JPH08309406A - Continuous casting direct-coupled hot rolling system - Google Patents

Continuous casting direct-coupled hot rolling system

Info

Publication number
JPH08309406A
JPH08309406A JP7115462A JP11546295A JPH08309406A JP H08309406 A JPH08309406 A JP H08309406A JP 7115462 A JP7115462 A JP 7115462A JP 11546295 A JP11546295 A JP 11546295A JP H08309406 A JPH08309406 A JP H08309406A
Authority
JP
Japan
Prior art keywords
continuous casting
inert gas
slab
hot rolling
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7115462A
Other languages
Japanese (ja)
Inventor
Koji Shiina
孝次 椎名
志郎 ▲高▼橋
Shiro Takahashi
Hideaki Mori
英明 森
Kenjiro Narita
健次郎 成田
Kenichi Yasuda
健一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7115462A priority Critical patent/JPH08309406A/en
Publication of JPH08309406A publication Critical patent/JPH08309406A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Abstract

PURPOSE: To improve the quality of a strip material, and to attain a continuous casting direct-coupled hot rolling system with high safety and reliability by installing the filling mechanism of inert gas between the continuous casting of a minihot system and a rolling process. CONSTITUTION: A molten slab 3 supplied from a tundish 1 is indirectly solidified and cast by cooling water A in a mold 5. A slab 6 with its surface solidified and with its inside molten is annealed with mist spray water B by many spray nozzles 8 installed at the outlet end of the mold 5. The slab 6 is transferred to a rolling side by many guide rolls 7. And, the temperature of the slab 6 cooled too much in the next process is raised by an induction heating apparatus 9a, and a first stage rolling is performed by rough rolling rolls 11. An inert gas filling mechanism 16 covering the whole of slab 6, guide rolls 7 and spray nozzles 8, is installed in a generating process from the outlet of the mold 5 to the induction heating apparatus 9a, and inert gas C is filled or supplied from the inflow port 16a of the filling mechanism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連鋳直結熱間圧延システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting direct connection hot rolling system.

【0002】[0002]

【従来の技術】従来の連鋳直結熱間圧延システムは、図
5に示すように、連鋳から粗圧延過程までの間に不活性
ガス封入機構が無い場合である。ここで、図5により、
従来の連鋳直結圧延システムについて説明する。従来、
連鋳直結熱間圧延システムではタンディッシュ1から供
給された溶融スラブ3をモールド5内で冷却水Aにより
間接的に凝固,鋳造し、表面が凝固,内部が溶融状態の
スラブ6をモールド5の出口端から多数設置されたスプ
レノズル8によりミストスプレ水Bで除冷する。これら
スラブ6は多数のガイドロール7により圧延側へ移送さ
れる。そして、次の工程で冷却しすぎたスラブ6を誘導
加熱器9aで昇温し、粗用圧延ロール11で第1段階の
圧延を行う。この粗圧延ロール11でストリップ6が圧
下される際、圧延板材1からロール2へ熱伝導,加工
熱、あるいは摩擦熱等により、多量の熱が移動する。そ
こで、再び誘導加熱器9bにより、ストリップ6が加熱
され、仕上げ用圧延ロール12で最終的なストリップ厚
さまで圧下され、その後板材巻き取り機15で巻き取る
ために、ストリップ冷却装置13で約800℃から約3
00℃まで冷却される。これら連鋳,冷却,加熱,粗圧
下,加熱,仕上げ圧下,冷却,巻取り過程の中で、特に
2ヶ所の加熱器9a,9bで加熱される際、ストリップ
表面に酸化膜が何層も発生する。これら酸化膜の発生は
ストリップ材の品質で、非常に良くない性状である。そ
のため、これら酸化膜を除去するために、ストリップ表
面に形成された酸化膜上へ数百kg/cm2 の噴射圧で高圧
水を短時間噴射するデスケーラ10a,10bを設置
し、当該膜を流体力により崩壊し、除去している。とこ
ろが、デスケーラ10a,10bは小流量といえども高
圧水で衝突するため、酸化膜を崩壊させるだけでなく、
ストリップ材を冷却しすぎる恐れがあり、低熱損失型の
デスケーラの開発が必須である。
2. Description of the Related Art In a conventional continuous casting direct-connection hot rolling system, as shown in FIG. 5, there is no inert gas filling mechanism between the continuous casting and the rough rolling process. Here, according to FIG.
A conventional continuous casting direct connection rolling system will be described. Conventionally,
In the continuous casting direct connection hot rolling system, the molten slab 3 supplied from the tundish 1 is indirectly solidified and cast in the mold 5 by the cooling water A, and the slab 6 having the surface solidified and the internal molten state is formed in the mold 5. A large number of spray nozzles 8 are installed from the outlet end to cool the mist spray water B. These slabs 6 are transferred to the rolling side by a large number of guide rolls 7. Then, in the next step, the slab 6 that has been overcooled is heated by the induction heater 9a, and the first-stage rolling is performed by the rough rolling roll 11. When the strip 6 is rolled down by the rough rolling roll 11, a large amount of heat is transferred from the rolled plate material 1 to the roll 2 due to heat conduction, processing heat, frictional heat, or the like. Then, the strip 6 is heated again by the induction heater 9b, rolled down to the final strip thickness by the finishing rolling roll 12, and then rolled up by the strip material winding machine 15 at about 800 ° C. by the strip cooling device 13. From about 3
It is cooled to 00 ° C. During the continuous casting, cooling, heating, rough pressing, heating, finishing pressing, cooling, and winding processes, especially when heated by the two heaters 9a and 9b, many layers of oxide film are generated on the strip surface. To do. The generation of these oxide films is the quality of the strip material, which is a very bad property. Therefore, in order to remove these oxide films, descalers 10a, 10b for injecting high-pressure water for a short time at an injection pressure of several hundred kg / cm 2 are installed on the oxide film formed on the strip surface, and the films are flowed. It is destroyed by physical strength and is being removed. However, since the descalers 10a and 10b collide with high pressure water even if the flow rate is small, not only the oxide film is destroyed but also
Since the strip material may be cooled too much, it is essential to develop a low heat loss type scaler.

【0003】以上のように、連鋳直結圧延システムはス
ラブからストリップまで熱収支バランスと温度管理の問
題はもちろん、高品質のストリップ材を生成するため
に、デスケーラの開発や酸化膜抑制機構の開発など新た
な技術課題が生じる。
As described above, in the continuous casting direct-coupling rolling system, in addition to the problems of heat balance and temperature control from slab to strip, in order to produce a high quality strip material, the development of a descaler and the development of an oxide film suppressing mechanism are performed. A new technical problem arises.

【0004】しかし、基本的には連鋳直結熱間圧延機の
新しいタイプの開発、すなわち、連続熱間圧延機やミニ
ホットのようなシステムで、鋳造,加熱,圧延工程の間
で加熱,冷却を効率良く繰り返すため、加熱過程でスト
リップ板材表面に多層の酸化膜が発生するため、この酸
化膜を除去するためのデスケーラが必要である。このデ
スケーラ性能向上のためには、酸化膜発生メカニズムの
解明及び酸化膜除去機構の開発の二点が最も重要であ
る。そこで、以上のような連鋳直結熱間圧延システムの
高効率温度管理を行うための技術課題として、有効な酸
化膜発生抑制装置及び当該装置の設置法やシステム構成
を検討した上での温度制御方法を提示し、さらに薄い酸
化膜除去機構の開発により、ストリップ材の高品質を確
保することが望まれる。
However, basically, a new type of continuous casting direct-connection hot rolling mill is developed, that is, in a system such as a continuous hot rolling mill or a mini hot, heating / cooling between casting, heating and rolling processes. In order to efficiently repeat the above, a multi-layer oxide film is generated on the surface of the strip plate material during the heating process. Therefore, a descaler for removing this oxide film is required. In order to improve the descaler performance, the two points of elucidation of the oxide film generation mechanism and development of the oxide film removal mechanism are the most important. Therefore, as a technical subject for performing high-efficiency temperature control of the continuous casting direct-connection hot rolling system as described above, temperature control after examining an effective oxide film generation suppressing device and the installation method and system configuration of the device. By presenting a method and developing a thin oxide film removing mechanism, it is desired to ensure high quality of the strip material.

【0005】[0005]

【発明が解決しようとする課題】従来技術は、従来鋳造
過程と熱間圧延過程を分けて行っていたバッチ式圧延シ
ステムに比べて、高効率な圧延生産システムである。し
かし、連鋳と熱間圧延を直結することにより、スラブ昇
温用に加熱器を設置し、しかも加熱により発生した酸化
膜を除去するため、デスケーラを設置して連続的稼働状
態で酸化膜を除去するなど新たな技術課題が生じる。以
上の連鋳直結熱間圧延システムの技術課題として、連鋳
から巻き取り過程までのスラブからストリップの温度管
理,各冷却領域における高効率冷却性能向上,酸化膜発
生抑制機構の開発,酸化膜発生メカニズムの冶金学的検
討など多くの熱的技術課題が生じる。そのため、加熱に
よる酸化膜の発生を極力抑制するための開発及び制御技
術が極めて重要となる。
The prior art is a rolling production system with high efficiency as compared with the batch type rolling system in which the conventional casting process and hot rolling process are separately performed. However, by directly connecting continuous casting and hot rolling, a heater was installed to raise the temperature of the slab, and in order to remove the oxide film generated by heating, a descaler was installed and the oxide film was continuously operated. New technical problems such as removal will occur. The technical issues of the continuous casting direct-connection hot rolling system are as follows: temperature control of slab to strip from continuous casting to winding process, improvement of high-efficiency cooling performance in each cooling region, development of oxide film generation suppression mechanism, oxide film generation Many thermal technical issues arise, such as metallurgical examination of the mechanism. Therefore, development and control technology for suppressing the generation of an oxide film due to heating as much as possible is extremely important.

【0006】本発明の目的は、連鋳から熱間圧延過程ま
での間に不活性ガス封入機構を設置し、当該機構へ不活
性ガスを封入または供給することにより、ストリップ板
材表面に発生する酸化膜の成長を抑制することにより、
ストリップ材の長寿命化及び高品質性を確保することに
ある。
An object of the present invention is to install an inert gas filling mechanism between the continuous casting and the hot rolling process, and fill or feed the inert gas into the mechanism to oxidize the strip plate surface. By suppressing the growth of the film,
It is to secure the long life and high quality of the strip material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明はモールド下流から仕上げミルまでの間に不
活性ガス封入機構を設け、この機構内へ不活性ガスを封
入または供給することにより、ストリップ材の表面に発
生する多層の酸化膜の発生を抑制し、ストリップ材の長
寿命化,高品質化を図るようにした。
In order to achieve the above object, the present invention provides an inert gas charging mechanism between the downstream of the mold and the finishing mill, and charges or supplies the inert gas into this mechanism. As a result, it is possible to suppress the generation of a multilayer oxide film that occurs on the surface of the strip material and to extend the life and quality of the strip material.

【0008】[0008]

【作用】従来、連鋳から圧延機までを一貫システムとし
て構成すると、これらの間に加熱過程が数段設置され
る。この加熱過程は、一般的に誘導加熱器内を通過する
ストリップ材を加熱,昇温させる。この時、ストリップ
材の表面には、通常多くの酸化膜層が発生し、この酸化
膜は圧延材の品質の点から好ましくない。そこで、これ
ら酸化膜を除去するため、ストリップ材表面に発生した
酸化膜に強制的に高圧ジェット水を衝突させて流体力に
よる酸化膜排除法を行う、デスケーラを少なくとも一つ
設置する。このデスケーラにより除去可能な酸化膜層は
表面の粗い酸化膜がほとんどである。ここで、酸化膜は
表面層は粗く、内部へ向かうにしたがって密になってお
り、この密な酸化膜を除去するのが連鋳直結熱間圧延シ
ステムの重要課題である。そこで、本発明ではモールド
下流から仕上げミルまでの間に不活性ガス封入機構を設
け、機構内へ不活性ガスを封入または供給することによ
り、ストリップ材表面に発生する多層の酸化膜の発生を
抑制し、ストリップ材の長寿命化,高品質化を図るよう
にした。
Operation: Conventionally, if a continuous system from a continuous casting to a rolling mill is configured as an integrated system, several heating processes are installed between them. This heating process generally heats and raises the temperature of the strip material passing through the induction heater. At this time, many oxide film layers are usually formed on the surface of the strip material, and this oxide film is not preferable from the viewpoint of the quality of the rolled material. Therefore, in order to remove these oxide films, at least one descaler is installed to perform high pressure jet water collision with the oxide film generated on the surface of the strip material to remove the oxide film by fluid force. The oxide film layer that can be removed by this descaler is mostly an oxide film having a rough surface. Here, the oxide film has a rough surface layer and becomes denser toward the inside, and removal of this dense oxide film is an important issue of the continuous casting direct hot rolling system. Therefore, in the present invention, an inert gas filling mechanism is provided between the downstream of the mold and the finishing mill, and by filling or feeding the inert gas into the mechanism, generation of a multilayer oxide film generated on the surface of the strip material is suppressed. However, the strip material has a long life and high quality.

【0009】すなわち、本発明は、従来の連鋳直結熱間
圧延設備及びハード構成に不活性ガス封入機構を設置す
るだけで、ストリップ材を不活性ガス雰囲気にすること
で酸化膜発生の抑制及び温度管理が行える最も容易なシ
ステムである。
That is, the present invention suppresses the generation of an oxide film by placing the strip material in an inert gas atmosphere simply by installing an inert gas sealing mechanism in the conventional continuous casting direct-connection hot rolling equipment and hardware structure. This is the easiest system for temperature control.

【0010】以上の点から、連鋳過程から仕上げ圧延過
程の間に不活性ガス封入機構を設置し、この機構へ不活
性ガスを封入または供給することにより、加熱過程で大
気中での酸化反応を抑制することができる有効な連鋳直
結圧延システムであることがわかる。そして、これらの
作用により、ストリップ板材の長手及び幅方向の温度分
布の均一化及び酸化膜発生の抑制を可能とし、圧延機用
ストリップ材の長寿命化,高品質化を図ることができ
る。
From the above points, an inert gas charging mechanism is installed between the continuous casting process and the finish rolling process, and by charging or supplying the inert gas to this mechanism, the oxidation reaction in the atmosphere in the heating process is performed. It can be seen that this is an effective continuous casting direct-coupling rolling system capable of suppressing the above. With these actions, it is possible to make uniform the temperature distribution in the lengthwise and widthwise directions of the strip plate material and suppress the generation of an oxide film, so that the strip material for a rolling mill can have a long life and high quality.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1及び図2によ
り説明する。図1は連鋳直結熱間圧延システムの説明図
を示す。ここで、図1により、本発明を説明する。ま
ず、連鋳直結熱間圧延システムの構成及び動作について
説明する。連鋳直結熱間圧延システムではタンディッシ
ュ1から供給された溶融スラブ3をモールド5内で冷却
水Aにより間接的に凝固,鋳造し、表面が凝固,内部が
溶融状態のスラブ6をモールド5の出口端から多数設置
されたスプレノズル8によりミストスプレ水Bで除冷す
る。スラブ6は多数のガイドロール7により圧延側へ移
送される。そして、次の工程で冷却しすぎたスラブ6を
誘導加熱器9aで昇温し、粗用圧延ロール11で第1段
階の圧延を行う。粗圧延ロール11でストリップ6が圧
下される際、圧延板材1からロール2へ熱伝導,加工
熱、あるいは摩擦熱等により、多量の熱が移動する。そ
こで、再び誘導加熱器9bにより、ストリップ6が加熱
され、仕上げ用圧延ロール12で最終的なストリップ厚
さまで圧下され、その後、板材巻き取り機15で巻き取
るために、ストリップ冷却装置13で約800℃から約
300℃まで冷却される。これら連鋳,冷却,加熱,粗
圧下,加熱,仕上げ圧下,冷却,巻取り過程の間にモー
ルド5出口から、誘導加熱器9aまでの生成過程にスラ
ブ6,ガイドロール7,スプレノズル8全体をおおう不
活性ガス封入機構16を設置し、封入機構の流入口16
aから不活性ガスCを封入、または供給する。ここで、
不活性ガスとして、窒素ガスN2 ,アルゴンガスAr,
フッ素ガスF等が用いられる。これにより、加熱,冷却
過程におけるスラブ表面の酸化反応を抑制し、表面上の
酸化膜生成を極力低減させる。もちろん、不活性ガス封
入機構16により、スラブ6表面上に形成される酸化膜
の発生がほとんど無ければ、下流側に設置したデスケー
ラ10a,10bを省くことも可能である。そして、不
活性ガス封入機構16は一般的にダクト形状のカバーで
あるため、カバーは約900〜約1400℃の高温スラ
ブ表面から熱リークを防止するための熱遮へい材として
も機能するので、本過程以降の加熱器による昇温能力を
小さくすることができ、さらに二次冷却水の飛散を防止
することも可能である。また、多数設置されたスプレノ
ズル8から連鋳の二次冷却用に噴射された冷却水Bは不
活性ガス封入機構16の下部に設置したドレン流出機構
16bから、連鋳直結圧延システムの下部に設置された
冷却用ピットへ流出させ、本システムを閉ループ冷却シ
ステムとすることにより、環境の面でも改善される。さ
らに、万一発生した小量の酸化膜を除去するために、ス
トリップ表面に形成された酸化膜上へ数百kg/cm2 の噴
射圧で高圧水を噴射するデスケーラ10a,10bを設
置し、膜を流体力により崩壊し、除去する。ところが、
デスケーラ10a,10bは小流量といえども高圧水で
衝突するため、酸化膜を崩壊させるだけでなく、ストリ
ップ材を冷却しすぎる恐れがあり、低熱損失型のデスケ
ーラの開発が必須である。ここで、冷却用スプレノズル
8は不活性ガス封入機構16のカバーに直接設置しても
良い。また、不活性ガス封入機構流入口16aから誘導
加熱器9aヘも不活性ガスCは供給されるので、加熱領
域でも酸化反応抑制作用が生じる。また、図2は基本的
に図1と同様であるが、不活性ガス封入機構の流入口1
6aを誘導加熱器9aの下流側に設置し、極力、誘導加
熱器9aにより加熱される過程の酸化反応を抑制する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an explanatory diagram of a continuous casting direct-connection hot rolling system. The present invention will now be described with reference to FIG. First, the configuration and operation of the continuous casting direct connection hot rolling system will be described. In the continuous casting direct connection hot rolling system, the molten slab 3 supplied from the tundish 1 is indirectly solidified and cast in the mold 5 by the cooling water A, and the slab 6 having the surface solidified and the internal molten state is formed in the mold 5. A large number of spray nozzles 8 are installed from the outlet end to cool the mist spray water B. The slab 6 is transferred to the rolling side by a large number of guide rolls 7. Then, in the next step, the slab 6 that has been overcooled is heated by the induction heater 9a, and the first-stage rolling is performed by the rough rolling roll 11. When the strip 6 is rolled down by the rough rolling roll 11, a large amount of heat is transferred from the rolled plate material 1 to the roll 2 due to heat conduction, working heat, frictional heat, or the like. Then, the strip 6 is heated again by the induction heater 9b, rolled down to the final strip thickness by the finishing rolling roll 12, and then stripped by the strip cooling device 13 to about 800 to be wound up by the sheet material winding machine 15. Cool from 0 ° C to about 300 ° C. During the continuous casting, cooling, heating, rough pressure reduction, heating, finishing pressure reduction, cooling, and winding processes, the entire slab 6, guide roll 7, and spray nozzle 8 are covered during the generation process from the mold 5 outlet to the induction heater 9a. An inert gas filling mechanism 16 is installed, and an inlet 16 of the filling mechanism is installed.
The inert gas C is filled or supplied from a. here,
As the inert gas, nitrogen gas N 2 , argon gas Ar,
Fluorine gas F or the like is used. As a result, the oxidation reaction on the surface of the slab during the heating and cooling process is suppressed, and the generation of an oxide film on the surface is reduced as much as possible. Of course, if the inert gas sealing mechanism 16 causes almost no oxide film to be formed on the surface of the slab 6, the descalers 10a and 10b installed on the downstream side can be omitted. Since the inert gas filling mechanism 16 is generally a duct-shaped cover, the cover also functions as a heat shield material for preventing heat leakage from the high temperature slab surface at about 900 to about 1400 ° C. It is possible to reduce the temperature raising ability of the heater after the process and to prevent the secondary cooling water from scattering. Further, the cooling water B sprayed for secondary cooling of continuous casting from a large number of spray nozzles 8 installed from the drain outflow mechanism 16b installed in the lower part of the inert gas charging mechanism 16 to the lower part of the continuous casting direct rolling system. It is also improved from the environmental point of view by making it flow into the cooling pit and making this system a closed loop cooling system. Furthermore, in order to remove a small amount of oxide film generated, descalers 10a and 10b for injecting high-pressure water at an injection pressure of several hundred kg / cm 2 are installed on the oxide film formed on the strip surface, The membrane is hydrodynamically disrupted and removed. However,
Since the descalers 10a and 10b collide with high-pressure water even if the flow rate is small, not only the oxide film is destroyed but also the strip material may be overcooled, so development of a low heat loss type descaler is essential. Here, the cooling spray nozzle 8 may be directly installed on the cover of the inert gas sealing mechanism 16. Further, since the inert gas C is also supplied to the induction heater 9a from the inlet 16a of the inert gas charging mechanism, the oxidation reaction suppressing action is generated even in the heating region. 2 is basically the same as FIG. 1, but the inlet 1 of the inert gas charging mechanism is
6a is installed on the downstream side of the induction heater 9a to suppress the oxidation reaction in the process of heating by the induction heater 9a as much as possible.

【0012】以上のように、連鋳直結熱間圧延システム
はスラブからストリップまで熱収支バランスと温度管理
の問題はもちろん、高品質のストリップ材を生成するた
めに、デスケーラの開発や酸化膜抑制機構の開発など新
たな技術課題が生じる。
As described above, the continuous casting direct connection hot rolling system not only has problems of heat balance and temperature control from slab to strip, but also develops a descaler and suppresses an oxide film in order to produce a high quality strip material. New technical issues such as the development of

【0013】次に、本発明の一実施例の圧延工程の温度
分布について、図3により説明する。まず、図3は圧延
工程ラインに沿った温度分布図を示す。図3のグラフは
横軸に圧延工程方向Z,縦軸に温度をとった温度分布特
性を示しており、曲線の勾配は冷却速度を表わしてい
る。図中の実線は不活性ガス封入機構16の無い従来
例、破線は不活性ガス封入機構16の有る本発明の場合
を示す。これより、同じ冷却水流量,加熱条件の場合、
不活性ガス封入機構16を設置することにより、高温材
からの熱リークが減少するため、特に連鋳,連鋳二次冷
却,加熱A領域でスラブ表面温度が高くなることが予想
される。そして、これら3領域及び加熱B領域の合わせ
て4領域が全体システム中の酸化膜発生領域,に対
応すると考えられるので、これら領域の零囲気を大気の
空気から少しでも酸化反応を抑制する不活性ガス零囲気
とすることが、ストリップ材の高品質性確保にとって重
要である。
Next, the temperature distribution in the rolling process of one embodiment of the present invention will be described with reference to FIG. First, FIG. 3 shows a temperature distribution diagram along the rolling process line. The graph of FIG. 3 shows the temperature distribution characteristics in which the horizontal axis represents the rolling process direction Z and the vertical axis represents the temperature, and the gradient of the curve represents the cooling rate. The solid line in the figure shows a conventional example without the inert gas charging mechanism 16, and the broken line shows the case of the present invention with the inert gas charging mechanism 16. From this, if the cooling water flow rate and heating conditions are the same,
Since the heat leakage from the high temperature material is reduced by installing the inert gas filling mechanism 16, it is expected that the surface temperature of the slab becomes high especially in the continuous casting, the secondary cooling of the continuous casting, and the heating A region. Further, since it is considered that 4 regions in total of these 3 regions and the heating B region correspond to the oxide film generation region in the entire system, the inert gas which suppresses the oxidation reaction of the zero atmosphere of these regions from the atmospheric air even a little. A zero gas atmosphere is important for ensuring the high quality of the strip material.

【0014】また、図4は高温スラブ面上の酸化膜形成
状態の模式図を示す。図4(a)は本発明の不活性ガス
封入機構設置の場合であり、表面上での酸化反応が抑制
されるため、粗い酸化材から成る酸化膜層の発生が考え
られる。一方、図4(b)は従来例の不活性ガス封入機
構無しの場合であり、スラブ表面上での酸化反応は活発
となり、上から粗い酸化膜層α,中間の酸化膜層β、そ
して、密な酸化膜層γのほぼ3層構造から成り、これら
を全て圧延工程下流側に設置したデスケーラ10a,1
0b等により、流体力を利用して除去する必要がある。
FIG. 4 is a schematic view showing a state where an oxide film is formed on the high temperature slab surface. FIG. 4A shows the case where the inert gas sealing mechanism of the present invention is installed. Since the oxidation reaction on the surface is suppressed, it is considered that an oxide film layer made of a rough oxide material is generated. On the other hand, FIG. 4B shows the case without the inert gas filling mechanism of the conventional example, in which the oxidation reaction on the slab surface becomes active, and the rough oxide film layer α, the intermediate oxide film layer β, and A descaler 10a, 1 having a three-layer structure of a dense oxide film layer γ, all of which are installed on the downstream side of the rolling process.
It is necessary to remove it by utilizing the fluid force due to 0b or the like.

【0015】したがって、本発明の不活性ガス封入機構
16を設置し、機構の出力制御を行えば、加熱及び冷却
過程におけるスラブ表面上の酸化膜発生の抑制が可能と
なり、これによりストリップ板幅方向及び長手方向の温
度分布の均一化が容易となり、その結果、高品質の板材
を生成することのできる連鋳直結熱間圧延システムを提
供することができる。
Therefore, if the inert gas filling mechanism 16 of the present invention is installed and the output of the mechanism is controlled, it is possible to suppress the generation of an oxide film on the surface of the slab during the heating and cooling processes, and thus the strip plate width direction. Also, it becomes easy to make the temperature distribution in the longitudinal direction uniform, and as a result, it is possible to provide a continuous casting direct connection hot rolling system capable of producing a high-quality plate material.

【0016】[0016]

【発明の効果】本発明によれば、ミニホットシステムの
連鋳から圧延過程の間に不活性ガス封入機構を設置し、
機構内に不活性ガスを封入または供給することにより、
加熱時にストリップ材表面に発生する酸化膜を抑制し、
この結果、ストリップ材の品質向上が可能となり、安全
性,信頼性の高い連鋳直結熱間圧延システムを提供でき
る。
According to the present invention, an inert gas charging mechanism is installed between the continuous casting and rolling process of the mini hot system,
By filling or supplying an inert gas in the mechanism,
Suppresses the oxide film generated on the surface of the strip material during heating,
As a result, the quality of the strip material can be improved, and a continuous casting direct connection hot rolling system with high safety and reliability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の連鋳直結熱間圧延システム
の説明図。
FIG. 1 is an explanatory diagram of a continuous casting direct connection hot rolling system according to an embodiment of the present invention.

【図2】本発明の他の実施例の連鋳直結熱間圧延システ
ムの説明図。
FIG. 2 is an explanatory diagram of a continuous casting direct connection hot rolling system according to another embodiment of the present invention.

【図3】本発明の一実施例の圧延工程ラインに沿った温
度分布図。
FIG. 3 is a temperature distribution diagram along a rolling process line according to an embodiment of the present invention.

【図4】本発明の一実施例の酸化膜発生機構の説明図。FIG. 4 is an explanatory diagram of an oxide film generation mechanism according to one embodiment of the present invention.

【図5】従来の連鋳直結熱間圧延システムの説明図。FIG. 5 is an explanatory diagram of a conventional continuous casting direct-connection hot rolling system.

【符号の説明】[Explanation of symbols]

1…タンディッシュ、2…ストッパ、3…溶融スラブ、
4…流入用ノズル、5…モールド、6…圧延用スラブ、
7…ガイドロール、8…スプレノズル、9a,9b…誘
導加熱器、10a,10b…デスケーラ、11…粗用圧
延ロール、12…仕上げ用圧延ロール、13…ストリッ
プ冷却装置、14…ターンロール、15…板材巻き取り
機、16…不活性ガス封入機構、16a…不活性ガス封
入機構流入口、16b…ドレン流出機構。
1 ... Tundish, 2 ... Stopper, 3 ... Molten slab,
4 ... Inflow nozzle, 5 ... Mold, 6 ... Rolling slab,
7 ... Guide roll, 8 ... Spray nozzle, 9a, 9b ... Induction heater, 10a, 10b ... Descaler, 11 ... Roughing roll, 12 ... Finishing roll, 13 ... Strip cooling device, 14 ... Turn roll, 15 ... Plate material winding machine, 16 ... Inert gas filling mechanism, 16a ... Inert gas filling mechanism inlet, 16b ... Drain outflow mechanism.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B22D 11/12 B22D 11/12 A B C23F 15/00 C23F 15/00 (72)発明者 成田 健次郎 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 安田 健一 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B22D 11/12 B22D 11/12 AB C23F 15/00 C23F 15/00 (72) Inventor Kenjiro Narita 502 Jinritsu-cho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. (72) Inventor Kenichi Yasuda 502, Jin-machi, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】板圧延工程で直列に連続鋳造機,加熱器,
デスケーラ,粗圧延機,加熱器,デスケーラ,仕上げ圧
延機から構成される連鋳直結熱間圧延システムにおい
て、連鋳過程から仕上げ圧延過程までの間に少なくとも
一つの不活性ガス封入機構を設置し、前記不活性ガス封
入機構内へ不活性ガスを封入または供給することによ
り、ストリップ材表面上に形成される酸化膜の発生を抑
制し、前記ストリップ材を前記不活性ガス封入機構でお
おうためのカバーが熱遮へい材として作用し、前記加熱
器での昇温能力を極力小さくし、さらに二次冷却水の飛
散防止をすることを特徴とする連鋳直結熱間圧延システ
ム。
1. A continuous casting machine, a heater, and
In a continuous casting direct connection hot rolling system consisting of a descaler, a rough rolling mill, a heater, a descaler, and a finishing rolling mill, at least one inert gas charging mechanism is installed between the continuous casting process and the finishing rolling process, A cover for suppressing the generation of an oxide film formed on the surface of the strip material by filling or supplying the inert gas into the inert gas filling mechanism and covering the strip material with the inert gas filling mechanism. Acts as a heat shield, minimizes the temperature raising capability of the heater, and further prevents the secondary cooling water from splashing, a continuous casting direct hot rolling system.
【請求項2】請求項1において、前記デスケーラを省い
て簡略化した連鋳直結熱間圧延システム。
2. The continuous casting direct-connection hot rolling system according to claim 1, which is simplified by omitting the descaler.
【請求項3】請求項1または2において、前記不活性ガ
ス封入機構の下部にドレン流出機構を設け、連鋳の二次
冷却用冷却水を下部の冷却用ピットへ流出し、冷却シス
テムを閉ループとした連鋳直結熱間圧延システム。
3. The drainage mechanism according to claim 1 or 2, wherein a drain outflow mechanism is provided below the inert gas charging mechanism, and secondary cooling water for continuous casting is allowed to flow out into a lower cooling pit to close the cooling system. Continuous casting direct connection hot rolling system.
JP7115462A 1995-05-15 1995-05-15 Continuous casting direct-coupled hot rolling system Pending JPH08309406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7115462A JPH08309406A (en) 1995-05-15 1995-05-15 Continuous casting direct-coupled hot rolling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7115462A JPH08309406A (en) 1995-05-15 1995-05-15 Continuous casting direct-coupled hot rolling system

Publications (1)

Publication Number Publication Date
JPH08309406A true JPH08309406A (en) 1996-11-26

Family

ID=14663147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7115462A Pending JPH08309406A (en) 1995-05-15 1995-05-15 Continuous casting direct-coupled hot rolling system

Country Status (1)

Country Link
JP (1) JPH08309406A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030847A1 (en) * 1997-12-17 1999-06-24 Sms Demag Ag Method and installation for the continuous production of hot-rolled, thin flat products
WO2006066551A1 (en) * 2004-12-21 2006-06-29 Salzgitter Flachstahl Gmbh Method for producing hot strips consisting of lightweight steel
AT504782B1 (en) * 2005-11-09 2008-08-15 Siemens Vai Metals Tech Gmbh METHOD FOR PRODUCING A HOT-ROLLED STEEL STRIP AND COMBINED CASTING AND ROLLING MACHINE TO PERFORM THE METHOD
JP2008534289A (en) * 2005-04-07 2008-08-28 アルベディ,ジョバンニ Processes and systems for producing metal strips and sheets without disrupting continuity during continuous casting and rolling
JP2011502785A (en) * 2007-12-11 2011-01-27 武▲漢鋼鉄▼(集▲団▼)公司 Method and system for producing wide strip steel by continuous casting and rolling of thin slabs
WO2011129465A1 (en) * 2010-04-16 2011-10-20 Jfeスチール株式会社 Process for producing hot-rolled steel sheet and process for producing hot-dip galvanized steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030847A1 (en) * 1997-12-17 1999-06-24 Sms Demag Ag Method and installation for the continuous production of hot-rolled, thin flat products
US6527882B1 (en) * 1997-12-17 2003-03-04 Sms Demag Ag Method and installation for the continuous production of hot-rolled, thin flat products
WO2006066551A1 (en) * 2004-12-21 2006-06-29 Salzgitter Flachstahl Gmbh Method for producing hot strips consisting of lightweight steel
US8069904B2 (en) 2004-12-21 2011-12-06 Sms Siemag Ag Method for producing hot strips from lightweight steel
JP2008534289A (en) * 2005-04-07 2008-08-28 アルベディ,ジョバンニ Processes and systems for producing metal strips and sheets without disrupting continuity during continuous casting and rolling
AT504782B1 (en) * 2005-11-09 2008-08-15 Siemens Vai Metals Tech Gmbh METHOD FOR PRODUCING A HOT-ROLLED STEEL STRIP AND COMBINED CASTING AND ROLLING MACHINE TO PERFORM THE METHOD
US8479550B2 (en) 2005-11-09 2013-07-09 Siemens Vai Metals Technologies Gmbh Method for the production of hot-rolled steel strip and combined casting and rolling plant for carrying out the method
JP2011502785A (en) * 2007-12-11 2011-01-27 武▲漢鋼鉄▼(集▲団▼)公司 Method and system for producing wide strip steel by continuous casting and rolling of thin slabs
WO2011129465A1 (en) * 2010-04-16 2011-10-20 Jfeスチール株式会社 Process for producing hot-rolled steel sheet and process for producing hot-dip galvanized steel sheet

Similar Documents

Publication Publication Date Title
KR100937798B1 (en) A method of producing steel
JP3553975B2 (en) Method and apparatus for the production of steel strip or sheet
EP0726112B1 (en) Casting steel strip
JP2002504434A (en) Equipment for producing cold rolled stainless steel strip
SK8482000A3 (en) Process and device for producing a high-strength steel strip
JP3726506B2 (en) Billet water cooling method
JP3043075B2 (en) Method and apparatus for operating continuous casting apparatus
JP2917524B2 (en) Continuous casting of thin slabs
JP4055440B2 (en) Direct-rolling method for continuous cast slabs
JPH08309406A (en) Continuous casting direct-coupled hot rolling system
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
CN1319678C (en) Method and device for the production of a trimmed metal strip
JP4407481B2 (en) Continuous casting method for medium carbon steel
JP4373796B2 (en) Steel strip casting
CA2389288A1 (en) Production of thin steel strip
JP3305675B2 (en) Finishing method of thin slab continuous casting
JPH08164460A (en) Production of continuously cast slab having good internal quality
JPH0218936B2 (en)
JP2003181522A (en) Method and device for manufacturing steel plate having excellent surface property
JP2006181583A (en) Method for producing continuously cast slab
JPH11267755A (en) Manufacture of thick steel plate and straightening device used in it
JP7234785B2 (en) Casting end control method
JPS58116905A (en) Producing device for steel material by direct rolling
JP6981435B2 (en) Hot-rolled steel sheet manufacturing equipment
JP2001018040A (en) Manufacture of continuously cast slab