neuron degeneration and/or impaired plasticity include psychiatric disorders such as schizophrenia and depression.
  • Particular diseases or conditions that are characterized by neuronal injury include those conditions associated with brain and/or spinal cord injury, including trauma.
  • the compounds of this invention can be used to treat or prevent various diseases with an inflammatory component, such as rheumatoid arthritis, osteoarthritis, psoriasis, asthma, etc.
  • LXR agonists improve glucose tolerance and enhance glut4 expression (U.S. Provisional Patent Application 60/436,112, filed Dec. 23, 2002; U.S. patent application Ser. No. 10/745,334, filed Dec. 22, 2003).
  • LXR agonists inhibit expression of several genes that are important for hepatic gluconeogenesis, e.g., PGC-1 ⁇ , phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase expression. Inhibition of these gluconeogenic genes is accompanied by an induction in expression of glucokinase, which promotes hepatic glucose utilization. It was also found that glut4 mRNA levels were upregulated by LXR agonists in adipose tissue, and that glucose uptake in 3T3-L1 adipocytes was enhanced in vitro.
  • the present invention provides methods for enhancing glut4 expression in cells in a subject by administering a compound of the invention to the subject.
  • the present invention also provides methods for treating diabetes mellitus and related disorders, such as obesity or hyperglycemia, by administering to a subject an effective amount of a compound of the invention to ameliorate the symptoms of the disease.
  • type II diabetes is amenable to treatment with methods of the present invention.
  • administration with a compound of the invention can also treat other diseases characterized by insulin dysfunction (e.g., resistance, inactivity or deficiency) and/or insufficient glucose transport into cells.
  • Compounds of the present invention also regulate expression levels of a number of genes that play important roles in liver gluconeogenesis. Accordingly, the present invention further provides methods for reducing gluconeogenesis in a subject by modulating expression of such genes (e.g., PGC-1 and PEPCK).
  • genes e.g., PGC-1 and PEPCK.
  • LXR activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic ⁇ -cells, suggesting another mechanism for LXR's anti-diabetic effects.
  • LXR modulators can thus also regulate glucose tolerance by enhancing insulin secretion from the pancreas.
  • the present invention further provides a method for preventing or treating any of the diseases or disorders described above in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount (See, “ Administration and Pharmaceutical Compositions” , infra) of a compound of Formula I or a pharmaceutically acceptable salt thereof.
  • a therapeutically effective amount See, “ Administration and Pharmaceutical Compositions” , infra
  • the required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.
  • compounds of the invention will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents.
  • a therapeutically effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5 mg/kg per body weight.
  • An indicated daily dosage in the larger mammal, e.g. humans is in the range from about 0.5 mg to about 100 mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form.
  • Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
  • Compounds of the invention can be administered as pharmaceutical compositions by any conventional route, in particular enterally, e.g., orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form or in inhaled forms.
  • Pharmaceutical compositions comprising a compound of the present invention in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods.
  • oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrollidone; if desired d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbents, colorants, flavors and sweeteners.
  • diluents e.g., lactose, dextrose, sucrose,
  • compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions.
  • the compositions can be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they can also contain other therapeutically valuable substances.
  • Suitable formulations for transdermal applications include an effective amount of a compound of the present invention with a carrier.
  • a carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host.
  • transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin.
  • Matrix transdermal formulations can also be used.
  • Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
  • Compounds of the invention can be administered in therapeutically effective amounts in combination with one or more therapeutic agents (pharmaceutical combinations).
  • therapeutic agents for example, synergistic effects can occur with other substances used in the treatment of cardiovascular, inflammatory and/or neurodegenerative diseases. Examples of such compounds include fibrates, TZDs, metformin, etc.
  • dosages of the co-administered compounds will of course vary depending on the type of co-drug employed, on the specific drug employed, on the condition being treated and so forth.
  • kits comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent.
  • the kit can include instructions for its administration.
  • co-administration or “combined administration” or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
  • pharmaceutical combination means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients.
  • fixed combination means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage.
  • non-fixed combination means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the body of the patient.
  • cocktail therapy e.g. the administration of 3 or more active ingredients.
  • the present invention also includes processes for the preparation of compounds of the invention.
  • reactive functional groups for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions.
  • Conventional protecting groups can be used in accordance with standard practice, for example, see T. W. Greene and P. G. M. Wuts in “Protective Groups in Organic Chemistry”, John Wiley and Sons, 1991.
  • n, Y, Z, R 1 , R 2 and R 3 are as defined in the Summary of the Invention.
  • Compounds of Formula I are prepared by reacting a compound of formula 2 with a compound of formula 3 to form a compound of formula 4 which is further reacted with a compound of formula 5 or 6. The entire reaction is carried out in the presence of a suitable solvent (e.g., dichloromethane, or the like) and a suitable base (e.g., DIEA, or the like). The reaction is carried out in the temperature range of about 5 to about 30° C. and takes up to 20 hours to complete.
  • a suitable solvent e.g., dichloromethane, or the like
  • a suitable base e.g., DIEA, or the like
  • a compound of the invention can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid.
  • a pharmaceutically acceptable base addition salt of a compound of the invention can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base.
  • the salt forms of the compounds of the invention can be prepared using salts of the starting materials or intermediates.
  • the free acid or free base forms of the compounds of the invention can be prepared from the corresponding base addition salt or acid addition salt from, respectively.
  • a compound of the invention in an acid addition salt form can be converted to the corresponding free base by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like).
  • a suitable base e.g., ammonium hydroxide solution, sodium hydroxide, and the like.
  • a compound of the invention in a base addition salt form can be converted to the corresponding free acid by treating with a suitable acid (e.g., hydrochloric acid, etc.).
  • Compounds of the invention in unoxidized form can be prepared from N-oxides of compounds of the invention by treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like) in a suitable inert organic solvent (e.g. acetonitrile, ethanol, aqueous dioxane, or the like) at 0 to 80° C.
  • a reducing agent e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like
  • a suitable inert organic solvent e.g. acetonitrile, ethanol, aqueous dioxane, or the like
  • Prodrug derivatives of the compounds of the invention can be prepared by methods known to those of ordinary skill in the art (e.g., for further details see Saulnier et al., (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985).
  • appropriate prodrugs can be prepared by reacting a non-derivatized compound of the invention with a suitable carbamylating agent (e.g., 1,1-acyloxyalkylcarbanochloridate, para-nitrophenyl carbonate, or the like).
  • Protected derivatives of the compounds of the invention can be made by means known to those of ordinary skill in the art. A detailed description of techniques applicable to the creation of protecting groups and their removal can be found in T. W. Greene, “Protecting Groups in Organic Chemistry”, 3 rd edition, John Wiley and Sons, Inc., 1999.
  • Hydrates of compounds of the present invention can be conveniently prepared, or formed during the process of the invention, as solvates (e.g., hydrates). Hydrates of compounds of the present invention can be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents such as dioxin, tetrahydrofuran or methanol.
  • Compounds of the invention can be prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers. While resolution of enantiomers can be carried out using covalent diastereomeric derivatives of the compounds of the invention, dissociable complexes are preferred (e.g., crystalline diastereomeric salts). Diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and can be readily separated by taking advantage of these dissimilarities.
  • the diastereomers can be separated by chromatography, or preferably, by separation/resolution techniques based upon differences in solubility.
  • the optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization.
  • Resolution of the racemic mixture may be carried out using chiral HPLC.
  • the compounds of Formula I can be made by a process, which involves:
  • the present invention is further exemplified, but not limited, by the following examples that illustrate the preparation of compounds of Formula I according to the invention.
  • O-vanillin (26.3 mmol) is mixed with TIPSCl (39.6 mmol) and imidazole (78.7 mmol) in a microwave vessel. The mixture is heated in the microwave at 100° C. for 3 minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO 4 (1 M) (2 ⁇ 50 mL) and brine (50 mL). After drying with MgSO 4 , the filtrate is concentrated.
  • Guaiacol (2-methoxy-phenol, 34.6 mmol) is mixed with TIPSCl (51.9 mmol) and imidazole (103.8 mmol) in a tube. The mixture is heated in the microwave oven at 180° C. for 3 minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO 4 (1 M) (2 ⁇ 50 mL) and brine (50 mL). After drying over anhydrous Na 2 SO 4 , the filtrate is concentrated. The resultant crude mixture is purified by silica flash chromatography (2% EtOAc/hexane) to yield triisopropyl-(2-methoxy-phenoxy)-silane as a colorless oil. Yield: 69%.
  • nBuLi 2.5 M in hexanes
  • TMEDA 36 mmol
  • a solution of triisopropyl-(2-methoxy-phenoxy)-silane (24 mmol) in 25 mL of dry THF is added to the above mixture.
  • the mixture is warmed up to room temperature in 2 hours by removal of the ice bath.
  • the slightly yellow solution is then transferred to another dry flask containing dry 7.5 mL of DMF at room temperature. The mixture is stirred overnight. HCl (1 M) is added to the mixture to quench the reaction.
  • N′-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (1.23 mmol) is dissolved in 5 mL of CH 2 Cl 2 at room temperature in a dry round bottom flask. Removal of the ester group is accomplished adding TFA (2 mL) to the solution at room temperature. The reaction is complete after 30 minutes as determined by LC/MS. Solvent is removed in vacuo. The resultant oil is dried on the vacuum line for 30 minutes and dissolved in 1 mL of dry CH 2 Cl 2 .
  • the 2-(2-formyl-phenoxy)-N-methyl-acetamide (0.0311 mmol) is added to 4-chloro-thiobenzoic acid hydrazide (0.0342 mmol) in 0.1 mL of CH 2 Cl 2 . After 10 minutes, DIEA (0.05 mL) and 2,4,6-trifluoro-benzoyl chloride (0.0467 mmol) are added. The mixture is kept at room temperature overnight.
  • reaction is diluted with ethyl acetate and water, washed with brine and dried over MgSO 4 and the solvent is removed from the reaction mixture to yield ⁇ 3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy ⁇ -acetic acid: LC/MS (ES + ): 521.1 (M+1) + .
  • N′-(6-Methyl-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH 2 Cl 2 (1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH 2 Cl 2 (1 mL).
  • N′-(6-fluoro-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.044 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (0.44 mmol) and thioanisole (0.44 mmol) in dry CH 2 Cl 2 (1 mL) at room temperature for 30 minutes. The solvent is removed and the residue is dissolved in dry CH 2 Cl 2 (1 mL).
  • N′-(3,4-Difluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH 2 Cl 2 (1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH 2 Cl 2 (1 mL).
  • 4-Fluorobenzothiohydrazide hydrochloride salt (0.045 mmol) as prepared in example 3 is dissolved in CH 2 Cl 2 (1 mL).
  • DIEA (0.133 mmol) is added to the solution and the mixture is treated with 4-(3-formyl-2-methoxy-phenoxymethyl)-N,N-bis(4-methoxy-benzyl)-benzamide (0.047 mmol) in the presence of 4 ⁇ molecular sieves.
  • Acetic acid 2-chlorocarbonyl-phenyl ester (0.047 mmol) is added after 5 minutes. The mixture was kept at ambient temperature for 16 hours and concentrated. The resultant material is dissolved in trifluoroacetic acid. After 3 hours, the reaction mixture is concentrated.
  • 6- ⁇ 2-Cyanomethoxy-3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl ⁇ -pyridine-2-carboxylic acid ethyl ester is prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3 using 6-(2-cyanomethoxy-3-formyl-phenoxymethyl)-pyridine-2-carboxylic acid ethyl ester.
  • 6- ⁇ 2-Cyanomethoxy-3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl ⁇ -pyridine-2-carboxylic acid ethyl ester is dissolved in THF (1.5 mL) and MeOH (1.0 mL), LiOH (1 M) (0.5 mL) is added. After stiffing for 1 hour, the solvent is removed from the reaction mixture. A mixture of MeOH/DMSO is added to the residue and resultant solution is filtered.
  • Transfection assays are used to assess the ability of compounds of the invention to modulate the transcriptional activity of the LXRs. Briefly, expression vectors for chimeric proteins containing the DNA binding domain of yeast GAL4 fused to the ligand-binding domain (LBD) of either LXR ⁇ or LXR ⁇ are introduced via transient transfection into mammalian cells, together with a reporter plasmid where the luciferase gene is under the control of a GAL4 binding site. Upon exposure to an LXR modulator, LXR transcriptional activity varies, and this can be monitored by changes in luciferase levels. If transfected cells are exposed to an LXR agonist, LXR-dependent transcriptional activity increases and luciferase levels rise.
  • LLD ligand-binding domain
  • 293T human embryonic kidney cells (8 ⁇ 10 6 ) are seeded in a 175 cm 2 flask 2 days prior to the start of the experiment in 10% FBS, 1% Penicillin/Streptomycin/Fungizome, DMEM Media.
  • the transfection mixture for chimeric proteins is prepared using GAL4-LXR LBD expression plasmid (4 ⁇ g), UAS-luciferase reporter plasmid (5 ⁇ g), Fugene (3:1 ratio; 27 ⁇ L) and serum-free media (210 ⁇ L). The transfection mixture is incubated for 20 minutes at room temperature. The cells are harvested by washing with PBS (30 mL) and then dissociated using trypsin (0.05%; 3 mL).
  • the trypsin is inactivated by the addition of assay media (DMEM, lipoprotein-deficient fetal bovine serum (5%), statin (e.g. lovastatin 7.5 ⁇ M), and mevalonic acid (100 ⁇ M)) (10 mL).
  • assay media DMEM, lipoprotein-deficient fetal bovine serum (5%), statin (e.g. lovastatin 7.5 ⁇ M), and mevalonic acid (100 ⁇ M)
  • the cells are counted using a 1:10 dilution and the concentration of cells adjusted to 160,000 cells/mL.
  • the cells are mixed with the transfection mixture (10 mL of cells per 250 ⁇ l of transfection mixture) and are further incubated for 30 minutes at room temperature with periodic mixing by inversion. Cells (50 ⁇ l/well) are then plated into 384 white, solid-bottom, TC-treated plates.
  • the cells are further incubated at 37° C., 5.0% CO 2 for 24 hours.
  • a 12-point series of dilutions (half-log serial dilutions) are prepared for each test compound in DMSO with a starting concentration of compound of Test compound (500n1) is added to each well of cells in the assay plate and the cells are incubated at 37° C., 5.0% CO 2 for 24 hours.
  • Raw luminescence values are normalized by dividing them by the value of the DMSO control present on each plate. Normalized data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05).
  • EC50 is defined as the concentration at which the compound elicits a response that is half way between the maximum and minimum values.
  • Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for the known LXR modulator, (3- ⁇ 3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy ⁇ -phenyl)-acetic acid.
  • Human THP1 cells are grown in propagation media (10% defined FBS, 2 mM L-glutamine, 10 mM HEPES, 1.0 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L bicarbonate, 0.05 mM 2-Mercaptoethanol in RPMI 1640).
  • propagation media 10% defined FBS, 2 mM L-glutamine, 10 mM HEPES, 1.0 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L bicarbonate, 0.05 mM 2-Mercaptoethanol in RPMI 1640.
  • 0.5 mL of cells at a concentration of 250,000 cells/mL in propagation media plus 40 ng/mL PMA are plated per well on a 48-well dish. Plate is incubated for 24 hours at 37 degrees celsius.
  • ABCA1 gene expression is measured using TaqMan quantitative PCR using the following primers/probe set for human ABCA1, forward 5′TGTCCAGTCCAGTAATGGTTCTGT3′ (SEQ ID NO. 1), reverse 5′AAGCGAGATATGGTCCGGATT3′(SEQ ID NO. 2), probe 5′FAM ACACCTGGAGAGAAGCTTTCAACGAGACTAACCTAMRA3′ (SEQ ID NO. 3), and human 36B4, forward 5′CCACGCTGCTGAACATGC3′ (SEQ ID NO. 4), reverse 5′TCGAACACCTGCTGGATGAC3′ (SEQ ID NO. 5), probe 5′VIC AACATCTCCCCCTTCTCCTTTGGGCT TAMRA3′ (SEQ ID NO. 6).
  • Reverse transcription and PCR reactions are run in sequence in the same sample mixture using the Superscript Platinum III Q-PCR reagent (Invitrogen).
  • Reaction mixes (Superscript RT/platinum Taq—0.4 ⁇ l, 2 ⁇ Reaction Mix—10 ⁇ l, 36B4 primers—0.4 ⁇ l of 10 ⁇ M stock, ABCA1 primers—1.8 ⁇ l of 10 ⁇ M stock, ABCA1 probe-FAM—0.04 ⁇ l of 100 ⁇ M stock, 36B4 probe-VIC—0.04 ⁇ l of 50 ⁇ M stock, RNA (50 ng/ ⁇ l)—2 ⁇ l, 50 ⁇ ROX dye—0.4 ⁇ l, MgSO4—0.4 ⁇ l of 50 mM stock, water—4.52 ⁇ l) are placed in a 384-well plate and run on an ABI HT7900 machine using standard conditions.
  • ABCA1 gene expression is evaluated in reference to a curve of diluted RNA, and normalized to the levels of 36B4 RNA present in the sample.
  • Fold induction induced by compound is calculated in reference to DMSO.
  • Relative efficacy is calculated by comparison of the response elicited by the compound with the maximum value obtained for the known LXR modulator, (3- ⁇ 3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy ⁇ -phenyl)-acetic acid.
  • Human HepG2 cells are grown in propagation media (10% FBS, 2 mM L-glutamine, 1.5 g/L bicarbonate, 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate in DMEM).
  • propagation media 10% FBS, 2 mM L-glutamine, 1.5 g/L bicarbonate, 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate in DMEM.
  • 0.5 mL of cells in propagation media at a concentration of 150,000 cells/mL are plated per well on a 48-well plate. Plate is then incubated at 37 degrees for 24 hours.
  • media is changed to 0.5 mL of assay media (same as propagation media but with 2% lipoprotein deficient FBS as the serum supplement) and compounds are added 6 hours later (1 or 10 ⁇ M in DMSO). Plate is then incubated at 37 degrees for 36-48 hours.
  • RNA is isolated using the RNeasy kit (Qiagen) with DNaseI option. RNA is eluted in 100 ul of water, quantitated (UV absorbance at 260 nm) and stored at ⁇ 80 degrees till use. Fas gene expression is measured using TaqMan quantitative PCR using the following primers/probe set for human Fas, forward 5′GCAAATTCGACCTTTCTCAGAAC3′ (SEQ ID NO. 7), reverse 5′GGACCCCGTGGAATGTCA3′ (SEQ ID NO. 8), probe 5′FAM ACCCGCTCGGCATGGCTATCTTC TAMRA3′ (SEQ ID NO. 9) and human 36B4, forward 5′CCACGCTGCTGAACATGC3′ (SEQ ID NO.
  • Reaction mixes (Superscript RT/platinum Taq—0.4 ⁇ l, 2 ⁇ Reaction Mix—10 ⁇ l, 36B4 primers—1.2 ⁇ l of 10 ⁇ M stock, Fas primers—1.2 ⁇ l of 10 ⁇ M stock, Fas probe-FAM—0.045 ⁇ l of 100 ⁇ M stock, 36B4 probe-VIC—0.08 ⁇ l of 50 ⁇ M stock, RNA (50 ng/ ⁇ l)—2 ⁇ l, 50 ⁇ ROX dye—0.4 ⁇ l, MgSO4—1 ⁇ l of 50 mM stock, water—3.68 ⁇ l) are placed in a 384-well plate and run on an ABI HT7900 machine with standard conditions. Fas gene expression is evaluated in reference to a curve of diluted RNA, and normalized to the levels of 36B4 RNA present in the sample. Fold induction induced by compound is calculated in reference to DMSO.
  • a FRET assay is used to assess the ability of a compound of the invention to bind directly to the LXR ligand-binding domain (LBD) and promote the recruitment of proteins that potentiate the transcriptional activity of LXRs (e.g. co-activators).
  • LXR ligand-binding domain LXR ligand-binding domain
  • This cell-free assay uses a recombinant fusion protein composed of the LXR LBD and a tag (e.g. GST, His, FLAG) that simplifies its purification, and a synthetic biotinylated peptide derived from the nuclear receptor interacting domain of a transcriptional co-activator protein, such as steroid receptor co-activator 1 (SRC-1).
  • SRC-1 steroid receptor co-activator 1
  • the tagged LBD fusion protein can be labeled using an antibody against the LBD tag coupled to europium (e.g. EU-labeled anti-GST antibody), and the co-activator peptide can be labeled with allophycocyanin (APC) coupled to streptavidin.
  • the co-activator peptide is recruited to the LXR LBD, bringing the EU and APC moieties in close proximity
  • EU absorbs and transfers energy to the APC moiety resulting in emission at 665 nm. If there is no energy transfer (indicating lack of EU-APC proximity), EU emits at 615 nm.
  • the ratio of the 665 to 615 nm light emitted gives an indication of the strength of co-activator peptide recruitment, and thus of agonist binding to the LXR LBD.
  • a master mix is prepared (5 nM GST-LXR-LBD, 5 nM Biotinylated SRC-1 peptide, 10 nM APC-Streptavidin (Prozyme Phycolink streptavidin APC, PJ25S), and 5n MEU-Anti-GST Antibody) in FRET buffer (50 mM Tris pH 7.5, 50 mM KCl 1 mM DTT, 0.1% BSA). To each well of a 384 well plate, 20 ⁇ L of this master mix is added. Final FRET reaction: 5 nM fusion protein, 5 nM SRC-1 peptide, 10 nM APC-Streptavidin, 5 nm EU-Anti-GST Antibody (PerkinElmer AD0064).
  • Test compounds are diluted in half-log, 12-point serial dilutions in DMSO, starting at 1 mM and 100 mL of compound is transferred to the master mix for a final concentration of 5 ⁇ M-28 pM in the assay wells. Plates are incubated at room temperature for 3 hours and fluorescence resonance energy transfer read. Results are expressed as the ratio of APC fluorescence to EU fluorescence times one thousand.
  • the ratio of 665 nm to 615 nm is multiplied by a factor of 1000 to simplify data analysis.
  • DMSO values are subtracted from ratios to account for background.
  • Data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05).
  • EC50 is defined as the concentration at which the compound elicits a response that is half way between the maximum and minimum values.
  • Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for a reference LXR modulator.

Abstract

The invention provides compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with the activity of liver X receptors (LXRs).

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional application of application Ser. No. 13/414,385 filed 7 Mar. 2012, which is a divisional application of application Ser. No. 10/589,087, filed 8 Oct. 2008, which issued on 17 Apr. 2012, under U.S. Pat. No. 8,158,662, which is a 371 U.S. national phase application of international application number PCT/US2005/004655 filed 11 Feb. 2005, which claims the benefit of U.S. Provisional Application No. 60/543,848, filed 11 Feb. 2004 and U.S. Provisional Application No. 60/623,021, filed 27 Oct. 2004. The full disclosures of these applications are incorporated herein by reference in their entirety for all purposes.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention provides compounds, pharmaceutical compositions comprising such compounds and methods of using such compounds to treat or prevent diseases or disorders associated with the activity of liver X receptors (LXRs).
  • 2. Background
  • Liver X receptors (LXRs), LXRα and LXRβ, are nuclear receptors that regulate the metabolism of several important lipids, including cholesterol and bile acids. While LXRβ is expressed ubiquitously in the body, LXRα is expressed in the liver and to a smaller degree in the kidneys, small intestine, adipose tissue, spleen and adrenal glands.
  • LXRs bind to the ATP binding cassette transporter-1 (ABCA1) promoter and increase expression of the gene to produce ABCA1 protein. ABCA1 is a membrane bound transport protein that is involved in the regulation of cholesterol efflux from extra-hepatic cells onto nascent high-density lipoprotein (HDL) particles. Mutations in the ABCA1 gene result in low levels of HDL and an accompanying increased risk of cardiovascular diseases such as atherosclerosis, myocardial infarction and ischemic stroke. LXRα and β agonists have been shown to increase ABCA1 gene expression thereby increasing HDL cholesterol and, as a consequence, decreasing both the net absorption of cholesterol and the risk of cardiovascular disease. LXR agonists also upregulate macrophage expression of apolipoprotein E (apoE) and ABCG1, both of which contribute to the efflux of cellular cholesterol. By stimulating macrophage cholesterol efflux through upregulation of ABCA1, ABCG1 and/or apoE expression, as well as increasing the expression of other target genes including cholesterol ester transfer protein and lipoprotein lipase, LXR agonists influence plasma lipoproteins.
  • The novel compounds of this invention modulate the activity of LXRs and are, therefore, expected to be useful in the treatment of LXR-associated diseases such as cardiovascular diseases, inflammation and disorders of glucose metabolism such as insulin resistance and obesity.
  • SUMMARY OF THE INVENTION
  • In one aspect, the present invention provides compounds of Formula I:
  • Figure US20130345220A1-20131226-C00001
      • in which:
        • n is selected from 0, 1, 2 and 3;
        • Z is selected from C and S(O);
        • each Y is independently selected from —CR4═ and —N═; wherein R4 is selected from hydrogen, cyano, hydroxyl, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl and halo-substituted-C1-6alkoxy;
        • R1 is selected from halo, cyano, hydroxyl, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy and —C(O)OR4; wherein R4 is as described above;
        • R2 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —C(O)NR5R5, —OR5, —OC(O)R5, —NR5R6, —C(O)R5 and —NR5C(O)R5; wherein R5 and R6 are independently selected from hydrogen, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, C6-10aryl-C0-4alkyl, C3-8heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl; or R5 and R6 together with the nitrogen atom to which R5 and R6 are attached form C5-10heteroaryl or C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R5 or the combination of R5 and R6 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl and halo-substituted-C1-6alkoxy;
        • R3 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —OXR7, —OXC(O)NR7R8, —OXC(O)NR7XC(O)OR8, —OXC(O)NR7XOR8, —OXC(O)NR7XNR7R8, —OXC(O)NR7XS(O)0-2R8, —OXC(O)NR7XNR7C(O)R8, —OXC(O)NR7XC(O)XC(O)OR8, —OXC(O)NR7R9, —OXC(O)OR7, —OXOR7, —OXR9, —XR9, —OXC(O)R9, —OXS(O)0-2R9 and —OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C1-6alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR7, S(O)2 and O; R7 and R8 are independently selected from hydrogen, cyano, C1-6alkyl, halo-substituted-C1-6alkyl, C2-6alkenyl and C3-12cycloalkyl-C0-4alkyl; R9 is selected from C6-10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl; wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkoxy, —XC(O)OR10, —XC(O)R10, —XC(O)NR10R10, —XS(O)0-2NR10R10 and —XS(O)0-2R10; wherein R10 is independently selected from hydrogen and C1-6alkyl; and the N-oxide derivatives, prodrug derivatives, protected derivatives, individual isomers and mixture of isomers thereof; and the pharmaceutically acceptable salts and solvates (e.g. hydrates) of such compounds.
  • In a second aspect, the present invention provides a pharmaceutical composition which contains a compound of Formula I or a N-oxide derivative, individual isomers and mixture of isomers thereof; or a pharmaceutically acceptable salt thereof, in admixture with one or more suitable excipients.
  • In a third aspect, the present invention provides a method of treating a disease in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula I or a N-oxide derivative, individual isomers and mixture of isomers thereof, or a pharmaceutically acceptable salt thereof.
  • In a fourth aspect, the present invention provides the use of a compound of Formula I in the manufacture of a medicament for treating a disease in an animal in which LXR activity contributes to the pathology and/or symptomatology of the disease.
  • In a fifth aspect, the present invention provides a process for preparing compounds of Formula I and the N-oxide derivatives, prodrug derivatives, conjugates, protected derivatives, individual isomers and mixture of isomers thereof, and the pharmaceutically acceptable salts thereof.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • “Alkyl” as a group and as a structural element of other groups, for example halo-substituted-alkyl and alkoxy, can be either straight-chained or branched. C1-6alkoxy includes, methoxy, ethoxy, and the like. Halo-substituted alkyl includes trifluoromethyl, pentafluoroethyl, and the like.
  • “Aryl” means a monocyclic or fused bicyclic aromatic ring assembly containing six to ten ring carbon atoms. For example, aryl can be phenyl or naphthyl, preferably phenyl. “Arylene” means a divalent radical derived from an aryl group. “Heteroaryl” is as defined for aryl where one or more of the ring members are a heteroatom. For example heteroaryl includes pyridyl, indolyl, indazolyl, quinoxalinyl, quinolinyl, benzofuranyl, benzopyranyl, benzothiopyranyl, benzol[1,3]dioxole, imidazolyl, benzo-imidazolyl, pyrimidinyl, furanyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazolyl, thienyl, etc. “C6-10arylC0-4alkyl” means an aryl as described above connected via a alkylene grouping. For example, C6-10arylC0-4alkyl includes phenethyl, benzyl, etc.
  • “Cycloalkyl” means a saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly containing the number of ring atoms indicated. For example, C3-10cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. “Heterocycloalkyl” means cycloalkyl, as defined in this application, provided that one or more of the ring carbons indicated, are replaced by a moiety selected from —O—, —N═, —NR—, —C(O)—, —S—, —S(O)— or —S(O)2—, wherein R is hydrogen, C1-4alkyl or a nitrogen protecting group. For example, C3-8heterocycloalkyl as used in this application to describe compounds of the invention includes morpholino, pyrrolidinyl, piperazinyl, piperidinyl, piperidinylone, 1,4-dioxa-8-aza-spiro[4.5]dec-8-yl, etc.
  • “Halogen” (or halo) preferably represents chloro or fluoro, but can also be bromo or iodo.
  • The term “modulate” with respect to an LXR receptor refers to regulation of the LXR receptor and its biological activities associated with the LXR pathway (e.g., transcription regulation of a target gene). Modulation of LXR receptor can be up-regulation (i.e., agonizing, activation or stimulation) or down-regulation (i.e. antagonizing, inhibition or suppression). The mode of action of an LXR modulator can be direct, e.g., through binding to the LXR receptor as a ligand. The modulation can also be indirect, e.g., through binding to and/or modifying another molecule which otherwise binds to and activates the LXR receptor, or by stimulating the generation of an endogenous LXR ligand. Thus, modulation of LXR includes a change in the bioactivities of an LXR agonist ligand (i.e., its activity in binding to and/or activating an LXR receptor) or a change in the cellular level of the ligand.
  • “Treat”, “treating” and “treatment” refer to a method of alleviating or abating a disease and/or its attendant symptoms.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention provides compounds, compositions and methods for the treatment of diseases in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the diseases, which method comprises administering to the animal a therapeutically effective amount of a compound of Formula I.
  • In one embodiment, compounds of the invention are of Formula Ia:
  • Figure US20130345220A1-20131226-C00002
      • in which:
        • n is selected from 1, 2 and 3;
        • Y is selected from —CH═ and —N═;
        • R1 is selected from halo, C1-6alkyl, and —C(O)OR4; wherein R4 is selected from hydrogen and C1-6alkyl;
        • R2 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C1-6alkyl, halo-substituted-C1-6alkyl and —OC(O)R5; wherein R5 is selected from hydrogen and C1-6alkyl; and
        • R3 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —OXR7, —OXC(O)NR7R8, —OXC(O)NR7XC(O)OR8, —OXC(O)NR7XOR8, —OXC(O)NR7XNR7R8, —OXC(O)NR7XS(O)0-2R8, —OXC(O)NR7XNR7C(O)R8, —OXC(O)NR7XC(O)XC(O)OR8, —OXC(O)NR7R9, —OXC(O)OR7, —OXOR7, —OXR9, —XR9, —OXC(O)R9 and —OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C1-6alkylene; R7 and R8 are independently selected from hydrogen, cyano, C1-6alkyl, halo-substituted-C1-6alkyl, C2-6alkenyl and C3-12cycloalkyl-C0-4alkyl; R9 is selected from C6-10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl; wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkoxy, —XC(O)OR10, —XC(O)R10, —XC(O)NR10R10, —XS(O)0-2NR10R10 and —XS(O)0-2R10; wherein R10 is independently selected from hydrogen and C1-6alkyl.
  • In another embodiment, R1 is selected from fluoro, chloro, methyl and —C(O)OCH3; and R2 is selected from phenyl, cyclohexyl, cyclopentyl, pyrrolyl, pyrazolyl, naphthyl, benzol[1,3]dioxolyl, thienyl, furanyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R2 is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethyl-amino, methoxy, trifluoromethyl, trifluoromethoxy and —OC(O)CH3.
  • In another embodiment, R3 is selected from phenyl, benzol[1,3′]dioxolyl, pyridinyl, 2,2-difluoro-benzol[1,3′]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R3 is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, —OCH2C(O)NH2, —OCH2C(O)OCH3, —OCH2C(O)NHCH3, —OCH2C(O)N(CH3)2, —R9, —OR9, —OCH2R9, —OCH2C(O)R9, —OCH2C(O)NHR9, —OCH2C(O)N(CH3)R9, —OCH2C(O)NHCH2R9, —OCH2CN, —OCH2C2H3, —OCH2C2H4, —O(CH2)2OH, —OCH2C(O)NH(CH2)2C(O)OC2H5, —OCH2C(O)NH(CH2)2CH2F, —OCH2C(O)NHCH2CH2F, —OCH2C(O)NH(CH2)2C(O)OH, —OCH2C(O)NHCH(CH2R9)C(O)OC2H5, —OCH2C(O)NHC(O)(CH2)2C(O)OCH3, —OCH2C(O)NH(CH2)2NHC(O)CH3, —OCH2C(O)NHCH2C(O)C2H5, —OCH2C(O)NH(CH2)2C(O)OC4H9, —OCH2C(O)NHCH2C(O)OC2H5, —OCH2C(O)NHCH[C(O)OC2H5]2, —S(O)2CH3, —OCH2C(O)NHCH2CF3, —OCH2C(O)NHCH2C(O)(CH2)2C(O)OCH3, —OCH2C(O)N(CH3)CH2C(O)OCH3, —OCH2C(O)NH(CH2)3OC2H5, —OCH2C(O)NH(CH2)3OCH(CH3)2, —OCH2C(O)NH(CH2)2SCH3, —OCH2C(O)NHCH2CH(CH3)2, —OCH2C(O)NHCH(CH3)CH2OH, —OCH2C(O)NHCH2CH(CH3)C2H5, —OCH2C(O)NHCH(CH3)C(O)OC2H5, —OCH2C(O)NHCH2CH(CH3)2 and —OCH2C(O)(CH2)3OCH(CH3)2; wherein R9 is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, tetrahydro-furanyl, pyridinyl, 4-oxo-4,5-dihydro-thiazol-2-yl, pyrazolyl, isothiazolyl, 1,3,4-thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino-propyl, isoxazolyl-methyl, pyrimidinyl, tetrahydro-pyranyl, 2-oxo-2,3-dihydro-pyrimidin-4-yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzo[1,3]dioxolyl, benzo[1,3]dioxolyl-propyl, 2-oxo-pyrrolidin-1-yl and 2-oxo-pyrrolidin-1-yl-propyl; wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OC2H5; wherein any aryl, heteroaryl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, —OC(O)CH3, —COOH, —S(O)2NH2, —CH(NH2)═NOH, —C(O)OC2H5, —CH2C(O)OH, —CH2C(O)OC2H5, —CH2C(O)OCH3, —C(O)OCH3, —C(O)NH2, —C(O)NHCH3 and —C(O)CH3.
  • Preferred compounds of Formula I are detailed in the Examples and Table I, infra.
  • Pharmacology and Utility
  • Compounds of the invention modulate the activity of LXRs and, as such, are useful for treating diseases or disorders in which LXRs contribute to the pathology and/or symptomatology of the disease. This invention further provides compounds of this invention for use in the preparation of medicaments for the treatment of diseases or disorders in which LXRs contribute to the pathology and/or symptomatology of the disease. LXR mediated diseases or conditions include inflammation, cardiovascular disease including atherosclerosis, arteriosclerosis, hypercholesteremia, hyperlipidemia and disorders of glucose homeostasis, including insulin resistance, type II diabetes, and obesity.
  • Lipoprotein metabolism is a dynamic process comprised of the production of triglyceride and cholesterol rich particles from the liver as very low-density lipoprotein (VLDL), modification of these lipoprotein particles within the plasma (VLDL to intermediate density (IDL) to low-density lipoprotein (LDL)) and clearance of the particles from the plasma, again by the liver. This process provides the transport of triglycerides and free cholesterol to cells of the body. Reverse cholesterol transport is the proposed mechanism by which excess cholesterol is returned to the liver from extra-hepatic tissue.
  • The process is carried out by high-density lipoprotein (HDL) cholesterol. The combination of lipoprotein production (VLDL, HDL) from the liver, modification of particles (all) within the plasma and subsequent clearance back to the liver, accounts for the steady state cholesterol concentration in plasma. Compounds of this invention increase reverse cholesterol transport by increasing cholesterol efflux from the arteries. This invention includes the use of compounds of this invention for the preparation of a medicament for increasing reverse cholesterol transport. Additionally, this invention provides compounds for inhibiting cholesterol absorption and the use of compounds of this invention for the preparation of a medicament for inhibiting net cholesterol absorption.
  • The compounds of this invention can also be useful for the prevention or treatment of inflammation and neurodegenerative diseases or neurological disorders. Accordingly, this invention also provides a method for preventing or treating inflammation and a method for preventing or treating neurodegenerative diseases or neurological disorders, particularly neurodegenerative diseases or disorders characterized by neuron degeneration, neuron injury or impaired plasticity or inflammation in the CNS. Particular diseases or conditions that are characterized by neuron degeneration, inflammation, cholesterol and lipid abnormalities in the brain and thus benefiting from the growth and/or repair of neurons include stroke, Alzheimer's disease, fronto-temporal dementias (tauopathies), peripheral neuropathy, Parkinson's disease, dementia with Lewy bodies, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis and Niemann-Pick disease. Diseases or conditions that are characterized by neuron degeneration and/or impaired plasticity include psychiatric disorders such as schizophrenia and depression. Particular diseases or conditions that are characterized by neuronal injury include those conditions associated with brain and/or spinal cord injury, including trauma. In addition, the compounds of this invention can be used to treat or prevent various diseases with an inflammatory component, such as rheumatoid arthritis, osteoarthritis, psoriasis, asthma, etc.
  • LXR agonists improve glucose tolerance and enhance glut4 expression (U.S. Provisional Patent Application 60/436,112, filed Dec. 23, 2002; U.S. patent application Ser. No. 10/745,334, filed Dec. 22, 2003). There is a coordinated regulation of genes involved in glucose metabolism in liver and adipose tissue. In the liver, LXR agonists inhibit expression of several genes that are important for hepatic gluconeogenesis, e.g., PGC-1α, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase expression. Inhibition of these gluconeogenic genes is accompanied by an induction in expression of glucokinase, which promotes hepatic glucose utilization. It was also found that glut4 mRNA levels were upregulated by LXR agonists in adipose tissue, and that glucose uptake in 3T3-L1 adipocytes was enhanced in vitro.
  • In accordance with these discoveries, the present invention provides methods for enhancing glut4 expression in cells in a subject by administering a compound of the invention to the subject. The present invention also provides methods for treating diabetes mellitus and related disorders, such as obesity or hyperglycemia, by administering to a subject an effective amount of a compound of the invention to ameliorate the symptoms of the disease. For example, type II diabetes is amenable to treatment with methods of the present invention. By enhancing sensitivity to insulin and glucose uptake by cells, administration with a compound of the invention can also treat other diseases characterized by insulin dysfunction (e.g., resistance, inactivity or deficiency) and/or insufficient glucose transport into cells.
  • Compounds of the present invention also regulate expression levels of a number of genes that play important roles in liver gluconeogenesis. Accordingly, the present invention further provides methods for reducing gluconeogenesis in a subject by modulating expression of such genes (e.g., PGC-1 and PEPCK).
  • In the pancreas, LXR activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic β-cells, suggesting another mechanism for LXR's anti-diabetic effects. LXR modulators can thus also regulate glucose tolerance by enhancing insulin secretion from the pancreas.
  • In accordance with the foregoing, the present invention further provides a method for preventing or treating any of the diseases or disorders described above in a subject in need of such treatment, which method comprises administering to said subject a therapeutically effective amount (See, “Administration and Pharmaceutical Compositions”, infra) of a compound of Formula I or a pharmaceutically acceptable salt thereof. For any of the above uses, the required dosage will vary depending on the mode of administration, the particular condition to be treated and the effect desired.
  • Administration and Pharmaceutical Compositions
  • In general, compounds of the invention will be administered in therapeutically effective amounts via any of the usual and acceptable modes known in the art, either singly or in combination with one or more therapeutic agents. A therapeutically effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compound used and other factors. In general, satisfactory results are indicated to be obtained systemically at daily dosages of from about 0.03 to 2.5 mg/kg per body weight. An indicated daily dosage in the larger mammal, e.g. humans, is in the range from about 0.5 mg to about 100 mg, conveniently administered, e.g. in divided doses up to four times a day or in retard form. Suitable unit dosage forms for oral administration comprise from ca. 1 to 50 mg active ingredient.
  • Compounds of the invention can be administered as pharmaceutical compositions by any conventional route, in particular enterally, e.g., orally, e.g., in the form of tablets or capsules, or parenterally, e.g., in the form of injectable solutions or suspensions, topically, e.g., in the form of lotions, gels, ointments or creams, or in a nasal or suppository form or in inhaled forms. Pharmaceutical compositions comprising a compound of the present invention in free form or in a pharmaceutically acceptable salt form in association with at least one pharmaceutically acceptable carrier or diluent can be manufactured in a conventional manner by mixing, granulating or coating methods. For example, oral compositions can be tablets or gelatin capsules comprising the active ingredient together with a) diluents, e.g., lactose, dextrose, sucrose, mannitol, sorbitol, cellulose and/or glycine; b) lubricants, e.g., silica, talcum, stearic acid, its magnesium or calcium salt and/or polyethyleneglycol; for tablets also c) binders, e.g., magnesium aluminum silicate, starch paste, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose and or polyvinylpyrollidone; if desired d) disintegrants, e.g., starches, agar, alginic acid or its sodium salt, or effervescent mixtures; and/or e) absorbents, colorants, flavors and sweeteners. Injectable compositions can be aqueous isotonic solutions or suspensions, and suppositories can be prepared from fatty emulsions or suspensions. The compositions can be sterilized and/or contain adjuvants, such as preserving, stabilizing, wetting or emulsifying agents, solution promoters, salts for regulating the osmotic pressure and/or buffers. In addition, they can also contain other therapeutically valuable substances. Suitable formulations for transdermal applications include an effective amount of a compound of the present invention with a carrier. A carrier can include absorbable pharmacologically acceptable solvents to assist passage through the skin of the host. For example, transdermal devices are in the form of a bandage comprising a backing member, a reservoir containing the compound optionally with carriers, optionally a rate controlling barrier to deliver the compound to the skin of the host at a controlled and predetermined rate over a prolonged period of time, and means to secure the device to the skin. Matrix transdermal formulations can also be used. Suitable formulations for topical application, e.g., to the skin and eyes, are preferably aqueous solutions, ointments, creams or gels well-known in the art. Such can contain solubilizers, stabilizers, tonicity enhancing agents, buffers and preservatives.
  • Compounds of the invention can be administered in therapeutically effective amounts in combination with one or more therapeutic agents (pharmaceutical combinations). For example, synergistic effects can occur with other substances used in the treatment of cardiovascular, inflammatory and/or neurodegenerative diseases. Examples of such compounds include fibrates, TZDs, metformin, etc. Where the compounds of the invention are administered in conjunction with other therapies, dosages of the co-administered compounds will of course vary depending on the type of co-drug employed, on the specific drug employed, on the condition being treated and so forth.
  • The invention also provides for pharmaceutical combinations, e.g. a kit, comprising a) a first agent which is a compound of the invention as disclosed herein, in free form or in pharmaceutically acceptable salt form, and b) at least one co-agent. The kit can include instructions for its administration.
  • The terms “co-administration” or “combined administration” or the like as utilized herein are meant to encompass administration of the selected therapeutic agents to a single patient, and are intended to include treatment regimens in which the agents are not necessarily administered by the same route of administration or at the same time.
  • The term “pharmaceutical combination” as used herein means a product that results from the mixing or combining of more than one active ingredient and includes both fixed and non-fixed combinations of the active ingredients. The term “fixed combination” means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient simultaneously in the form of a single entity or dosage. The term “non-fixed combination” means that the active ingredients, e.g. a compound of Formula I and a co-agent, are both administered to a patient as separate entities either simultaneously, concurrently or sequentially with no specific time limits, wherein such administration provides therapeutically effective levels of the 2 compounds in the body of the patient. The latter also applies to cocktail therapy, e.g. the administration of 3 or more active ingredients.
  • Processes for Making Compounds of the Invention
  • The present invention also includes processes for the preparation of compounds of the invention. In the reactions described, it can be necessary to protect reactive functional groups, for example hydroxy, amino, imino, thio or carboxy groups, where these are desired in the final product, to avoid their unwanted participation in the reactions. Conventional protecting groups can be used in accordance with standard practice, for example, see T. W. Greene and P. G. M. Wuts in “Protective Groups in Organic Chemistry”, John Wiley and Sons, 1991.
  • Compounds of Formula I can be prepared by proceeding as in the following Reaction Scheme I:
  • Figure US20130345220A1-20131226-C00003
  • in which n, Y, Z, R1, R2 and R3 are as defined in the Summary of the Invention. Compounds of Formula I are prepared by reacting a compound of formula 2 with a compound of formula 3 to form a compound of formula 4 which is further reacted with a compound of formula 5 or 6. The entire reaction is carried out in the presence of a suitable solvent (e.g., dichloromethane, or the like) and a suitable base (e.g., DIEA, or the like). The reaction is carried out in the temperature range of about 5 to about 30° C. and takes up to 20 hours to complete.
  • Additional Processes for Making Compounds of the Invention
  • A compound of the invention can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid. Alternatively, a pharmaceutically acceptable base addition salt of a compound of the invention can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base. Alternatively, the salt forms of the compounds of the invention can be prepared using salts of the starting materials or intermediates.
  • The free acid or free base forms of the compounds of the invention can be prepared from the corresponding base addition salt or acid addition salt from, respectively. For example a compound of the invention in an acid addition salt form can be converted to the corresponding free base by treating with a suitable base (e.g., ammonium hydroxide solution, sodium hydroxide, and the like). A compound of the invention in a base addition salt form can be converted to the corresponding free acid by treating with a suitable acid (e.g., hydrochloric acid, etc.).
  • Compounds of the invention in unoxidized form can be prepared from N-oxides of compounds of the invention by treating with a reducing agent (e.g., sulfur, sulfur dioxide, triphenyl phosphine, lithium borohydride, sodium borohydride, phosphorus trichloride, tribromide, or the like) in a suitable inert organic solvent (e.g. acetonitrile, ethanol, aqueous dioxane, or the like) at 0 to 80° C.
  • Prodrug derivatives of the compounds of the invention can be prepared by methods known to those of ordinary skill in the art (e.g., for further details see Saulnier et al., (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985). For example, appropriate prodrugs can be prepared by reacting a non-derivatized compound of the invention with a suitable carbamylating agent (e.g., 1,1-acyloxyalkylcarbanochloridate, para-nitrophenyl carbonate, or the like).
  • Protected derivatives of the compounds of the invention can be made by means known to those of ordinary skill in the art. A detailed description of techniques applicable to the creation of protecting groups and their removal can be found in T. W. Greene, “Protecting Groups in Organic Chemistry”, 3rd edition, John Wiley and Sons, Inc., 1999.
  • Compounds of the present invention can be conveniently prepared, or formed during the process of the invention, as solvates (e.g., hydrates). Hydrates of compounds of the present invention can be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents such as dioxin, tetrahydrofuran or methanol.
  • Compounds of the invention can be prepared as their individual stereoisomers by reacting a racemic mixture of the compound with an optically active resolving agent to form a pair of diastereoisomeric compounds, separating the diastereomers and recovering the optically pure enantiomers. While resolution of enantiomers can be carried out using covalent diastereomeric derivatives of the compounds of the invention, dissociable complexes are preferred (e.g., crystalline diastereomeric salts). Diastereomers have distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) and can be readily separated by taking advantage of these dissimilarities. The diastereomers can be separated by chromatography, or preferably, by separation/resolution techniques based upon differences in solubility. The optically pure enantiomer is then recovered, along with the resolving agent, by any practical means that would not result in racemization. Resolution of the racemic mixture may be carried out using chiral HPLC. A more detailed description of the techniques applicable to the resolution of stereoisomers of compounds from their racemic mixture can be found in Jean Jacques, Andre Collet, Samuel H. Wilen, “Enantiomers, Racemates and Resolutions”, John Wiley And Sons, Inc., 1981.
  • In summary, the compounds of Formula I can be made by a process, which involves:
      • (a) that of reaction scheme I; and
      • (b) optionally converting a compound of the invention into a pharmaceutically acceptable salt;
      • (c) optionally converting a salt form of a compound of the invention to a non-salt form;
      • (d) optionally converting an unoxidized form of a compound of the invention into a pharmaceutically acceptable N-oxide;
      • (e) optionally converting an N-oxide form of a compound of the invention to its unoxidized form;
      • (f) optionally resolving an individual isomer of a compound of the invention from a mixture of isomers;
      • (g) optionally converting a non-derivatized compound of the invention into a pharmaceutically acceptable prodrug derivative; and
      • (h) optionally converting a prodrug derivative of a compound of the invention to its non-derivatized form.
  • Insofar as the production of the starting materials is not particularly described, the compounds are known or can be prepared analogously to methods known in the art or as disclosed in the Examples hereinafter.
  • One of skill in the art will appreciate that the above transformations are only representative of methods for preparation of the compounds of the present invention, and that other well known methods can similarly be used.
  • EXAMPLES
  • The present invention is further exemplified, but not limited, by the following examples that illustrate the preparation of compounds of Formula I according to the invention.
  • Example 1 5-(4-Chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2-fluoro-phenyl)-methanone
  • Figure US20130345220A1-20131226-C00004
  • Preparation of 4-chloro-thiobenzoic acid hydrazide
  • Figure US20130345220A1-20131226-C00005
  • One half of volume of a solution of KOH (1.06 mol) in 400 mL of EtOH is saturated with H2S. This solution is recombined with the other half of the KOH solution and the resulting solution is stirred under N2 at 45-50° C. before adding 4-chlorobenzotrichloride (0.25 mol) at a rate to keep the temperature at 50-60° C. (˜1.5 hours). The deep red mixture is refluxed for 30 minutes, then treated with a solution of chloroacetic acid (0.35 mol) and NaHCO3 (0.35 mol) in H2O (200 mL). The reaction mixture is reheated under reflux for an additional 5 minutes. The resulting brownish-red solution is decanted from the sticky resin and acidified with concentrated HCl to pH=1. The red solution on crystallization yields (4-chloro-thiobenzoylsulfanyl)-acetic acid: 1H NMR (400 MHz, CDCl3): δ 7.75 (d, 2H), 7.15 (d, 2H), 4.04 (s, 2H).
  • To a mixture of (4-chloro-thiobenzoylsulfanyl)-acetic acid (8.31 mmol) in 9 mL of NaOH (1N) is added hydrazine hydrate (36.7 mL). Glacial acetic acid (2.7 mL) is then added to the solution and the mixture is vigorously stirred. The reaction mixture is diluted with CH2Cl2 and the organic layer dried over MgSO4 to yield 4-chloro-thiobenzoic acid hydrazide: LC/MS (ES+) 186.9 (M+1)+.
  • To a heterogeneous mixture of 4-chloro-thiobenzoic acid hydrazide (0.107 mmol) in CH2Cl2 (1 mL) is added 2-difluoromethoxy-benzaldehyde (0.128 mmol) and DIEA (0.128 mmol). After 10 minutes the mixture become homogenous and the reaction is complete by TLC and LCMS to give 5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole which is used in the next step without evaporation of the solvent.
  • To the solution of 5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole is added DIEA (0.16 mmol) and 2-fluorobenzoyl chloride (0.16 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After evaporation of the solvent, the residue is purified by automated chromatography (hexane/EtOAc) to give 5-(4-chloro-phenyl)-2-(2-difluoromethoxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2-fluoro-phenyl)-methanone: 1H NMR (400 MHz, CDCl3) δ 7.39-7.35 (m, 1H), 7.34-7.29 (m, 4H), 7.25 (dd, J1=7.8 Hz, J2=1.2 Hz, 1H), 7.19-7.13 (m, 3H), 7.04 (m, 1H), 6.97 (m, 2H), 6.50 (dd, J1=71.6 Hz, J2=71.2 Hz, 1H). LC/MS: (ES+) 462.8 (M+1)+.
  • Example 2 2-{2-[5-(4-Chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetamide
  • Figure US20130345220A1-20131226-C00006
  • To a heterogeneous mixture of 4-chloro-thiobenzoic acid hydrazide (1.3 mmol) in 12 mL of CH2Cl2 is added 2-(2-formylphenoxy)acetamide (1.53 mmol) and DIEA (1.53 mmol). After 10 minutes the mixture become homogenous and the reaction is complete by TLC and LCMS to give 2-(2-(5-(4-chlorophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-yl)phenoxy)-acetamide which is used as such in the next step without evaporation of the solvent.
  • To the solution of 2-(2-(5-(4-chlorophenyl)-2,3-dihydro-1,3,4-thiadiazol-2-yl)phenoxy)acetamide is added DIEA (2.0 mmol) and 2,4,6-tri-fluorobenzoyl chloride (2.0 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After evaporation of the solvent, the residue is purified by automated chromatography (hexane/EtOAc) to give 2-{2-[5-(4-chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetamide: 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.27 (d, J=8.8, 2H), 7.15 (m, 2H), 7.14 (d, J=8.4 Hz, 2H) 6.99 (bs, 1H), 6.84 (t, J=6.4 Hz, 3H), 6.66 (d, J=8.4 Hz, 1H), 6.53 (t, J=8.0 Hz, 2H), 5.29 (bs, 1H), 4.47 (d, J=1.6 Hz, 2H); LC/MS: (ES+) 506.2 (M+1)+.
  • Example 3 2-{2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-6-methoxy-phenoxy}-acetamide
  • Figure US20130345220A1-20131226-C00007
  • Preparation of 4-fluorobenzothiohydrazide trifluoroacetic acid salt or hydrochloride salt
  • Figure US20130345220A1-20131226-C00008
  • To a solution of 4-fluorobenzoic acid (35.7 mmol) in 72 mL of a mixture of DMF and THF (1:1), is added tert-butyl carbazate (37.5 mmol), EDC (39.3 mmol) and N,N-dimethylaminopyridine (0.54 mmol). After 10 minutes the mixture becomes homogeneous and stirring is continued for 3 hours until the reaction is complete by TLC and LC/MS. The reaction mixture is poured into ice. Upon addition of diethylether the organic layer is separated. The organic layer is washed with sodium bisulfite, saturated sodium bicarbonate and saturated sodium chloride solution, dried over magnesium sulfate and concentrated to yield N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester: MS: (ES+) 255 (M+1)+.
  • To a mixture of N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester (11.1 mmol) in 10 mL of dry THF is added Lawesson's reagent (11.6 mmol) and the mixture is heated in the microwave oven at 80° C. for 20 minutes The reaction mixture is concentrated and purified by automated column chromatography using hexanes/EtOAc: 1H NMR (400 MHz, CDCl3) δ 9.8 (bs, 1H), 9.05 (bs, 1H); 8.0-7.97 (m, 2H), 7.31 (t, J=8.4 Hz, 2H), 1.73 (s, 9H). LC/MS: (ES+) 271 (M+1)+.
  • Trifluoroacetic Salt.
  • To a solution of N′-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (1.97 mmol) in CH2Cl2 is added trifluoroacetic acid (3 mL) and thioanisole (2.7 mmol). The mixture is stirred at room temperature for 1 hour. After evaporation of the solvent the mixture is purified by automated column chromatography (hexanes/EtOAc) to yield 4-fluoro-thiobenzoic acid hydrazide trifluoroacetic acid salt: 1H NMR (400 MHz, CDCl3) δ 9.5 (bs, 3H), 7.8-7.76 (m, 2H), 7.05 (t, J=8.4 Hz, 2H); LC/MS: (ES+) 171 (M+1)+.
  • Hydrochloride Salt.
  • To N′-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (18.5 mmol) is added HCl (4 N) in 1,4-dioxane (185 mmol). The mixture is stirred at room temperature for 1 hour. Hexanes is added to further precipitate the product. The product is filtered off yielding 4-fluoro-thiobenzoic acid hydrazide hydrochloride salt: 1H NMR (400 MHz, CH3OD) δ 7.8-7.75 (m, 2H), 7.09 (t, J=11.6 Hz, 2H). LC/MS: (ES+) 171 (M+1)+.
  • Preparation of 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde
  • Figure US20130345220A1-20131226-C00009
  • O-vanillin (26.3 mmol) is mixed with TIPSCl (39.6 mmol) and imidazole (78.7 mmol) in a microwave vessel. The mixture is heated in the microwave at 100° C. for 3 minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO4 (1 M) (2×50 mL) and brine (50 mL). After drying with MgSO4, the filtrate is concentrated. The resultant crude mixture is purified by silica flash chromatography (2% EtOAc/hexane) to yield 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde as an oil: 1H NMR (400 MHz, CDCl3) δ 10.6 (s, 1H), 7.38 (dd, J1=1.6 Hz, J2=8 Hz, 1H), 7.04 (dd, J1=1.6 Hz, J2=8 Hz, 1H), 6.93 (td, J1=8 Hz, J2=0.8 Hz, 1H), 3.82 (s, 3H), 1.34-1.25 (m, 3H), 1.1 (s, 18H); LC/MS (ES+): 309 (M+1)+.
  • To a heterogeneous mixture of 4-fluoro-thiobenzoic acid hydrazide salt (2.06 mmol) in 8 mL of CH2Cl2 is added 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde (2.27 mmol) and DIEA (4.13 mmol). After 15 minutes the mixture becomes homogenous and the reaction is complete by TLC and LCMS to give 5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole which is used in the next step without evaporation of the solvent.
  • To the solution of 5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-2,3-dihydro-[1,3,4]thiadiazole is added DIEA (3.09 mmol) and 2,4,6-tri-fluorobenzoyl chloride (3.09 mmol) and the reaction mixture is stirred for 12 hours at room temperature. After concentration, the residue is purified by automated column chromatography (hexane/EtOAc) to yield [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone.
  • To [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (32.3 mmol) is added tetrabutylammonium fluoride in tetrahydrofuran (1 M) (48.5 mmol). The mixture is stirred for an hour and 2-bromo-acetamide (48.5 μmol) is added. The mixture is stirred at room temperature for 12 hours. After evaporation of the solvent the residue is purified by preparative LC/MS (20-100% MeCN/H2O) to give 2-{2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-6-methoxy-phenoxy}-acetamide: 1H NMR (400 MHz, CDCl3): δ 7.63-7.62 (m, 2H), 7.57 (s, 1H), 7.22-7.12 (m, 3H), 7.02 (dd, J1=8.4 Hz, J2=2 Hz, 2H), 6.9 (bs, 1H), 6.85 (t, J=8.4 Hz, 2H), 6.10 (s, 1H), 4.83 (d, J=15.2 Hz, 1H), 4.68 (d, J=15.2 Hz, 1H), 3.94 (s, 3H).
  • Example 4 3-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzoic acid methyl ester
  • Figure US20130345220A1-20131226-C00010
  • Preparation of 2-Methoxy-3-triisopropylsilanyloxy-benzaldehyde
  • Figure US20130345220A1-20131226-C00011
  • Guaiacol (2-methoxy-phenol, 34.6 mmol) is mixed with TIPSCl (51.9 mmol) and imidazole (103.8 mmol) in a tube. The mixture is heated in the microwave oven at 180° C. for 3 minutes. The oily mixture is diluted with EtOAc (100 mL) and washed with NaHSO4 (1 M) (2×50 mL) and brine (50 mL). After drying over anhydrous Na2SO4, the filtrate is concentrated. The resultant crude mixture is purified by silica flash chromatography (2% EtOAc/hexane) to yield triisopropyl-(2-methoxy-phenoxy)-silane as a colorless oil. Yield: 69%. 1H NMR (400 MHz, CDCl3) δ 6.8-6.89 (m, 4H), 3.8 (s, 3H), 1.22-1.28 (m, 3H), 1.1 (s, 9H), 1.08 (s, 9H). LC/MS (ES+): (M+1), 281.2. Rf=0.8 (5% EtOAc/hexane). (Note: Alternatively, conventional heating might be adopted in which case NMP is the solvent of choice).
  • nBuLi (2.5 M in hexanes) (36 mmol) is mixed with TMEDA (36 mmol) at 0° C. in a dry round bottom flask for 10 minutes. A solution of triisopropyl-(2-methoxy-phenoxy)-silane (24 mmol) in 25 mL of dry THF is added to the above mixture. The mixture is warmed up to room temperature in 2 hours by removal of the ice bath. The slightly yellow solution is then transferred to another dry flask containing dry 7.5 mL of DMF at room temperature. The mixture is stirred overnight. HCl (1 M) is added to the mixture to quench the reaction. The mixture is diluted with EtOAc (100 mL), washed with HCl (1 M) (2×100 mL) and brine (50 mL) and finally dried over anhydrous Na2SO4. Purification is accomplished by silica flash chromatography (5% EtOAc/hexane) to yield 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde as a colorless oil which needs to be stored at low temperatures: 1H NMR (400 MHz, CDCl3) δ 10.4 (s, 1H), 7.42 (dd, J1=7.7 Hz, J2=1.7 Hz, 1H), 7.67 (d, J1=8 Hz, J2=1.7 Hz, 1H), 7.04 (t, J=8.4 Hz, 1H), 3.96 (s, 3H), 1.26-1.35 (m, 3H), 1.13 (s, 9H), 1.12 (s, 9H). LC/MS (ES+): (M+1) 309.2. Rf=0.4 (5% EtOAc/hexane).
  • N′-(4-fluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (1.23 mmol) is dissolved in 5 mL of CH2Cl2 at room temperature in a dry round bottom flask. Removal of the ester group is accomplished adding TFA (2 mL) to the solution at room temperature. The reaction is complete after 30 minutes as determined by LC/MS. Solvent is removed in vacuo. The resultant oil is dried on the vacuum line for 30 minutes and dissolved in 1 mL of dry CH2Cl2. This solution is added to a mixture of 3-methoxy-2-triisopropylsilanyloxy-benzaldehyde (1.23 mmol) and DIEA (4.9 mmol) in 1 mL of dry CH2Cl2. The mixture is allowed to stand at room temperature in the presence of molecular sieves for 5 minutes. 2,4,6-Trifluorobenzoyl chloride (1.6 mmol) is added and the reaction mixture is kept at room temperature for 16 hours. HCl (1 M) (10 mL) is added to the mixture to quench the reaction. The mixture is diluted with EtOAc (50 mL), washed with HCl (1 M) (2×10 mL) and brine (50 mL) and dried over anhydrous Na2SO4. Purification is accomplished by silica flash chromatography (5% EtOAc/hexane) to give [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone as a colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J1=8.8 Hz, J2=5.3 Hz, 2H), 7.51 (s, 1H), 7.04 (t, J=8.6 Hz, 2H), 6.95 (t, J=7.8 Hz, 1H), 6.87 (t, J=8.8 Hz, 2H), 6.77 (t, J=7.9 Hz, 2H), 4.03 (s, 3H), 1.27-1.36 (m, 3H), 1.14 (dd, J1=J2=6.3 Hz, 18H); LC/MS (ES+): (M+1) 309.2. Rf=0.4 (5% EtOAc/hexanes).
  • [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.02 mmol) is treated with tetrabutylammonium fluoride (1 M in THF) (0.04 mmol) at room temperature for 30 minutes. 3-Bromomethyl-benzoic acid methyl ester (0.04 mmol) is then added. After 30 minutes, the reaction is complete as determined by LC/MS. The mixture is diluted with acetonitrile and purified by preparative LC/MS (20-100% MeCN/H2O) to give 3-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzoic acid methyl ester as white solid after evaporation of solvent: 1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 8.02 (d, J=7.8 Hz, 1H), 7.67 (d, J=7.7 Hz, 1H), 7.47-7.55 (m, 4H), 7.01-7.07 (m, 3H), 6.94 (t, J=8.3 Hz, 2H), 6.77 (t, J=8.5 Hz, 2H), 5.16 (s, 2H), 4.07 (s, 3H), 3.94 (s, 3H). LC/MS (ES+): (M+1) 610.9.
  • Example 5 4-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzoic acid
  • Figure US20130345220A1-20131226-C00012
  • [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.02 mmol) is treated with tetrabutylammonium fluoride (1.0 M in THF) (0.04 mmol) at room temperature for 30 minutes. The reaction is complete by LC/MS analysis. 4-Bromomethyl-benzoic acid methyl ester (0.04 mmol) is added. After 30 minutes, the reaction is complete as determined by LC/MS. After dilution with MeOH (0.5 mL), LiOH (1 M) (0.5 mL) is added. After stirring for 1 hour, the solvent is removed from the reaction mixture. A mixture of MeOH/DMSO is added to the residue and resultant solution is filtered. The clear solution is purified by preparative LC/MS (20-100% MeCN/H2O) to give 4-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzoic acid as white solid after removal of solvent: 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J=8 Hz, 2H), 7.53-7.58 (m, 5H), 7.03-7.05 (m, 3H), 6.94-6.95 (m, 2H), 6.77 (t, J=8.2 Hz, 2H), 5.2 (s, 2H), 4.08 (s, 3H); LC/MS (ES+): (M+1) 597.3.
  • Example 6 2-{2-[5-(4-Chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-N-methyl-acetamide
  • Figure US20130345220A1-20131226-C00013
  • (2-Formyl-phenoxy)-acetic acid (0.5 mmol) is dissolved in 1 mL of CH2Cl2. Oxalyl chloride (0.066 mL) is added along with one drop of DMF. After 1 hour, the solvent is removed from the mixture. The resultant residue is dissolved in 1 mL of CH2Cl2 and added to 1 mL of NH2Me in THF (2 M) at ambient temperature. After 16 hours of stiffing, the solvent is removed and the mixture is purified by preparative TLC (10% MeOH/EtOAc) to yield the product 2-(2-formyl-phenoxy)-N-methyl-acetamide as an off white solid: LC/MS (ES+): 194.1 (M+1)+.
  • The 2-(2-formyl-phenoxy)-N-methyl-acetamide (0.0311 mmol) is added to 4-chloro-thiobenzoic acid hydrazide (0.0342 mmol) in 0.1 mL of CH2Cl2. After 10 minutes, DIEA (0.05 mL) and 2,4,6-trifluoro-benzoyl chloride (0.0467 mmol) are added. The mixture is kept at room temperature overnight. After removal of solvent, the residue is purified by preparative HPLC (20-100% MeCN/H2O gradient) to give the product 2-{2-[5-(4-chloro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-N-methyl-acetamide as an off white solid: LC/MS (ES+): 520.1 (M+1)+.
  • Example 7 N-Cyclopropylmethyl-2-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetamide
  • Figure US20130345220A1-20131226-C00014
  • [5-(4-fluoro-phenyl)-2-(2-methoxy-3-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (3.31 mmol), prepared as described in example 4, is treated with tetrabutylammonium fluoride (1 M in THF) (4.97 mmol) at room temperature for 40 minutes. Methyl bromoacetate (4.97 mmol) is then added. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by silica flash chromatography (25% EtOAc/hexane) to give {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid methyl ester: 1H NMR (400 MHz, CDCl3) δ 7.52 (m, 3H), 7.04 (m, 3H), 6.95 (dd, J1=8.4 Hz, J2=1.6 Hz, 1H), 6.82 (dd, J1=8 Hz, J2=1.6 Hz), 6.76 (m, 2H), 4.7 (s, 2H), 4.1 (s, 3H); LC/MS (ES+): 505.1 (M+1)+.
  • To a solution of {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid methyl ester (2.47 mmol) in 30 mL of a mixture of THF and MeOH (3:2), is added LiOH (1 M) (25 mL). After stiffing for 12 hours the reaction is complete as determined by LC/MS. The reaction is diluted with ethyl acetate and water, washed with brine and dried over MgSO4 and the solvent is removed from the reaction mixture to yield {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid: LC/MS (ES+): 521.1 (M+1)+.
  • To a solution of {3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid (0.029 mmol) in 1 mL of DMF is added DIEA (0.058 mmol), HATU (0.058 mmol) and cyclopropyl methylamine (0.058 mmol). The reaction mixture is stirred for 12 hours. The mixture is purified by preparative LC/MS (20-100% MeCN/H2O) to give N-cyclopropylmethyl-2-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetamide: 1H NMR (400 MHz, CDCl3) δ 7.55-7.51 (m, 3H), 7.12-6.99 (m, 4H), 6.9 (d, J=7.6 Hz, 2H), 6.77 (t, J=8.4 Hz, 2H), 4.56 (s, 2H), 4.08 (s, 3H), 3.26-3.2 (m, 2H), 1.02-0.99 (m, 1H), 0.57-0.52 (m, 2H), 0.25 (m, 2H); LC/MS (ES+): 574.1 (M+1)+.
  • Example 8 2-{2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-N-(5-methyl-isoxazol-3-yl)-acetamide
  • Figure US20130345220A1-20131226-C00015
  • [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (3.4 mmol), prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (5.1 mmol) at room temperature for 40 minutes. Methyl bromoacetate (5.1 mmol) is then added. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by silica flash chromatography (25% EtOAc/hexane) to give {2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid methyl ester: 1H NMR (400 MHz, CDCl3) δ 7.61 (s, 1H), 7.54 (m, 2H), 7.04 (m, 3H), 7.01 (d, J=8.4 Hz, 1H) 6.95 (bs, 2H), 4.94 (s, 2H), 4.01 (s, 3H). MS: (ES+) 535.1 (M+1); LC/MS (ES+): 535.1 (M+1)+.
  • To a solution of {2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid methyl ester (2.93 mmol) in 30 mL of a mixture of THF and MeOH (3:2), is added LiOH (1 M) (30 mL). After stirring for 12 hours the reaction is complete as determined by LC/MS. The reaction is diluted with ethyl acetate and water, washed with brine and dried over MgSO4 and the solvent is removed from the reaction mixture to yield {2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid: 1H NMR (400 MHz, acetone-d6) δ 7.66 (m, 3H), 7.39 (m, 1H), 7.3 (dd, J1=7.6 Hz, J2=1.6 Hz, 1H), 7.22 (m, 4H), 7.13 (m, 1H), 7.07 (t, J=7.6 Hz, 1H), 4.94 (s, 2H); LC/MS (ES+): 491.0 (M+1)+.
  • To a solution of {2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-acetic acid (0.031 mmol) in DMF (1 mL) is added DIEA (0.058 mmol), HATU (0.058 mmol) and 5-methyl-isoxazol-3-ylamine (0.058 mmol). The reaction mixture is stirred for 12 hours. The mixture is purified by preparative LC/MS (20-100% MeCN/H2O) to give 2-{2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxy}-N-(5-methyl-isoxazol-3-yl)-acetamide: 1H NMR (400 MHz, CDCl3) δ 7.55-7.51 (m, 3H), 7.35-7.26 (m, 2H), 7.05-6.96 (m, 3H), 6.85 (d, J=8 Hz, 1H), 6.69 (t, J=7.6 Hz, 2H), 6.56 (s, 1H), 4.72 (s, 2H), 2.33 (s, 3H); LC/MS (ES+): 571.1 (M+1)+.
  • Example 9 3-{2-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-benzamide
  • Figure US20130345220A1-20131226-C00016
  • [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (41 μmol), prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (48 μmol) at room temperature for 40 minutes. The solvent is removed in vacuo and dried over MgSO4 to yield [5-(4-fluoro-phenyl)-2-(2-hydroxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone to be used without further purification.
  • To [5-(4-fluoro-phenyl)-2-(2-hydroxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (41 μmol) dissolved in acetonitrile (1 mL) is added K2CO3 (61.5 μmol) and 3-bromomethyl-benzamide (94.2 μmol) and the mixture is heated at 90° C. After 12 hours, the reaction is complete as determined by LC/MS. Purification is accomplished by preparative LC/MS (20-100% MeCN/H2O) to give 3-{2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-benzamide: 1H NMR (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.9 (d, J=7.6 Hz, 1H), 7.7 (s, 1H), 7.6-7.5 (m, 4H) 7.35 (d, J=7.6 Hz, 1H), 7.06 (t, J=8.4 Hz, 1H), 6.99 (t, J=7.6 Hz, 2H), 6.88 (d, J=8 Hz), 6.79 (t, J=8.4 Hz, 2H), 6.26 (bs, 1H), 5.33 (d, J=7.6 Hz); LC/MS (ES+): 566.1 (M+1)+.
  • Example 10 2-{2-[5(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid
  • Figure US20130345220A1-20131226-C00017
  • [5-(4-Fluoro-phenyl)-2-(2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone (0.67 mmol), prepared as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3, is treated with tetrabutylammonium fluoride (1.0 M in THF) (1.3 mmol) at room temperature. After 15 minutes, methyl 2-(bromomethyl)-3-furoate (0.74 mmol) is added and the mixture is stirred for an additional 12 hours. The solvent is removed in vacuo and the residue is purified on silica to yield 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid methyl ester as a yellow solid: LC/MS (ES+): 571.1 (M+1)+.
  • To a solution of 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid methyl ester (0.49 mmol) in THF/MeOH/H2O (3:2:1), is added LiOH (3 N) (4.9 mmol). After stirring for 12 hours, the reaction is acidified with HCl (1 N) and extracted with ethyl acetate. The organic layer is dried over MgSO4, filtered, and concentrated. The residue is purified using preparative LC/MS to give 2-{2-[5(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-furan-3-carboxylic acid as a white solid: 1H NMR (400 MHz, CDCl3) δ 7.26-7.23 (m, 3H), 7.20 (d, J=1.9, 1H), 7.10-7.05 (m, 1H), 7.03-6.99 (m, 1H), 6.86 (d, J=8.1, 1H), 6.78-6.74 (m, 3H), 6.55 (d, J=1.9, 1H), 6.55-6.50 (m, 2H), 5.38-5.21 (m, 2H); LC/MS (ES+): 557.1 (M+1)+.
  • Example 11 [2-(2-Difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone
  • Figure US20130345220A1-20131226-C00018
  • N′-(6-Methyl-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH2Cl2 (1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH2Cl2 (1 mL). DIEA (0.287 mmol) is added to the solution and the mixture is treated with 2-difluoromethoxy-benzaldehyde (0.12 mmol) in the presence of 4 Å molecular sieves. 2,4,6-Trifluorobenzoyl chloride (0.15 mmol) is added after 5 minutes. The mixture is kept at ambient temperature for 16 hours and purified by preparative HPLC (20-100% MeCN/H2O) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone: 1H NMR (400 MHz, CDCl3) 8.71 (d, J=2.1 Hz, 1H), 7.81 (dd, J1=8.2 Hz, J2=2.2 Hz, 1H), 7.53 (s, 1H), 7.36-7.4 (m, 2H), 7.26 (d, J=8.1 Hz, 2H), 7.18 (d, J=8.3 Hz, 1H), 6.78 (t, J=8.3 Hz, 2H), 6.67 (dd, J1=75.0 Hz, J2=71.7 Hz, 1H), 2.64 (s, 3H); LC/MS (ES+): (M+1) 480.1.
  • Example 12 [2-(2-Difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2-hydroxy-phenyl)-methanone
  • Figure US20130345220A1-20131226-C00019
  • (2-(2-(Difluoromethoxy)phenyl)-5-(6-methylpyridin-3-yl)-1,3,4-thiadiazol-3(2H)-yl)(2-acetoxyphenyl)methanone (0.02 mmol) prepared in a similar manner as described in experiment 11 for [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone, is dissolved in THF/MeOH (1 mL/0.5 mL) and treated with aqueous LiOH (1 M) (0.5 mL) at room temperature for 30 minutes. Aqueous HCl (3 M) is added to adjust the pH to 5-6. Solvent is removed and the residue is purified by preparative HPLC (20-100% MeCN/H2O) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-methyl-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2-hydroxy-phenyl)-methanone: 1H NMR (400 MHz, CDCl3) 9.02 (d, J=2.0 Hz, 1H), 8.41 (d, J=8.6 Hz, 1H), 8.23 (dd, J1=8.2 Hz, J2=2.2 Hz, 1H), 7.77 (d, J=7.5 Hz, 1H), 7.65 (s, 1H), 7.62 (dd, J1=7.8 Hz, J2=1.3 Hz, 1H), 7.45-7.53 (m, 5H), 6.97-7.01 (m, 2H), 2.79 (s, 3H); LC/MS (ES+): (M+1) 442.1.
  • Example 13 [2-(2-Difluoromethoxy-phenyl)-5-(6-fluoro-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone
  • Figure US20130345220A1-20131226-C00020
  • N′-(6-fluoro-pyridine-3-carbothioyl)-hydrazinecarboxylic acid tert-butyl ester (0.044 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (0.44 mmol) and thioanisole (0.44 mmol) in dry CH2Cl2 (1 mL) at room temperature for 30 minutes. The solvent is removed and the residue is dissolved in dry CH2Cl2 (1 mL). DIEA (0.22 mmol) is added to the solution and the mixture is treated with 2-difluoromethoxy-benzaldehyde (0.067 mmol) in the presence of 4 Å molecular sieves. 2,4,6-Trifluorobenzoyl chloride (0.089 mmol) is added after 5 minutes. The mixture is kept at room temperature for 16 hours and purified by preparative silica gel TLC (30% EtOAc/hexane) to yield [2-(2-difluoromethoxy-phenyl)-5-(6-fluoro-pyridin-3-yl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone: 1H NMR (400 MHz, CDCl3) 8.39 (s, 1H), 7.93-7.97 (m, 1H), 7.54 (s, 1H), 7.37-7.41 (m, 2H), 7.24-7.27 (m, 1H), 7.19 (d, J=8.1 Hz, 1H), 6.97 (dd, J1=8.6 Hz, J2=2.7 Hz, 1H), 6.78 (t, J=8.3 Hz, 2H), 6.67 (dd, J1=75.0 Hz, J2=71.7 Hz, 1H); LC/MS (ES+): (M+1) 484.1.
  • Example 14 3-{4-[5-(3,4-Difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl}-benzoic acid
  • Figure US20130345220A1-20131226-C00021
  • 2-Amino-3-methyl-phenol (6.09 mmol) is heated with 3-formyl-benzoic acid methyl ester (6.09 mmol) in MeOH (6 mL) at 60° C. for 30 minutes. The solvent is removed from the mixture to obtain a dark red oil which is dissolved in dry CH2Cl2 (6 mL) at room temperature and treated with DDQ (6.4 mmol) for 16 hours. The mixture is diluted with EtOAc and poured onto saturated aqueous NaHCO3. The aqueous phase is further extracted with EtOAc and the combined organic phases are dried over Na2SO4. Filtration and removal of the solvent yields a residue which is purified by silica gel chromatography (5-10% EtOAc/hexane) to yield 3-(4-methyl-benzooxazol-2-yl)-benzoic acid methyl ester as a white solid: 1H NMR (400 MHz, CDCl3) 8.92 (d, J=1.6 Hz, 1H), 8.47 (dt, J1=7.8 Hz, J2=1.5 Hz, 1H), 8.2 (dt, J1=7.8 Hz, J2=1.4 Hz, 1H), 7.61 (t, J=7.9 Hz, 1H), 7.43 (d, J=8.1 Hz, 1H), 7.27 (t, J=7.7 Hz, 1H), 7.17 (t, J=7.5 Hz, 1H), 3.99 (s, 3H), 2.69 (s, 3H); LC/MS (ES+): (M+1) 268.1.
  • A solution of 3-(4-methyl-benzooxazol-2-yl)-benzoic acid methyl ester (1.2 mmol), N-bromo succinimide (1.5 mmol) and AIBN (0.3 mmol) in CCl4 are heated in microwave at 100° C. for 30 minutes (1 mL). The mixture is filtered and concentrated to yield the crude 3-(4-bromomethyl-benzooxazol-2-yl)-benzoic acid methyl ester. LC/MS (ES+): (M+) 346.1, 348.1, (M-Br) 266.1, 268.1.
  • The crude 3-(4-bromomethyl-benzooxazol-2-yl)-benzoic acid methyl ester is treated with HMTA (1.8 mmol) in acetic acid/H2O (3 mL/1.5 mL) in a microwave oven at 130° C. for 20 minutes. The solvent is removed and the mixture is purified by silica gel chromatography (10-20% EtOAc/hexane) to yield 3-(4-formyl-benzooxazol-2-yl)-benzoic acid methyl ester as a white solid. Yield: 32%. 1H NMR (400 MHz, CDCl3) 10.8 (s, 1H), 8.97 (s, 1H), 8.53 (d, J=7.8 Hz, 1H), 8.26 (d, J=7.8 Hz, 1H), 7.94 (dd, J1=7.7 Hz, J2=1 Hz, 1H), 7.86 (d, J=8.1 Hz, 1H), 7.66 (t, J=7.8 Hz, 1H), 7.51 (t, J=7.9 Hz, 1H), 4.0 (s, 3H). LC/MS (ES+): (M+1) 282.1, (M+Na) 304.1.
  • N′-(3,4-Difluoro-thiobenzoyl)-hydrazinecarboxylic acid tert-butyl ester (0.1 mmol) prepared as described in example 3 for N′-(4-fluoro-benzoyl)-hydrazinecarboxylic acid tert-butyl ester, is treated with TFA (1 mmol) in dry CH2Cl2 (1 mL) at room temperature for 30 minutes. Solvent is removed and the residue is dissolved in dry CH2Cl2 (1 mL). DIEA (0.57 mmol) is added to the solution and the mixture is treated with 3-(4-formyl-benzooxazol-2-yl)-benzoic acid methyl ester (0.064 mmol) in the presence of 4 Å molecular sieves. 2,4,6-Trifluorobenzoyl chloride (0.15 mmol) is added after 5 minutes. The mixture is kept at room temperature for 16 hours and purified by preparative HPLC (20-100% MeCN/H2O) to yield 3-{4-[5-(3,4-difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl}-benzoic acid methyl ester. LC/MS (ES+): (M+1) 610.0, (M+Na) 632.0.
  • 3-{4-[5-(3,4-Difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl}-benzoic acid methyl ester (0.02 mmol) is dissolved in THF/MeOH (1 mL/0.5 mL) and treated with aqueous LiOH (1 M) (0.5 mL) at room temperature for 30 minutes. Aqueous HCl (3 M) is added to adjust the pH to 5-6. The solvent is removed and the residue is purified by preparative HPLC (20-100% MeCN/H2O) to yield 3-{4-[5-(3,4-difluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-benzooxazol-2-yl}-benzoic acid: 1H NMR (400 MHz, CDCl3) 8.95 (s, 1H), 8.48 (d, J=7.9 Hz, 1H), 8.27 (d, J=7.8 Hz, 1H), 7.92 (s, 1H), 7.66 (t, J=7.8 Hz, 1H), 7.6 (dd, J1=7.7 Hz, J2=1.2 Hz, 1H), 7.46 (m, 1H), 7.29-7.42 (m, 3H), 7.19 (q, J=8.2 Hz, 1H), 6.76-6.81 (m, 2H); LC/MS (ES+): (M+1) 596.0, (M+Na) 618.0.
  • Example 15 4-{3-[5-4-Fluoro-phenyl)-3-(2-hydroxy-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzenesulfonamide
  • Figure US20130345220A1-20131226-C00022
  • 4-(3-Formyl-2-methoxy-phenoxymethyl)-N,N-bis-(4-methoxy-benzyl)-benzenesulfonamide
  • Figure US20130345220A1-20131226-C00023
  • A solution of 4-(bromomethyl)benzenesulfonyl chloride (5.6 mmol) in 5 mL of CH2Cl2 at 25° C. is treated with Et3N (8.4 mmol) followed by bis-(4-methoxy-benzyl)-amine (5.8 mmol). The reaction is stirred for 12 hours, diluted with H2O, extracted with CH2Cl2, dried (MgSO4), filtered and concentrated. The resultant crude material is purified by silica flash chromatography (20% EtOAc/hexanes) to yield 4-bromomethyl-N,N-bis-(4-methoxy-benzyl)-benzenesulfonamide: 1H NMR (400 MHz, CDCl3): δ 7.72 (apparent t, J=8.4 Hz, 2H), 7.44 (dd, J1=1.6 Hz, J2=8.4 Hz, 2H), 6.91-6.86 (m, 4H), 6.69 (d, J=8.8 Hz, 4H), 4.5 (s, 2H), 4.19 (s, 4H), 3.71 (s, 3H); LC/MS: (ES+) 490.1 (M+1)+.
  • 2-Methoxy-3-triisopropylsilanyloxy-benzaldehyde (2.9 mmol), prepared as described in example 4, and 4-bromomethyl-N,N-bis-(4-methoxy-benzyl)-benzenesulfonamide (3.0 mmol) in anhydrous THF (4 mL) are treated with 4.4 mL of a 1.0 M solution of TBAF in THF. The reaction is stirred for 12 hours at ambient temperature and concentrated. The resultant material was purified by silica flash chromatography (30% EtOAc/hexanes) to yield 4-(3-formyl-2-methoxy-phenoxymethyl)-N,N-bis(4-methoxy-benzyl)-benzamide: 1H NMR (400 MHz, CDCl3): δ 10.45 (s, 1H), 7.85 (d, J=8 Hz, 2H), 7.58 (d, J=8 Hz, 2H), 7.48 (dd, J1=1.2 Hz, J2=7.6 Hz, 1H), 7.11-7.19 (m, 2H), 6.97 (d, J=8.8 Hz, 4H), 6.74 (d, J=8.4 Hz, 4H), 5.23 (s, 2H), 4.26 (s, 4H), 4.05 (s, 3H), 3.77 (s, 6H); LC/MS: (ES+) 562.6 (M+1)+.
  • 4-Fluorobenzothiohydrazide hydrochloride salt (0.045 mmol) as prepared in example 3 is dissolved in CH2Cl2 (1 mL). DIEA (0.133 mmol) is added to the solution and the mixture is treated with 4-(3-formyl-2-methoxy-phenoxymethyl)-N,N-bis(4-methoxy-benzyl)-benzamide (0.047 mmol) in the presence of 4 Å molecular sieves. Acetic acid 2-chlorocarbonyl-phenyl ester (0.047 mmol) is added after 5 minutes. The mixture was kept at ambient temperature for 16 hours and concentrated. The resultant material is dissolved in trifluoroacetic acid. After 3 hours, the reaction mixture is concentrated. The crude material is dissolved in DMSO and purified by preparative LC/MS (20-100% MeCN/H2O) to give 4-{3-[5-4-fluoro-phenyl)-3-(2-hydroxy-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-benzenesulfonamide as a white solid after evaporation of solvent: 1H NMR (400 MHz, CDCl3): δ 11.27 (s, 1H), 8.55 (dd, J1=1.2 Hz, J2=8 Hz, 1H), 7.96 (d, J=8 Hz, 2H), 7.71-7.77 (m, 2H), 7.59-7.64 (m, 3H), 7.42-7.47 (m, 1H), 7.12-7.8 (m, 2H), 6.95-7.03 (m, 3H), 6.86-6.92 (m, 2H), 5.2 (s, 2H), 4.77 (s, 2H), 4.07 (s, 3H); LC/MS: (ES+) 594.0 (M+1)+.
  • Example 16 3-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-N-hydroxy-benzamidine
  • Figure US20130345220A1-20131226-C00024
  • To 3-{2-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-benzamide (0.1 mmol) is charged 1 mL of SOCl2. The mixture is heated at 100° C. in the microwave oven for 25 minutes. Solvent is removed. The residue is dissolved in EtOH (1 mL). NH2OH (50% aqueous solution, 0.06 mL) is charged. The mixture is heated at 100° C. in microwave for 25 minutes. Purification by preparative LC/MS (20-100% MeCN/H2O) to give 3-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxymethyl}-N-hydroxy-benzamidine. 1H NMR (400 MHz, CDCl3) δ 7.7 (d, J=7 Hz, 1H), 7.64 (s, 1H), 7.52-7.61 (m, 4H), 7.5 (s, 1H), 7.03-7.08 (m, 2H), 7.0 (d, J=8.2 Hz, 1H), 6.95 (d, J=7.9 Hz, 1H), 6.9 (d, J=6.8 Hz, 1H), 6.76 (t, J=8 Hz, 2H), 6.41 (bs, 2NH), 5.21 (dd, J=14.5, 12.8 Hz, 2H), 4.04 (s, 3H); LC/MS (ES+): 611.1 (M+1)+.
  • Example 17 2-{3-[5-(4-Fluoro-phenyl)-3-(2-hydroxy-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-N-(2-hydroxy-1-methyl-ethyl)-acetamide
  • Figure US20130345220A1-20131226-C00025
  • To {3-[5-(4-Fluoro-phenyl)-3-(2-hydroxy-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-acetic acid (0.27 mmol) in dry DMF (0.5 mL) is added HATU (1.35 mmol), DIEA (0.45 mL, 2.7 mmol) and 2-amino-propan-1-ol. The mixture is kept at ambient temperature for 16 hours. The residue is diluted with EtOH (1 mL). Purification of the mixture by preparative LC/MS (30-100% MeCN/H2O) gives 2-{3-[5-(4-fluoro-phenyl)-3-(2-hydroxy-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxy-phenoxy}-N-(2-hydroxy-1-methyl-ethyl)-acetamide. 1H NMR (400 MHz, CDCl3) δ 11.2 (s, 1H), 8.53 (m, 1H), 7.73 (m, 2H), 7.6 (s, 1H), 7.44 (t, J=8.4 Hz, 1H), 7.15 (t, J=8 Hz, 2H), 6.9-7.1 (m, 5H), 4.58 (s, 2H), 4.14 (m, 1H), 4.06 (s, 3H), 3.69 (m, 1H), 3.59 (m, 1H), 2.1 (bs, 2H), 1.23 (m, 3H); LC/MS (ES+): 540.1 (M+1)+.
  • Example 18 6-{2-Cyanomethoxy-3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-pyridine-2-carboxylic acid ethyl ester
  • Figure US20130345220A1-20131226-C00026
  • To 2,3-dihydroxybenaldehyde (1 mmol) in dry DMSO (2.5 mL) is added NaH (60% suspension in oil, 2.5 mmol). After 10 minutes, 6-bromomethyl-pyridine-2-carboxylic acid ethyl ester (1 mmol) is added. After 1 hour, bromoacetonitrile (0.07 mL, 1 mmol) is introduced at ambient temperature and mixture is stirred for 16 hours. Saturated aqueous NH4Cl solution is used to quench the reaction and the mixture is extracted with EtOAc. After drying over sodium sulfate, solvent is removed. Purification of the mixture by preparative HPLC (20-70% MeCN/H2O) gives 6-(2-cyanomethoxy-3-formyl-phenoxymethyl)-pyridine-2-carboxylic acid ethyl ester. 1H NMR (400 MHz, CDCl3) δ 10.4 (s, 1H), 8.1 (d, J=7.7 Hz, 1H), 7.9 (t, J=7.9 Hz, 1H), 7.7 (d, J=8.2 Hz, 1H), 7.5 (dd, J=8.2, 2.4 Hz, 1H), 7.24 (m, 2H), 5.42 (s, 2H), 5.14 (s, 2H), 4.5 (q, J=7.2 Hz, 2H), 1.45 (t, J=7 Hz, 3H); LC/MS (ES+): 341.2 (M+1)+.
  • 6-{2-Cyanomethoxy-3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-pyridine-2-carboxylic acid ethyl ester is prepared in a similar manner as described for [5-(4-fluoro-phenyl)-2-(3-methoxy-2-triisopropylsilanyloxy-phenyl)-[1,3,4]thiadiazol-3-yl]-(2,4,6-trifluoro-phenyl)-methanone in example 3 using 6-(2-cyanomethoxy-3-formyl-phenoxymethyl)-pyridine-2-carboxylic acid ethyl ester. 1H NMR (400 MHz, CDCl3) δ 8.1 (d, J=7.9 Hz, 1H), 7.94 (t, J=7.9 Hz, 1H), 7.76 (d, J=7.5 Hz, 1H), 7.54-7.58 (m, 3H), 7.05-7.14 (m, 3H), 7.01 (d, J=7.3 Hz, 1H), 6.96 (d, J=8.9 Hz, 1H), 6.76 (t, J=8.5 Hz, 2H), 5.4 (s, 2H), 5.12 (d, J=4.4 Hz, 2H), 4.5 (q, J=7.2 Hz, 2H), 1.45 (t, J=7.3 Hz, 3H); LC/MS (ES+): 651.2 (M+1)+.
  • Example 19 6-{3-[5-(4-Fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxycarbonylmethoxy-phenoxymethyl}-pyridine-2-carboxylic acid
  • Figure US20130345220A1-20131226-C00027
  • 6-{2-Cyanomethoxy-3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-phenoxymethyl}-pyridine-2-carboxylic acid ethyl ester is dissolved in THF (1.5 mL) and MeOH (1.0 mL), LiOH (1 M) (0.5 mL) is added. After stiffing for 1 hour, the solvent is removed from the reaction mixture. A mixture of MeOH/DMSO is added to the residue and resultant solution is filtered. The clear solution is purified by preparative LC/MS (20-100% MeCN/H2O) to give 6-{3-[5-(4-fluoro-phenyl)-3-(2,4,6-trifluoro-benzoyl)-2,3-dihydro-[1,3,4]thiadiazol-2-yl]-2-methoxycarbonylmethoxy-phenoxymethyl}-pyridine-2-carboxylic acid as white solid after removal of solvent: 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J=7.9 Hz, 1H), 8.03 (t, J=7.3 Hz, 1H), 7.81 (d, 10.1 Hz, 1H), 7.8 (s, 1H), 7.55 (dd, J=8.9, 5.3 Hz, 2H), 7.0-7.1 (m, 4H), 6.92 (d, J=8 Hz, 1H), 6.76 (t, J=7.5 Hz, 2H), 5.31 (s, 2H), 4.94 (d, J=7.8 Hz, 2H), 4.8 (bs, 1H), 3.8 (s, 3H); LC/MS (ES+): (M+1) 656.3.
  • By repeating the procedures described in the above examples, using appropriate starting materials, the following compounds of Formula I, as identified in Table 1 and 2, are obtained.
  • TABLE 1
    MS
    (m/z)
    Example Structure (M + 1)+ NMR
     1
    Figure US20130345220A1-20131226-C00028
    462.8 1H NMR (400 MHz, CDCl3) δ 7.39-7.35 (m, 1H), 7.34-7.29 (m, 4H), 7.25 (dd, J1 = 7.8 Hz, J2 = 1.2 Hz, 1H), 7.19-7.13 (m, 3H), 7.07-7.03 (m, 1H), 6.99- 6.96 (m, 2H), 6.50 (dd, J1 = 71.6 Hz, J2 = 71.2 Hz, 1H).
     2
    Figure US20130345220A1-20131226-C00029
    506.2 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.27 (d, J = 8.8, 2H), 7.15 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H) 6.99 (bs, 1H), 6.84 (t, J = 6.4 Hz, 3H), 6.66 (d, J = 8.4 Hz, 1H), 6.53 (t, J = 8.0 Hz, 2H), 5.29 (bs, 1H), 4.47 (d, J = 1.6 Hz, 2H).
     3
    Figure US20130345220A1-20131226-C00030
    520.3 1H NMR (400 MHz, CDCl3) δ 7.63-7.62 (m, 2H), 7.57 (s, 1H), 7.22-7.12 (m, 3H), 7.02 (dd, 2H, J1 = 8.4 Hz, J2 = 2 Hz), 6.9 (bs, 1H), 6.85 (t, 2H, J = 8.4 Hz), 6.10 (s, 1H), 4.83 (d, m, J = 15.2 Hz), 4.68 (d, m, J = 15.2 Hz), 3.94 (s, 3H).
     4
    Figure US20130345220A1-20131226-C00031
    610.9 1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.47-7.55 (m, 4H), 7.01- 7.07 (m, 3H), 6.94 (t, J = 8.3 Hz, 2H), 6.77 (t, J = 8.5 Hz, 2H), 5.16 (s, 2H), 4.07 (s, 3H), 3.94 (s, 3H).
     5
    Figure US20130345220A1-20131226-C00032
    597.3 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 8 Hz, 2H), 7.53- 7.58 (m, 5H), 7.03-7.05 (m, 3H). 6.94-6.95 (m, 2H), 6.77 (t, J = 8.2 Hz, 2H), 5.2 (s, 2H), 4.08 (s, 3H).
     6
    Figure US20130345220A1-20131226-C00033
    520.2 1H NMR (400 MHz, CDCl3) δ 7.55-7.51 (m, 3H), 7.12- 6.99 (m, 4H), 6.9 (d, J = 7.6 Hz, 2H), 6.77 (t, J = 8.4 Hz, 2H), 4.56 (s, 2H), 4.08 (s, 3H), 3.26-3.2 (m, 2H), 1.02-0.99 (m, 1H), 0.57-0.52 (m, 2H), 0.25 (m, 2H).
     7
    Figure US20130345220A1-20131226-C00034
    574.2 1H NMR (400 MHz, CDCl3) δ 7.55-7.51 (m, 3H), 7.35- 7.26 (m, 2H), 7.05-6.96 (m, 3H), 6.85 (d, J = 8 Hz, 1H), 6.69 (t, J = 7.6 Hz, 2H), 6.56 (s, 1H), 4.72 (s, 2H), 2.33 (s, 3H).
     8
    Figure US20130345220A1-20131226-C00035
    571.1 1H NMR(400 MHz, CDCl3) δ 8.09 (s, 1H), 7.9 (d, J = 7.6 Hz, 1H), 7.7 (s, 1H), 7.6-7.5 (m, 4H) 7.35 (d, J = 7.6 Hz, 1H), 7.06 (t, J = 8.4 Hz, 1H), 6.99 (t, J = 7.6 Hz, 2H), 6.88 (d, J = 8 Hz), 6.79 (t, J = 8.4 Hz, 2H), 6.26 (bs, 1H), 5.33 (d, J = 7.6 Hz).
     9
    Figure US20130345220A1-20131226-C00036
    566.1 1H NMR (400 MHz, CDCl3) δ 7.26-7.23 (m, 3H), 7.20 (d, J = 1.9 Hz, 1H), 7.10-7.05 (m, 1H), 7.03-6.99 (m, 1H), 6.86 (d, J = 8.1 Hz, 1H), 6.78-6.74 (m, 3H), 6.55 (d, J =1.9 Hz, 1H), 6.55-6.50 (m, 2H), 5.38- 5.21 (m, 2H).
    10
    Figure US20130345220A1-20131226-C00037
    556.5 1H NMR (400 MHz, CDCl3) δ 8.71 (d, J = 2.1 Hz, 1H), 7.81 (dd, J1 = 8.2 Hz, J2 = 2.2 Hz, 1H), 7.53 (s, 1H), 7.36-7.4 (m, 2H), 7.26 (d, J = 8.1 Hz, 2H), 7.18 (d, J = 8.3 Hz, 1H), 6.78 (t, J = 8.3 Hz, 2H), 6.67 (dd, J1 = 75.0 Hz, J2 = 71.7 Hz, 1H), 2.64 (s, 3H).
    11
    Figure US20130345220A1-20131226-C00038
    480.0 1H NMR (400 MHz, CDCl3) δ 9.02 (d, J = 2.0 Hz, 1H), 8.41 (d, J = 8.6 Hz, 1H), 8.23 (dd, J1 = 8.2 Hz, J2 = 2.2 Hz, 1H). 7.77 (d, J = 7.5 Hz, 1H), 7.65 (s, 1H), 7.62 (dd, J1 = 7.8 Hz, J2 = 1.3 Hz, 1H), 7.45-7.53 (m, 5H), 6.97-7.01 (m, 2H), 2.79 (s, 3H).
    12
    Figure US20130345220A1-20131226-C00039
    442.1 1H NMR (400 MHz, CDCl3) δ 7.55-7.51 (m, 3H), 7.12- 6.99 (m, 4H), 6.9 (d, J = 7.6 Hz, 2H), 6.77 (t, J = 8.4 Hz, 2H), 4.56 (s, 2H),4.08 (s, 3H), 3.26-3.2 (m, 2H), 1.02-0.99 (m, 1H), 0.57-0.52 (m, 2H), 0.25 (m, 2H).
    13
    Figure US20130345220A1-20131226-C00040
    484.4 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.93-7.97 (m, 1H), 7.54 (s, 1H), 7.37-7.41 (m, 2H), 7.24-7.27 (m, 1H), 7.19 (d, J = 8.1 Hz, 1H), 6.97 (dd, J1 = 8.6 Hz, J2 = 2.7 Hz, 1H), 6.78 (t, J =8.3 Hz, 2H), 6.67 (dd, J1 = 75.0 Hz, J2 = 71.7 Hz, 1H).
    14
    Figure US20130345220A1-20131226-C00041
    596.2 1H NMR (400 MHz, CDCl3) δ 8.95 (s, 1H), 8.48 (d, J = 7.9 Hz, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.92 (s, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.6 (dd, J1 = 7.7 Hz, J2 = 1.2 Hz, 1H), 7.46 (m, 1H), 7.29-7.42 (m, 3H), 7.19 (q, J = 8.2 Hz, 1H), 6.76-6.81 (m, 2H).
    15
    Figure US20130345220A1-20131226-C00042
    594.0 1H NMR (400 MHz, CDCl3) δ 11.27 (s, 1H), 8.55 (dd, J1 = 1.2 Hz, J2 = 8 Hz, 1H), 7.96 (d, J = 8 Hz, 2H), 7.71-7.77 (m, 2H), 7.59-7.64 (m, 3H), 7.42- 7.47 (m, 1H), 7.12-7.8 (m, 2H), 6.95-7.03 (m, 3H), 6.86- 6.92 (m, 2H), 5.2 (s, 2H), 4.77 (s, 2H), 4.07 (s, 3H).
    16
    Figure US20130345220A1-20131226-C00043
    611.1 1H NMR (400 MHz, CDCl3) δ 7.7 (d, J = 7 Hz, 1H), 7.64 (s, 1H), 7.52-7.61 (m, 4H), 7.5 (s, 1H), 7.03-7.08 (m, 2H), 7.0 (d, J = 8.2 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.9 (d, J = 6.8 Hz, 1H), 6.76 (t, J = 8 Hz, 2H), 6.41 (bs, 2NH), 5.21 (dd, J = 14.5, 12.8 Hz, 2H), 4.04 (s, 3H).
    17
    Figure US20130345220A1-20131226-C00044
    540.1 1H NMR (400 MHz, CDCl3) δ 11.2 (s, 1H), 8.53 (m, 1H), 7.73 (m, 2H), 7.6 (s, 1H), 7.44 (t, J = 8.4 Hz, 1H), 7.15 (t, J = 8 Hz, 2H), 6.9-7.1 (m, 5H), 4.58 (s, 2H), 4.14 (m, 1H), 4.06 (s, 3H), 3.69 (m, 1H), 3.59 (m, 1H), 2.1 (bs, 2H), 1.23 (m, 3H).
    18
    Figure US20130345220A1-20131226-C00045
    651.0 1H NMR (400 MHz, CDCl3) δ 8.1 (d, J = 7.9 Hz, 1H), 7.94 (t, J = 7.9 Hz, 1H), 7.76 (d, J = 7.5 Hz, 1H), 7.54-7.58 (m, 3H), 7.05-7.14 (m, 3H), 7.01 (d, J = 7.3 Hz, 1H), 6.96 (d, J = 8.9 Hz, 1H), 6.76 (t, J = 8.5 Hz, 2H), 5.4 (s, 2H), 5.12 (d, J = 4.4 Hz, 2H), 4.5 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.3 Hz, 3H).
    19
    Figure US20130345220A1-20131226-C00046
    656.0 1H NMR (400 MHz, CDCl3) δ 8.21 (d, J = 7.9 Hz, 1H), 8.03 (t, J = 7.3 Hz, 1H), 7.81 (d, 10.1 Hz, 1H), 7.8 (s, 1H), 7.55 (dd, J = 8.9, 5.3 Hz, 2H), 7.0- 7.1 (m, 4H), 6.92 (d, J = 8 Hz, 1H), 6.76 (t, J = 7.5 Hz, 2H), 5.31 (s, 2H), 4.94 (d, J = 7.8 Hz, 2H), 4.8 (bs, 1H), 3.8 (s, 3H).
    20
    Figure US20130345220A1-20131226-C00047
    597.3 1H NMR (400 MHz, CDCl3) δ 8.21 (s, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.6 Hz, 1H), 7.51-7.55 (m, 4H), 7.05 (m, 3H), 6.95 (t, J = 8.6 Hz, 2H), 6.77 (t, J = 8.3 Hz, 2H), 5.18 (s, 2H), 4.08 (s, 3H).
    21
    Figure US20130345220A1-20131226-C00048
    520.3 1H NMR (400 MHz, CDCl3) δ 7.54 (m, 2H), 7.5 (s, 1H), 7.0-7.13 (m, 4H), 6.92 (d, J = 8.2 Hz, 1H), 6.82 (s, 1H), 6.77 (t, J = 8.3 Hz, 1H), 5.78 (s, 1H), 4.58 (s, 2H), 4.06 (s, 3H).
    22
    Figure US20130345220A1-20131226-C00049
    447.0 1H NMR (400 MHz, CDCl3) δ 7.78 (d, J = 7.7 Hz, 1H), 7.73 (d, J = 9.6 Hz, 1H), 7.66 (dd, J1 = 8.7 Hz, J2 = 5.3 Hz, 2H), 7.56 (s, 1H), 7.44 (q, J = 8.0 Hz, 1H), 7.33-7.37 (m, 2H), 7.17-7.26 (m, 3H), 7.12 (t, J = 8.5 Hz, 2H), 6.7 (dd, J1 = 76 Hz, J2 = 71 Hz, 1H).
    23
    Figure US20130345220A1-20131226-C00050
    518.2 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.02 (t, 1H), 6.82 (t, J = 8.0 Hz, 2H), 6.62 (t, J = 8.0 Hz, 2H), 4.86 (d, J = 6.8 Hz, 2H), 3.78 (s, 3H).
    24
    Figure US20130345220A1-20131226-C00051
    483.0 1H NMR (400 MHz, CDCl3) 7.54 (dd, J1 = 8.7 Hz, J2 = 5.2 Hz, 2H), 7.5 (s, 1H), 7.4 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.7 Hz, 1H), 7.24 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.06 (t, J = 8.5 Hz, 2H), 6.77 (t, J = 8.4 Hz, 2H), 6.68 (dd, J1 = 75 Hz, J2 = 72 Hz, 1H).
    25
    Figure US20130345220A1-20131226-C00052
    443.0 1H NMR (400 MHz, CDCl3) 7.4-7.44 (m, 2H), 7.23-7.32 (m, 3H), 7.12-7.16 (m, 5H), 7.08 (t, J = 7.9 Hz, 1H), 6.93 (t, J = 8.5 Hz, 2H), 6.6 (dd, J1 = 71 Hz, J2 = 76 Hz, 1H), 2.24 (s, 3H).
    26
    Figure US20130345220A1-20131226-C00053
    518.0 1H NMR (400 MHz, CDCl3) δ 7.40-7.35 (m, 3H),7.22 (d, 2H, J = 8.8 Hz), 7.05 (t, 1H, J = 8 Hz), 6.85-6.80 (m, 2H), 6.63 (m, 2H), 4.87 (d, 2H, J = 7.2 Hz), 3.79 (s, 3H).
    27
    Figure US20130345220A1-20131226-C00054
    509.3 1H NMR (400 MHz, CDCl3) δ 7.88-7.85 (m, 2H), 7.71 (t, 1H, J = 7.6 Hz), 7.67-7.62 (m, 2H), 7.55 (s, 1H), 7.11 (t, 2H, J = 11.6 Hz), 7.03 (t, 1H, J = 8 Hz), 6.90 (dd, 1H, J1 = 8 Hz, J2 = 1.6 Hz), 6.82 (dd, 1H, J1 = 7.6 Hz, J2 = 1.2 Hz), 4.03 (s, 3H), 3.88 (s, 3H).
    28
    Figure US20130345220A1-20131226-C00055
    490.2 1H NMR (400 MHz, CDCl3) δ 7.58 (s, 1H), 7.49 (m, 2H), 7.33 (dd, J1 = 7.6 Hz, J2 = 1.2 Hz, 1H), 7.25 (td, J1 = 8.4 Hz, J2 = 1.2 Hz, 1H), 7.13 (bs, 1H), 6.99 (m, 3H), 6.81 (d, J = 8 Hz, 1H), 6.68 (1, J = 8.4 Hz, 2H), 5.76 (bs, 1H), 4.61 (d, J = 1.6 Hz, 2H).
    29
    Figure US20130345220A1-20131226-C00056
    459.0 1H NMR (400 MHz, CDCl3) δ 7.91 (d, 2H, J = 8 Hz), 7.61- 7.57 (m, 3H), 7.39-7.30 (m, 4H), 7.29-7.26 (m, 2H), 7.21- 7.16 (m, 2H), 6.7 (dd, 1H, J1 = 76 Hz, 72 = 71.2 Hz).
    30
    Figure US20130345220A1-20131226-C00057
    507.3 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J1 = 8.7 Hz, J2 = 5.3 Hz, 2H), 7.5 (s, 1H), 7.03- 7.08 (m, 3H), 6.94 (d, J = 8.4 Hz, 2H), 6.77 (t, J = 8.5 Hz, 2H), 4.15 (t, J = 4.5 Hz, 2H), 4.05 (s, 3H), 3.98-4.02 (m, 2H).
    31
    Figure US20130345220A1-20131226-C00058
    610.3 1H NMR (400 MHz, CDCl3) δ 8.05 (d, 1H, J = 8 Hz), 7.95 (d, 1H, J = 8 Hz), 7.65 (s, 1H). 7.53-7.42 (m, 4H), 7.13 (t, 1H, J = 8 Hz), 7.03-6.94 (m, 4H), 6.77 (bs, 2H), 5.7 (s, 2H), 3.90 (s, 3H).
    32
    Figure US20130345220A1-20131226-C00059
    504.1 1H NMR (400 MHz, CDCl3) δ 7.63 (s, 1H), 7.6-7.55 (m, 2H), 7.41-7.39 (m, 1H), 7.35- 7.31 (m, 1H), 7.25-7.21 (bs, 1H), 7.11-7.04 (m, 3H), 6.87 (d, J = 8.4 Hz, 1H), 6.76 (t, J = 8.4 Hz, 1H), 4.69 (d, J = 7.2 Hz, 2H), 2.81 (d, J = 4.8 Hz, 3H).
    33
    Figure US20130345220A1-20131226-C00060
    591.2 1H NMR (400 MHz, CDCl3) δ 7.36 (m, 4H), 6.89-6.59 (m, 6H), 4.38 (s, 2H), 3.8 (s, 3H), 3.44 (m, 1H), 3.32 (m, 1H), 2.29 (s, 1H).
    34
    Figure US20130345220A1-20131226-C00061
    587.1 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J1 = 8.7 Hz, J2 = 5.3 Hz, 2H), 7.5 (s, 1H), 7.16 (d, J = 3.4 Hz, 1H). 7.02-7.07 (m, 3H), 6.94-6.97 (m, 2H), 6.77 (t, J = 8.4 Hz, 2H), 6.54 (d, J = 3.4 Hz, 1H), 5.12 (s, 2H), 4.04 (s, 3H), 3.9 (s, 3H).
    35
    Figure US20130345220A1-20131226-C00062
    588.1 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J1 = 8.9 Hz, J2 = 5.2 Hz, 2H), 7.5 (s, 1H), 7.3 (d, J = 3.5 Hz, 1H). 7.03-7.07 (m, 3H), 6.96 (d, J = 8.3 Hz, 2H), 6.77 (t, J = 8.3 Hz, 2H), 6.58 (d, J = 3.5 Hz, 1H), 5.15 (s, 2H), 4.05 (s, 3H), 2.9 (bs, 1H).
    36
    Figure US20130345220A1-20131226-C00063
    601.0 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J1 = 8.7 Hz, J2 = 5.3 Hz, 2H), 7.5 (s, 1H), 7.16 (d, J = 3.4 Hz, 1H). 7.02-7.07 (m, 3H), 6.94-6.97 (m, 2H), 6.77 (t, J = 8.4 Hz, 2H), 6.54 (d, J = 3.4 Hz, 1H), 5.12 (s, 2H), 4.04 (s, 3H), 3.9 (s, 3H).
    37
    Figure US20130345220A1-20131226-C00064
    518.0 1H NMR (400 MHz, CDCl3) δ 7.39 (s, 1H), 7.35 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.02 (t, 1H), 6.82 (t, J = 8.0 Hz, 2H), 6.62 (t, J = 8.0 Hz, 2H), 4.86 (d, J = 6.8 Hz, 2H), 3.78 (s, 3H).
    38
    Figure US20130345220A1-20131226-C00065
    605.2 1H NMR (400 MHz, CDCl3) δ 7.74-7.7 (m, 3H), 7.3- 7.18 (m, 4H), 7.11 (d, J = 8.4 Hz, 1H), 6.97 (t, J1 = 8.4 Hz, J2 = 2 Hz), 6.33 (bs, 1H), 4.79 (s, 2H), 4.27 (s, 3H), 3.74-3.54 (m, 4H), 2.3 (s, 1H), 2.15 (s, 3H).
    39
    Figure US20130345220A1-20131226-C00066
    490.0 1H NMR (400 MHz, CDCl3) δ 7.63-7.62 (m, 2H), 7.57 (s, 1H), 7.22-7.12 (m, 3H), 7.02 (dd, 2H, J1 = 8.4 Hz, J2 = 2 Hz), 6.9 (bs, 1H), 6.85 (t, 2H, J = 8.4 Hz), 6.10 (s, 1H), 4.83 (d, 1H, J = 15.2 Hz), 4.68 (d, 1H, J = 15.2 Hz), 3.94 (s, 3H).
    40
    Figure US20130345220A1-20131226-C00067
    598.2 1H NMR (400 MHz, CDCl3) δ 9.33 (bs, 1H), 9.02 (s, 1H), 8.77 (d, J = 6 Hz, 1H), 8.31 (d, J = 6 Hz, 1H), 7.63-7.60 (m, 3H), 7.22-7.12 (m, 4H), 7.04 (d, J = 8 Hz, 1H), 6.86 (t, J = 8 Hz, 2H), 4.8 (s, 2H), 4.23 (s, 3H).
    41
    Figure US20130345220A1-20131226-C00068
    506.0 1H NMR (400 MHz, CDCl3) δ 7.43 (s, 1H), 7.27 (d, J = 8.8, 2H), 7.15 (m, 2H), 7.14 (d, J = 8.4 Hz, 2H) 6.99 (bs, 1H), 6.84 (t, J = 6.4 Hz, 3H), 6.66 (d, J = 8.4 Hz, 1H), 6.53 (t, J = 8.0 Hz, 2H), 5.29 (bs, 1H), 4.47 (d, J = 1.6 Hz, 2H).
    42
    Figure US20130345220A1-20131226-C00069
    595.2 1H NMR (400 MHz, CDCl3) δ 7.41-7.36 (m, 3H), 7.32 (d, J = 8 Hz, 2H), 7.2 (d, J = 7.6 Hz, 2H), 7.16 (m, 1H), 6.92-6.85 (m, 4H), 6.72-6.58 (bs, 3H), 5.05 (s, 2H), 3.59 (s, 3H), 3.53 (s, 2H).
    43
    Figure US20130345220A1-20131226-C00070
    602.1 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H), 7.53 (m, 2H), 7.49 (s, 1H), 7.02-7.07 (m, 4H), 6.97 (dd, J1 = 6.0 Hz, J2 = 3.2 Hz, 1H), 6.77 (t, J = 8.2 Hz, 2H), 5.25 (d, J = 1.8 Hz, 2H), 4.05 (s, 3H), 3.94 (s, 3H).
    44
    Figure US20130345220A1-20131226-C00071
    588.1 1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.53 (d, J = 8.7 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H), 7.49 (s, 1H), 7.01-7.07 (m, 4H), 6.98 (d, J = 7.2 Hz, 1H), 6.77 (t, J = 8.2 Hz, 2H), 5.26 (s, 2H), 4.05 (s, 3H).
    45
    Figure US20130345220A1-20131226-C00072
    588.1 1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J1 = 8.8 Hz, J2 = 5.2 Hz, 2H), 7.5 (s, 1H), 7.03- 7.09 (m, 3H), 7.0 (dd, J1 = 6.7 Hz, J2 = 1.2 Hz, 1H), 6.95 (dd, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 6.84 (s, 1H), 6.77 (t, J = 8.2 Hz, 2H), 5.27 (s, 2H), 4.05 (s, 3H).
    46
    Figure US20130345220A1-20131226-C00073
    587.1 1H NMR (400 MHz, CDCl3) 7.51-7.55 (m, 2H), 7.5 (s, 1H), 7.45 (d, J = 1.9 Hz, 1H), 6.98- 7.07 (m, 5H), 6.94 (dd, J1 = 7.1 Hz, J2 = 2.0 Hz, 1H), 6.77 (t, J = 8 Hz, 2H), 5.46 (d, J = 12.7 Hz, 2H), 5.38 (d, J = 12.8 Hz, 1H), 4.04 (s, 3H).
    47
    Figure US20130345220A1-20131226-C00074
    536.1 1H NMR (400 MHz, CDCl3) δ 7.79-7.77 (m, 2H), 7.73-7.69 (m, 2H), 7.55 (dd, J1 = 6.1 Hz, J2 = 1.5 Hz, 1H), 7.50-7.45 (m, 1H), 7.24-7.18 (m, 3H), 7.02 (d, J = 8.1 Hz, 1H), 6.92-6.87 (m, 2H), 4.89 (d, J = 6.8 Hz, 2H), 4.66-4.63 (m, 1H), 4.54- 4.51 (m, 1H), 3.84-3.62 (m, 2H).
    48
    Figure US20130345220A1-20131226-C00075
    576.2 1H NMR (400 MHz, CDCl3) δ 7.64-7.61 (m, 2H), 7.59 (s, 1H), 7.21-7.13 (m, 3H), 7.09 (dd, J1 = 6.5 Hz, J2 = 1.1 Hz, 1H), 7.05 (bs, 1H), 7.01 (dd, J1 = 6.7 Hz, J2 = 1.3 Hz, 1H), 6.87 (m, 2H), 4.69 (s, 2H), 4.15 (s, 3H), 3.29 (t, J = 6.6 Hz, 2H), 1.98-1.88 (m, 1H), 1.03 (d, J = 6.6 Hz, 6H).
    49
    Figure US20130345220A1-20131226-C00076
    587.1 1H NMR (400 MHz, CDCl3) 7.54 (d, J = 8.8 Hz, 2H), 7.53 (t, J = 8.7 Hz, 1H), 7.5 (s, 1H), 7.31 (d, J = 3.5 Hz, 1H), 7.03- 7.07 (m, 3H), 6.97 (d, J = 2.2 Hz, 1H), 6.95 (s, 1H), 6.77 (t, J = 8.3 Hz, 2H), 6.59 (d, J = 3.5 Hz, 1H), 5.15 (d, 2H), 4.05 (s, 3H).
    50
    Figure US20130345220A1-20131226-C00077
    598.2 1H NMR (400 MHz, CDCl3) δ 8.2 (d, J = 7.7 Hz, 1H), 8.03 (t, J = 7.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.52-7.56 (m, 3H), 7.03-7.08 (m, 3H), 6.97 (d, J = 7.9 Hz, 1H), 6.92 (d, J = 7.1 Hz, 1H), 6.77 (t, J = 8.4 Hz, 2H), 5.32 (s, 2H), 4.11 (s, 3H).
    51
    Figure US20130345220A1-20131226-C00078
    625.2 1H NMR (400 MHz, CDCl3) δ 8.91 (bs, 1H), 7.82 (s, 1H), 7.46-7.42 (m, 3H), 7.00-6.85 (m, 5H), 6.69-6.65 (m, 3H), 4.58 (s, 2H), 4.05 (s, 3H), 2.34 (s, 3H), 2.25 (s, 3H).
    52
    Figure US20130345220A1-20131226-C00079
    539.1 1H NMR (400 MHz, CDCl3) δ 7.70 (dd, J1 = 5.2 Hz, J2 = 8.8 Hz, 2H), 7.28 (m, 2H), 7.11 (m, 2H), 6.9 (m, 2H), 6.74 (dd, 1H), 6.56 (d, J = 3.6 Hz, 1H), 5.11 (s, 2H), 3.98 (s, 3H), 3.24 (m, 1H), 2.08 (m, 1H), 1.90- 1.83 (m, 3H), 1.72 (m, 1H), 1.59-1.3 (m, 5H).
    53
    Figure US20130345220A1-20131226-C00080
    493.1 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 6.4 Hz, 1H), 7.60 (m, 4H), 7.45-7.36 (m, 6H), 7.04 (m, 2H), 6.22 (m, 1H), 5.58 (d, J = 17.2 Hz, 1H), 5.44 (d, J = 10.4 Hz, 1H), 4.77 (d, J = 4.8 Hz, 2H), 2.27 (s, 3H).
    54
    Figure US20130345220A1-20131226-C00081
    410.0 1H NMR (400 MHz, CDCl3) δ 11.22 (bs, 1H), 8.56 (dd, J = 8.4 Hz, 1H), 8.14 (dd, J1 = 1.6 Hz, J2 = 5.2 Hz, 1H), 7.72 (m, 2H), 7.47 (m, 2H), 7.38 (dd, J1 = 1.2 Hz, J2 = 7.2 Hz, 1H), 7.14 (t, J = 8.4 Hz, 2H), 7.01 (m, 2H), 6.86 (dd, J1 = 5.2 Hz, J2 = 7.2 Hz, 1H), 4.08 (s, 3H).
    55
    Figure US20130345220A1-20131226-C00082
    501.3 1H NMR (400 MHz, CDCl3) δ 7.53 (dd, J1 = 8.8 Hz, J2 = 5.2 Hz, 2H), 7.5 (s, 1H), 7.04- 7.07 (m, 4H), 6.95 (d, J = 6.8 Hz, 2H), 6.77 (t, J = 8.2 Hz, 2H), 4.76 (d, J = 2.3 Hz, 2H), 4.05 (s, 3H), 2.53 (t, J = 2.4 Hz, 1H).
    56
    Figure US20130345220A1-20131226-C00083
    448.0 1H NMR (400 MHz, CDCl3) δ 8.19 (dd, J1 = 1.6 Hz, J2 = 4.8 Hz, 1H), 7.56 (m, 3H), 7.41 (s, 1H), 7.09 (t, J = 8.4 Hz, 2H), 6.95 (dd, J1 = 5.2 Hz, J2 = 7.2 Hz, 1H), 6.83 (bs, 2H), 4.11 (s, 3H).
    57
    Figure US20130345220A1-20131226-C00084
    472.0 1H NMR (400 MHz, CDCl3) δ 9.23 (s, 1H), 8.82 (s, 1H), 8.47 (s, 1H), 7.64-7.67 (m, 2H), 7.53 (s, 1H), 7.32 (dt, J1 = 7.3 Hz, J2 = 1.5 Hz, 1H), 7.07- 7.14 (m, 3H, 6.92-6.96 (m, 2H), 3.94 (s, 3H).
    58
    Figure US20130345220A1-20131226-C00085
    409.1 1H NMR (400 MHz, CDCl3) δ 8.92 (d, J = 1.3 Hz, 1H), 8.27 (dd, J1 = 8.3 Hz, J2 = 1.7 Hz, 1H), 8.18 (dd, J1 = 5.1 Hz, J1 = 1.7 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.68 (d, J = 9.4 Hz, 1H), 7.57 (d, J = 8.3 Hz, 1H), 7.52 (s, 1H), 7.49 (dd, J1 = 8.1 Hz, J2 = 2.5 Hz, 1H, 7.39 (dd, J1 = 7.4 Hz, J2 = 1.5 Hz, 1H), 7.29 (dd, J1 = 8.3 Hz, J2 = 2.5 Hz, 1H), 6.91 (dd, J1 = 7.4 Hz, J2 = 5.1 Hz, 1H), 4.08 (s, 3H), 2.81 (s, 3H).
    59
    Figure US20130345220A1-20131226-C00086
    405.1 1H NMR (400 MHz, CDCl3) δ 8.76 (m, 1H), 8.21 (m, 2H), 7.39-7.56 (m, 5H), 7.29 (d, J = 6.9 Hz, 1H), 6.95 (dd, J1 = 7.3 Hz, J2 = 5.2 Hz, 1H), 4.08 (s, 3H), 2.81 (s, 3H), 2.38 (s, 3H).
    60
    Figure US20130345220A1-20131226-C00087
    407.1 1H NMR (400 MHz, CDCl3) δ 9.04 (d, J = 1.0 Hz, 1H), 8.39 (d, J = 8.1 Hz, 1H), 8.35 (dd, J1 = 8.3 Hz, J2 = 1.6 Hz, 1H), 8.20 (dd, J1 = 5.0 Hz, J2 = 1.4 Hz, 1H), 7.63 (d, J = 8.3 Hz, 1H), 7.58 (s, 1H), 7.49 (t, J = 8.3 Hz, 1H), 7.42 (d, J = 7.4 Hz, 1H), 7.04 (d, J = 8.1 Hz, 1H), 7.0 (d, J = 7.4 Hz, 1H), 6.92 (dd, J1 = 7.4 Hz, J2 = 5.1 Hz, 1H), 4.1 (s, 3H), 2.85 (s, 3H).
    61
    Figure US20130345220A1-20131226-C00088
    424.1 1H NMR (400 MHz, CDCl3) δ 8.96 (s, 1H), 8.49 (d, J = 8.2 Hz, 1H), 8.15 (dd, J1 = 8.3 Hz, J2 = 2.0 Hz, 1H), 7.59 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.44 (d, J = 8.5 Hz, 1H), 7.07 (dd, J1 = 8.5 Hz, J2 = 6.3 Hz, 1H), 7.02 (d, J = 8.6 Hz, 1H), 6.98 (d, J = 7.7 Hz, 1H), 6.69 (dd, J1 = 10.5 Hz, J2 = 2.2 Hz, 1H), 6.62 (dd, J1 = 8.3 Hz, J2 = 2.3 Hz, 1H), 3.94 (s, 3H), 2.74 (s, 3H).
    62
    Figure US20130345220A1-20131226-C00089
    425.5 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.93 (dd, J1 = 8.8 Hz, J2 = 2.2 Hz, 1H), 7.52 (s, 1H), 7.44 (d, J = 7.4 Hz, 1H), 7.37 (t, J = 7.5 Hz, 1H), 7.26-7.28 (m, 2H), 7.15 (dd, J1 = 8.4 Hz, J2 = 6.4 Hz, 1H), 6.92 (dd, J1 = 8.3 Hz, J2 = 1.8 Hz, 1H), 6.64-6.71 (m, 2H), 3.93 (s, 3H), 2.39 (s, 3H).
    63
    Figure US20130345220A1-20131226-C00090
    465.4 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 2.3 Hz, 1H), 7.94 (dt, J1 = 8.5 Hz, J2 = 2.5 Hz, 1H), 7.46 (s, 1H), 7.18 (dt, J1 = 8.1 Hz, J2 = 2.3 Hz, 1H), 6.95 (dd, J1 = 8.6 Hz, J2 = 2.9 Hz, 1H), 6.78 (bm, 2H), 6.65-6.7 (m, 2H), 6.76-6.82 (m, 2H), 3.93 (s, 3H).
    64
    Figure US20130345220A1-20131226-C00091
    449 1H NMR (400 MHz, CDCl3) δ 8.36 (d, J = 2.2 Hz, 1H), 8.17 (dd, J1 = 5.1 Hz, J2 = 1.5 Hz, 1H), 7.93 (dd, J1 = 8.4 Hz, J2 = 1.8 Hz, 1H), 7.49 (dd, J1 = 7.5 Hz, J2 = 1.3 Hz, 1H), 7.41 (s, 1H), 6.92-6.97 (m, 2H), 6.76- 6.82 (m, 2H), 4.07 (s, 3H).
    65
    Figure US20130345220A1-20131226-C00092
    409.1 1H NMR (400 MHz, CDCl3) δ 8.35 (d, J = 1.6 Hz, 1H), 8.18 (dd, J1 = 5.0 Hz, J2 = 1.6 Hz, 1H), 7.93 (dd, J1 = 8.6 Hz, J2 = 2.4 Hz, 1H), 7.47 (s, 2H), 7.45 (s, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.27-7.31 (m, 2H), 6.9- 6.93 (m, 2H), 4.07 (s, 3H), 2.4 (s, 3H).
    66
    Figure US20130345220A1-20131226-C00093
    416.2 1H NMR (400 MHz, CDCl3) δ 8.76 (s, 1H), 8.62 (d, J = 4.8 Hz, 1H), 7.82 (d, J = 7.8 Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.26-7.39 (m, 5H), 7.17 (m, 1H).
    67
    Figure US20130345220A1-20131226-C00094
    416.3 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 5.3 Hz, 1H), 7.68 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.32 (s, 1H), 7.31 (d, J = 6.7 Hz, 1H), 6.9 (dd, , J = 7.5, 5.1 Hz, 1H), 4.1 (s, 3H), 3.31 (t, J = 11.1 Hz, 1H), 2.16 (d, , J = 11.4 Hz, 1H), 1.92 (m, 3H), 1.79 (d, J = 12.3 Hz, 1H), 1.32-1.64 (m, 5H).
    68
    Figure US20130345220A1-20131226-C00095
    464.2 1H NMR (400 MHz, CDCl3) δ 8.16 (d, J = 6.1 Hz, 1H), 7.49 (d, J = 7.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 7.37 (s, 1H), 7.33 (d, J =8.7 Hz, 1H), 6.92 (dd, J = 7.3, 4.8 Hz, 1H), 6.79 (m, 2H), 4.1 (s, 3H).
    69
    Figure US20130345220A1-20131226-C00096
    488.0 1H NMR (400 MHz, CDCl3) δ 9.26 (s, 1H), 8.73 (s, 1H), 8.54 (s, 1H), 7.48 (d, J = 8.4 Hz, 2H), 7.38 (s, 1H), 7.26 (d, J = 8.4 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 7.6 Hz, 1H), 6.86 (m, 2H) 3.8 (s, 3H).
    70
    Figure US20130345220A1-20131226-C00097
    431.1 1H NMR (400 MHz, CDCl3) δ 7.61 (t, J = 8.4 Hz, 1H), 7.4 (m, 1H), 7.23 (dd, J = 16.9, 8 Hz, 1H), 7.17 (s, 1H), 6.73- 6.79 (m, 2H), 6.66 (d, J = 7.4 Hz, 1H), 5.99 (d, J = 4.6 Hz, 2H), 3.17 (d, J = 11.8 Hz, 1H), 1.99 (d, , J = 11.4 Hz, 1H), 1.84 (m, 3H), 1.72 (d, J = 12.8 Hz, 1H), 1.19-1.65 (m, 5H).
    71
    Figure US20130345220A1-20131226-C00098
    436.0 1H NMR (400 MHz, CDCl3) δ 8.77 (s, 1H), 8.64 (s, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.4- 7.45 (m, 2H), 7.28-7.32 (m, 2H), 7.21 (dd, J = 17.4, 9.1 Hz, 1H), 6.77 (t, J = 8.2 Hz, 2H).
    72
    Figure US20130345220A1-20131226-C00099
    411.3 1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 7.6 Hz, 1H), 7.77 (m, 1H), 7.67 (m, 2H), 7.55 (s, 1H), 7.48 (m, 1H), 7.32 (m, 1H), 7.26 (m, 2H), 7.15 (d, J = 7.6 Hz, 1H), 7.09 (t, J = 8.4 Hz, 2H), 6.95 (m, 2H), 3.95 (s, 3H).
    73
    Figure US20130345220A1-20131226-C00100
    451.1 1H NMR (400 MHz, CDCl3) δ 7.65 (dd, J1 = 7.6 Hz, J2 = 1.6 Hz, 1H), 7.56 (m, 4H), 7.35 (m, 4H), 7.02 (t, J = 8.4 Hz, 2H), 6.97 (m, 2H), 3.95 (s, 3H), 2.12 (s, 3H).
    74
    Figure US20130345220A1-20131226-C00101
    425.3 1H NMR (400 MHz, CDCl3) δ 7.9 (m, 2H), 7.66 (m, 2H), 7.54 (s, 1H), 7.32 (m, 1H), 7.15 (m, 4H), 6.95 (m, 2H), 3.97 (s, 3H), 2.35 (s, 3H).
    75
    Figure US20130345220A1-20131226-C00102
    481.2 1H NMR (400 MHz, CDCl3) δ 7.46-7.48 (m, 3H), 7.34 (d, J = 8.7 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.5 Hz, 1H), 6.98-7.11 (m, 3H), 6.78 (t, J = 8.5 Hz, 2H), 4.11 (d, J = 2.7 Hz, 3H).
    76
    Figure US20130345220A1-20131226-C00103
    452.2 1H NMR (400 MHz, CDCl3) δ 8.4 (d, J = 3.1 Hz, 1H), 7.66 (d, J = 7.9 Hz, 1H), 7.53 (dd, J = 9.9, 5.5 Hz, 2H), 7.48 (s, 1H), 7.31 (dd, J = 8, 4.6 Hz, 1H), 7.07 (t, J = 8.6 Hz, 2H), 6.81 (t, J = 8.5 Hz, 2H).
    77
    Figure US20130345220A1-20131226-C00104
    485.2 1H NMR (400 MHz, CDCl3) δ 8.1 (d, J = 7.8 Hz, 1H), 7.43- 7.49 (m, 4H), 7.38 (d, J = 8.9 Hz, 2H), 7.25-7.3 (m, 2H), 7.16 (dd, J = 8.2, 6.3 Hz, 1H), 6.6-6.7 (m, 2H), 3.92 (s, 3H), 2.39 (s, 3H).
    78
    Figure US20130345220A1-20131226-C00105
    463.2 1H NMR (400 MHz, CDCl3) δ 7.54 (dd, J = 8.9, 5.3 Hz, 2H), 7.47 (s, 1H), 7.01-7.08 (m, 3H), 6.93 (d, J = 8.1 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 6.77 (t, J = 8.4 Hz, 2H), 5.3 (bs, 1H), 4.03 (s, 3H).
    79
    Figure US20130345220A1-20131226-C00106
    400.1 1H NMR (400 MHz, CDCl3): δ 8.09 (dd, J1 = 1.6 Hz, J2 = 5.2 Hz, 1H), 7.69 (dd, J1 = 5.2 Hz, J2 = 8.8 Hz, 2H), 7.24 (dd, J1 = 1.2 Hz, J2 = obscureδ by CDCl3, 1H), 7.2 (s, 1H), 7.11 (t, J = 8.8 Hz, 2H), 6.83 (dd, J1 = 4.8 Hz, J2 = 7.2 Hz, 1H), 4.03 (s, 3H), 3.21-3.29 (m, 1H), 2.11 (d, J = 12 Hz, 1H), 1.81-1.92 (m, 3H), 1.74 (d, J = 12 Hz, 1H), 1.21-1.67 (m, 7H).
    80
    Figure US20130345220A1-20131226-C00107
    557.2 1H NMR (400 MHz, CDCl3) δ 8.03(s, 1H), 7.92 (d, J = 8 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.43 (s, 1H), 7.37 (t, J = 6.8 Hz, 3H), 7.28 (d, J = 7.2 Hz, 1H), 7.19(s, 1H), 7.11 (m, 2H), 6.89 (m, 3H), 6.79 (m, 2H), 5.02 (s, 2H), 3.94 (s, 3H), 2.22 (s, 3H).
    81
    Figure US20130345220A1-20131226-C00108
    548.2 1H NMR (400 MHz, CDCl3) δ 7.88 (s, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.72 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.34 (s, 1H), 7.11 (t, J = 8.4 Hz, 2H), 6.94 (t, J = 8 Hz, 1H), 6.88 (dd, J = 8.0 Hz, J2 = 1.2 Hz, 1H), 6.72 (dd, J1 = 8.0 Hz, J2 = 1.2 Hz, 1H), 6.22 (s, 1H), 5.81 (bs, 2H), 5.14 (s, 2H), 4.01 (s, 3H), 3.28 (m, 1H), 2.1 (m, 1H), 1.91 (m, 3H), 1.77 (m, 1H), 1.59 (m, 4H), 1.29 (m, 1H).
    82
    Figure US20130345220A1-20131226-C00109
    591.1 1H NMR (400 MHz, CDCl3) δ 9.46 (s, 1H), 9.01 (s, 1H), 8.71 (s, 1H), 7.89 (m, 2H), 7.73 (s, 1H), 7.34 (m, 3H), 7.15 (m, 2H), 4.78 (s, 2H), 4.25 (s, 2H), 3.93 (m, 2H).
    83
    Figure US20130345220A1-20131226-C00110
    520.2 1H NMR (400 MHz, CDCl3) δ 8.62 (d, J = 8 Hz, 1H), 7.82 (m, 2H), 7.68 (s, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 8.4 Hz, 2H), 7.08 (m, 4H), 6.95 (m, 1H), 6.21 (s, 1H), 5.23 (s, 2H), 4.11 (s, 3H), 2.52 (s, 3H.
    84
    Figure US20130345220A1-20131226-C00111
    465.0 1H NMR (400 MHz, CDCl3) δ 7.54 (m, 2H), 7.42 (s, 1H), 7.21 (m, 1H), 7.06 (m, 2H), 6.83 (m, 2H), 6.69 (m, 2H), 3.92 (s, 3H).
    85
    Figure US20130345220A1-20131226-C00112
    513.0 1H NMR (400 MHz, CDCl3) δ 7.59 (m, 2H), 7.48 (s, 1H), 7.41 (m, 2H), 7.26 (m, 1H), 7.18 (d, J = 8 Hz, 1H), 7.11 (m, 3H), 6.68 (dd, J1 = 75.6 Hz, J2 = 4.4 Hz, 1H), 4.09 (s, 1H).
    86
    Figure US20130345220A1-20131226-C00113
    449.1 1H NMR (400 MHz, CDCl3) δ 8.41 (d, J = 2.7 Hz, 1H), 8.14 (d, J = 5.1 Hz, 1H), 7.77 (dd, J = 8.7, 4.1 Hz, 1H), 7.5 (d, J = 8.9 Hz, 1H), 7.41 (dt, J = 8.5, 2.7 Hz, 1H), 7.3 (s, 1H), 6.91 (dd, J = 7.7, 5 Hz, 1H), 6.79 (m, 2H), 4.06 (m, 3H).
    87
    Figure US20130345220A1-20131226-C00114
    466.0 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 4.1 Hz, 1H), 7.68 (dd, J = 8.9, 4.4 Hz, 1H), 7.31 (dt, J = 8, 2.9 Hz, 1H), 7.17 (s, 1H), 7.1 (dd, J = 9, 6.1 Hz, 1H), 6.69 (m, 2H), 6.53-6.58 (m, 2H), 3.82 (s, 3H).
    88
    Figure US20130345220A1-20131226-C00115
    498.9 1H NMR (400 MHz, CDCl3) δ 9.23 (s, 1H), 8.82 (s, 1H), 8.48 (t, J = 2 Hz, 1H), 7.67 (dd, J1 = 5.2 Hz, J2 = 8.8 Hz, 2H), 7.52 (s, 1H), 7.39 (apparent t, J = 7.6 Hz, 1H), 7.06-7.16 (m, 3H), 7.05 (d, J = 8.4 Hz, 1H), 4.92 (dd, J1 = 16 Hz, J2 = 27 Hz, 2H).
    89
    Figure US20130345220A1-20131226-C00116
    425.0 1H NMR (400 MHz, CDCl3) δ 11.23 (s, 1H), 8.54 (dd, J1 = 0.8 Hz, J2 = 8.4 Hz, 1H), 7.73 (dd, J1 = 5.2 Hz, J2 = 8.8 Hz, 2H), 7.59 (s, 1H), 7.44 (apparent t, J = 7.2 Hz, 1H), 7.15 (t, J = 7.6 Hz, 2H), 6.89- 7.03-7.16 (m, 4H), 6.81 (dd, J1 = 1.6 Hz, J2 = 7.6 Hz, 1H), 5.49 (s, 1H), 4.03 (s, 3H).
    90
    Figure US20130345220A1-20131226-C00117
    566.1 1H NMR (400 MHz, CDCl3) δ 11.14 (d, J = 3.6 Hz, 1H), 8.44 (dt, J1 = 1.6 Hz, J2 = 8.4 Hz, 1H), 7.63 (dd, J1 = 5.2 Hz, J2 = 8 Hz, 2H), 7.51 (d, J = 2 Hz, 1H), 7.34 (apparent t, J = 7.2 Hz, 1H), 7.04 (t, J = 8.4 Hz, 2H), 6.75-6.99 (m, 6H), 4.46 (d, J = 1.6 Hz, 2H), 3.97 (s, 3H), 3.86-3.94 (m, 1H), 3.69-3.77 (m, 1H), 3.61-3.67 (m, 1H), 3.47-3.56 (m, 1H). 3.17-3.29 (m, 1H), 1.71-1.92 (m, 3H), 1.38-1.48 (m partially obscureδ by H2O, 1H).
    91
    Figure US20130345220A1-20131226-C00118
    396.0 1H NMR (400 MHz, CDCl3) δ 7.87 (m, 2H),7.66 (s, 1H), 7.61 (m, 1H), 7.4 (m, 1H), 7.26 (m, 3H), 7.05 (m, 2H) 6.95 (m, 1H), 6.36 (m, 1H), 4.05 (s, 6H).
    92
    Figure US20130345220A1-20131226-C00119
    414.0 1H NMR (400 MHz, CDCl3) δ 7.74 (m, 2H), 7.48 (m, 2H), 7.13 (m, 3H), 6.83 (s, 1H), 6.65 (dd, J1 = 10.8 Hz, J2 = 2.0 Hz, 1H), 6.59 (m, 1H), 3.92 (s, 6H).
  • TABLE 2
    MS (m/z)
    Example Structure (M + 1)+
     93
    Figure US20130345220A1-20131226-C00120
    503.0
     94
    Figure US20130345220A1-20131226-C00121
    529.1
     95
    Figure US20130345220A1-20131226-C00122
    513.0
     96
    Figure US20130345220A1-20131226-C00123
    509.2
     97
    Figure US20130345220A1-20131226-C00124
    502.2
     98
    Figure US20130345220A1-20131226-C00125
    479.0
     99
    Figure US20130345220A1-20131226-C00126
    479.3
    100
    Figure US20130345220A1-20131226-C00127
    626.3
    101
    Figure US20130345220A1-20131226-C00128
    611.2
    102
    Figure US20130345220A1-20131226-C00129
    465.2
    103
    Figure US20130345220A1-20131226-C00130
    447.2
    104
    Figure US20130345220A1-20131226-C00131
    445.2
    105
    Figure US20130345220A1-20131226-C00132
    445.2
    106
    Figure US20130345220A1-20131226-C00133
    447.3
    107
    Figure US20130345220A1-20131226-C00134
    447.3
    108
    Figure US20130345220A1-20131226-C00135
    447.3
    109
    Figure US20130345220A1-20131226-C00136
    443.3
    110
    Figure US20130345220A1-20131226-C00137
    445.2
    111
    Figure US20130345220A1-20131226-C00138
    598.2
    112
    Figure US20130345220A1-20131226-C00139
    461.2
    113
    Figure US20130345220A1-20131226-C00140
    558.2
    114
    Figure US20130345220A1-20131226-C00141
    481.0
    115
    Figure US20130345220A1-20131226-C00142
    495.0
    116
    Figure US20130345220A1-20131226-C00143
    480.0
    117
    Figure US20130345220A1-20131226-C00144
    562.1
    118
    Figure US20130345220A1-20131226-C00145
    589.9
    119
    Figure US20130345220A1-20131226-C00146
    499.2
    120
    Figure US20130345220A1-20131226-C00147
    459.3
    121
    Figure US20130345220A1-20131226-C00148
    425.3
    122
    Figure US20130345220A1-20131226-C00149
    441.2
    123
    Figure US20130345220A1-20131226-C00150
    410.2
    124
    Figure US20130345220A1-20131226-C00151
    451.2
    125
    Figure US20130345220A1-20131226-C00152
    409.2
    126
    Figure US20130345220A1-20131226-C00153
    443.2
    127
    Figure US20130345220A1-20131226-C00154
    461.2
    128
    Figure US20130345220A1-20131226-C00155
    547.1
    129
    Figure US20130345220A1-20131226-C00156
    479.2
    130
    Figure US20130345220A1-20131226-C00157
    514.9
    131
    Figure US20130345220A1-20131226-C00158
    493.0
    132
    Figure US20130345220A1-20131226-C00159
    463.0
    133
    Figure US20130345220A1-20131226-C00160
    639.3
    134
    Figure US20130345220A1-20131226-C00161
    476.8
    135
    Figure US20130345220A1-20131226-C00162
    532.3
    136
    Figure US20130345220A1-20131226-C00163
    479.0
    137
    Figure US20130345220A1-20131226-C00164
    459.0
    138
    Figure US20130345220A1-20131226-C00165
    490.1
    139
    Figure US20130345220A1-20131226-C00166
    563.2
    140
    Figure US20130345220A1-20131226-C00167
    424.0
    141
    Figure US20130345220A1-20131226-C00168
    429.0
    142
    Figure US20130345220A1-20131226-C00169
    410.0
    143
    Figure US20130345220A1-20131226-C00170
    549.2
    144
    Figure US20130345220A1-20131226-C00171
    556.2
    145
    Figure US20130345220A1-20131226-C00172
    621.1
    146
    Figure US20130345220A1-20131226-C00173
    561.1
    147
    Figure US20130345220A1-20131226-C00174
    472.9
    148
    Figure US20130345220A1-20131226-C00175
    611.3
    149
    Figure US20130345220A1-20131226-C00176
    625.1
    150
    Figure US20130345220A1-20131226-C00177
    517.3
    151
    Figure US20130345220A1-20131226-C00178
    558.3
    152
    Figure US20130345220A1-20131226-C00179
    574.4
    153
    Figure US20130345220A1-20131226-C00180
    590.4
    154
    Figure US20130345220A1-20131226-C00181
    567.3
    155
    Figure US20130345220A1-20131226-C00182
    559.1
    156
    Figure US20130345220A1-20131226-C00183
    518.2
    157
    Figure US20130345220A1-20131226-C00184
    583.0
    158
    Figure US20130345220A1-20131226-C00185
    445.1
    159
    Figure US20130345220A1-20131226-C00186
    465.1
    160
    Figure US20130345220A1-20131226-C00187
    530.2
    161
    Figure US20130345220A1-20131226-C00188
    526.2
    162
    Figure US20130345220A1-20131226-C00189
    518.2
    163
    Figure US20130345220A1-20131226-C00190
    578.2
    164
    Figure US20130345220A1-20131226-C00191
    549.1
    165
    Figure US20130345220A1-20131226-C00192
    571.3
    166
    Figure US20130345220A1-20131226-C00193
    587.2
    167
    Figure US20130345220A1-20131226-C00194
    598.1
    168
    Figure US20130345220A1-20131226-C00195
    627.1
    169
    Figure US20130345220A1-20131226-C00196
    627.1
    170
    Figure US20130345220A1-20131226-C00197
    566.2
    171
    Figure US20130345220A1-20131226-C00198
    472.0
    172
    Figure US20130345220A1-20131226-C00199
    588.1
    173
    Figure US20130345220A1-20131226-C00200
    612.2
    174
    Figure US20130345220A1-20131226-C00201
    563.2
    175
    Figure US20130345220A1-20131226-C00202
    623.2
    176
    Figure US20130345220A1-20131226-C00203
    599.1
    177
    Figure US20130345220A1-20131226-C00204
    430.1
    178
    Figure US20130345220A1-20131226-C00205
    417.1
    179
    Figure US20130345220A1-20131226-C00206
    425.0
    180
    Figure US20130345220A1-20131226-C00207
    429.1
    181
    Figure US20130345220A1-20131226-C00208
    435.1
    182
    Figure US20130345220A1-20131226-C00209
    421.0
    183
    Figure US20130345220A1-20131226-C00210
    648.2
    184
    Figure US20130345220A1-20131226-C00211
    573.1
    185
    Figure US20130345220A1-20131226-C00212
    615.2
    186
    Figure US20130345220A1-20131226-C00213
    696.2
    187
    Figure US20130345220A1-20131226-C00214
    544.2
    188
    Figure US20130345220A1-20131226-C00215
    647.2
    189
    Figure US20130345220A1-20131226-C00216
    559.1
    190
    Figure US20130345220A1-20131226-C00217
    654.2
    191
    Figure US20130345220A1-20131226-C00218
    653.2
    192
    Figure US20130345220A1-20131226-C00219
    491.0
    193
    Figure US20130345220A1-20131226-C00220
    413.1
    194
    Figure US20130345220A1-20131226-C00221
    568.2
    195
    Figure US20130345220A1-20131226-C00222
    538.2
    196
    Figure US20130345220A1-20131226-C00223
    522.1
    197
    Figure US20130345220A1-20131226-C00224
    587.2
    198
    Figure US20130345220A1-20131226-C00225
    522.1
    199
    Figure US20130345220A1-20131226-C00226
    524.2
    200
    Figure US20130345220A1-20131226-C00227
    538.2
    201
    Figure US20130345220A1-20131226-C00228
    568.1
    202
    Figure US20130345220A1-20131226-C00229
    585.2
    203
    Figure US20130345220A1-20131226-C00230
    528.0
    204
    Figure US20130345220A1-20131226-C00231
    604.2
    205
    Figure US20130345220A1-20131226-C00232
    575.1
    206
    Figure US20130345220A1-20131226-C00233
    670.2 [M + 23]
    207
    Figure US20130345220A1-20131226-C00234
    712.2
    208
    Figure US20130345220A1-20131226-C00235
    582.0
    209
    Figure US20130345220A1-20131226-C00236
    580.0
    210
    Figure US20130345220A1-20131226-C00237
    538.2
    211
    Figure US20130345220A1-20131226-C00238
    540.1
    212
    Figure US20130345220A1-20131226-C00239
    550.2
    213
    Figure US20130345220A1-20131226-C00240
    553.1
    214
    Figure US20130345220A1-20131226-C00241
    524.2
    215
    Figure US20130345220A1-20131226-C00242
    539.1
    216
    Figure US20130345220A1-20131226-C00243
    606.2
    217
    Figure US20130345220A1-20131226-C00244
    578.1
    218
    Figure US20130345220A1-20131226-C00245
    578.1
    219
    Figure US20130345220A1-20131226-C00246
    524.0
    220
    Figure US20130345220A1-20131226-C00247
    584.2
    221
    Figure US20130345220A1-20131226-C00248
    659.1
    222
    Figure US20130345220A1-20131226-C00249
    617.1
    223
    Figure US20130345220A1-20131226-C00250
    640.2 [M + 23]
    224
    Figure US20130345220A1-20131226-C00251
    603.1
    225
    Figure US20130345220A1-20131226-C00252
    641.1
    226
    Figure US20130345220A1-20131226-C00253
    552.1
    227
    Figure US20130345220A1-20131226-C00254
    587.1
    228
    Figure US20130345220A1-20131226-C00255
    606.1
    229
    Figure US20130345220A1-20131226-C00256
    614.1
    230
    Figure US20130345220A1-20131226-C00257
    591.1
    231
    Figure US20130345220A1-20131226-C00258
    478.0
    232
    Figure US20130345220A1-20131226-C00259
    484.0
    233
    Figure US20130345220A1-20131226-C00260
    550.0
    234
    Figure US20130345220A1-20131226-C00261
    544.9
    235
    Figure US20130345220A1-20131226-C00262
    542.1
    236
    Figure US20130345220A1-20131226-C00263
    534.1
    237
    Figure US20130345220A1-20131226-C00264
    602.1
    238
    Figure US20130345220A1-20131226-C00265
    675.2
    239
    Figure US20130345220A1-20131226-C00266
    445.0
    240
    Figure US20130345220A1-20131226-C00267
    495.1
    241
    Figure US20130345220A1-20131226-C00268
    596.1
    242
    Figure US20130345220A1-20131226-C00269
    596.2
    243
    Figure US20130345220A1-20131226-C00270
    632.1
    244
    Figure US20130345220A1-20131226-C00271
    581.1
    245
    Figure US20130345220A1-20131226-C00272
    564.1
    246
    Figure US20130345220A1-20131226-C00273
    445.0
    247
    Figure US20130345220A1-20131226-C00274
    530.0
    248
    Figure US20130345220A1-20131226-C00275
    526.1
    249
    Figure US20130345220A1-20131226-C00276
    518.1
    250
    Figure US20130345220A1-20131226-C00277
    596.1
    251
    Figure US20130345220A1-20131226-C00278
    578.1
    252
    Figure US20130345220A1-20131226-C00279
    560.1
    253
    Figure US20130345220A1-20131226-C00280
    591.0
    254
    Figure US20130345220A1-20131226-C00281
    531.0
    255
    Figure US20130345220A1-20131226-C00282
    546.2
    256
    Figure US20130345220A1-20131226-C00283
    560.2
    257
    Figure US20130345220A1-20131226-C00284
    537.1
    258
    Figure US20130345220A1-20131226-C00285
    532.1
    259
    Figure US20130345220A1-20131226-C00286
    471.1
    260
    Figure US20130345220A1-20131226-C00287
    468.2
    261
    Figure US20130345220A1-20131226-C00288
    472.2
    262
    Figure US20130345220A1-20131226-C00289
    550.2
    263
    Figure US20130345220A1-20131226-C00290
    679.2
    264
    Figure US20130345220A1-20131226-C00291
    588.0
    265
    Figure US20130345220A1-20131226-C00292
    583.0
    266
    Figure US20130345220A1-20131226-C00293
    436.0
    267
    Figure US20130345220A1-20131226-C00294
    424.1
    268
    Figure US20130345220A1-20131226-C00295
    502.0
    269
    Figure US20130345220A1-20131226-C00296
    477.0
    270
    Figure US20130345220A1-20131226-C00297
    547.1
    271
    Figure US20130345220A1-20131226-C00298
    542.0
    272
    Figure US20130345220A1-20131226-C00299
    454.1
    273
    Figure US20130345220A1-20131226-C00300
    689.1
    274
    Figure US20130345220A1-20131226-C00301
    620.2
    275
    Figure US20130345220A1-20131226-C00302
    579.2
    276
    Figure US20130345220A1-20131226-C00303
    668.2
    277
    Figure US20130345220A1-20131226-C00304
    645.2
    278
    Figure US20130345220A1-20131226-C00305
    551.1
    279
    Figure US20130345220A1-20131226-C00306
    619.2
    280
    Figure US20130345220A1-20131226-C00307
    567.1
    281
    Figure US20130345220A1-20131226-C00308
    469.1
    282
    Figure US20130345220A1-20131226-C00309
    520.1
    283
    Figure US20130345220A1-20131226-C00310
    448.0
    284
    Figure US20130345220A1-20131226-C00311
    592.0
    285
    Figure US20130345220A1-20131226-C00312
    584.1
    286
    Figure US20130345220A1-20131226-C00313
    662.0
    287
    Figure US20130345220A1-20131226-C00314
    664.0
    288
    Figure US20130345220A1-20131226-C00315
    579.1
    289
    Figure US20130345220A1-20131226-C00316
    575.0
    290
    Figure US20130345220A1-20131226-C00317
    567.1
    291
    Figure US20130345220A1-20131226-C00318
    617.2
    292
    Figure US20130345220A1-20131226-C00319
    611.2
    293
    Figure US20130345220A1-20131226-C00320
    569.1
    294
    Figure US20130345220A1-20131226-C00321
    489.0
    295
    Figure US20130345220A1-20131226-C00322
    449.1
    296
    Figure US20130345220A1-20131226-C00323
    491.0
    297
    Figure US20130345220A1-20131226-C00324
    487.0
    298
    Figure US20130345220A1-20131226-C00325
    441.0
    299
    Figure US20130345220A1-20131226-C00326
    424.0
    300
    Figure US20130345220A1-20131226-C00327
    640.0
    301
    Figure US20130345220A1-20131226-C00328
    580.1
    302
    Figure US20130345220A1-20131226-C00329
    596.1
    303
    Figure US20130345220A1-20131226-C00330
    623.1
    304
    Figure US20130345220A1-20131226-C00331
    586.0
    305
    Figure US20130345220A1-20131226-C00332
    597.0
    306
    Figure US20130345220A1-20131226-C00333
    556.0
    307
    Figure US20130345220A1-20131226-C00334
    604.1
    308
    Figure US20130345220A1-20131226-C00335
    562.0
    309
    Figure US20130345220A1-20131226-C00336
    423.1
    310
    Figure US20130345220A1-20131226-C00337
    427.1
    311
    Figure US20130345220A1-20131226-C00338
    495.1
    312
    Figure US20130345220A1-20131226-C00339
    490.0
    313
    Figure US20130345220A1-20131226-C00340
    482.0
    314
    Figure US20130345220A1-20131226-C00341
    442.1
    315
    Figure US20130345220A1-20131226-C00342
    473.0
    316
    Figure US20130345220A1-20131226-C00343
    430.1
    317
    Figure US20130345220A1-20131226-C00344
    413.1
    318
    Figure US20130345220A1-20131226-C00345
    552.0
    319
    Figure US20130345220A1-20131226-C00346
    560.1
    320
    Figure US20130345220A1-20131226-C00347
    626.1
    321
    Figure US20130345220A1-20131226-C00348
    608.0
    322
    Figure US20130345220A1-20131226-C00349
    628.0
    323
    Figure US20130345220A1-20131226-C00350
    462.0
    324
    Figure US20130345220A1-20131226-C00351
    430.0
    325
    Figure US20130345220A1-20131226-C00352
    430.0
    326
    Figure US20130345220A1-20131226-C00353
    448.0
    327
    Figure US20130345220A1-20131226-C00354
    412.1
    328
    Figure US20130345220A1-20131226-C00355
    433.9
    329
    Figure US20130345220A1-20131226-C00356
    394.0
    330
    Figure US20130345220A1-20131226-C00357
    493.0
    331
    Figure US20130345220A1-20131226-C00358
    443.0
    332
    Figure US20130345220A1-20131226-C00359
    445.0
    333
    Figure US20130345220A1-20131226-C00360
    423.2
    334
    Figure US20130345220A1-20131226-C00361
    427.0
    335
    Figure US20130345220A1-20131226-C00362
    415.1
    336
    Figure US20130345220A1-20131226-C00363
    478.0
    337
    Figure US20130345220A1-20131226-C00364
    480.0
    338
    Figure US20130345220A1-20131226-C00365
    412.1
    339
    Figure US20130345220A1-20131226-C00366
    412.0
    340
    Figure US20130345220A1-20131226-C00367
    444.1
    341
    Figure US20130345220A1-20131226-C00368
    424.1
    342
    Figure US20130345220A1-20131226-C00369
    408.1
    343
    Figure US20130345220A1-20131226-C00370
    422.1
    344
    Figure US20130345220A1-20131226-C00371
    454.1
    345
    Figure US20130345220A1-20131226-C00372
    423.3
    346
    Figure US20130345220A1-20131226-C00373
    427.0
    347
    Figure US20130345220A1-20131226-C00374
    463.0
    348
    Figure US20130345220A1-20131226-C00375
    458.0
    349
    Figure US20130345220A1-20131226-C00376
    443.0
    350
    Figure US20130345220A1-20131226-C00377
    452.0
    351
    Figure US20130345220A1-20131226-C00378
    448.0
    352
    Figure US20130345220A1-20131226-C00379
    412.0
    353
    Figure US20130345220A1-20131226-C00380
    408.3
    354
    Figure US20130345220A1-20131226-C00381
    397.1
    355
    Figure US20130345220A1-20131226-C00382
    466.1
    356
    Figure US20130345220A1-20131226-C00383
    398.0
    357
    Figure US20130345220A1-20131226-C00384
    438.0
    358
    Figure US20130345220A1-20131226-C00385
    593.0
    359
    Figure US20130345220A1-20131226-C00386
    428.0
    360
    Figure US20130345220A1-20131226-C00387
    559.1
    361
    Figure US20130345220A1-20131226-C00388
    632.0
    362
    Figure US20130345220A1-20131226-C00389
    596.0
    363
    Figure US20130345220A1-20131226-C00390
    468.2
    364
    Figure US20130345220A1-20131226-C00391
    428.0
    365
    Figure US20130345220A1-20131226-C00392
    407.1
    366
    Figure US20130345220A1-20131226-C00393
    407.1
    367
    Figure US20130345220A1-20131226-C00394
    447.0
    368
    Figure US20130345220A1-20131226-C00395
    425.3
    369
    Figure US20130345220A1-20131226-C00396
    493.0
    370
    Figure US20130345220A1-20131226-C00397
    481.0
    371
    Figure US20130345220A1-20131226-C00398
    467.0
    372
    Figure US20130345220A1-20131226-C00399
    566.2
    373
    Figure US20130345220A1-20131226-C00400
    566.0
    374
    Figure US20130345220A1-20131226-C00401
    569.0
    375
    Figure US20130345220A1-20131226-C00402
    641.0
    376
    Figure US20130345220A1-20131226-C00403
    551.0
    377
    Figure US20130345220A1-20131226-C00404
    589.1
    378
    Figure US20130345220A1-20131226-C00405
    583.1
    379
    Figure US20130345220A1-20131226-C00406
    563.1
    380
    Figure US20130345220A1-20131226-C00407
    547.0
    381
    Figure US20130345220A1-20131226-C00408
    485.0
    382
    Figure US20130345220A1-20131226-C00409
    441.0
    383
    Figure US20130345220A1-20131226-C00410
    440.0
    384
    Figure US20130345220A1-20131226-C00411
    481.0
    385
    Figure US20130345220A1-20131226-C00412
    477.0
    386
    Figure US20130345220A1-20131226-C00413
    467.0
    387
    Figure US20130345220A1-20131226-C00414
    471.0
    388
    Figure US20130345220A1-20131226-C00415
    467.0
    389
    Figure US20130345220A1-20131226-C00416
    490.2
    390
    Figure US20130345220A1-20131226-C00417
    561.1
    391
    Figure US20130345220A1-20131226-C00418
    575.1
    392
    Figure US20130345220A1-20131226-C00419
    551.1
    393
    Figure US20130345220A1-20131226-C00420
    536.1
    394
    Figure US20130345220A1-20131226-C00421
    576.1
    395
    Figure US20130345220A1-20131226-C00422
    627.1
    396
    Figure US20130345220A1-20131226-C00423
    609.0
    397
    Figure US20130345220A1-20131226-C00424
    591.1
    398
    Figure US20130345220A1-20131226-C00425
    629.0
    399
    Figure US20130345220A1-20131226-C00426
    425.3
    400
    Figure US20130345220A1-20131226-C00427
    495.1
    401
    Figure US20130345220A1-20131226-C00428
    455.1
    402
    Figure US20130345220A1-20131226-C00429
    479.0
    403
    Figure US20130345220A1-20131226-C00430
    439.0
    404
    Figure US20130345220A1-20131226-C00431
    443.0
    405
    Figure US20130345220A1-20131226-C00432
    427.0
    406
    Figure US20130345220A1-20131226-C00433
    411.3
    407
    Figure US20130345220A1-20131226-C00434
    461.0
    408
    Figure US20130345220A1-20131226-C00435
    558.1
    409
    Figure US20130345220A1-20131226-C00436
    575.0
    410
    Figure US20130345220A1-20131226-C00437
    598.0
    411
    Figure US20130345220A1-20131226-C00438
    617.0
    412
    Figure US20130345220A1-20131226-C00439
    536.1
    413
    Figure US20130345220A1-20131226-C00440
    411.0
    414
    Figure US20130345220A1-20131226-C00441
    429.0
    415
    Figure US20130345220A1-20131226-C00442
    560.1
    416
    Figure US20130345220A1-20131226-C00443
    471.1
    417
    Figure US20130345220A1-20131226-C00444
    429.1
    418
    Figure US20130345220A1-20131226-C00445
    393.1
    419
    Figure US20130345220A1-20131226-C00446
    429.1
    420
    Figure US20130345220A1-20131226-C00447
    429.1
    421
    Figure US20130345220A1-20131226-C00448
    479.0
    422
    Figure US20130345220A1-20131226-C00449
    399.1
    423
    Figure US20130345220A1-20131226-C00450
    443.2
    424
    Figure US20130345220A1-20131226-C00451
    463.2
    425
    Figure US20130345220A1-20131226-C00452
    477.3
    426
    Figure US20130345220A1-20131226-C00453
    545.1
    427
    Figure US20130345220A1-20131226-C00454
    461.0
    428
    Figure US20130345220A1-20131226-C00455
    479.0
    429
    Figure US20130345220A1-20131226-C00456
    612.0
    430
    Figure US20130345220A1-20131226-C00457
    561.1
    431
    Figure US20130345220A1-20131226-C00458
    540.1
    432
    Figure US20130345220A1-20131226-C00459
    540.1
    433
    Figure US20130345220A1-20131226-C00460
    578.1
    434
    Figure US20130345220A1-20131226-C00461
    611.2
    435
    Figure US20130345220A1-20131226-C00462
    434.2
    436
    Figure US20130345220A1-20131226-C00463
    488.2
    437
    Figure US20130345220A1-20131226-C00464
    457.3
    438
    Figure US20130345220A1-20131226-C00465
    477.2
    439
    Figure US20130345220A1-20131226-C00466
    495.2
    440
    Figure US20130345220A1-20131226-C00467
    477.3
    441
    Figure US20130345220A1-20131226-C00468
    475.2
    442
    Figure US20130345220A1-20131226-C00469
    477.3
    443
    Figure US20130345220A1-20131226-C00470
    473.3
    444
    Figure US20130345220A1-20131226-C00471
    586.1
    445
    Figure US20130345220A1-20131226-C00472
    568.1
    446
    Figure US20130345220A1-20131226-C00473
    582.2
    447
    Figure US20130345220A1-20131226-C00474
    602.1
    448
    Figure US20130345220A1-20131226-C00475
    554.1
    449
    Figure US20130345220A1-20131226-C00476
    556.1
    450
    Figure US20130345220A1-20131226-C00477
    554.1
    451
    Figure US20130345220A1-20131226-C00478
    568.1
    452
    Figure US20130345220A1-20131226-C00479
    540.1
    453
    Figure US20130345220A1-20131226-C00480
    429.2
    454
    Figure US20130345220A1-20131226-C00481
    447.2
    455
    Figure US20130345220A1-20131226-C00482
    540.1
    456
    Figure US20130345220A1-20131226-C00483
    584.2
    457
    Figure US20130345220A1-20131226-C00484
    554.1
    458
    Figure US20130345220A1-20131226-C00485
    540.1
  • Assay 1 Transcriptional Assay
  • Transfection assays are used to assess the ability of compounds of the invention to modulate the transcriptional activity of the LXRs. Briefly, expression vectors for chimeric proteins containing the DNA binding domain of yeast GAL4 fused to the ligand-binding domain (LBD) of either LXRα or LXRβ are introduced via transient transfection into mammalian cells, together with a reporter plasmid where the luciferase gene is under the control of a GAL4 binding site. Upon exposure to an LXR modulator, LXR transcriptional activity varies, and this can be monitored by changes in luciferase levels. If transfected cells are exposed to an LXR agonist, LXR-dependent transcriptional activity increases and luciferase levels rise.
  • 293T human embryonic kidney cells (8×106) are seeded in a 175 cm2 flask 2 days prior to the start of the experiment in 10% FBS, 1% Penicillin/Streptomycin/Fungizome, DMEM Media. The transfection mixture for chimeric proteins is prepared using GAL4-LXR LBD expression plasmid (4 μg), UAS-luciferase reporter plasmid (5 μg), Fugene (3:1 ratio; 27 μL) and serum-free media (210 μL). The transfection mixture is incubated for 20 minutes at room temperature. The cells are harvested by washing with PBS (30 mL) and then dissociated using trypsin (0.05%; 3 mL). The trypsin is inactivated by the addition of assay media (DMEM, lipoprotein-deficient fetal bovine serum (5%), statin (e.g. lovastatin 7.5 μM), and mevalonic acid (100 μM)) (10 mL). The cells are counted using a 1:10 dilution and the concentration of cells adjusted to 160,000 cells/mL. The cells are mixed with the transfection mixture (10 mL of cells per 250 μl of transfection mixture) and are further incubated for 30 minutes at room temperature with periodic mixing by inversion. Cells (50 μl/well) are then plated into 384 white, solid-bottom, TC-treated plates. The cells are further incubated at 37° C., 5.0% CO2 for 24 hours. A 12-point series of dilutions (half-log serial dilutions) are prepared for each test compound in DMSO with a starting concentration of compound of Test compound (500n1) is added to each well of cells in the assay plate and the cells are incubated at 37° C., 5.0% CO2 for 24 hours. The cell lysis/luciferase assay buffer Bright-Glo™ (25%; 24 μl; Promega), is added to each well. After a further incubation for 5 minutes at room temperature, the luciferase activity is measured.
  • Raw luminescence values are normalized by dividing them by the value of the DMSO control present on each plate. Normalized data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05). EC50 is defined as the concentration at which the compound elicits a response that is half way between the maximum and minimum values. Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for the known LXR modulator, (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid.
  • Assay 2 Method for Assessing Endogenous Gene Expression Induced by LXR Modulator ABCA1 Gene Expression
  • Human THP1 cells are grown in propagation media (10% defined FBS, 2 mM L-glutamine, 10 mM HEPES, 1.0 mM sodium pyruvate, 4.5 g/L glucose, 1.5 g/L bicarbonate, 0.05 mM 2-Mercaptoethanol in RPMI 1640). On day 1, 0.5 mL of cells at a concentration of 250,000 cells/mL in propagation media plus 40 ng/mL PMA are plated per well on a 48-well dish. Plate is incubated for 24 hours at 37 degrees celsius. On day 2, media is replaced with 0.5 mL fresh assay media (same as propagation media but with 2% lipoprotein deficient FBS as the serum supplement) and compounds are added 6 hours later (1 or 10 μM in DMSO). Plate is then incubated at 37 degrees for 24 hours. On day 3, cells are harvested and RNA is isolated using the RNeasy kit (Qiagen) with DNaseI option. RNA is eluted in 100 ul of water, quantitated (UV absorbance at 260 nm) and stored at −80 degrees till use.
  • ABCA1 gene expression is measured using TaqMan quantitative PCR using the following primers/probe set for human ABCA1, forward 5′TGTCCAGTCCAGTAATGGTTCTGT3′ (SEQ ID NO. 1), reverse 5′AAGCGAGATATGGTCCGGATT3′(SEQ ID NO. 2), probe 5′FAM ACACCTGGAGAGAAGCTTTCAACGAGACTAACCTAMRA3′ (SEQ ID NO. 3), and human 36B4, forward 5′CCACGCTGCTGAACATGC3′ (SEQ ID NO. 4), reverse 5′TCGAACACCTGCTGGATGAC3′ (SEQ ID NO. 5), probe 5′VIC AACATCTCCCCCTTCTCCTTTGGGCT TAMRA3′ (SEQ ID NO. 6). Reverse transcription and PCR reactions are run in sequence in the same sample mixture using the Superscript Platinum III Q-PCR reagent (Invitrogen). Reaction mixes (Superscript RT/platinum Taq—0.4 μl, 2× Reaction Mix—10 μl, 36B4 primers—0.4 μl of 10 μM stock, ABCA1 primers—1.8 μl of 10 μM stock, ABCA1 probe-FAM—0.04 μl of 100 μM stock, 36B4 probe-VIC—0.04 μl of 50 μM stock, RNA (50 ng/μl)—2 μl, 50×ROX dye—0.4 μl, MgSO4—0.4 μl of 50 mM stock, water—4.52 μl) are placed in a 384-well plate and run on an ABI HT7900 machine using standard conditions. ABCA1 gene expression is evaluated in reference to a curve of diluted RNA, and normalized to the levels of 36B4 RNA present in the sample. Fold induction induced by compound is calculated in reference to DMSO. Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for the known LXR modulator, (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid.
  • Fas Gene Expression
  • Human HepG2 cells are grown in propagation media (10% FBS, 2 mM L-glutamine, 1.5 g/L bicarbonate, 0.1 mM non-essential amino acids, 1.0 mM sodium pyruvate in DMEM). On day 1, 0.5 mL of cells in propagation media at a concentration of 150,000 cells/mL are plated per well on a 48-well plate. Plate is then incubated at 37 degrees for 24 hours. On day 2, media is changed to 0.5 mL of assay media (same as propagation media but with 2% lipoprotein deficient FBS as the serum supplement) and compounds are added 6 hours later (1 or 10 μM in DMSO). Plate is then incubated at 37 degrees for 36-48 hours. Cells are harvested and RNA is isolated using the RNeasy kit (Qiagen) with DNaseI option. RNA is eluted in 100 ul of water, quantitated (UV absorbance at 260 nm) and stored at −80 degrees till use. Fas gene expression is measured using TaqMan quantitative PCR using the following primers/probe set for human Fas, forward 5′GCAAATTCGACCTTTCTCAGAAC3′ (SEQ ID NO. 7), reverse 5′GGACCCCGTGGAATGTCA3′ (SEQ ID NO. 8), probe 5′FAM ACCCGCTCGGCATGGCTATCTTC TAMRA3′ (SEQ ID NO. 9) and human 36B4, forward 5′CCACGCTGCTGAACATGC3′ (SEQ ID NO. 10), reverse 5′TCGAACACCTGCTGGATGAC3′ (SEQ ID NO. 11), probe 5′VIC AACATCTCCCCCTTCTCCTTTGGGCTTAMRA3′ (SEQ ID NO. 12). Reverse transcription and PCR reactions are run in sequence in the same sample mixture using the Superscript Platinum III Q-PCR reagent (Invitrogen). Reaction mixes (Superscript RT/platinum Taq—0.4 μl, 2× Reaction Mix—10 μl, 36B4 primers—1.2 μl of 10 μM stock, Fas primers—1.2 μl of 10 μM stock, Fas probe-FAM—0.045 μl of 100 μM stock, 36B4 probe-VIC—0.08 μl of 50 μM stock, RNA (50 ng/μl)—2 μl, 50×ROX dye—0.4 μl, MgSO4—1 μl of 50 mM stock, water—3.68 μl) are placed in a 384-well plate and run on an ABI HT7900 machine with standard conditions. Fas gene expression is evaluated in reference to a curve of diluted RNA, and normalized to the levels of 36B4 RNA present in the sample. Fold induction induced by compound is calculated in reference to DMSO.
  • Assay 3 FRET Co-Activator Recruitment Assay
  • A FRET assay is used to assess the ability of a compound of the invention to bind directly to the LXR ligand-binding domain (LBD) and promote the recruitment of proteins that potentiate the transcriptional activity of LXRs (e.g. co-activators). This cell-free assay uses a recombinant fusion protein composed of the LXR LBD and a tag (e.g. GST, His, FLAG) that simplifies its purification, and a synthetic biotinylated peptide derived from the nuclear receptor interacting domain of a transcriptional co-activator protein, such as steroid receptor co-activator 1 (SRC-1). In one format, the tagged LBD fusion protein can be labeled using an antibody against the LBD tag coupled to europium (e.g. EU-labeled anti-GST antibody), and the co-activator peptide can be labeled with allophycocyanin (APC) coupled to streptavidin. In the presence of an agonist for LXR, the co-activator peptide is recruited to the LXR LBD, bringing the EU and APC moieties in close proximity Upon excitation of the complex with light at 340 nM, EU absorbs and transfers energy to the APC moiety resulting in emission at 665 nm. If there is no energy transfer (indicating lack of EU-APC proximity), EU emits at 615 nm. Thus the ratio of the 665 to 615 nm light emitted gives an indication of the strength of co-activator peptide recruitment, and thus of agonist binding to the LXR LBD.
  • Fusion proteins, amino acids 205-447 (Genbank NM005693) for LXRα (NR1H3) and amino acids 203-461 (NM007121 for β) for LXRβ (NR1H3), were cloned in-frame at the Sal1 and Not1 sites of pGEX4T-3 (27-4583-03 Amersham Pharmacia Biotech). A biotinylated peptide sequence was derived from SRC-1 (amino acids 676 to 700): biotin-CPSSHSSLTERHKILHRLLQEGSPSC-OH (SEQ ID NO. 13).
  • A master mix is prepared (5 nM GST-LXR-LBD, 5 nM Biotinylated SRC-1 peptide, 10 nM APC-Streptavidin (Prozyme Phycolink streptavidin APC, PJ25S), and 5n MEU-Anti-GST Antibody) in FRET buffer (50 mM Tris pH 7.5, 50 mM KCl 1 mM DTT, 0.1% BSA). To each well of a 384 well plate, 20 μL of this master mix is added. Final FRET reaction: 5 nM fusion protein, 5 nM SRC-1 peptide, 10 nM APC-Streptavidin, 5 nm EU-Anti-GST Antibody (PerkinElmer AD0064). Test compounds are diluted in half-log, 12-point serial dilutions in DMSO, starting at 1 mM and 100 mL of compound is transferred to the master mix for a final concentration of 5 μM-28 pM in the assay wells. Plates are incubated at room temperature for 3 hours and fluorescence resonance energy transfer read. Results are expressed as the ratio of APC fluorescence to EU fluorescence times one thousand.
  • The ratio of 665 nm to 615 nm is multiplied by a factor of 1000 to simplify data analysis. DMSO values are subtracted from ratios to account for background. Data is visualized using XLfit3 and dose-response curves are fitted using a 4-parameter logistic model or sigmoidal single-site dose-response equation (equation 205 in XLfit3.05). EC50 is defined as the concentration at which the compound elicits a response that is half way between the maximum and minimum values. Relative efficacy (or percent efficacy) is calculated by comparison of the response elicited by the compound with the maximum value obtained for a reference LXR modulator.
  • Compounds of Formula I, in free form or in pharmaceutically acceptable salt form, exhibit valuable pharmacological properties, for example, as indicated by the in vitro tests described in this application. Compounds of the invention display % Efficacy for expression of endogenous ABCA1 ranging from 10% to 130%. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. An publications, patents, and patent applications cited herein are hereby incorporated by reference for an purposes.

Claims (10)

We claim:
1. A compound of Formula (I):
Figure US20130345220A1-20131226-C00486
in which
n is selected from 0, 1, 2 and 3;
Z is selected from C and S(O); each
Y is independently selected from —CR4═ and —N═; wherein R4 is selected from hydrogen, cyano, hydroxyl, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl and halo-substituted-C1-6alkoxy;
R1 is selected from halo, cyano, hydroxyl, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy and —C(O)OR4; wherein R4 is as described above;
R2 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl;
wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R2 is optionally substituted with 1 to 5 radicals independently selected from halo, hydroxy, cyano, nitro, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —C(O)NR5R5, —OR5, —OC(O)R5, —NR5R6, —C(O)R5 and —NR5C(O)R5;
wherein R5 and R6 are independently selected from hydrogen, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, C6-10aryl-C0-4alkyl, C3-8heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl; or R5 and R6 together with the nitrogen atom to which R5 and R6 are attached form C5-10heteroaryl or C3-8heterocycloalkyl;
 wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R5 or the combination of R5 and R6 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, cyano, nitro, C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkyl and halo-substituted-C1-6alkoxy;
R3 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl;
wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —OXR7, —OXC(O)NR7R8, —OXC(O)NR7XC(O)OR8, —OXC(O)NR7XOR8, —OXC(O)NR7XNR7R8, —OXC(O)NR7XS(O)0-2R8, —OXC(O)NR7XNR7C(O)R8, —OXC(O)NR7XC(O)XC(O)OR8, —OXC(O)NR7R9, —OXC(O)OR7, —OXOR7, —OXR9, —XR9, —OXC(O)R9, —OXS(O)0-2R9 and —OXC(O)NR7CR7[C(O)R8]2;
wherein X is a selected from a bond and C1-6alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR7, S(O)2 and O; R7 and R8 are independently selected from hydrogen, cyano, C1-6alkyl, halo-substituted-C1-6alkyl, C2-6alkenyl and C3-12cycloalkyl-C0-4alkyl; R9 is selected from C6-10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl;
 wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkoxy, —XC(O)OR10, —XC(O)R10, —XC(O)NR10R10, —XS(O)0-2NR10R10 and —XS(O)0-2R10; wherein
 R10 is independently selected from hydrogen and C1-6alkyl; and
 the pharmaceutically acceptable salts, hydrates, solvates and isomers thereof.
2. The compound of claim 1 of Formula (Ia):
Figure US20130345220A1-20131226-C00487
in which
n is selected from 1, 2 and 3;
Y is selected from —CH═ and —N═;
R1 is selected from halo, C1-6alkyl, and —C(O)OR4; wherein R4 is selected from hydrogen and C1-6alkyl;
R2 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R2 is optionally substituted with 1 to 4 radicals independently selected from halo, hydroxy, C1-6alkyl, halo-substituted-C1-6alkyl and —OC(O)R5; wherein R5 is selected from hydrogen and C1-6alkyl; and
R3 is selected from C6-10aryl, C5-10heteroaryl, C3-12cycloalkyl and C3-8heterocycloalkyl;
wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R3 is substituted with 1 to 5 radicals independently selected from halo, hydroxyl, C1-6alkoxy, halo-substituted-C1-6alkyl, halo-substituted-C1-6alkoxy, —OXR7, —OXC(O)NR7R8, —OXC(O)NR7XC(O)OR8, —OXC(O)NR7XOR8, —OXC(O)NR7XNR7R8, —OXC(O)NR7XS(O)0-2R8, —OXC(O)NR7XNR7C(O)R8, —OXC(O)NR7XC(O)XC(O)OR8, —OXC(O)NR7R9, —OXC(O)OR7, —OXOR7, —OXR9, —XR9, —OXC(O)R9 and —OXC(O)NR7CR7[C(O)R8]2;
wherein X is a selected from a bond and C1-6alkylene; R7 and R8 are independently selected from hydrogen, cyano, C1-6alkyl, halo-substituted-C1-6alkyl, C2-6alkenyl and C3-12cycloalkyl-C0-4alkyl; R9 is selected from C6-10aryl-C0-4alkyl, C5-10heteroaryl-C0-4alkyl, C3-12cycloalkyl-C0-4alkyl and C3-8heterocycloalkyl-C0-4alkyl;
 wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OR10; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from halo, C1-6alkyl, C3-12cycloalkyl, halo-substituted-C1-6alkyl, C1-6alkoxy, halo-substituted-C1-6alkoxy, —XC(O)OR10, —XC(O)R10, —CR10(NR10R10)═NOR10, —XC(O)NR10R10, —XS(O)0-2NR10R10 and —XS(O)0-2R10; wherein R10 is independently selected from hydrogen and C1-6alkyl.
3. The compound of claim 2 in which
R1 is selected from fluoro, chloro, methyl and —C(O)OCH3; and
R2 is selected from phenyl, cyclohexyl, cyclopentyl, pyrrolyl, pyrazolyl, naphthyl, benzo[1,3]-dioxolyl, thienyl, furanyl and pyridinyl; wherein any aryl, heteroaryl or cycloalkyl of R2 is optionally substituted with 1 to 4 radicals independently selected from fluoro, chloro, bromo, hydroxy, methyl, ethyl, propyl, t-butyl, amino, dimethyl-amino, methoxy, trifluoromethyl, trifluoromethoxy and —OC(O)CH3.
4. The compound of claim 3 in which R3 is selected from phenyl, benzol[1,3]-dioxolyl, pyridinyl, 2,2-difluoro-benzol[1,3]dioxol-5-yl and benzooxazolyl; wherein any aryl or heteroaryl of R3 is substituted with 1 to 5 radicals independently selected from fluoro, chloro, bromo, methoxy, hydroxyl, difluoromethoxy, —OCH2C(O)NH2, —OCH2C(O)OCH3, —OCH2C(O)NHCH3, —OCH2C(O)N(CH3)2, —R9, —OR9, —OCH2R9, —OCH2C(O)R9, —OCH2C(O)NHR9, —OCH2C(O)N(CH3)R9, —OCH2C(O)NHCH2R9, —OCH2CN, —OCH2C2H3, —OCH2C2H4, —O(CH2)2OH, —OCH2C(O)NH(CH2)2C(O)OC2H5, —OCH2C(O)NH(CH2)2CH2F, —OCH2C(O)NHCH2CH2F, —OCH2C(O)NH(CH2)2C(O)OH, —OCH2C(O)NHCH(CH2R9)C(O)OC2H5, —OCH2C(O)NHC(O)(CH2)2C(O)OCH3, —OCH2C(O)NH(CH2)2NHC(O)CH3, —OCH2C(O)NHCH2C(O)C2H5, —OCH2C(O)NH(CH2)2C(O)OC4H9, —OCH2C(O)NHCH2C(O)OC2H5, —OCH2C(O)NHCH[C(O)OC2H5]2, —S(O)2CH3, —OCH2C(O)NHCH2CF3, —OCH2C(O)NHCH2C(O)(CH2)2C(O)OCH3, —OCH2C(O)N(CH3)CH2C(O)OCH3, —OCH2C(O)NH(CH2)3OC2H5, —OCH2C(O)NH(CH2)3OCH(CH3)2, —OCH2C(O)NH(CH2)2SCH3, —OCH2C(O)NHCH2CH(CH3)2, —OCH2C(O)NHCH(CH3)CH2OH, —OCH2C(O)NHCH2CH(CH3)C2H5, —OCH2C(O)NHCH(CH3)C(O)OC2H5, —OCH2C(O)NHCH2CH(CH3)2 and —OCH2C(O)(CH2)3OCH(CH3)2;
wherein R9 is phenyl, cyclopropyl-methyl, isoxazolyl, benzthiazolyl, furanyl, furanyl-methyl, tetrahydro-furanyl, pyridinyl, 4-oxo-4,5-dihydro-thiazol-2-yl, pyrazolyl, isothiazolyl, 1,3,4-thiadiazolyl, thiazolyl, phenethyl, morpholino, morpholino-propyl, isoxazolyl-methyl, pyrimidinyl, tetrahydro-pyranyl, 2-oxo-2,3-dihydro-pyrimidin-4-yl, piperazinyl, pyrrolyl, piperidinyl, pyrazinyl, imidazolyl, imidazolyl-propyl, benzol[1,3]-dioxolyl, benzol[1,3]-dioxolyl-propyl, 2-oxo-pyrrolidin-1-yl and 2-oxo-pyrrolidin-1-yl-propyl; wherein any alkyl of R9 can have a hydrogen replaced with —C(O)OC2H5; wherein any aryl, heteroaryl or heterocycloalkyl of R9 is optionally substituted with 1 to 4 radicals independently selected from methyl, ethyl, cyclopropyl, methoxy, trifluoromethyl, —OC(O)CH3, —COOH, —S(O)2NH2, —CH(NH2)═NOH, —C(O)OC2H5, —CH2C(O)OH, —CH2C(O)OC2H5, —CH2C(O)OCH3, —C(O)OCH3, —C(O)NH2, —C(O)NHCH3 and —C(O)CH3.
5. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 in combination with a pharmaceutically acceptable excipient.
6. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of claim 1.
7. The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
8. The use of a compound of claim 1 in the manufacture of a medicament for treating a disease or disorder in an animal in which LXR activity contributes to the pathology and/or symptomatology of the disease, said disease being selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
9. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of claim 1.
10. The method of claim 9 further comprising administering a therapeutically effective amount of a compound of claim 1 in combination with another therapeutically relevant agent.
US14/013,482 2004-02-11 2013-08-29 Compounds and compositions as lxr modulators Abandoned US20130345220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/013,482 US20130345220A1 (en) 2004-02-11 2013-08-29 Compounds and compositions as lxr modulators

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US54384804P 2004-02-11 2004-02-11
US62302104P 2004-10-27 2004-10-27
USPCT/US2005/004655 2005-02-11
PCT/US2005/004655 WO2005077124A2 (en) 2004-02-11 2005-02-11 Compounds and compositions as lxr modulators
US58908708A 2008-10-08 2008-10-08
US13/414,385 US8569345B2 (en) 2004-02-11 2012-03-07 Compounds and compositions as LXR modulators
US14/013,482 US20130345220A1 (en) 2004-02-11 2013-08-29 Compounds and compositions as lxr modulators

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/414,385 Division US8569345B2 (en) 2004-02-11 2012-03-07 Compounds and compositions as LXR modulators

Publications (1)

Publication Number Publication Date
US20130345220A1 true US20130345220A1 (en) 2013-12-26

Family

ID=34864533

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/589,087 Expired - Fee Related US8158662B2 (en) 2004-02-11 2005-02-11 Compounds and compositions as LXR modulators
US13/414,385 Expired - Fee Related US8569345B2 (en) 2004-02-11 2012-03-07 Compounds and compositions as LXR modulators
US14/013,482 Abandoned US20130345220A1 (en) 2004-02-11 2013-08-29 Compounds and compositions as lxr modulators

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/589,087 Expired - Fee Related US8158662B2 (en) 2004-02-11 2005-02-11 Compounds and compositions as LXR modulators
US13/414,385 Expired - Fee Related US8569345B2 (en) 2004-02-11 2012-03-07 Compounds and compositions as LXR modulators

Country Status (8)

Country Link
US (3) US8158662B2 (en)
EP (1) EP1713799A4 (en)
JP (1) JP5022040B2 (en)
CN (1) CN1918155B (en)
AU (2) AU2005211809B2 (en)
BR (1) BRPI0507632A (en)
CA (1) CA2553443C (en)
WO (1) WO2005077124A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021828B1 (en) * 2004-10-27 2011-03-17 다이이찌 산쿄 가부시키가이샤 Benzene compound having 2 or more substituents
JP4854264B2 (en) * 2004-10-27 2012-01-18 第一三共株式会社 Benzene compound having two or more substituents
ES2620451T3 (en) * 2009-05-28 2017-06-28 Exelixis Patent Company Llc LXR modulators
CA2811145A1 (en) 2010-09-07 2012-03-15 Snu R&Db Foundation Sesterterpene compound and use thereof
AU2015204572B2 (en) 2014-01-10 2020-07-30 Inspirna, Inc. LXR agonists and uses thereof
EP3402477A4 (en) 2016-01-11 2019-08-21 The Rockefeller University Methods for the treatment of myeloid derived suppressor cells related disorders
WO2019104062A1 (en) 2017-11-21 2019-05-31 Rgenix, Inc. Polymorphs and uses thereof
US11174220B2 (en) 2019-12-13 2021-11-16 Inspirna, Inc. Metal salts and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160976A (en) 1987-12-18 1989-06-23 Tsumura & Co 1,3,4-thiadiazole derivative and antiulcer agent containing said derivative as active component
JPH01233282A (en) 1988-03-12 1989-09-19 Tsumura & Co 1,3,4-thiadiazole derivative and antiulcer agent containing said compound as active ingredient
JPH0296577A (en) * 1988-09-30 1990-04-09 Tsumura & Co Novel 1,3,4-thiadiazole derivative and anti-ulcer agent containing the same derivative as active ingredient
WO2001032173A1 (en) 1999-10-29 2001-05-10 Yamanouchi Pharmaceutical Co., Ltd. Kainic acid neurocytotoxicity inhibitors
US6555563B1 (en) * 2001-11-16 2003-04-29 Medinox, Inc. Heteroaryl substituted amidinyl and imidazolyl compounds and methods employing same for the treatment of inflammation
AU2003301216A1 (en) 2002-12-23 2004-07-22 Irm Llc Novel use of liver x receptor agonists

Also Published As

Publication number Publication date
CN1918155B (en) 2010-05-26
AU2009201867A1 (en) 2009-06-04
EP1713799A2 (en) 2006-10-25
US8158662B2 (en) 2012-04-17
US20120214812A1 (en) 2012-08-23
AU2009201867B8 (en) 2013-05-30
WO2005077124A2 (en) 2005-08-25
JP2007522242A (en) 2007-08-09
AU2005211809B2 (en) 2009-02-12
WO2005077124A3 (en) 2005-11-10
AU2009201867B2 (en) 2011-12-15
CA2553443C (en) 2012-03-27
AU2009201867C1 (en) 2013-05-30
US20090325981A1 (en) 2009-12-31
EP1713799A4 (en) 2010-07-07
CN1918155A (en) 2007-02-21
CA2553443A1 (en) 2005-08-25
AU2009201867A8 (en) 2013-05-30
BRPI0507632A (en) 2007-07-03
JP5022040B2 (en) 2012-09-12
AU2005211809A1 (en) 2005-08-25
US8569345B2 (en) 2013-10-29

Similar Documents

Publication Publication Date Title
US8569345B2 (en) Compounds and compositions as LXR modulators
US20090062260A1 (en) Compounds and compositions as lxr modulators
US11059795B2 (en) Androgen receptor modulators and methods for their use
US7846949B2 (en) Compounds and compositions as LXR modulators
US7820704B2 (en) Substituted heteroaryl derivatives, compositions, and methods of use
AU2005325267B2 (en) Quinoxaline inhibitors of the hedgehog signalling pathway
US7750032B2 (en) Compounds and compositions as PPAR modulators
US7745445B2 (en) Compounds and compositions as PPAR modulators
US20090143413A1 (en) Thiazole Derivatives as CXCR3 Receptor Modulators
CA2729663A1 (en) Compounds having antiviral properties
US20060293370A1 (en) Sulfonamide compounds and uses thereof
US7495004B2 (en) Purine derivatives as liver X receptor agonists
JP2010501533A (en) Nitrogen-containing heterocyclic compounds useful as M3 receptor modulators
US20130096160A1 (en) Arylthiazolyl piperidines and related compounds as modulators of survival motor neuron (smn) protein production
US20190209574A1 (en) Substituted 2, 3-dihydro-1h-inden-1-one retinoic acid-related orphan nuclear receptor antagonists for treating multiple sclerosis
US20100048453A1 (en) Oxazole and thiazole ppar modulator

Legal Events

Date Code Title Description
AS Assignment

Owner name: IRM LLC, BERMUDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOLTENI, VALENTINA;LI, XIAOLIN;NABAKKA, JULIET;AND OTHERS;SIGNING DATES FROM 20060823 TO 20060905;REEL/FRAME:032467/0755

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION