US20090020265A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
US20090020265A1
US20090020265A1 US11/918,709 US91870906A US2009020265A1 US 20090020265 A1 US20090020265 A1 US 20090020265A1 US 91870906 A US91870906 A US 91870906A US 2009020265 A1 US2009020265 A1 US 2009020265A1
Authority
US
United States
Prior art keywords
spiral
heat exchanger
tube section
tube
spirals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/918,709
Other languages
English (en)
Inventor
Adolf Feinauer
Thorsten Kusnik
Wolfgang Nuiding
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Assigned to BSH BOSCH UND SIEMENS HAUSGERATE GMBH reassignment BSH BOSCH UND SIEMENS HAUSGERATE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KUSNIK, THORSTEN, FEINAUER, ADOLF, NUIDING, WOLFGANG
Publication of US20090020265A1 publication Critical patent/US20090020265A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/028Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of at least one medium being helically coiled, the coils having a conical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0064Vaporizers, e.g. evaporators

Definitions

  • the present invention relates to a heat exchanger comprising a tube section which is wound helically to form a spiral.
  • a heat exchanger is known from U.S. Pat. No. 5,502,829.
  • the spiral serves to guide a coolant as a first heat transfer fluid and is arranged in a flow duct surrounded by an elongated housing, through which with the aid of a fan air is conveyed as a second heat transfer fluid.
  • a compact heat exchanger with spiral-shaped tube sections, through which the coolant flows in series, is also disclosed in DE-OS 2 136 369.
  • This known heat exchanger is formed from a tape wound into a spiral fitted with coolant ducts.
  • the object of the present invention is to indicate a compact, easily implementable heat exchanger and a method for the production thereof.
  • a heat exchanger comprising a first tube section which is wound helically to form a first spiral for guiding a first heat transfer fluid, in which the first spiral and a second spiral which is wound from a helically wound second tube section are arranged in an interlacing manner inside one another and, in flow engineering terms, are connected to one another.
  • the object is achieved secondly in a method for the production of the heat exchanger defined above, in which a tube is wound around a first winding core so as to form the first spiral, a slotted second winding core, through the at least one slot of which the inlet and outlet of the spiral can pass, is placed around the first spiral, and from the same tube a second spiral surrounding the first spiral is wound on the second winding core.
  • the tube sections of the two spirals are preferably connected to one another in one piece, in flow engineering terms, to form a continuous spiral.
  • the two spirals are preferably wound with opposing handednesses.
  • the tube sections of the two spirals are also preferably connected to one another at a same end of the two spirals respectively.
  • the tube sections of the two spirals can also be connected by means of a tube section which extends between opposite ends of the two spirals.
  • the handedness of the two spirals can be the same.
  • a third or yet further spirals can be provided, which are respectively interlaced with the first and the second spiral.
  • Production of the heat exchanger is particularly simple if the spirals running into one another have a constant cross-section in the longitudinal direction such that the spirals are shaped e.g. in the form of a circular cylinder or a rectangular prism.
  • the spirals arranged in an interlacing manner inside one another may have a cross-section that tapers in the longitudinal direction, e.g. like a truncated cone.
  • a free space in the inside of the innermost spiral can be utilized by arranging an evaporation tray or a dryer there.
  • FIG. 1 shows a perspective view of a heat exchanger according to a first embodiment of the invention
  • FIG. 2 shows a plan view of the heat exchanger from FIG. 1 in an axial direction
  • FIG. 3 shows a perspective view of a modified embodiment of the heat exchanger from FIG. 1 ;
  • FIG. 4 shows a perspective view of a third embodiment of the heat exchanger
  • FIG. 5 shows an axial section through a fourth embodiment of the heat exchanger
  • FIGS. 6 to 11 show stages in the production of the heat exchanger according to the invention.
  • FIG. 12 shows a stage in the production as per FIG. 10 of the heat exchanger from FIG. 4 .
  • the heat exchanger shown in FIG. 1 comprises three spirals 1 , 2 , 3 formed continuously in one piece from a metal tube formed in the manner of a helical spring, which in the present exemplary embodiment run into one another coaxially relative to a longitudinal center axis M and are in this way arranged very compactly in an interlaced and thus space-saving manner.
  • the spirals 1 , 2 , 3 shown each have five windings so as to keep the drawing clear; in practice, the number of windings is generally larger such that the dimension of the heat exchanger along the longitudinal center axis M is greater than it is perpendicular thereto.
  • the spirals 1 , 2 , 3 are surrounded by a housing 4 shown in a cut-open manner in the figure, which housing serves to keep an airflow passing along the spirals 1 , 2 , 3 concentrated.
  • a fan Anchored to the housing via four braces 5 , of which only two are visible in the figure, is a fan which serves to drive the airflow through the housing 4 .
  • a propeller (not visible in the figure) of the fan is located on the open rear side, facing away from the observer, of the housing 4 .
  • a motor 6 of the fan is arranged in an inner cavity of the innermost spiral 1 and consequently represents a flow obstacle which forces the airflow running through the housing to pass closely along the spirals 1 , 2 , 3 .
  • An intake terminal for coolant is labeled 7 . From this intake terminal 7 the coolant reaches firstly the inner spiral 1 which has a right-hand direction of rotation. A tube section 8 forms a transition to the central left-handed spiral 2 . A corresponding transition from the spiral 2 to the outer, again right-handed, spiral 3 is located on the side of the heat exchanger facing away from the observer and is not visible in the figure. The coolant exits the heat exchanger via an outlet terminal 9 .
  • FIG. 2 shows a plan view of the three spirals 1 , 2 , 3 parallel to the longitudinal center axis M.
  • the tube section 10 which connects the spirals 2 and 3 to one another at the end of the arrangement facing away from the observer, can also be seen in this plan view.
  • FIG. 3 A second embodiment of the heat exchanger is shown in FIG. 3 , the housing of this embodiment, which does not differ from that of the first embodiment, being omitted from the figure.
  • a flat tray 11 is located on the inside of the innermost spiral 1 .
  • the tray 11 serves as an evaporation tray, i.e. it collects condensation water which flows out from an evaporator of the cooling device, and vaporizes this with the aid of the airflow running through the heat exchanger.
  • it is not therefore necessary to block the interior of the inner spiral 1 with a fan motor or such like. Where the spirals are sufficiently long, however, there may be ample space in the cavity of the inner spiral both for the fan motor and for the tray 11 .
  • a dryer for the coolant connected in series to the spirals 1 , 2 , 3 can be accommodated inside the spiral 1 .
  • an air gap is located under the base of the tray 1 between the base of the tray 11 and lower straight-line sections 12 of the inner spiral running thereunder such that air can flow around the lower sections 12 over their entire periphery.
  • the tray 11 could also be fastened directly to these lower sections 12 such that these can emit the heat of the coolant flowing through them via the fastening direct to the tray 11 .
  • FIG. 4 Interlaced spirals 1 , 2 , 3 according to a third embodiment of the inventive heat exchanger are shown in FIG. 4 .
  • all the spirals 1 , 2 , 3 have the same direction of rotation and the spirals are connected to one another respectively by means of a tube section 13 or 14 running approximately axially which extends in an essentially axial direction in an interspace between two spirals 1 , 2 and 2 , 3 from one end of the heat exchanger to the other.
  • the direction of flow of the coolant relative to the longitudinal center axis M is the same here in all three spirals 1 , 2 , 3 . That is, when air flows through the heat exchanger in the direction of the arrow P and the terminals 7 and 9 , as in the first embodiment, function as an inlet and outlet terminal respectively, all three spirals 1 , 2 , 3 operate on the countercurrent principle.
  • the tube sections 13 , 14 in this embodiment can also fulfill a stabilizing function for the spiral arrangement by being fastened, optionally via a thermally insulating intermediate layer, to the windings of one of the two spirals between which they extend, or even to both spirals.
  • FIG. 5 shows an axial section through the spirals of a heat exchanger according to a fourth embodiment of the invention, sections of the spirals lying above the section plane being shown as dotted outlines respectively.
  • the spirals 1 , 2 run here on conical surfaces, i.e. the diameter of their windings decreases from one longitudinal end of the heat exchanger to the other.
  • the advantage of this arrangement is that when air flows parallel to the longitudinal center axis through the spirals, air which has not yet already been preheated on a different winding flows against all the windings, including those at the downstream end of the heat exchanger.
  • FIG. 6 shows a cylindrical winding core 15 and a delivery roll 16 of a thin-walled metal tube made e.g. of copper.
  • a free end of the metal tube is temporarily fixed to the surface of the winding core 15 .
  • Simultaneously rotating the winding core 15 and displacing the delivery roll 16 along the winding core 15 unwinds the metal tube from the delivery roll 16 and winds it in evenly spaced windings onto the winding core 15 , as shown in FIG. 7 . This is how the spiral 1 is obtained.
  • a second winding core 17 in the form of a longitudinally slotted sleeve is pushed in an axial direction on to the first winding core 15 and the spiral 1 , the free end of the tube protruding through the slot 18 , as can be seen in FIG. 8 .
  • the tube section 8 which connects the spiral 1 to the delivery roll 16 also extends through the slot 17 .
  • Both winding cores 15 , 17 are now rotated together, and at the same time the delivery roll 16 is displaced along the winding cores 15 , 17 back to its starting position.
  • the second spiral 2 is obtained in this way, as can be seen in FIG. 10 .
  • a third, likewise slotted, winding core 19 is pushed on to the winding cores 15 , 17 and the spirals 1 , 2 , the free end of the tube and the tube section 10 in turn extending through the slot 20 of the winding core 19 .
  • Rotating the winding cores and displacing the delivery roll 19 now generates the spiral 3 on the winding core 19 . Since this process proceeds in the same manner as the winding of the spirals 1 and 2 , it is no longer shown in the figures. It is obvious that the number of winding cores and of spirals generated thereon can in principle be increased to any number as required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US11/918,709 2005-05-10 2006-03-29 Heat exchanger Abandoned US20090020265A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005021610.2 2005-05-10
DE102005021610A DE102005021610A1 (de) 2005-05-10 2005-05-10 Wärmetauscher
PCT/EP2006/061143 WO2006120068A1 (de) 2005-05-10 2006-03-29 Wärmetauscher

Publications (1)

Publication Number Publication Date
US20090020265A1 true US20090020265A1 (en) 2009-01-22

Family

ID=36602414

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/918,709 Abandoned US20090020265A1 (en) 2005-05-10 2006-03-29 Heat exchanger

Country Status (6)

Country Link
US (1) US20090020265A1 (de)
EP (1) EP1846714A1 (de)
CN (2) CN101738104B (de)
DE (1) DE102005021610A1 (de)
RU (1) RU2451886C2 (de)
WO (1) WO2006120068A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146967A1 (en) * 2009-12-23 2011-06-23 Halliburton Energy Services, Inc. Downhole well tool and cooler therefor
US20130269919A1 (en) * 2012-04-16 2013-10-17 Technip France Temperature moderated supports for flow tubes
CN103517775A (zh) * 2011-05-10 2014-01-15 阿尔弗雷德·凯驰两合公司 热交换器和其制造方法
US20150276325A1 (en) * 2012-11-01 2015-10-01 Skanska Sverige Ab Energy storage
USD762289S1 (en) * 2014-07-15 2016-07-26 Dometic Sweden Ab Heat exchanger
US9518787B2 (en) 2012-11-01 2016-12-13 Skanska Svergie Ab Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space
US20180223315A1 (en) * 2014-01-15 2018-08-09 Serucell Corporation Therapeutic serum obtained from co-cultured cells
CN108686612A (zh) * 2018-08-02 2018-10-23 汤铁 管式逆流换热反应器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2504717C2 (ru) * 2012-02-27 2014-01-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" (ФГУП "ЦНИИ СЭТ") Теплообменник
FR3000957A1 (fr) * 2013-01-16 2014-07-18 Nitrates & Innovation Installation modulaire de fabrication d'un precurseur d'emulsion explosive
CN103245239A (zh) * 2013-05-24 2013-08-14 海安县社民机械配件厂 换热器用不锈钢盘管
DE102017118444B4 (de) * 2017-08-14 2024-05-08 Thomas Hammer Temperierschlange und Verfahren zum Herstellen dieser Temperierschlange
CN108224831B (zh) * 2017-12-27 2020-05-12 中能绿色精灵(北京)科技有限公司 一种跨临界二氧化碳热泵换热器
CN109099616A (zh) * 2018-08-09 2018-12-28 宁夏欣达节能技术有限公司 石墨烯薄膜冷媒蒸发管及其装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US695350A (en) * 1901-06-10 1902-03-11 Albert Theuerkauf Pipe-bending machine.
US981104A (en) * 1909-11-16 1911-01-10 George F Chamberlin Automatic regulator.
US1436678A (en) * 1919-01-30 1922-11-28 Henry L Pitman Method and apparatus for making spring motors
US1738086A (en) * 1923-01-03 1929-12-03 Frank L O Wadsworth Water heater
US3524329A (en) * 1968-10-28 1970-08-18 Gen Motors Corp Refrigerant condenser with key connector
US3685330A (en) * 1969-02-27 1972-08-22 Linde Ag Method of and apparatus for helically coiling pipe
US3799255A (en) * 1971-07-21 1974-03-26 Bosch Hausgeraete Gmbh Heat exchange unit
US3809061A (en) * 1971-11-03 1974-05-07 Steam Engine Syst Corp Heat exchanger and fluid heater
US3874345A (en) * 1974-02-11 1975-04-01 Hydrogen Corp Vapor generator
US4495989A (en) * 1980-04-21 1985-01-29 Spiral Tubing Corporation Multiple coil heat exchanger
US5502829A (en) * 1993-11-03 1996-03-26 Intergraph Corporation Apparatus for obtaining data from a translation memory based on carry signal from adder
US5765385A (en) * 1996-05-29 1998-06-16 Childs; Michael A. Self-cooling beverage container
US20040069465A1 (en) * 2002-08-10 2004-04-15 Winiamando Inc. Spiral heat exchange device
US6877552B1 (en) * 2003-10-14 2005-04-12 Komax Systems, Inc Static mixer-heat exchanger
US20060108108A1 (en) * 2004-11-19 2006-05-25 Naukkarinen Olli P Spirally wound, layered tube heat exchanger and method of manufacture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE140125C (de) *
CN2067955U (zh) * 1990-05-17 1990-12-26 白玉忠 燃气节能淋浴器
CN1105916A (zh) * 1994-01-29 1995-08-02 辽宁省沈阳水泵厂机械密封分厂 热交换器双层螺旋管缠绕方法
CN2357291Y (zh) * 1998-12-05 2000-01-05 海尔集团公司 冷藏展示柜高压液管融冰装置
DE20308855U1 (de) * 2003-06-06 2004-10-14 Helmut Schimpke Industriekühlanlagen GmbH & Co. KG Wärmetauschereinheit
CN2674374Y (zh) * 2003-12-24 2005-01-26 苏州三星电子有限公司 一种兼作接水盘的冰箱压缩机底托

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US695350A (en) * 1901-06-10 1902-03-11 Albert Theuerkauf Pipe-bending machine.
US981104A (en) * 1909-11-16 1911-01-10 George F Chamberlin Automatic regulator.
US1436678A (en) * 1919-01-30 1922-11-28 Henry L Pitman Method and apparatus for making spring motors
US1738086A (en) * 1923-01-03 1929-12-03 Frank L O Wadsworth Water heater
US3524329A (en) * 1968-10-28 1970-08-18 Gen Motors Corp Refrigerant condenser with key connector
US3685330A (en) * 1969-02-27 1972-08-22 Linde Ag Method of and apparatus for helically coiling pipe
US3799255A (en) * 1971-07-21 1974-03-26 Bosch Hausgeraete Gmbh Heat exchange unit
US3809061A (en) * 1971-11-03 1974-05-07 Steam Engine Syst Corp Heat exchanger and fluid heater
US3874345A (en) * 1974-02-11 1975-04-01 Hydrogen Corp Vapor generator
US4495989A (en) * 1980-04-21 1985-01-29 Spiral Tubing Corporation Multiple coil heat exchanger
US5502829A (en) * 1993-11-03 1996-03-26 Intergraph Corporation Apparatus for obtaining data from a translation memory based on carry signal from adder
US5765385A (en) * 1996-05-29 1998-06-16 Childs; Michael A. Self-cooling beverage container
US20040069465A1 (en) * 2002-08-10 2004-04-15 Winiamando Inc. Spiral heat exchange device
US6926073B2 (en) * 2002-10-10 2005-08-09 Winiamando Inc. Spiral heat exchange device
US6877552B1 (en) * 2003-10-14 2005-04-12 Komax Systems, Inc Static mixer-heat exchanger
US20060108108A1 (en) * 2004-11-19 2006-05-25 Naukkarinen Olli P Spirally wound, layered tube heat exchanger and method of manufacture

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110146967A1 (en) * 2009-12-23 2011-06-23 Halliburton Energy Services, Inc. Downhole well tool and cooler therefor
US9732605B2 (en) * 2009-12-23 2017-08-15 Halliburton Energy Services, Inc. Downhole well tool and cooler therefor
CN103517775A (zh) * 2011-05-10 2014-01-15 阿尔弗雷德·凯驰两合公司 热交换器和其制造方法
US9841244B2 (en) 2011-05-10 2017-12-12 Alfred Kärcher Gmbh & Co. Kg Heat exchanger and method for its manufacture
CN103517775B (zh) * 2011-05-10 2016-02-24 阿尔弗雷德·凯驰两合公司 热交换器和其制造方法
US20130269919A1 (en) * 2012-04-16 2013-10-17 Technip France Temperature moderated supports for flow tubes
US9518787B2 (en) 2012-11-01 2016-12-13 Skanska Svergie Ab Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
US9657998B2 (en) 2012-11-01 2017-05-23 Skanska Sverige Ab Method for operating an arrangement for storing thermal energy
US9791217B2 (en) * 2012-11-01 2017-10-17 Skanska Sverige Ab Energy storage arrangement having tunnels configured as an inner helix and as an outer helix
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space
US20150276325A1 (en) * 2012-11-01 2015-10-01 Skanska Sverige Ab Energy storage
US20180223315A1 (en) * 2014-01-15 2018-08-09 Serucell Corporation Therapeutic serum obtained from co-cultured cells
USD764035S1 (en) 2014-07-15 2016-08-16 Dometic Sweden Ab Heat exchanger
USD764034S1 (en) 2014-07-15 2016-08-16 Dometic Sweden Ab Heat exchanger
USD762289S1 (en) * 2014-07-15 2016-07-26 Dometic Sweden Ab Heat exchanger
CN108686612A (zh) * 2018-08-02 2018-10-23 汤铁 管式逆流换热反应器

Also Published As

Publication number Publication date
RU2007136932A (ru) 2009-06-20
RU2451886C2 (ru) 2012-05-27
CN101738104A (zh) 2010-06-16
CN101738104B (zh) 2012-04-11
CN101171491B (zh) 2010-10-06
WO2006120068A1 (de) 2006-11-16
DE102005021610A1 (de) 2006-11-23
EP1846714A1 (de) 2007-10-24
CN101171491A (zh) 2008-04-30

Similar Documents

Publication Publication Date Title
US20090020265A1 (en) Heat exchanger
CN103872812B (zh) 集成有冷却构件的马达
US6552545B2 (en) Gradient coil with direct cooling
DE112009001148B4 (de) Rotierende elektrische Maschine und Lüfter, welcher diese verwendet
US20070125528A1 (en) Finned helicoidal heat exchanger
EP1156579A1 (de) Spuleanordnung für linearmotoren und verfahren zur herstellung
US7546867B2 (en) Spirally wound, layered tube heat exchanger
WO1998055813A1 (en) Heat exchanger having microchannel tubing
WO2004068054A1 (en) Heat exchanger
JP2007511735A (ja) らせん状多重チューブ熱交換器
JP3803282B2 (ja) 二次冷媒式空気調和機
JP2004538747A (ja) 冷却コイルを備えたモータ
US20020121362A1 (en) Radial flow heat exchanger
US20090090126A1 (en) Heat exchanger for a refrigerating device
CN102224657A (zh) 旋转电机及其定子
EP0860674A1 (de) Wärmetauscher
DE69513582D1 (de) Wärmetauscherschlange
US4697636A (en) Heat exchanger with helical fluid flow
JP2005214545A (ja) 熱交換器
US7121328B1 (en) Condenser
US20110209857A1 (en) Wound Layered Tube Heat Exchanger
FI75463B (fi) Eluppvaermningsanordning foer uppvaermning av en stroemning.
JP2006189249A (ja) 二重管熱交換器
KR102201915B1 (ko) 기어연동 터보 기계
EP2814144A1 (de) Luft-Luft-Wärmetauscher

Legal Events

Date Code Title Description
AS Assignment

Owner name: BSH BOSCH UND SIEMENS HAUSGERATE GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FEINAUER, ADOLF;KUSNIK, THORSTEN;NUIDING, WOLFGANG;REEL/FRAME:020027/0830;SIGNING DATES FROM 20071002 TO 20071014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE