US20080214588A1 - Hiv Inhibiting 2-(4-Cyanophenyl)-6-Hydroxylaminopyrimidines - Google Patents

Hiv Inhibiting 2-(4-Cyanophenyl)-6-Hydroxylaminopyrimidines Download PDF

Info

Publication number
US20080214588A1
US20080214588A1 US11/814,982 US81498206A US2008214588A1 US 20080214588 A1 US20080214588 A1 US 20080214588A1 US 81498206 A US81498206 A US 81498206A US 2008214588 A1 US2008214588 A1 US 2008214588A1
Authority
US
United States
Prior art keywords
formula
compounds
compound
hiv
pharmaceutically acceptable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/814,982
Other languages
English (en)
Inventor
Herman Augustinus De Kock
Piet Tom Bert Paul Wigerinck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Janssen Infectious Diseases Diagnostics BVBA
Janssen R&D Ireland ULC
Original Assignee
Tibotec BVBA
Tibotec Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tibotec BVBA, Tibotec Pharmaceuticals Ltd filed Critical Tibotec BVBA
Assigned to TIBOTEC BVBA reassignment TIBOTEC BVBA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DE KOCK, HERMAN AUGUSTINUS, WIGERINCK, PIET TOM BERT PAUL
Assigned to TIBOTEC PHARMACEUTICALS LTD. reassignment TIBOTEC PHARMACEUTICALS LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TIBOTEC BVBA
Publication of US20080214588A1 publication Critical patent/US20080214588A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links

Definitions

  • the present invention concerns 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines having HIV (Human Immunodeficiency Virus) replication inhibiting properties.
  • the invention further relates to methods for the preparation of these pyrimidines and pharmaceutical compositions comprising these compounds and the use thereof in the prevention or the treatment of HIV infection.
  • HAART therapy Highly Active Anti-Retroviral Therapy
  • NRTIs nucleoside reverse transcriptase inhibitors
  • NRTIs non-nucleoside reverse transcriptase inhibitors
  • PIs protease inhibitors
  • the targeted enzymes in the HIV virus are able to mutate in such a way, that the known drugs become less effective, or even ineffective against these mutant HIV viruses.
  • the HIV virus creates an ever-increasing resistance against the available drugs.
  • More and more of the HIV strains resistant to NNRTIs found in patients that do not respond to anti-HIV therapy are double or even multi-mutated strains.
  • Such HIV mutant strains bear two or more mutations at the reverse transcriptase gene and therefore show strong resistance towards NNRTI based therapy.
  • the present invention provides a particular novel series of bisaryl substituted pyrimidine derivatives which may find use in HIV therapy, in particular as a new component of drug combinations.
  • Bisaryl substituted pyrimidines having HIV replication inhibiting properties are known from WO00/27825.
  • novel series of pyrimidine derivatives of the present invention behave superior in terms of HIV replication inhibiting properties, in particular against HIV strains having double or multiple mutations at the reverse transcriptase gene.
  • the present invention concerns a compound of formula
  • R 1 is halo
  • R 2 and R 3 each independently are C 1-6 alkyl.
  • C 1-4 alkyl defines straight or branched chain saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-butyl, 2-methyl-1-propyl, and the like; “C 1-6 alkyl” encompasses C 1-4 alkyl radicals and the higher homologues thereof having 5 or 6 carbon atoms such as 1-pentyl, 2-pentyl, 3-pentyl, 1-hexyl, 2-hexyl, 2-methyl-1-butyl, 2-methyl-1-pentyl and the like. Of interest amongst C 1-6 alkyl are the C 1-4 alkyl radicals.
  • halo encompasses fluoro, chloro, bromo and iodo.
  • salts of the compounds of formula (I) are those wherein the counter ion is pharmaceutically acceptable.
  • salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether pharmaceutically acceptable or not are included within the ambit of the present invention.
  • pharmaceutically acceptable addition salts as used herein is meant to comprise the therapeutically active non-toxic acid addition salt forms, which the compounds of formula (I) are able to form.
  • the latter can conveniently be obtained by treating the base form with such appropriate acids as inorganic acids, for example, hydrohalic acids, e.g.
  • the salt form can be converted by treatment with alkali into the free base form.
  • the compounds of formula (I) containing acidic protons may be converted into their therapeutically active non-toxic metal or amine addition salt forms by treatment with appropriate organic and inorganic bases.
  • addition salt also comprises the hydrates and solvent addition forms which the compounds of formula (I) are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.
  • Stereoiosomers may exist where R 2 and R 3 are C 4-6 alkyl.
  • stereochemically isomeric forms as used herein defines all the possible stereoisomeric forms which the compounds of formula (I), and their addition salts may possess.
  • Stereochemically isomeric forms of the compounds of formula (I) are intended to be embraced within the scope of this invention.
  • Preferred subgroups of compounds are those compounds of formula (I) as specified above, or any subgroup of compounds of formula (I) specified herein, wherein R 1 is chloro or bromo, more preferably wherein R 1 is bromo.
  • the compounds of formula (I) can be prepared by reacting a pyrimidine derivative of formula (III) with a protected hydroxylamine of formula NH 2 OP, thus obtaining an intermediate (II) from which the protecting group is removed afterwards.
  • the group W in the pyrimidine derivatives of formula (III) represents a suitable leaving group such as halo, e.g. chloro or bromo, preferably it is chloro.
  • intermediate (III) may be reacted with hydroxylamine to directly prepare the compounds of formula (I) as in the following reaction scheme:
  • Suitable protecting groups include any of the hydroxy-protecting groups used in the art including those which can be removed by acidic cleavage such as methoxyethoxymethyl (MEM), tetrahydropyranyl (THP), tertiary butyl (t.Bu) and the like, or by hydrogenation such as benzyl (Bz) and the like, trialkyl silyl groups such as trimethylsilyl (TMS), t.butyldimethylsilyl (TBDMS), triisopropylsilyl (TIPS), t.butyldiphenylsilyl, and the like, which may be cleaved under acidic or basic conditions.
  • THP trimethylsilyl
  • TDMS t.butyldimethylsilyl
  • TIPS triisopropylsilyl
  • TIPS t.butyldiphenylsilyl
  • the reaction of starting material (III) with the protected hydroxylamine NH 2 OP can be carried out in a suitable solvent, preferably in the presence of a base which may be added to pick up the acid that is liberated during the course of the reaction, e.g. an alkali metal carbonate or hydrogencarbonate such as potassium carbonate or organic bases such as the trialkylamines, e.g. triethylamine.
  • a suitable solvent include, for example, acetonitrile, alcohols, e.g.
  • ethers such as 1,4-dioxane, propylene glycol monomethylether, tetrahydrofuran. Preferred are the ethers, in particular tetrahydrofuran.
  • the group P in the thus obtained intermediate (II) can be removed following art-known procedures.
  • P in case of P being THP, it can be conveniently removed under acidic conditions such as with hydrohalic acids such as hydrochloric acid, with sulfonic acids but also with acidic resins such as sulfon group containing ion exchange resins.
  • the compounds (I) can also be prepared directly from (III) using hydroxylamine. This reaction can be conducted using similar conditions as that of (III) with protected hydroxylamine.
  • the radical R 1 is halo but it may also represent a precursor of a halo group such as hydroxy or a protected hydroxy (e.g. benzyloxy) which can be converted into a halo group with a halogenating agent such as POCl 3 or POBr 3 . This may be done to avoid undesired side reactions.
  • the intermediates of formula (II) can also be prepared by reacting an intermediate of formula (IV) or (VI) with an intermediate of formula (V) or (VII), as outlined in the following reaction scheme, wherein R 1 , R 2 and R 3 are as specified for the compounds of formula (I) or any subgroup thereof and W represents a suitable leaving group, such as for example halogen, e.g. chloro, bromo and the like.
  • the intermediates of formula (II) can be converted to the end products of formula (I) by a deprotection reaction.
  • intermediates (IV) or (VI) can be used in which the hydroxylamino group is unprotected so that compounds (I) are obtained directly.
  • the reaction of the pyrimidine derivative (IV) respectively (VI) with the cyanoaniline (V) respectively with the cyanophenyl derivative (VII) is preferably conducted in a suitable solvent, such as for example acetonitrile, an alcohol, such as for example ethanol, 2-propanol; N,N-dimethylformamide; N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone; an ether such as 1,4-dioxane, propylene glycol monomethylether, acetonitrile.
  • a suitable solvent such as for example acetonitrile, an alcohol, such as for example ethanol, 2-propanol; N,N-dimethylformamide; N,N-dimethylacetamide, 1-methyl-2-pyrrolidinone; an ether such as 1,4-dioxane, propylene glycol monomethylether, acetonitrile.
  • the reactions may be done under acid conditions which may be obtained by adding amounts of a
  • camphor sulfonic acid and a suitable solvent, such as for example tetrahydrofuran or an alcohol, e.g. ethanol, 1- or 2-propanol, or by using acidified solvents, e.g. hydrochloric acid dissolved in an alkanol such as ethanol, 1- or 2-propanol.
  • a suitable solvent such as for example tetrahydrofuran or an alcohol, e.g. ethanol, 1- or 2-propanol, or by using acidified solvents, e.g. hydrochloric acid dissolved in an alkanol such as ethanol, 1- or 2-propanol.
  • the unprotected pyrimidine derivatives (IV), i.e. the intermediates (IV) wherein P is hydrogen, may be reacted with (V) thus yielding directly the end products of formula (I).
  • the protected intermediates (IV) and to remove the group P afterwards may be used.
  • the intermediates of formula (II) can also be prepared by reacting a cyanophenyl derivative (VIII) with a pyrimidine derivative (IX) or by reacting a cyanophenyl derivative (X) with a pyrimidine derivative (XI) as outlined in the following schemes.
  • R 1 , R 2 and R 3 are as specified for the compounds of formula (I) or any subgroup thereof, P is a protecting group as specified above and W represents a suitable leaving group as specified above.
  • P is a protecting group as specified above and W represents a suitable leaving group as specified above.
  • the unprotected pyrimidine derivatives (IX) or (XI), i.e. the intermediates (IX) or (XI) wherein P is hydrogen, may be reacted with (VIII) or (X) thus yielding directly the end products of formula (I).
  • the protected intermediates (IX) or (XI) and to remove the group P afterwards may be used.
  • the compounds of formula (I) may further be prepared by converting compounds of formula (I) into each other according to art-known group transformation reactions.
  • the chloro analogs can be converted to the corresponding bromo analogs, or vice versa, by a halogen exchange reaction.
  • Some of the compounds of formula (I) and some of the precursor intermediates thereof may contain an asymmetric atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures.
  • R 1 , R 2 and R 3 are as specified for the compounds of formula (I) or any subgroup thereof and W represents a suitable leaving group, in particular chloro or bromo.
  • the starting materials of formula (III) can be prepared as described in WO-00/27825. In particular they can be prepared as outlined in the following scheme.
  • intermediates (VI) can be prepared starting from a pyrimidine (XIV) as outlined in the following scheme:
  • the amino group may or may not be protected by a suitable protective group.
  • the unprotected pyrimidine derivatives (XIII) or (XIV), i.e. the intermediates (XIII) or (XIV) wherein P is hydrogen may be reacted with (VIII) or (X). To avoid side reactions, it is preferred to use the protected intermediates (XIII) or (XIV) and to remove the group P afterwards.
  • Intermediates (IX) can be prepared by condensing a pyrimidine derivative (XIII) with a cyanoaniline (V) as outlined in the following scheme. If desired to avoid side reactions, the W-group that is not reacting and/or R 1 may be a precursor of halo as set forth above.
  • Intermediates (XI) can be prepared by condensing a pyrimidine derivative (XV) with a cyanoaniline (V) as outlined in the following scheme. If desired to avoid side reactions, the hydroxy-group in (XV) may be protected and R 1 may be a precursor of halo as set forth above.
  • this invention provides a chemical compound of formula
  • P is a hydroxy-protecting group.
  • Preferred acid addition salts are the pharmaceutically acceptable acid-addition salts, in particular those mentioned hereinabove.
  • the protecting group P may be as specified above.
  • this invention provides a chemical compound of formula (III) wherein W is chloro, R 1 is bromo and R 2 and R 3 are methyl, which compound can be represented by formula (III-a):
  • acid addition salts are the pharmaceutically acceptable acid-addition salts, in particular those mentioned hereinabove.
  • the compounds of formula (I) show antiretroviral properties (reverse transcriptase inhibiting properties), in particular against Human Immunodeficiency Virus (HIV), which is the aetiological agent of Acquired Immune Deficiency Syndrome (AIDS) in humans.
  • HIV Human Immunodeficiency Virus
  • the HIV virus preferentially infects human T-4 cells and destroys them or changes their normal function, particularly the coordination of the immune system.
  • an infected patient has an ever-decreasing number of T-4 cells, which moreover behave abnormally.
  • the immunological defense system is unable to combat infections and neoplasms and the HIV infected subject usually dies by opportunistic infections such as pneumonia, or by cancers.
  • HIV infection Other conditions associated with HIV infection include thrombocytopaenia, Kaposi's sarcoma and infection of the central nervous system characterized by progressive demyelination, resulting in dementia and symptoms such as, progressive dysarthria, ataxia and disorientation. HIV infection further has also been associated with peripheral neuropathy, progressive generalized lymphadenopathy (PGL) and AIDS-related complex (ARC).
  • PDL progressive generalized lymphadenopathy
  • ARC AIDS-related complex
  • the present compounds also show activity against (multi) drug resistant HIV strains, in particular (multi) drug resistant HIV-1 strains, more in particular the present compounds show activity against HIV strains, especially HIV-1 strains that have acquired resistance to one or more art-known non-nucleoside reverse transcriptase inhibitors.
  • Art-known non-nucleoside reverse transcriptase inhibitors are those non-nucleoside reverse transcriptase inhibitors other than the present compounds and known to the person skilled in the art, in particular commercial non-nucleoside reverse transcriptase inhibitors.
  • the present compounds also have little or no binding affinity to human ⁇ -1 acid glycoprotein; human ⁇ -1 acid glycoprotein does not or only weakly affect the anti HIV activity of the present compounds.
  • the compounds of formula (I), the pharmaceutically acceptable addition salts and stereochemically isomeric forms thereof are useful in the treatment of individuals infected by HIV and for the prophylaxis of these infections.
  • the compounds of the present invention may be useful in the treatment of warm-blooded animals infected with viruses whose existence is mediated by, or depends upon, the enzyme reverse transcriptase.
  • Conditions which may be prevented or treated with the compounds of the present invention include AIDS, AIDS-related complex (ARC), progressive generalized lymphadenopathy (PGL), as well as chronic Central Nervous System diseases caused by retroviruses, such as, for example HIV mediated dementia and multiple sclerosis.
  • AIDS AIDS-related complex
  • PDL progressive generalized lymphadenopathy
  • retroviruses such as, for example HIV mediated dementia and multiple sclerosis.
  • the compounds of the present invention or any subgroup thereof may therefore be used as medicines against above-mentioned conditions.
  • Said use as a medicine or method of treatment comprises the administration to HIV-infected subjects of an amount effective to combat the conditions associated with HIV and other pathogenic retroviruses, especially HIV-1.
  • the compounds of formula (I) may be used in the manufacture of a medicament for the treatment or the prevention of HIV infections.
  • a method of treating warm-blooded animals, including humans, suffering from, or a method of preventing warm-blooded animals, including humans, to suffer from viral infections, especially HIV infections comprises the administration, preferably oral administration, of an effective amount of a compound of formula (I), a pharmaceutically acceptable addition salt or a possible stereoisomeric form thereof, to warm-blooded animals, including humans.
  • the compounds of formula (I) or any subgroup thereof are useful in a method for preventing, treating or combating infection or disease associated with infection of a mammal with a mutant HIV virus, comprising administering to said mammal an effective amount of a compound of formula (I) or any subgroup thereof.
  • the compounds of formula (I) or any subgroup thereof are useful in a method for preventing, treating or combating infection or disease associated with infection of a mammal with a multi drug-resistant HIV virus, comprising administering to said mammal an effective amount of a compound of formula (I) or any subgroup thereof.
  • the compounds of formula (I) or any subgroup thereof are useful in a method for inhibiting replication of a HIV virus, in particular a HIV virus having a mutant HIV reverse transcriptase, more in particular a multi-drug resistant mutant HIV reverse transcriptase, comprising administering to a mammal in need thereof an effective amount of a compound of formula (I) or any subgroup thereof.
  • a mammal as mentioned in the methods of this invention is a human being.
  • compositions for treating viral infections comprising a therapeutically effective amount of a compound of formula (I) and a pharmaceutically acceptable carrier or diluent.
  • compositions of the present invention may be formulated into various pharmaceutical forms for administration purposes.
  • compositions there may be cited all compositions usually employed for systemically administering drugs.
  • an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
  • a pharmaceutically acceptable carrier which carrier may take a wide variety of forms depending on the form of preparation desired for administration.
  • These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection.
  • any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs, emulsions and solutions; or solid carriers such as starches, sugars, kaolin, diluents, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets.
  • tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed.
  • the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included.
  • injectable solutions for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution.
  • injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed.
  • solid form preparations which are intended to be converted, shortly before use, to liquid form preparations.
  • the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions.
  • These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on, as an ointment.
  • the compounds of the present invention may also be administered via inhalation or insufflation by means of methods and formulations employed in the art for administration via this way.
  • the compounds of the present invention may be administered to the lungs in the form of a solution, a suspension or a dry powder.
  • Any system developed for the delivery of solutions, suspensions or dry powders via oral or nasal inhalation or insufflation are suitable for the administration of the present compounds.
  • cyclodextrins may be included in the compositions.
  • suitable ingredients e.g. cyclodextrins
  • cyclodextrins are ⁇ -, ⁇ -, ⁇ -cyclodextrins or ethers and mixed ethers thereof wherein one or more of the hydroxy groups of the anhydroglucose units of the cyclodextrin are substituted with C 1-6 alkyl, particularly methyl, ethyl or isopropyl, e.g.
  • ⁇ -CD randomly methylated ⁇ -CD; hydroxy-C 1-6 alkyl, particularly hydroxyethyl, hydroxy-propyl or hydroxybutyl; carboxy-C 1-6 alkyl, particularly carboxymethyl or carboxy-ethyl; C 1-6 alkylcarbonyl, particularly acetyl.
  • complexants and/or solubilizers are ⁇ -CD, randomly methylated ⁇ -CD, 2,6-dimethyl- ⁇ -CD, 2-hydroxyethyl- ⁇ -CD, 2-hydroxyethyl- ⁇ -CD, 2-hydroxypropyl- ⁇ -CD and (2-carboxymethoxy)propyl- ⁇ -CD, and in particular 2-hydroxypropyl- ⁇ -CD (2-HP- ⁇ -CD).
  • Another type of substituted cyclodextrins is sulfobutylcyclodextrines.
  • mixed ether denotes cyclodextrin derivatives wherein at least two cyclodextrin hydroxy groups are etherified with different groups such as, for example, hydroxy-propyl and hydroxyethyl.
  • the average molar substitution (M.S.) is used as a measure of the average number of moles of alkoxy units per mole of anhydroglucose.
  • the average substitution degree (D.S.) refers to the average number of substituted hydroxyls per anhydroglucose unit.
  • the M.S. and D.S. value can be determined by various analytical techniques such as nuclear magnetic resonance (NMR), mass spectrometry (MS) and infrared spectroscopy (IR). Depending on the technique used, slightly different values may be obtained for one given cyclodextrin derivative.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • IR infrared spectroscopy
  • slightly different values may be obtained for one given cyclodextrin derivative.
  • the M.S. ranges from 0.125 to 10 and the D.S. ranges from 0.125 to 3.
  • compositions for oral or rectal administration comprise particles consisting of a solid dispersion comprising a compound of formula (I) and one or more appropriate pharmaceutically acceptable water-soluble polymers.
  • solid dispersion used hereinafter defines a system in a solid state (as opposed to a liquid or gaseous state) comprising at least two components, in casu the compound of formula (I) and the water-soluble polymer, wherein one component is dispersed more or less evenly throughout the other component or components (in case additional pharmaceutically acceptable formulating agents, generally known in the art, are included, such as plasticizers, preservatives and the like).
  • additional pharmaceutically acceptable formulating agents generally known in the art, are included, such as plasticizers, preservatives and the like.
  • solid dispersion also comprises dispersions, which are less homogenous throughout than solid solutions.
  • Such dispersions are not chemically and physically uniform throughout or comprise more than one phase, for example, systems having domains or small regions wherein amorphous, microcrystalline or crystalline compound of formula (I), or amorphous, microcrystalline or crystalline water-soluble polymer, or both, are dispersed more or less evenly in another phase comprising water-soluble polymer, or compound of formula (I), or a solid solution comprising compound of formula (I) and water-soluble polymer.
  • Said domains are regions within the solid dispersion distinctively marked by some physical feature, small in size, and evenly and randomly distributed throughout the solid dispersion.
  • solid dispersions including melt-extrusion, spray-drying and solution-evaporation.
  • the obtained products can be optionally milled and sieved.
  • the solid dispersion product may be milled or ground to particles having a particle size of less than 600 ⁇ m, preferably less than 400 ⁇ m and most preferably less than 125 ⁇ m.
  • the particles prepared as described hereinabove can then be formulated by conventional techniques into pharmaceutical dosage forms such as tablets and capsules.
  • the water-soluble polymers in the particles are polymers that have an apparent viscosity, when dissolved at 20° C. in an aqueous solution at 2% (w/v), of 1 to 5000 mPa ⁇ s more preferably of 1 to 700 mPa ⁇ s, and most preferred of 1 to 100 mPa ⁇ s.
  • suitable water-soluble polymers include alkylcelluloses, hydroxyalkyl-celluloses, hydroxyalkyl alkylcelluloses, carboxyalkylcelluloses, alkali metal salts of carboxyalkylcelluloses, carboxyalkylalkylcelluloses, carboxyalkylcellulose esters, starches, pectines, chitin derivates, di-, oligo- and polysaccharides such as trehalose, alginic acid or alkali metal and ammonium salts thereof, carrageenans, galactomannans, tragacanth, agar-agar, gum arabic, guar gum and xanthan gum, polyacrylic acids and the salts thereof, polymethacrylic acids and the salts thereof, methacrylate copolymers, polyvinylalcohol, polyvinylpyrrolidone, copolymers of polyvinylpyrrolidone with vinyl acetate, combinations of polyvinylalcohol and polyvinyl
  • cyclodextrins can be used as water-soluble polymer in the preparation of the above-mentioned particles as is disclosed in WO 97/18839.
  • cyclodextrins include the pharmaceutically acceptable unsubstituted and substituted cyclodextrins known in the art, more particularly ⁇ , ⁇ or ⁇ cyclodextrins or the pharmaceutically acceptable derivatives thereof.
  • Substituted cyclodextrins which can be used to prepare the above described particles include polyethers described in U.S. Pat. No. 3,459,731. Further substituted cyclodextrins are those described above as agents to aid solubility of the compounds of formula (I).
  • the ratio of the compound of formula (I) over the water-soluble polymer may vary widely. For example ratios of 1/100 to 100/1 may be applied. Interesting ratios of the compound of formula (I) over cyclodextrin range from about 1/10 to 10/1. More interesting ratios range from about 1/5 to 5/1.
  • the compounds of formula (I) may further be convenient to formulate the compounds of formula (I) in the form of nanoparticles which have a surface modifier adsorbed on the surface thereof in an amount sufficient to maintain an effective average particle size of less than 1000 nm.
  • Useful surface modifiers are believed to include those which physically adhere to the surface of the compound of formula (I) but do not chemically bind to said compound and may be selected from known organic and inorganic pharmaceutical excipients. Such excipients include various polymers, low molecular weight oligomers, natural products and surfactants.
  • Preferred surface modifiers include nonionic and anionic surfactants.
  • Yet another interesting way of formulating the compounds of formula (I) involves a pharmaceutical composition whereby the compounds of formula (I) are incorporated in hydrophilic polymers and applying this mixture as a coat film over many small beads, thus yielding a composition which can conveniently be manufactured and which is suitable for preparing pharmaceutical dosage forms for oral administration.
  • Such beads comprise a central, rounded or spherical core, a coating film of a hydrophilic polymer and a compound of formula (I) and optionally a seal-coating layer.
  • Materials suitable for use as cores in the beads are manifold, provided that said materials are pharmaceutically acceptable and have appropriate dimensions and firmness. Examples of such materials are polymers, inorganic substances, organic substances, and saccharides and derivatives thereof.
  • Unit dosage form refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.
  • an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.
  • the exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.
  • the effective daily amount ranges mentioned hereinabove are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.
  • the present compounds of formula (I) can be used alone or in combination with other therapeutic agents, such as anti-virals, antibiotics, immunomodulators or vaccines for the treatment of viral infections. They may also be used alone or in combination with other prophylactic agents for the prevention of viral infections.
  • the present compounds may be used in vaccines and methods for protecting individuals against viral infections over an extended period of time.
  • the compounds may be employed in such vaccines either alone or together with other compounds of this invention or together with other anti-viral agents in a manner consistent with the conventional utilization of reverse transcriptase inhibitors in vaccines.
  • the present compounds may be combined with pharmaceutically acceptable adjuvants conventionally employed in vaccines and administered in prophylactically effective amounts to protect individuals over an extended period of time against HIV infection.
  • the combination of one or more additional antiretroviral compounds and a compound of formula (I) can be used as a medicine.
  • the present invention also relates to a product containing (a) a compound of formula (I), and (b) one or more additional antiretroviral compounds, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment.
  • the different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers.
  • Said other antiretroviral compounds may be any known antiretroviral compounds such as suramine, pentamidine, thymopentin, castanospermine, dextran (dextran sulfate), foscarnet-sodium (trisodium phosphono formate); nucleoside reverse transcriptase inhibitors (NRTIs), e.g.
  • NRTIs non-nucleoside reverse transcriptase inhibitors
  • DLV delarvidine
  • EEFV efavirenz
  • NNP capravirine
  • CMV calanolide A
  • TMC120 etravirine
  • TMC278, BMS-561390 DPC-083 and the like
  • NtRTIs nucleotide reverse transcriptase inhibitors
  • TDF tenofovir
  • TIBO tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepine-2(1H)-one and thione
  • S 8-chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo-[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione
  • ⁇ -APA ⁇ -anilino phenyl acetamide
  • TAT-inhibitors e.g. RO-5-3335
  • REV inhibitors e.g. RO-5-3335
  • protease inhibitors e.g. RO-5-3335
  • RTV ritonavir
  • SQV saquinavir
  • ABT-378 or LPV indinavir
  • IDV amprenavir
  • VX-478 TMC-126
  • BMS-232632 VX-175, DMP-323, DMP-450 (Mozenavir)
  • nelfinavir AG-1343
  • atazanavir BMS 232,632
  • palinavir TMC-114, RO033-4649
  • fosamprenavir GW433908 or VX-175)
  • BILA 1096 BS U-140690, and the like
  • entry inhibitors which comprise fusion inhibitors (e.g.
  • T-20, T-1249 attachment inhibitors and co-receptor inhibitors; the latter comprise the CCR5 antagonists and CXR4 antagonists (e.g. AMD-3100); examples of entry inhibitors are enfuvirtide (ENF), GSK-873,140, PRO-542, SCH-417,690, TNX-355, maraviroc (UK-427,857); a maturation inhibitor for example is PA-457 (Panacos Pharmaceuticals); inhibitors of the viral integrase; ribonucleotide reductase inhibitors (cellular inhibitors), e.g. hydroxyurea and the like.
  • CCR5 antagonists and CXR4 antagonists e.g. AMD-3100
  • entry inhibitors are enfuvirtide (ENF), GSK-873,140, PRO-542, SCH-417,690, TNX-355, maraviroc (UK-427,857)
  • a maturation inhibitor for example is PA-457 (Panacos Pharmaceutical
  • Combination therapies as described above exert a synergistic effect in inhibiting HIV replication because each component of the combination acts on a different site of HIV replication.
  • the use of such combinations may reduce the dosage of a given conventional anti-retroviral agent which would be required for a desired therapeutic or prophylactic effect as compared to when that agent is administered as a monotherapy.
  • These combinations may reduce or eliminate the side effects of conventional single anti-retroviral therapy while not interfering with the anti-viral activity of the agents.
  • These combinations reduce potential of resistance to single agent therapies, while minimizing any associated toxicity.
  • These combinations may also increase the efficacy of the conventional agent without increasing the associated toxicity.
  • the compounds of the present invention may also be administered in combination with immunomodulating agents, e.g. levamisole, bropirimine, anti-human alpha interferon antibody, interferon alpha, interleukin 2, methionine enkephalin, diethyldithio-carbamate, tumor necrosis factor, naltrexone and the like; antibiotics, e.g. pentamidine isethiorate and the like; cholinergic agents, e.g. tacrine, rivastigmine, donepezil, galantamine and the like; NMDA channel blockers, e.g. memantine to prevent or combat infection and diseases or symptoms of diseases associated with HIV infections, such as AIDS and ARC, e.g. dementia.
  • a compound of formula (I) can also be combined with another compound of formula (I).
  • the present invention focuses on the use of the present compounds for preventing or treating HIV infections, the present compounds may also be used as inhibitory agents for other viruses, which depend on similar reverse transcriptases for obligatory events in their life cycle.
  • the pyrimidine derivatives of this invention not only act favorably as regards their capability to inhibit the replication of Human Immunodeficiency Virus (HIV), but also show improved ability to inhibit the replication of mutant strains, in particular strains which show double or multiple mutations in the viral genome encoding for reverse transcriptase.
  • the compounds of this invention therefore may find use in the treatment of patients infected with HIV that has become resistant to one or more known NNRTI drugs (Non Nucleoside Reverse Transcriptase Inhibitor drugs), which strains are referred to as drug or multidrug resistant HIV strains.
  • NNRTI drugs Non Nucleoside Reverse Transcriptase Inhibitor drugs
  • Compound 1 which is the compound described in example 4, is dissolved in organic solvent such as ethanol, methanol or methylene chloride, preferably, a mixture of ethanol and methylene chloride.
  • organic solvent such as ethanol, methanol or methylene chloride, preferably, a mixture of ethanol and methylene chloride.
  • Polymers such as polyvinylpyrrolidone copolymer with vinyl acetate (PVP-VA) or hydroxypropylmethylcellulose (HPMC), typically 5 mPa ⁇ s, are dissolved in organic solvents such as ethanol, methanol methylene chloride.
  • PVP-VA polyvinylpyrrolidone copolymer with vinyl acetate
  • HPMC hydroxypropylmethylcellulose
  • the polymer and compound solutions are mixed and subsequently spray dried.
  • the ratio of compound/polymer is selected from 1/1 to 1/6. Intermediate ranges can be 1/1.5 and 1/3. A suitable ratio can be 1/6.
  • a mixture of 100 g of Compound 1, 570 g lactose and 200 g starch are mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinylpyrrolidone in about 200 ml of water.
  • the wet powder mixture is sieved, dried and sieved again.
  • 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil is added. The whole is mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.
  • the antiviral activity of the compound of the present invention is evaluated in the presence of wild type HIV and HIV mutants bearing mutations at the reverse transcriptase gene.
  • the activity of the compounds is evaluated using a cellular assay and the residual activity is expressed in pEC 50 values.
  • the columns IIIB and A-G in the table list the pEC 50 values against various strains IIIB, A-G.
  • Strain IIIB is wild type HIV-LAI strain; Strain A contains mutation Y181C in HIV reverse transcriptase, Strain B contains mutation K103N in HIV reverse transcriptase, Strain C contains mutation L100I in HIV reverse transcriptase, Strain D contains mutation Y188L and S162K in HIV reverse transcriptase, Strain E contains mutations L100I and K103N in HIV reverse transcriptase, Strain F contains mutations K101E and K103N in HIV reverse transcriptase. Strain G contains mutations L100I, K103N, E138G, V179I, Y181C, L214F, V276V/I and A327A/V in HIV reverse transcriptase.
  • Compound A is a compound that has been disclosed in WO00/27825 and has the following structure:
  • compound 1 Compared to reference compound A, compound 1 showed improved activity against double mutant strains such as strains E and F. Compound 1 in particular showed improved activity against multiple mutated strain G.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • AIDS & HIV (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US11/814,982 2005-03-04 2006-03-02 Hiv Inhibiting 2-(4-Cyanophenyl)-6-Hydroxylaminopyrimidines Abandoned US20080214588A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05101707.7 2005-03-04
EP05101707 2005-03-04
PCT/EP2006/060407 WO2006094930A1 (en) 2005-03-04 2006-03-02 Hiv inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/060407 A-371-Of-International WO2006094930A1 (en) 2005-03-04 2006-03-02 Hiv inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/690,673 Continuation US8119801B2 (en) 2005-03-04 2010-01-20 HIV inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines

Publications (1)

Publication Number Publication Date
US20080214588A1 true US20080214588A1 (en) 2008-09-04

Family

ID=34938904

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/814,982 Abandoned US20080214588A1 (en) 2005-03-04 2006-03-02 Hiv Inhibiting 2-(4-Cyanophenyl)-6-Hydroxylaminopyrimidines
US12/690,673 Active 2026-09-29 US8119801B2 (en) 2005-03-04 2010-01-20 HIV inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/690,673 Active 2026-09-29 US8119801B2 (en) 2005-03-04 2010-01-20 HIV inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines

Country Status (20)

Country Link
US (2) US20080214588A1 (el)
EP (1) EP1858861B1 (el)
JP (1) JP5118978B2 (el)
CN (1) CN101133038B (el)
AT (1) ATE473212T1 (el)
AU (1) AU2006222057B2 (el)
BR (1) BRPI0609291B1 (el)
CY (1) CY1111102T1 (el)
DE (1) DE602006015291D1 (el)
DK (1) DK1858861T3 (el)
ES (1) ES2347815T3 (el)
HR (1) HRP20100504T1 (el)
ME (1) ME01229B (el)
MX (1) MX2007010744A (el)
PL (1) PL1858861T3 (el)
PT (1) PT1858861E (el)
RS (1) RS51435B (el)
RU (1) RU2401261C2 (el)
SI (1) SI1858861T1 (el)
WO (1) WO2006094930A1 (el)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080194602A1 (en) * 2005-02-14 2008-08-14 Sony Corporation Hiv Inhibiting 2-(4-Cyanophenylamino) Pyrimidine Oxide Derivatives

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008071587A2 (en) 2006-12-13 2008-06-19 F. Hoffmann-La Roche Ag 2-(piperidin-4-yl)-4-phenoxy- or phenylamino-pyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors
UA106972C2 (uk) * 2009-06-22 2014-11-10 Емк'Юр Фармас'Ютікалз Лімітед Спосіб синтезу діарилпіримідинового ненуклеозидного інгібітора зворотної транскриптази
US8153790B2 (en) 2009-07-27 2012-04-10 Krizmanic Irena Process for the preparation and purification of etravirine and intermediates thereof
CN101993419B (zh) * 2009-08-20 2013-01-16 浙江九洲药业股份有限公司 一种4-[(5-溴-4,6-二氯-2-嘧啶基)氨基]苯甲腈的制备方法
GR1007010B (el) 2009-10-08 2010-10-07 Χημικα Και Βιοφαρμακευτικα Εργαστηρια Πατρων Αε (Cbl-Patras), Ινσουλινοειδη πεπτιδια
WO2011135578A1 (en) 2010-04-28 2011-11-03 Chetan Balar Composition comprising chitin and tinosporin for use in the treatment of viral diseases
WO2013059572A1 (en) 2011-10-19 2013-04-25 Assia Chemical Industries Ltd. Process for the preparation of etravirine and intermediates in the synthesis thereof
CU20220045A7 (es) 2020-02-19 2023-03-07 Pharmasyntez Compuestos derivados sustituidos de pirimidina para el tratamiento y prevención de la infección por vih

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459731A (en) * 1966-12-16 1969-08-05 Corn Products Co Cyclodextrin polyethers and their production
EP0862463A1 (en) 1995-11-23 1998-09-09 Janssen Pharmaceutica N.V. Solid mixtures of cyclodextrins prepared via melt-extrusion
OA11674A (en) * 1998-11-10 2005-01-12 Janssen Pharmaceutica Nv HIV Replication inhibiting pyrimidines.
EA005423B1 (ru) * 1999-09-24 2005-02-24 Янссен Фармацевтика Н.В. Противовирусные композиции
AU782948B2 (en) * 2000-05-08 2005-09-15 Janssen Pharmaceutica N.V. Prodrugs of HIV replication inhibiting pyrimidines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080194602A1 (en) * 2005-02-14 2008-08-14 Sony Corporation Hiv Inhibiting 2-(4-Cyanophenylamino) Pyrimidine Oxide Derivatives
US7935711B2 (en) 2005-02-18 2011-05-03 Tibotec Pharmaceuticals Ltd. HIV inhibiting 2-(4-cyanophenylamino) pyrimidine oxide derivatives

Also Published As

Publication number Publication date
AU2006222057B2 (en) 2012-10-04
SI1858861T1 (sl) 2010-10-29
CN101133038B (zh) 2012-06-27
PL1858861T3 (pl) 2010-12-31
CN101133038A (zh) 2008-02-27
ATE473212T1 (de) 2010-07-15
RU2007136782A (ru) 2009-04-10
EP1858861A1 (en) 2007-11-28
BRPI0609291B1 (pt) 2022-02-08
DK1858861T3 (da) 2010-11-08
MX2007010744A (es) 2007-09-12
CY1111102T1 (el) 2015-06-11
ES2347815T3 (es) 2010-11-04
WO2006094930A1 (en) 2006-09-14
RS51435B (en) 2011-04-30
US8119801B2 (en) 2012-02-21
JP2008531658A (ja) 2008-08-14
PT1858861E (pt) 2010-09-16
US20100121060A1 (en) 2010-05-13
EP1858861B1 (en) 2010-07-07
RU2401261C2 (ru) 2010-10-10
HRP20100504T1 (hr) 2010-10-31
ME01229B (me) 2013-06-20
BRPI0609291A2 (pt) 2010-03-09
JP5118978B2 (ja) 2013-01-16
AU2006222057A1 (en) 2006-09-14
DE602006015291D1 (de) 2010-08-19

Similar Documents

Publication Publication Date Title
US8119801B2 (en) HIV inhibiting 2-(4-cyanophenyl)-6-hydroxylaminopyrimidines
US10077270B2 (en) HIV inhibiting bicyclic pyrimidine derivatives
EP1853567B1 (en) Hiv inhibiting 2-(4-cyanophenylamino) pyrimidine oxide derivatives
EP1853568B1 (en) Hiv inhibiting 2-(4-cyanophenylamino)pyrimidine derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: TIBOTEC PHARMACEUTICALS LTD., IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TIBOTEC BVBA;REEL/FRAME:019618/0408

Effective date: 20060413

Owner name: TIBOTEC BVBA, BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DE KOCK, HERMAN AUGUSTINUS;WIGERINCK, PIET TOM BERT PAUL;REEL/FRAME:019618/0386

Effective date: 20060417

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION