US20110042034A1 - Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling - Google Patents

Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling Download PDF

Info

Publication number
US20110042034A1
US20110042034A1 US12/938,021 US93802110A US2011042034A1 US 20110042034 A1 US20110042034 A1 US 20110042034A1 US 93802110 A US93802110 A US 93802110A US 2011042034 A1 US2011042034 A1 US 2011042034A1
Authority
US
United States
Prior art keywords
rolling
slab
continuous casting
thickness
stands
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/938,021
Inventor
Giovanni Arvedi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34966713&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110042034(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US12/938,021 priority Critical patent/US20110042034A1/en
Publication of US20110042034A1 publication Critical patent/US20110042034A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0408Moulds for casting thin slabs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1213Accessories for subsequent treating or working cast stock in situ for heating or insulating strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting

Definitions

  • the present invention relates to a process and relevant system for manufacturing metal strips and sheets without discontinuity from the continuous casting of the melt until the last rolling stand, in particular for steel flat products, without any provision of intermediate products.
  • patent EP 0889762 discloses how to apply the cast rolling concept for manufacturing thin strips in one single step without discontinuity and teaches how to combine the manufacturing step in continuous casting of a slab having high mass flow (thickness of the slab in meters multiplied by the outlet speed in m/min>0.487 m 2 /min) and a high temperature (about 1240° C.) at the outlet of the continuous casting itself, with the rolling step after a temperature homogenization step.
  • the present invention overcomes this problem mainly through a new secondary cooling system being designed for a high mass flow and by providing induction heating to have the slab temperature higher by at least 100° C.
  • Object of the present invention is that of providing a manufacturing process being able to obtain, with an extremely compact plant in a single continuous step between continuous casting and rolling without intermediate products, hot rolled strips, even of ultrathin thickness, from a maximum of 20 mm until 0.14 mm and high quality sheets, between 10 and 100 mm of thickness, with the greatest utilization of the whole energy provided by the melted metal.
  • the process according to the present invention essentially comprises a continuous casting step and a subsequent in-line rolling step, directly connected without intermediate roughing, with an induction heating between continuous casting and rolling.
  • Another object of the present invention is that of providing a system or plant for carry out the said process, wherein the rolling stands work, without material discontinuity, downstream of the mould and the continuous casting, after an induction furnace, with a minimum distance between outlet from the continuous casting and the first rolling stand.
  • FIG. 1 schematically shows an example of a plant according to the invention for manufacturing steel strips being wound in coils, having minimum thickness until 1 mm or sheets of thickness up to a maximum of 100 mm;
  • FIG. 2 schematically shows a continuous casting mould having preferred dimensional features according to the present invention.
  • FIG. 3 schematically shows the thickness reduction from the mould until the last rolling stand.
  • the melt molten steel
  • the melt is poured from the ladle into a tundish and therefrom into the continuous casting mould at thickness of the slab at the outlet that is already reduced with respect to the thickness at the mould inlet, comprised between 30 and 300 mm and a length size between 600 and 4000 mm.
  • the thickness reduction goes on under liquid core conditions, with secondary cooling, in the same casting step, thereby in the rolling stands directly connected to continuous casting until ending by utilizing as much as possible the energy available in the liquid steel at the beginning of the process until reaching the desired thickness, being in the range 0.14-20 mm for the strips and 10-100 mm for the sheets.
  • the flow of material or “mass flow” as defined above has a high value in order to ensure temperatures and speed required by the rolling process for an end product having the desired values of thickness and of surface and inner quality and that the thickness reduction is increasing from the mould on.
  • FIG. 3 the thickness reduction starts in the mould itself, wherein the slab undergoes a first reduction in its central portion where the crown is provided, goes on in the bow caster, with the liquid core thickness reduction and ends with the last rolling stand. It should be remarked that in the reduction step during casting the feed speed of the material is constant.
  • the mass flow is proportional to the feed speed and to the section area S B of the slab.
  • optimal ratios have been defined between area S M of the liquid steel surface (or in general of the melt) in the mould, when taken in the horizontal cross-section corresponding to meniscus, upon subtracting the surface area S T interested by the submerged nozzle, and the vertical cross-section S B of the slab at the continuous casting outlet.
  • Such a ratio S M /S B must be ⁇ 1.1 in order to ensure restricted flow rates of the liquid steel (or in general of melt) and consequently the swirls in the mould and the meniscus waves are kept at a minimum.
  • the secondary cooling being controlled as described above, has the special feature of cooling the slab surface while keeping however the middle portion of the slab at the highest possible temperature.
  • the aim is that of keeping the average surface temperature of the slab at the continuous casting outlet ⁇ 1150° C. to avoid the so-called “bulging” effect, i.e. a swelling of the slab between the caster rollers, causing irregularities at the meniscus and consequently negative effects on the product quality as well as in order to have, still at the caster exit, an average temperature in the middle cross-section of the slab being as high as possible and in any case>1300° C. in order to obtain, when rolling, the greatest reduction possible with the lowest separating force.
  • FIG. 3 shows, in a diagrammatic way and in correspondence with a progressive thickness reduction, also the increasing power consumption in the first five rolling stands, as indicated by the corresponding size of the each one of the stands.
  • the ferrostatic pressure at the inside of the solidifying slab is lower for the same cross-section area and speed from the continuous casting outlet, whereby the bulging effect can be avoided or reduced to a minimum.
  • FIG. 1 an example is given of a plant or lay-out according to the present invention, starting from the slab 1 at the outlet of a continuous casting through a mould referred to as 10 .
  • the slab 1 having thickness between 30 and 300 mm and width between 600 and 4000 mm, is directly fed to the rolling step 11 through an induction furnace 12 for heating the same upstream of the stands, as well as a descaler 16 .
  • the distance between the outlet of continuous casting and the first stand of rolling-mill 11 will not be greater than 50 m, in order to limit the temperature losses of the slab, thus leading to the additional advantage of having a more compact plant requiring more reduced space.
  • the feed rate of the whole process from continuous casting to the last rolling stand is increasing and corresponds to the respective thickness reduction required by the desired end product, with the mass flow being constant.
  • the in-line rolling-mill 11 is comprised one or more stands for reaching the desired final thickness; for example the stands have been represented in FIG. 1 in number of seven (V 1 -V 7 ).
  • the stand rolls will have preferably a diameter in the range between 300 and 800 mm. Within this range an adequate reduction is obtained according to the end product thickness, as well as a very good cooling of each roll to avoid the development of the so-called “fire cracks”.
  • the plant according to the invention in particular the rolling-mill 11 , but already from continuous casting 10 , is provided with a system for controlling the speed in a downstream cascade, where there is provided a device 14 for cutting the coils being wound on an end reel, after a final cooling system 13 .
  • a cutting device 14 ′ Upstream of the latter a cutting device 14 ′, to be operated in alternative to the other, provides for a possible withdrawal of sheets 20 and could be positioned at a more upstream location, after a lower number of rolling stands with respect to those indicated in the drawing, when considering the higher thicknesses usually foreseen for the sheets (up to 100 mm) with respect to the strips.
  • At least one cooling system for cooling the surface of slab 1 upstream thereof, there is provided at least one cooling system for cooling the surface of slab 1 , schematically shown in the drawing with opposite arrows (like in 13 ) between two adjacent rolling stands, to form a so-called interstand cooling 13 ′ in order to limit the phenomenon of secondary re-oxidation.
  • the feed rate of the whole process from continuous casting to the last rolling stand is increasing step by step and corresponds to the respective thickness reduction required by the features, especially thickness and quality, of the desired end product.
  • the values of the strip temperatures at the last stand outlet are such as to ensure a rolling in the austenitic phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

A process and system for manufacturing metal strips of 0.14-20 mm thickness and metal sheets of 10-100 mm thickness from slabs of thickness between 30 and 300 mm by continuous casting of the bow type. The slab upon casting is fed without discontinuity directly to the rolling step after heating in an induction furnace without any intermediate product. The rolled flat product is withdrawn as sheet upon controlled cooling, by means of cutting and withdrawal device or wound on a reel to form a coil of a continuous strip severable by cutting device downstream of a cooling system. Surface cooling devices can be provided between rolling stands. The feed speed from continuous casting to the end of rolling is increasing step by step in relation to the thickness reductions and the quality of the end product, with regulation in cascade to the downstream direction.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 11/720,172, filed May 24, 2007, which is a 371 of International Application No. PCT/IB2005/00915 filed Apr. 7, 2005, the entire contents which are incorporated by reference as if fully set forth.
  • FIELD OF THE INVENTION
  • The present invention relates to a process and relevant system for manufacturing metal strips and sheets without discontinuity from the continuous casting of the melt until the last rolling stand, in particular for steel flat products, without any provision of intermediate products.
  • BACKGROUND
  • It is known that in the steel industry, when considering the substantial increase experienced both in costs of row material and of the power employed, and the greater competitivity required by the global market, as well as the increasingly restrictions in the anti-pollution standards to be adopted, it is particularly felt the need of a method for manufacturing hot rolled, high quality coils and sheets, that requires lower costs of investments and production, thus giving rise to thinner and thinner thicknesses of the produced strip. A consequence thereof is that higher competitivity can be given also to the industry of transformation of the end product with lower consumptions of power, thus reducing to a minimum also the harmful impact on the environment.
  • Meaningful steps in this direction have been made by the technology of the last years, as shown by patents EP 0415987, 0925132, 0946316, 1011896, all in the name of the present applicant, like also the international publication WO 2004/0262497.
  • However, the results obtained so far, although optimal as far as the product quality is concerned (especially for the steel strips), have turned out to be improvable under the aspect of the lay-out compactness and of the energy saving, as well as of the possible enlargement of the range of flat products that can be obtained.
  • If in fact the so-called concept of “Cast Rolling” is for example considered, which is already present in the above-mentioned EP 0415787 in the first step of the process only and with only one rolling stand provided on the bow-shaped caster, the consequence was an intermediate product which, after a heating step, required a second rolling step.
  • Also in the more recent WO 2004/026497 the above-mentioned “Cast Rolling Technology” joins the continuous casting with a first rolling step, formed of not more than four stands to obtain an intermediate product that subsequently is cut and, after a heating step, is further processed with a plastic stretching and a second rolling step. According to the same publication WO 2004/026497 it is also provided the possibility of withdrawing sheets after the first roughing step, but without a controlled cooling system, as required for producing high-quality sheets. In practice the possibility of withdrawing sheets has only the function of a buffer in case of failures in the downstream process in order to avoid stops of the continuous casting and consequently of the line production, but with no relation to programmed production of sheets.
  • The same concept of “Cast Rolling” was also present in EP 0823294which however provided for three distinct manufacturing steps: one first step of roughing in austenitic phase giving rise to an intermediate product; a second step of intensive heating of such an intermediate product up to temperatures<738° C., with phase transformation in the Fe/C diagram; and a third step of finishing rolling in the ferritic phase. The teaching of this prior document is substantially that of applying the concept of cast rolling to obtain a strip of thin thickness in three distinct process steps, the last of which is exclusively in the ferritic phase, thus excluding that the so-called “mass flow” (in other words the quantity of steel flowing in the time unit at the outlet of continuous casting) may be such to allow that an ultrathin product can be obtained in a single manufacturing step totally in the austenitic field.
  • Also patent EP 0889762 discloses how to apply the cast rolling concept for manufacturing thin strips in one single step without discontinuity and teaches how to combine the manufacturing step in continuous casting of a slab having high mass flow (thickness of the slab in meters multiplied by the outlet speed in m/min>0.487 m2/min) and a high temperature (about 1240° C.) at the outlet of the continuous casting itself, with the rolling step after a temperature homogenization step.
  • As already done in EP 0823294 also in EP 0889762 there is taught in fact how a cooling step or, in alternative, a heating step can be provided between the first roughing stands and the last finishing stands. Simulations and tests have made clear that the teaching of this patent cannot be applied on industrial scale. The idea of having at the continuous casting outlet a high temperature (about 1400° C.) in order to exploit as much as possible the thermal mass in the subsequent rolling step is in fact certainly interesting but not feasible in practice, because it has been found that feasible casting a slab with high mass flow, at such a high temperature that the surface temperature at the continuous casting outlet is higher than 1150° C., results in irregularities in the meniscus region, thus causing defects in the slab and more risks of break-out.
  • SUMMARY
  • The present invention overcomes this problem mainly through a new secondary cooling system being designed for a high mass flow and by providing induction heating to have the slab temperature higher by at least 100° C.
  • Object of the present invention is that of providing a manufacturing process being able to obtain, with an extremely compact plant in a single continuous step between continuous casting and rolling without intermediate products, hot rolled strips, even of ultrathin thickness, from a maximum of 20 mm until 0.14 mm and high quality sheets, between 10 and 100 mm of thickness, with the greatest utilization of the whole energy provided by the melted metal.
  • The process according to the present invention, the main features of which are set forth below, essentially comprises a continuous casting step and a subsequent in-line rolling step, directly connected without intermediate roughing, with an induction heating between continuous casting and rolling.
  • Another object of the present invention is that of providing a system or plant for carry out the said process, wherein the rolling stands work, without material discontinuity, downstream of the mould and the continuous casting, after an induction furnace, with a minimum distance between outlet from the continuous casting and the first rolling stand. The main features of such a plant are set forth below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further aspects and features of the present invention, as recited in the dependent claims, will be clearer from the following detailed description of a preferred embodiment of the plant, given in the following with reference to the annexed drawings in which:
  • FIG. 1 schematically shows an example of a plant according to the invention for manufacturing steel strips being wound in coils, having minimum thickness until 1 mm or sheets of thickness up to a maximum of 100 mm;
  • FIG. 2 schematically shows a continuous casting mould having preferred dimensional features according to the present invention; and
  • FIG. 3 schematically shows the thickness reduction from the mould until the last rolling stand.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It should be noted that the description is substantially directed to the production of steel sheets and/or thin and ultrathin strips, of the carbon or stainless type, but the invention could also be applied to the production of strips or sheets of aluminum, copper or titanium.
  • As it is known, the melt (molten steel) is poured from the ladle into a tundish and therefrom into the continuous casting mould at thickness of the slab at the outlet that is already reduced with respect to the thickness at the mould inlet, comprised between 30 and 300 mm and a length size between 600 and 4000 mm. The thickness reduction goes on under liquid core conditions, with secondary cooling, in the same casting step, thereby in the rolling stands directly connected to continuous casting until ending by utilizing as much as possible the energy available in the liquid steel at the beginning of the process until reaching the desired thickness, being in the range 0.14-20 mm for the strips and 10-100 mm for the sheets.
  • It has been found that for the purposes of the present invention it is decisive that the flow of material or “mass flow” as defined above, has a high value in order to ensure temperatures and speed required by the rolling process for an end product having the desired values of thickness and of surface and inner quality and that the thickness reduction is increasing from the mould on. With reference to
  • FIG. 3 the thickness reduction starts in the mould itself, wherein the slab undergoes a first reduction in its central portion where the crown is provided, goes on in the bow caster, with the liquid core thickness reduction and ends with the last rolling stand. It should be remarked that in the reduction step during casting the feed speed of the material is constant.
  • It will be noted, with reference to FIG. 2, that the mass flow is proportional to the feed speed and to the section area SB of the slab. In particular to reach the above-mentioned object according to the invention optimal ratios have been defined between area SM of the liquid steel surface (or in general of the melt) in the mould, when taken in the horizontal cross-section corresponding to meniscus, upon subtracting the surface area ST interested by the submerged nozzle, and the vertical cross-section SB of the slab at the continuous casting outlet.
  • Such a ratio SM/SB must be≧1.1 in order to ensure restricted flow rates of the liquid steel (or in general of melt) and consequently the swirls in the mould and the meniscus waves are kept at a minimum.
  • On the other hand a greater flow rate of liquid metal also involves the necessity of a greater power of the secondary cooling of the slab. The prior art suggested to provide, to this effect, for an increase of the cooling water flow rate. However it has been found that an excessive increase of the water flow rate results in a difficult withdrawal of the water itself, that has the tendency to stagnate in front of the nozzles, with the consequence of preventing the cooling homogeneity which is instead necessary for a good quality of the end product. It has been found that by using values of water pressure comprised between 15 and 40 bar and a distance between nozzles and slab<150 mm, it is possible to obtain a more efficient cooling of the slab against a high value of the “mass flow”, as well as a very good homogeneity of temperature (both in the transverse and longitudinal directions) required for a good quality of the end product. With the above-mentioned parameters, the water jet from the nozzles succeeds in fact to pass better through the vapor film generated, that has an isolating effect between slab and cooling water (Leidenfrost effect).
  • The secondary cooling, being controlled as described above, has the special feature of cooling the slab surface while keeping however the middle portion of the slab at the highest possible temperature.
  • The aim is that of keeping the average surface temperature of the slab at the continuous casting outlet<1150° C. to avoid the so-called “bulging” effect, i.e. a swelling of the slab between the caster rollers, causing irregularities at the meniscus and consequently negative effects on the product quality as well as in order to have, still at the caster exit, an average temperature in the middle cross-section of the slab being as high as possible and in any case>1300° C. in order to obtain, when rolling, the greatest reduction possible with the lowest separating force.
  • This occurs in favor of the process economy both in terms of lower investment (smaller stands) and of less power required for the same thickness of the end product. In this respect it should be noted that according to the present invention, contrary to what occurs in the prior art plants, a non excessive power demand is sufficient for obtaining even reduced final thicknesses, with values in kW being proportional to the slab thickness at the casting outlet (SpB). For example, with a slab with of 1600 mm the values of the required power for the first five stands are the following:
  • 1° stand: kW<SpB×20
  • 2° stand: kW<SpB×40
  • 3° stand: kW<SpB×70
  • 4° stand: kW<SpB×85
  • 5° stand: kW<SpB×100
  • What stated above is reflected, by way of example, in FIG. 3 that shows, in a diagrammatic way and in correspondence with a progressive thickness reduction, also the increasing power consumption in the first five rolling stands, as indicated by the corresponding size of the each one of the stands.
  • By adopting a bow caster, the height of which is lower than in the vertical-type caster, the ferrostatic pressure at the inside of the solidifying slab is lower for the same cross-section area and speed from the continuous casting outlet, whereby the bulging effect can be avoided or reduced to a minimum.
  • With reference to FIG. 1 an example is given of a plant or lay-out according to the present invention, starting from the slab 1 at the outlet of a continuous casting through a mould referred to as 10. The slab 1, having thickness between 30 and 300 mm and width between 600 and 4000 mm, is directly fed to the rolling step 11 through an induction furnace 12 for heating the same upstream of the stands, as well as a descaler 16. The distance between the outlet of continuous casting and the first stand of rolling-mill 11 will not be greater than 50 m, in order to limit the temperature losses of the slab, thus leading to the additional advantage of having a more compact plant requiring more reduced space. The feed rate of the whole process from continuous casting to the last rolling stand is increasing and corresponds to the respective thickness reduction required by the desired end product, with the mass flow being constant. The in-line rolling-mill 11 is comprised one or more stands for reaching the desired final thickness; for example the stands have been represented in FIG. 1 in number of seven (V1-V7). The stand rolls will have preferably a diameter in the range between 300 and 800 mm. Within this range an adequate reduction is obtained according to the end product thickness, as well as a very good cooling of each roll to avoid the development of the so-called “fire cracks”.
  • The plant according to the invention, in particular the rolling-mill 11, but already from continuous casting 10, is provided with a system for controlling the speed in a downstream cascade, where there is provided a device 14 for cutting the coils being wound on an end reel, after a final cooling system 13. Upstream of the latter a cutting device 14′, to be operated in alternative to the other, provides for a possible withdrawal of sheets 20 and could be positioned at a more upstream location, after a lower number of rolling stands with respect to those indicated in the drawing, when considering the higher thicknesses usually foreseen for the sheets (up to 100 mm) with respect to the strips.
  • It is further provided a controlled cooling system for cooling the sheets before the withdrawal device 14′.
  • In addition to the strip cooling system 13, upstream thereof, there is provided at least one cooling system for cooling the surface of slab 1, schematically shown in the drawing with opposite arrows (like in 13) between two adjacent rolling stands, to form a so-called interstand cooling 13′ in order to limit the phenomenon of secondary re-oxidation.
  • As stated above, the feed rate of the whole process from continuous casting to the last rolling stand is increasing step by step and corresponds to the respective thickness reduction required by the features, especially thickness and quality, of the desired end product. To this effect there is provided a speed regulation system in cascade in the downstream direction starting from continuous casting, by introducing a regulation strategy that can be defined contrary to that adopted so far in the rolling-mills of the prior art, which was in cascade in the upstream direction.
  • Such a regulation in cascade to the upstream direction, if applied either to the plant of the present invention or to the processes and plants according to other patents (in particular EP 0889762), with continuous casting directly connected to the rolling step without discontinuity, would unavoidably cause a variation of the casting speed, with negative consequences on the features relating to the slab quality in terms of surface homogeneity and internal features of the material.
  • Therefore, by overcoming a general technical prejudice, a new concept of regulation in cascade to the downstream direction has been adopted, wherein the casting speed is preset and the possible speed corrections have effect on the speed parameters of the downstream stands, also taking into account the operative differences of the rolling-mill in a plant according to the invention with respect to the additional one. According to the prior art in fact the strip enters each stand when it is already closed, with a nip between rolls depending on the thickness required by the schedule pass, while the regulation in cascade in the upstream direction results in a correction of the speed at the stands already nipping the material. On the contrary, in the process and plant according to the present invention, the slab enters each stand with open rolls that close upon passing the slab head until reaching the nip corresponding to the required reduction.
  • An example of variation of the process parameters (thickness, reduction %, temperature and speed) is shown under the lay-out representation of FIG. 1 in correspondence with various positions at the inlet and outlet of the induction furnace 12, descaler 16 and rolling stands. To this effect there have been used notations IN and OUT in correspondence with the notations IH for the induction furnace and DES for the descaler, respectively, as well as V1-V7 for the various stands of FIG. 1. For these latter the values of the four outlet parameters only have been indicated, except for the first stand V1 of the rolling-mill, where also the inlet value has been given. In particular it can be noted how, according to the invention, when starting e.g. from a slab having initial thickness of 70 mm, with initial speed of 6.5 m/min, thicknesses of about 1 mm can be obtained with a plant having a total length of 70 m. It can also be noted that the values of the strip temperatures at the last stand outlet are such as to ensure a rolling in the austenitic phase.
  • Finally it will be recalled that the process according to the invention and the associate plant can be used also for manufacturing in continuous strips and sheets not only of carbon steel or stainless steel, but also of aluminum, copper or titanium.

Claims (7)

1. A plant for manufacturing metal strips with thickness in the range between 0.14 and 20 mm and metal sheets with thickness in the range between 10 and 100 mm from a continuous casting, the plant comprising a mould and subsequent bow caster with means for liquid core reduction starting from slabs (1) of thickness between 30 and 300 mm and width between 600 and 4000 mm, wherein said mould has a ratio≧1.1 between its surface SM at a meniscus, subtracting an area ST interested by the submerged nozzle, and a cross-section area Sb of the slab (1) at an outlet of continuous casting, there being provided a secondary cooling system for obtaining, at the outlet of continuous casting, a slab having an inverted temperature gradient and a cross-section with an average surface temperature of the slab<1150° C. and with an average core temperature>1350° C., as well as a finishing mill (11) directly connected with the continuous casting at a maximum distance of 50 m, the plant further comprising an induction heating furnace (12) between the continuous casting outlet and a rolling-mill (11) and at an outlet of the rolling mill (11), either a cutting device (14) of coils, wound on an end reel (15), after a final cooling system (13), or a cutting device (14′) for the withdrawal of sheets (10) also cooled by said cooling system (13).
2. The plant according to claim 1, wherein said in line rolling mill (11) is comprised of at least one stand, up to a maximum of twenty stands, wherein power required for a first five stands is determined as a function of the slab thickness at the casting outlet (SpB), multiplying such a value by increasing factors from 20 for the first stand to 100 for the last one in relation with a width of 1600 mm, while for greater widths by increasing these multiplying factors proportionally to the ratio between the actual width and 1600 mm.
3. The plant according to claim 2, further comprising a surface cooling system (13′) based on pressurized water, including between at least two adjacent rolling stands opposite nozzles facing the slab (1).
4. The plant according to claim 3, wherein the water pressure in the casting secondary cooling is between 10 and 40 bar and the distance of the cooling nozzles from the slab (1) is≦150 mm.
5. The plant according to claim 2, further comprising rolls for the rolling-mill stands (11) with a diameter in a range between 300 and 800 mm.
6. The plant according to claim 2, wherein said device (14′) for cutting and withdrawal of the sheets (20) is downstream of said cooling device (13′) intermediate between the stands, and upstream of said cooling system (13), downstream of which there is provided a shear (14) for cutting the rolled strip at the end of winding of which coil (15).
7. The plant according to claim 2, further comprising a surface cooling system (13′) based on pressurized water, including between at least two adjacent rolling stands opposite nozzles facing the slab (1).
US12/938,021 2005-04-07 2010-11-02 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling Abandoned US20110042034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/938,021 US20110042034A1 (en) 2005-04-07 2010-11-02 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2005/000915 WO2006106376A1 (en) 2005-04-07 2005-04-07 Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling
US72017207A 2007-05-24 2007-05-24
US12/938,021 US20110042034A1 (en) 2005-04-07 2010-11-02 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/IB2005/000915 Division WO2006106376A1 (en) 2005-04-07 2005-04-07 Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling
US72017207A Division 2005-04-07 2007-05-24

Publications (1)

Publication Number Publication Date
US20110042034A1 true US20110042034A1 (en) 2011-02-24

Family

ID=34966713

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/720,172 Active 2025-10-04 US7832460B2 (en) 2005-04-07 2005-04-07 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling
US12/938,021 Abandoned US20110042034A1 (en) 2005-04-07 2010-11-02 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/720,172 Active 2025-10-04 US7832460B2 (en) 2005-04-07 2005-04-07 Process and system for manufacturing metal strips and sheets without discontinuity between continuous casting and rolling

Country Status (19)

Country Link
US (2) US7832460B2 (en)
EP (1) EP1868748B1 (en)
JP (1) JP5371421B2 (en)
KR (1) KR20110033873A (en)
CN (1) CN1972764B (en)
AR (1) AR053045A1 (en)
AT (1) ATE411120T1 (en)
AU (1) AU2005330323B2 (en)
BR (1) BRPI0513754B1 (en)
CA (1) CA2569841C (en)
DE (1) DE602005010487D1 (en)
DK (1) DK1868748T3 (en)
EG (1) EG24541A (en)
ES (1) ES2314642T3 (en)
HR (1) HRP20080586T3 (en)
MX (1) MX2007012433A (en)
PL (1) PL1868748T3 (en)
PT (1) PT1868748E (en)
WO (1) WO2006106376A1 (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120018113A1 (en) * 2004-12-03 2012-01-26 Joachim Schwellenbach CSP-continuous casting plant with an additional rolling line
RU2381847C1 (en) * 2005-12-22 2010-02-20 Джованни Арведи Method and relates to it installation for manufacturing of steel strips with discontinuity
DE102007058709A1 (en) * 2007-08-04 2009-02-05 Sms Demag Ag Method for producing a strip of steel
DE102008003222A1 (en) * 2007-09-13 2009-03-19 Sms Demag Ag Compact flexible CSP system for continuous, semi-continuous and batch operation
AT506065B1 (en) * 2007-11-22 2009-06-15 Siemens Vai Metals Tech Gmbh METHOD FOR THE CONTINUOUS AUSTENITIC ROLLING OF A PRECONDUCT MADE IN A CONTINUOUS PLANTING PROCESS, AND A COMBINED CASTING AND ROLLING MACHINE TO PERFORM THE METHOD
RU2477661C2 (en) 2008-10-30 2013-03-20 Сименс Акциенгезелльшафт Method of adjusting thickness of cogged ingot fed through multi-stand mill, feed-forward and/or closed-loop control device, and rolling mill stand
DE102009018683A1 (en) 2009-04-23 2010-10-28 Sms Siemag Ag Method and device for continuous casting of a slab
IT1400002B1 (en) * 2010-05-10 2013-05-09 Danieli Off Mecc PROCEDURE AND PLANT FOR THE PRODUCTION OF FLAT LAMINATED PRODUCTS
EP2418031A1 (en) * 2010-08-13 2012-02-15 Siemens Aktiengesellschaft Method for producing a metal strip using a casting rolling assembly and control and/or regulating device for a compound casting rolling assembly
CO6310134A1 (en) 2010-08-31 2011-08-22 Pacific Rubiales Energy Corp SYNCHRONIZED CRUDE PRODUCTION SYSTEM BY COMBUSTION IN SITU
EP2441538A1 (en) * 2010-10-12 2012-04-18 Siemens VAI Metals Technologies GmbH Strand casting device with dynamic strand thickness reduction
EP2441540A1 (en) 2010-10-12 2012-04-18 Siemens VAI Metals Technologies GmbH Method and assembly for energy-efficient production of hot rolled steel strips
EP2441539A1 (en) 2010-10-12 2012-04-18 Siemens VAI Metals Technologies GmbH Energy and output-optimised method and assembly for producing hot rolled steel strips
KR101294918B1 (en) * 2011-12-28 2013-08-08 주식회사 포스코 Heater, Transverse Flux Induction Heater, Rolling Line and Heating Method
KR101510568B1 (en) 2013-12-23 2015-04-08 주식회사 포스코 Apparatus for endless rolling and method for the same
US10569326B2 (en) 2014-06-11 2020-02-25 Arvedi Steel Engineering S.P.A. Thin slab nozzle for distributing high mass flow rates
WO2015188278A1 (en) 2014-06-13 2015-12-17 M3 Steel Tech Inc. Modular micro mill and method of manufacturing a steel long product
ES2658065T3 (en) 2014-09-12 2018-03-08 Arvedi Steel Engineering S.P.A. Integrated plant with very low environmental impact to manufacture hot rolled and cold rolled steel strip
DE102014221068A1 (en) 2014-10-16 2016-04-21 Sms Group Gmbh Plant and method for the production of heavy plates
DE102015216512A1 (en) 2015-08-28 2017-03-02 Sms Group Gmbh Plant according to the CSP concept and method for operating such a plant
RU2019112632A (en) 2016-10-27 2020-11-27 Новелис Инк. HIGH-STRENGTH 7XXX ALUMINUM ALLOYS AND METHODS OF THEIR PRODUCTION
CA3210413A1 (en) * 2016-10-27 2018-05-03 Novelis Inc. Metal casting and rolling line
EP3532219B1 (en) 2016-10-27 2023-05-31 Novelis, Inc. High strength 6xxx series aluminum alloys and methods of making the same
IT201700039423A1 (en) * 2017-04-10 2018-10-10 Arvedi Steel Eng S P A PLANT AND PROCEDURE FOR MANUFACTURING IN MULTIPLE STEEL RIBBONS AND SHEET METHODS
EP3456451A1 (en) 2017-09-13 2019-03-20 Primetals Technologies Austria GmbH Device and method of cross-cutting of a hot strip
EP3966355A1 (en) 2019-05-07 2022-03-16 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
WO2021006253A1 (en) * 2019-07-11 2021-01-14 Jfeスチール株式会社 Secondary cooling method and secondary cooling apparatus for continuous casting slab
DE102019219308A1 (en) 2019-12-11 2021-06-17 Sms Group Gmbh Device and method for cross-cutting a metal strip in a rolling train
DE102019219309A1 (en) 2019-12-11 2021-06-17 Sms Group Gmbh Device and method for cross-cutting a metal strip in a rolling train
IT202000016120A1 (en) 2020-07-03 2022-01-03 Arvedi Steel Eng S P A PLANT AND PROCEDURE FOR THE CONTINUOUS PRODUCTION OF HOT ROLLED ULTRA-THIN STEEL STRIPS
EP3974072B1 (en) * 2020-09-24 2023-07-19 Primetals Technologies Austria GmbH Casting roller composite system and method for operating the casting roller composite system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962808A (en) * 1988-07-14 1990-10-16 Thyssen Stahl Aktiegesellschaft Method of producing a steel strip having a thickness of less than 10 mm
US5630467A (en) * 1994-09-30 1997-05-20 Hitachi, Ltd. Thin slab continuous casting machine and method
US6092586A (en) * 1996-03-28 2000-07-25 Mannesmann Ag Method and arrangement for producing hot-rolled steel strip
US6533876B1 (en) * 1996-12-19 2003-03-18 Corus Staal Process and device for producing a steel strip or sheet

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997705A (en) * 1982-11-26 1984-06-05 Hitachi Ltd Continuous rolling method
JPS61264135A (en) * 1985-05-16 1986-11-22 Nippon Kokan Kk <Nkk> Manufacture of al killed cold-rolled steel sheet for drawing
DE3640525C2 (en) * 1986-11-27 1996-02-15 Schloemann Siemag Ag Mold for the continuous casting of steel strip
JPS63238963A (en) * 1987-03-27 1988-10-05 Hitachi Ltd Method and apparatus for producing metal strip
ES2032620T3 (en) * 1987-04-13 1993-02-16 Thyssen Stahl Aktiengesellschaft INSTALLATION FOR THE MANUFACTURE OF A STEEL TAPE WITH A THICKNESS OF 2 TO 25 MM THROUGH FORMING OF A CAST STEEL BAR.
DE3712537A1 (en) 1987-04-13 1988-11-10 Thyssen Stahl Ag Method for the production of a steel strip
IT1224318B (en) * 1988-05-26 1990-10-04 Mannesmann Ag PROCESS AND PLANT FOR THE CONTINUOUS PRODUCTION OF STEEL BELT
JPH07110364B2 (en) * 1988-06-01 1995-11-29 三菱重工業株式会社 Rolling method for continuously cast thin slabs
CA2065262C (en) 1989-09-01 1997-12-02 John G. Howard Acid stabilized pasta
JP2932587B2 (en) * 1990-03-28 1999-08-09 石川島播磨重工業株式会社 Hot thin plate manufacturing equipment
ATE163370T1 (en) * 1993-05-17 1998-03-15 Danieli Off Mecc PRODUCTION LINE FOR THE PRODUCTION OF STRIPS AND/OR SHEET
JPH08309406A (en) * 1995-05-15 1996-11-26 Hitachi Ltd Continuous casting direct-coupled hot rolling system
IT1284035B1 (en) 1996-06-19 1998-05-08 Giovanni Arvedi DIVER FOR CONTINUOUS CASTING OF THIN SLABS
DE19632448A1 (en) 1996-08-05 1998-02-12 Mannesmann Ag Process and plant for producing strip from low-carbon and ultra-low-carbon steels
IT1287156B1 (en) 1996-11-12 1998-08-04 Giovanni Arvedi PERFECTED SET OF EQUIPMENT FOR CONTINUOUS CASTING AT HIGH SPEED OF THIN SHEETS OF GOOD QUALITY
GB2322320A (en) * 1997-02-21 1998-08-26 Kvaerner Metals Cont Casting Continuous casting with rolling stages separated by a temperature controlling stage
IT1293817B1 (en) 1997-08-04 1999-03-10 Giovanni Arvedi INGOT MOLD FOR CONTINUOUS CASTING OF STEEL SHEETS WITH IMPROVED CONTACT
JP2000126803A (en) * 1998-10-27 2000-05-09 Ishikawajima Harima Heavy Ind Co Ltd Hot rolling method and facility
ITMI20021996A1 (en) 2002-09-19 2004-03-20 Giovanni Arvedi PROCESS AND PRODUCTION LINE FOR THE MANUFACTURE OF ULTRA-THIN HOT TAPE BASED ON THE TECHNOLOGY OF THE THIN SHEET

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962808A (en) * 1988-07-14 1990-10-16 Thyssen Stahl Aktiegesellschaft Method of producing a steel strip having a thickness of less than 10 mm
US5630467A (en) * 1994-09-30 1997-05-20 Hitachi, Ltd. Thin slab continuous casting machine and method
US6092586A (en) * 1996-03-28 2000-07-25 Mannesmann Ag Method and arrangement for producing hot-rolled steel strip
US6533876B1 (en) * 1996-12-19 2003-03-18 Corus Staal Process and device for producing a steel strip or sheet

Also Published As

Publication number Publication date
WO2006106376A8 (en) 2007-12-27
AU2005330323B2 (en) 2010-07-22
AR053045A1 (en) 2007-04-18
AU2005330323A1 (en) 2006-10-12
BRPI0513754A (en) 2008-05-13
JP5371421B2 (en) 2013-12-18
MX2007012433A (en) 2007-11-09
PT1868748E (en) 2008-12-12
CA2569841C (en) 2012-05-29
CN1972764A (en) 2007-05-30
DE602005010487D1 (en) 2008-11-27
CN1972764B (en) 2011-12-07
KR20110033873A (en) 2011-03-31
DK1868748T3 (en) 2009-01-19
EG24541A (en) 2009-09-09
EP1868748B1 (en) 2008-10-15
CA2569841A1 (en) 2006-10-12
HRP20080586T3 (en) 2009-01-31
ATE411120T1 (en) 2008-10-15
US7832460B2 (en) 2010-11-16
JP2008534289A (en) 2008-08-28
PL1868748T3 (en) 2009-01-30
ES2314642T3 (en) 2009-03-16
BRPI0513754B1 (en) 2018-10-23
WO2006106376A1 (en) 2006-10-12
EP1868748A1 (en) 2007-12-26
US20080035301A1 (en) 2008-02-14

Similar Documents

Publication Publication Date Title
EP1868748B1 (en) Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling
AU2005297538B8 (en) Method and device for continuously producing a thin metal strip
AU675099B2 (en) Process for the production of a strip, a pre-strip or a slab
US7343961B2 (en) Process and production line for manufacturing ultrathin hot rolled strips based on the thin slab technique
KR101809108B1 (en) Method and plant for the energy-efficient production of hot steel strip
CN1148270C (en) Process and device for producing ferritically rolled steel strip
EP0504999B1 (en) Apparatus and method for the manufacture of hot-rolled steel
US9186711B2 (en) Rolling line and relative method
CN1244820A (en) Process and device for producing a steel strip or sheet
RU2747341C2 (en) Combined cast and roll unit and method of endless manufacture of hot-rolled smoothing strip
EP0655288B1 (en) Continuous casting process and continuous casting/rolling process for steel
JP2009501635A (en) Production method and plant for steel sheet without interruption
CN110087801B (en) Method for continuously producing a wound hot-rolled steel strip in a combined casting and rolling installation
EP2670539B1 (en) Rolling method for strip and corresponding rolling line
US20140026631A1 (en) Rolling method for strip and corresponding rolling line
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
WO2000050189A1 (en) In-line continuous cast-rolling process for thin slabs
RU2376106C2 (en) Method and device for manufacturing of metallic strips and sheets excluding discontinuity between continuous casting and rolling
Arvedi et al. The Arvedi Endless Strip Production line (ESP): from liquid steel to hot-rolled coil in seven minutes
US20240009724A1 (en) Process and apparatus for producing metallurgical products, in particular of the merchant type, in particular in an endless mode
TW438634B (en) Process and device for producing a high-strength steel strip
US20120018113A1 (en) CSP-continuous casting plant with an additional rolling line
KR20070117992A (en) Process and system for manufacturing metal strips and sheets without solution of continuity between continuous casting and rolling

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION