US20070017319A1 - Titanium alloy - Google Patents

Titanium alloy Download PDF

Info

Publication number
US20070017319A1
US20070017319A1 US11/186,724 US18672405A US2007017319A1 US 20070017319 A1 US20070017319 A1 US 20070017319A1 US 18672405 A US18672405 A US 18672405A US 2007017319 A1 US2007017319 A1 US 2007017319A1
Authority
US
United States
Prior art keywords
alloy powder
titanium alloy
powder
titanium
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/186,724
Inventor
Lance Jacobsen
Adam Benish
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Pigments USA Inc
Original Assignee
International Titanium Powder LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/186,724 priority Critical patent/US20070017319A1/en
Application filed by International Titanium Powder LLC filed Critical International Titanium Powder LLC
Assigned to INTERNATIONAL TITANIUM POWDER, LLC. reassignment INTERNATIONAL TITANIUM POWDER, LLC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BENISH, ADAM JOHN, JACOBSEN, LANCE
Priority to PCT/US2006/028396 priority patent/WO2008013518A1/en
Publication of US20070017319A1 publication Critical patent/US20070017319A1/en
Assigned to TWACG, LLC reassignment TWACG, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Assigned to INTERNATIONAL TITANIUM POWDER, L.L.C. reassignment INTERNATIONAL TITANIUM POWDER, L.L.C. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TWACG, LLC
Assigned to THE NATIONAL TITANIUM DIOXIDE CO. LTD. reassignment THE NATIONAL TITANIUM DIOXIDE CO. LTD. SECURITY AGREEMENT Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Assigned to INTERNATIONAL TITANIUM POWDER, LLC reassignment INTERNATIONAL TITANIUM POWDER, LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: THE NATIONAL TITANIUM DIOXIDE CO. LTD.
Assigned to CRISTAL US, INC. reassignment CRISTAL US, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL TITANIUM POWDER, L.L.C.
Priority to US12/879,598 priority patent/US8894738B2/en
Priority to US14/521,646 priority patent/US9630251B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/28Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • This invention relates to alloys of titanium having at least 50% titanium and most specifically to an alloy of titanium particularly useful in the aerospace and defense industries known as 6/4 which is about 6% by weight aluminum and about 4% by weight vanadium with the balance titanium and trace materials as made by the Armstrong process.
  • the ASTM B265 grade 5 chemical specifications for 6/4 require that vanadium is present in the amount of 4% ⁇ 1% by weight and aluminum is present in the range of from about 5.5% to about 6.75% by weight.
  • the alloy of the invention is produced by the Armstrong Process as previously disclosed in U.S. Pat. Nos. 5,779,761; 5,958,106 and 6,609,797, the entire disclosures of which are herein incorporated by reference. The aforementioned patents teach the Armstrong Process as it relates to the production of various materials including alloys.
  • the Armstrong Process includes the subsurface reduction of halides by a molten metal alkali or alkaline earth element or alloy.
  • the development of the Armstrong Process has occurred from 1994 through the present, particularly as it relates to the production of titanium and its alloys using titanium tetrachloride as a source of titanium and using sodium as the reducing agent.
  • this invention is described particularly with respect to titanium tetrachloride, aluminum trichloride and vanadium tetrachloride and sodium as a reducing metal, it should be understood that various halides other than chlorine can be used and various reductants other than sodium can be used and the invention is broad enough to include those materials.
  • the steady state temperature of the reaction can be controlled by the amount of reductant metal and the amount of chloride being introduced.
  • the preferred method is to control the temperature of the reactant products by varying the amount of excess (over stoichiometric) reductant metal introduced into the reaction chamber.
  • the reaction is maintained at a steady state temperature of about 400° C. and at this temperature, as previously disclosed, the reaction can be maintained for very long periods of time without damage to the equipment while producing a relatively uniform product.
  • the Titan Powder produced by the Armstrong Process inherently produces powder in which the average diameter of individual particle is less than a micron.
  • the particles agglomerate and have an average agglomerated particle diameter in the range of from about 3.3 to about 1.3 microns.
  • Particle diameters are based on a calculated size of a sphere from a surface area, such as BET.
  • the calculated average diameters were based on surface are measurements in a range of from about 0.4 to about 1.0 m 2 per gram.
  • the titanium powder produced by the Armstrong Process always has a packing fraction in the range of from about 4% to about 11% which also may also be expressed as tap density. Tap density is a well known characteristic and is determined by introducing the powder into a graduated test tube and tapping the tube until the powder is fully settled. Thereafter, the weight of the powder is measured and the packing fraction or percent of theoretical density is calculated.
  • CP titanium powder and titanium alloy powder traditionally have been made by two methods, hydride-dehydride and spheridization, resulting in powders having very different morphologies than the powder made by the Armstrong method.
  • Hydride-dehydride powders are angular and flake-like, while spheridized powders are spheres.
  • Fines made during the Hunter process are available and these also have very different morphology than CP titanium produced by the Armstrong Process. SEMs of CP powder made by the hydride-dehydride process and the spheridization process and Hunter fines are illustrated in FIGS. 1 to 3 , respectively.
  • the CP powder made by the Armstrong Process is not spherical nor is it angular and flake-like. Hunter fines have “large inclusions” which do not appear in the Armstrong powder, differentiating FIGS. 1-3 from Armstrong powder shown in FIGS. 4-9 . Moreover, Hunter fines have large concentrations of chlorine while Armstrong CP powder has low concentrations of chlorine; chlorine is an undesirable contaminant.
  • 6/4 powder is made by hydride-dehydride and spherization processes, but not by the Hunter process.
  • a calcium reduction hydride-dehydride process used in Tula, Russia was identified by Moxson et al. in an article in The International Journal Of Powder Metallurgy, Vol. 34, No. 5, 1998.
  • Moxson et al which also discloses SEMs of both CP and 6/4 in the Journal Of Metallurgy, May, 2000, both articles, the disclosures of which are incorporated by reference, taken together showing that 6/4 powder made by methods other than the Armstrong process result in powders that are very different from Armstrong 6/4 powder, both in size distribution and/or morphology and/or chemistry.
  • a principal object of the present invention is to provide a titanium base alloy powder having lesser amounts of aluminum and vanadium with unique morphological and chemical properties.
  • Another object of the present invention to provide a titanium base alloy powder having about 6 percent by weight aluminum and about 4 percent by weight vanadium within current ASTM specifications.
  • Yet another object of the invention is to make a 6/4 alloy as set forth in which sodium is present in significantly smaller amounts than is present in CP titanium powder made by the Armstrong Process.
  • Still another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and the alloy powder being neither spherical nor angular or flake shaped.
  • a further object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and having a tap density or packing fraction in the range of from about 4% to about 11%.
  • Yet another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or an alkaline earth metal being present in an amount less than about 200 ppm made by the subsurface reduction of chloride vapor with molten alkali metal or molten alkaline earth metal.
  • a final object of the present invention is to provide an agglomerated titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 100 ppm substantially as seen in the SEMs of FIGS. 10-12 .
  • FIG. 1 is a SEM of CP powder made by the hydride-dehydride method
  • FIG. 2 is a SEM of CP powder made by the spheridization method
  • FIG. 3 is a SEM of CP powder from the Hunter Process
  • FIGS. 4-6 are SEMs of Armstrong CP distilled, dried and passivated
  • FIGS. 7-9 are SEMs of Armstrong CP distilled, dried, passivated and held at 750° C. for 48 hours;
  • FIGS. 10-12 are SEMs of Armstrong 6/4 distilled, dried, passivated and held at 750° C. for 48 hours.
  • a “titanium base alloy” means any alloy having 50% or more by weight titanium. Although 6/4 is used as a specific example, other titanium base alloys are included in this invention.
  • Armstrong CP titanium powder is different from spheridized titanium powder and from hydride-dehydride titanium powder in both morphology and packing fraction or tap density. There are also differences in certain of the chemical constituents. For instance, Armstrong CP titanium powder has sodium present in the 400-700 ppm range while spheridized and hydride-dehydride powder should have none or only trace amounts. Armstrong CP titanium has little chloride concentration, on the order of ⁇ 50 ppm, while Hunter fines have much larger concentrations of chlorides, on the order of 0.12-0.15 wt. %.
  • the equipment used to produce the 6/4 alloy is substantially as disclosed in the aforementioned patents disclosing the Armstrong Process with the exception that instead of only having a titanium tetrachloride boiler 22 as illustrated in those patents, there is also a vanadium tetrachloride boiler and an aluminum trichloride boiler which are connected to the reaction chamber by suitable valves.
  • the piping acts as a manifold so that the gases are completely mixed as they enter the reaction chamber and are introduced subsurface to the flowing liquid sodium. It was determined during production of the 6/4 alloy that aluminum trichloride is corrosive and required special materials not required for handling either titanium tetrachloride or vanadium tetrachloride. Therefore, Hastelloy C-276 was used for the aluminum trichloride boiler and the piping to the reaction chamber.
  • a 7/32′′ nozzle was used in the reactor to meter the mix of metal chloride vapors.
  • a 0.040′′ nozzle was used to meter the AlCl 3 and a 0.035′′ nozzle was used to meter the VCl 4 into the TiCl 4 stream.
  • the reactor was operated for approximately 250 seconds injecting approximately 11 kg of TiCl 4 .
  • the salt and titanium alloy solids were captured on a wedge wire filter and free sodium metal was drained away.
  • the product cake containing titanium alloy, sodium chloride and sodium was distilled at approximately 100 milli-torr at 550 to 575° C. vessel wall temperatures for 20 hours.
  • the trap was re-pressurized with argon gas and heated to 750° C. and held at temperature for 48 hours.
  • the vessel containing the salt and titanium alloy cake was cooled and the cake was passivated with a 0.7 wt % oxygen/argon mixture. After passivation, the cake was washed with deionized water and subsequently dried in a vacuum oven at less than 100° C.
  • Table 2 Other important aspects shown in Table 2 are the percentages of vanadium and aluminum in the 6/4 showing an average of about 5.91% aluminum and about 4.29% vanadium for all of the runs.
  • the runs reported in Table 2 were made with an experimental loop and the valving and control systems for metering the appropriate amount of both vanadium and aluminum were rudimentary. Advanced valving systems have now been installed to control more closely the amount of vanadium and aluminum in the 6/4 produced from the Armstrong Process, although even with the rudimentary control system, the 6/4 alloy was within ASTM specifications. Also of significance is the low iron and chloride content of the 6/4 alloy.
  • An additional unexpected feature of the 6/4 alloy compared to the CP titanium is the surface area, as determined using BET Specific Surface Area analysis with krypton as the adsorbate.
  • the specific surface area of the 6/4 alloy is much larger than the CP titanium and this also was unexpected.
  • Surface analysis of CP particles which were distilled overnight (about 8-12 hours) between 500-575° C. were 0.534 square meters/gram whereas 6/4 alloy measured 3.12 square meters/gram, indicating that the alloy is significantly smaller than the CP.
  • Alloy powders have been produced by melting prealloyed stock and thereafter using either gas atomization or a hydride-dehydride process (MHR).
  • MHR hydride-dehydride process
  • the Moxson et al. article discloses 6/4 powder made in Tula, Russia and as seen from FIG. 2 in that article, particularly FIGS. 2 c and 2 d the powders made by Tula Hydride Reduction process are significantly different than those made by the Armstrong Process.
  • the chemical analysis for the pre-alloy 6/4 powder produced by the metal-hydride reduction (MHD) process contains exceptional amounts of calcium and also is not within ASTM specifications for aluminum.
  • the 6/4 alloy made by the Armstrong Process is made without the presence of either calcium or magnesium, these metals should be present, if at all, only in trace amounts and certainly much less than 100 ppm.
  • Sodium which would be expected to be present in significant quantities based on the operation of the Armstrong Process to produce CP titanium in fact is present only at minium quantities in the 6/4 alloy.
  • sodium in the 6/4 alloy made by the Armstrong Process is almost always present less than 200 ppm and generally less than 100 ppm.
  • 6/4 alloy has been produced using the Armstrong Process in which sodium is undetectable so that this is a great and unexpected advantage of the 6/4 alloy vis a vis CP titanium made by the Armstrong Process.
  • Both the Armstrong CP titanium and 6/4 alloy have tap densities or packing fractions in the range of from about 4% to 11%. This tap density or packing fraction is unique and inherent in the Armstrong Process and, while not advantageous particularly with respect to powder metallurgical processing, distinguishes the CP powder and the 6/4 powder made by the Armstrong Process from all other known powders.
  • solid objects can be made by forming 6/4 or CP titanium into a near net shapes and thereafter sintering, see the Moxson et al. article and can also be formed by hot isostatic pressing, laser deposition, metal injecting molding, direct powder rolling or various other well known techniques. Therefore, the titanium alloy powder made by the Armstrong method may be formed into a sintered product or may be formed into a solid object by well known methods in the art and the subject invention is intended to cover all such products made from the powder of the subject invention.

Abstract

A titanium base alloy powder having lesser amounts of aluminum and vanadium with an alkali or alkaline earth metal being present in an amount of less than about 200 ppm. The alloy powder is neither spherical nor angular and flake shaped. 6/4 alloy is specifically disclosed having a packing fraction or tap density between 4 and 11%, as is a method for making the various alloys.

Description

    FIELD OF THE INVENTION
  • This invention relates to alloys of titanium having at least 50% titanium and most specifically to an alloy of titanium particularly useful in the aerospace and defense industries known as 6/4 which is about 6% by weight aluminum and about 4% by weight vanadium with the balance titanium and trace materials as made by the Armstrong process.
  • BACKGROUND OF THE INVENTION
  • The ASTM B265 grade 5 chemical specifications for 6/4 require that vanadium is present in the amount of 4%±1% by weight and aluminum is present in the range of from about 5.5% to about 6.75% by weight. The alloy of the invention is produced by the Armstrong Process as previously disclosed in U.S. Pat. Nos. 5,779,761; 5,958,106 and 6,609,797, the entire disclosures of which are herein incorporated by reference. The aforementioned patents teach the Armstrong Process as it relates to the production of various materials including alloys. The Armstrong Process includes the subsurface reduction of halides by a molten metal alkali or alkaline earth element or alloy. The development of the Armstrong Process has occurred from 1994 through the present, particularly as it relates to the production of titanium and its alloys using titanium tetrachloride as a source of titanium and using sodium as the reducing agent. Although this invention is described particularly with respect to titanium tetrachloride, aluminum trichloride and vanadium tetrachloride and sodium as a reducing metal, it should be understood that various halides other than chlorine can be used and various reductants other than sodium can be used and the invention is broad enough to include those materials.
  • However, because the Armstrong Process over the past eleven years has been developed using molten sodium and chlorides, it is these materials which are referenced herein. During the production of titanium by the Armstrong Process, as disclosed in the previous patents, the steady state temperature of the reaction can be controlled by the amount of reductant metal and the amount of chloride being introduced. Although it is feasible to control the reaction temperature by varying the chloride concentration while keeping the amount of molten metal constant, the preferred method is to control the temperature of the reactant products by varying the amount of excess (over stoichiometric) reductant metal introduced into the reaction chamber. Preferably, the reaction is maintained at a steady state temperature of about 400° C. and at this temperature, as previously disclosed, the reaction can be maintained for very long periods of time without damage to the equipment while producing a relatively uniform product.
  • Heretofore, commercially pure (CP) titanium ASTM B265 grades 1, 2, 3 and 4 have been produced in over two hundred runs using the Armstrong Process and although a wide variety of operating parameters have been tested, certain results are inherent in the process. The ASTM B 265 spec sheet follows:
    TABLE 1
    Chemical Requirements
    Composition %
    Grade
    Element 1 2 3 4 5 6 7 8 9 10
    Nitrogen max 0.03 0.03 0.05 0.05 0.05 0.05 0.03 0.02 0.03 0.03
    Carbon max 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.08
    HydrogenB max 0.015 0.015 0.015 0.015 0.015 0.020 0.015 0.015 0.015 0.015
    Iron Max 0.20 0.30 0.30 0.50 0.40 0.50 0.30 0.25 0.20 0.30
    Oxygen max 0.18 0.25 0.35 0.40 0.20 0.20 0.25 0.15 0.18 0.25
    Aluminum . . . . . . . . . . . . 5.5 to 4.0 to . . . 2.5 to . . . . . .
    6.75 6.0 . . . 3.5 . . . . . .
    Vanadium . . . . . . . . . . . . 3.5 to . . . . . . 2.0 to
    4.5 3.0
    Tin . . . . . . . . . . . . . . . 2.0 to . . . . . . . . . . . .
    3.0 . . . . . . . . . . . .
    Palladium . . . . . . . . . . . . . . . . . . 0.12 to . . . 0.12 to . . .
    0.25 0.25
    Molybdenum . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.2 to 0.4
    Zirconium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
    Nickel . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 to 0.9
    ResidualsC.D.E. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
    (each), max
    ResidualsC.D.E 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
    (total) max
    TitaniumF remainder remainder remainder remainder remainder remainder remainder remainder remainder remainder

    AAnalysis shall be completed for all elements listed in this Table for each grade. The analysis results for the elements not quantified in the Table need not be reported unless the concentration level is greater than 0.1% each or 0.4% total.

    BLower hydrogen may be obtained by negotiation with the manufacturer.

    CNeed not be reported.

    DA residual is an element present in a metal or an alloy in small quantities inherent to the manufacturing process but not added intentionally.

    EThe purchaser may, in his written purchase order, request analysis for specific residual elements not listed in this specification. The maximum allowable concentration for residual elements shall be 0.1% each and 0.4% maximum total.

    FThe percentage of titanium is determined by difference.
  • Production of titanium powder by the Armstrong Process inherently produces powder in which the average diameter of individual particle is less than a micron. During distillation at 500 to 600° C., the particles agglomerate and have an average agglomerated particle diameter in the range of from about 3.3 to about 1.3 microns. Particle diameters are based on a calculated size of a sphere from a surface area, such as BET. For agglomerated particles, the calculated average diameters were based on surface are measurements in a range of from about 0.4 to about 1.0 m2 per gram. In over two hundred runs, the titanium powder produced by the Armstrong Process always has a packing fraction in the range of from about 4% to about 11% which also may also be expressed as tap density. Tap density is a well known characteristic and is determined by introducing the powder into a graduated test tube and tapping the tube until the powder is fully settled. Thereafter, the weight of the powder is measured and the packing fraction or percent of theoretical density is calculated.
  • Moreover, during the production of CP titanium by the Armstrong Process, a certain amount of sodium has always been retained even after extensive distillation, including vacuum distillation, and this retained sodium has been present on average of about 500-700 ppm, and has rarely been below about 400 ppm. From a commercial point of view, significant effort is and has been expended in order to reduce the sodium content of CP titanium made by the Armstrong Process.
  • Prior to the Armstrong Process, CP titanium powder and titanium alloy powder traditionally have been made by two methods, hydride-dehydride and spheridization, resulting in powders having very different morphologies than the powder made by the Armstrong method. Hydride-dehydride powders are angular and flake-like, while spheridized powders are spheres.
  • Fines made during the Hunter process are available and these also have very different morphology than CP titanium produced by the Armstrong Process. SEMs of CP powder made by the hydride-dehydride process and the spheridization process and Hunter fines are illustrated in FIGS. 1 to 3, respectively. The CP powder made by the Armstrong Process is not spherical nor is it angular and flake-like. Hunter fines have “large inclusions” which do not appear in the Armstrong powder, differentiating FIGS. 1-3 from Armstrong powder shown in FIGS. 4-9. Moreover, Hunter fines have large concentrations of chlorine while Armstrong CP powder has low concentrations of chlorine; chlorine is an undesirable contaminant.
  • 6/4 powder is made by hydride-dehydride and spherization processes, but not by the Hunter process. A calcium reduction hydride-dehydride process used in Tula, Russia was identified by Moxson et al. in an article in The International Journal Of Powder Metallurgy, Vol. 34, No. 5, 1998. Moxson et al which also discloses SEMs of both CP and 6/4 in the Journal Of Metallurgy, May, 2000, both articles, the disclosures of which are incorporated by reference, taken together showing that 6/4 powder made by methods other than the Armstrong process result in powders that are very different from Armstrong 6/4 powder, both in size distribution and/or morphology and/or chemistry. In some cases, such as the calcium reduction process in Tula, Russia there are very significant differences in chemistry as well as the other differences previously mentioned. Both the hydride -dehydride and spheridization methods require Ti, Al and V to be mixed as liquids and thereafter formed into powder. Only the Armstrong Process produces alloy powder directly from gas mixtures of the alloy constituents.
  • Because 6/4 titanium is the most common titanium alloy used by the Department of Defense (DOD) as well as the aerospace industry and other significant industries, the production of 6/4 by the Armstrong Process is an important commercial goal.
  • SUMMARY OF THE INVENTION
  • Accordingly, a principal object of the present invention is to provide a titanium base alloy powder having lesser amounts of aluminum and vanadium with unique morphological and chemical properties.
  • Another object of the present invention to provide a titanium base alloy powder having about 6 percent by weight aluminum and about 4 percent by weight vanadium within current ASTM specifications.
  • Yet another object of the invention is to make a 6/4 alloy as set forth in which sodium is present in significantly smaller amounts than is present in CP titanium powder made by the Armstrong Process.
  • Still another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and the alloy powder being neither spherical nor angular or flake shaped.
  • A further object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and having a tap density or packing fraction in the range of from about 4% to about 11%.
  • Yet another object of the present invention is to provide a titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or an alkaline earth metal being present in an amount less than about 200 ppm made by the subsurface reduction of chloride vapor with molten alkali metal or molten alkaline earth metal.
  • A final object of the present invention is to provide an agglomerated titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 100 ppm substantially as seen in the SEMs of FIGS. 10-12.
  • The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For the purpose of facilitating an understanding of the invention, there is illustrated in the accompanying drawings a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.
  • FIG. 1 is a SEM of CP powder made by the hydride-dehydride method;
  • FIG. 2 is a SEM of CP powder made by the spheridization method;
  • FIG. 3 is a SEM of CP powder from the Hunter Process;
  • FIGS. 4-6 are SEMs of Armstrong CP distilled, dried and passivated;
  • FIGS. 7-9 are SEMs of Armstrong CP distilled, dried, passivated and held at 750° C. for 48 hours; and
  • FIGS. 10-12 are SEMs of Armstrong 6/4 distilled, dried, passivated and held at 750° C. for 48 hours.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used herein, a “titanium base alloy” means any alloy having 50% or more by weight titanium. Although 6/4 is used as a specific example, other titanium base alloys are included in this invention. As seen from the previous discussion, Armstrong CP titanium powder is different from spheridized titanium powder and from hydride-dehydride titanium powder in both morphology and packing fraction or tap density. There are also differences in certain of the chemical constituents. For instance, Armstrong CP titanium powder has sodium present in the 400-700 ppm range while spheridized and hydride-dehydride powder should have none or only trace amounts. Armstrong CP titanium has little chloride concentration, on the order of <50 ppm, while Hunter fines have much larger concentrations of chlorides, on the order of 0.12-0.15 wt. %.
  • The equipment used to produce the 6/4 alloy is substantially as disclosed in the aforementioned patents disclosing the Armstrong Process with the exception that instead of only having a titanium tetrachloride boiler 22 as illustrated in those patents, there is also a vanadium tetrachloride boiler and an aluminum trichloride boiler which are connected to the reaction chamber by suitable valves. The piping acts as a manifold so that the gases are completely mixed as they enter the reaction chamber and are introduced subsurface to the flowing liquid sodium. It was determined during production of the 6/4 alloy that aluminum trichloride is corrosive and required special materials not required for handling either titanium tetrachloride or vanadium tetrachloride. Therefore, Hastelloy C-276 was used for the aluminum trichloride boiler and the piping to the reaction chamber.
  • During most of the runs the steady state temperature of the reactor was maintained at about 400° C. by the use of sufficient excess sodium. Other operating conditions for the production of the alloy were as follows:
  • A device similar to that described in the incorporated Armstrong patents was used except that a VCl4 boiler and ALCl3 boiler were provided and both gases were fed into the line feeding TiCl4 into the liquid Na. The boiler pressures and system parameters are listed hereafter.
  • Experimental Procedure:
  • TiCl4 Boiler Pressure=500 kPa
  • VCl4 Boiler Pressure=630 kPa
  • ALCl3 Boiler Pressure=830 kPa
  • Inlet Na temperature=240° C.
  • Reactor Outlet Temperature=510 C
  • Na Flowrate=40 kg/min
  • TiCl4 Flowrate=2.6 kg/min
  • For this specific experiment, a 7/32″ nozzle was used in the reactor to meter the mix of metal chloride vapors. A 0.040″ nozzle was used to meter the AlCl3 and a 0.035″ nozzle was used to meter the VCl4 into the TiCl4 stream. The reactor was operated for approximately 250 seconds injecting approximately 11 kg of TiCl4. The salt and titanium alloy solids were captured on a wedge wire filter and free sodium metal was drained away. The product cake containing titanium alloy, sodium chloride and sodium was distilled at approximately 100 milli-torr at 550 to 575° C. vessel wall temperatures for 20 hours. Once all the sodium metal was removed via distillation, the trap was re-pressurized with argon gas and heated to 750° C. and held at temperature for 48 hours. The vessel containing the salt and titanium alloy cake was cooled and the cake was passivated with a 0.7 wt % oxygen/argon mixture. After passivation, the cake was washed with deionized water and subsequently dried in a vacuum oven at less than 100° C.
  • Table 1 below sets forth a chemical analysis of various runs for 6/4 alloy from an experimental loop running the Armstrong Process.
    TABLE 2
    Ti 6/4 FROM EXPERIMENTAL LOOP
    Run Size Oxygen Sodium Nitrogen Hydrogen Chloride Vanadium Aluminum Carbon Iron
    N-269- * 0.187 0.019 0.006 0.0029 0.001 5.58 5.58 0.019 0.014
    N-269- + 0.113 0.0015 0.008 0.003 0.001 5.33 5.38 0.03 0.021
    N-269- + 0.128 0.0006 0.005 0.0037 0.001 5.84 5.47 0.039 0.02
    N-271- + 0.124 0.002 0.001 0.0066 0.0016 4.87 6.95 0.033 0.037
    N-276 + 0.111 0.0018 4.44 6.04
    N-276 + 0.121 0.0018 0.005 0.0043 0.0005 4.12 6.35 0.012 0.016
    N-276 + 0.131 0.0019 0.003 0.0057 0.0011 4.03 5.67 0.012 0.016
    N-276 + 0.169 0.0026 4.1 6.02
    N-276 + 0.128 0.0015 0.003 0.0042 0.0005 3.8 6.02 0.012 0.019
    N-277 + 0.155 0.0018 0.003 0.0053 0.0006 3.45 5.73 0.014 0.015
    N-277 + 0.135 0.0023 3.49 5.49
    N-276 * 0.121 0.0041 0.005 0.0052 0.0005 4.31 6.53 0.02 0.015
    N-276 * 0.134 0.0075 3.81 5.92
    N-276 * 0.175 0.014 0.012 0.0066 0.0005 3.96 6.01
    N-276 * 0.187 0.046 0.007 0.0081 0.0005 3.95 6.05
    N-277 * 0.141 0.0022 0.004 0.0038 0.0026 3.65 5.42
    mean 0.14125 0.0069125 0.0051667 0.00495 0.00095 4.295625 5.914375 0.0212222 0.0192222
    stand dev. 0.0253811 0.0116064 0.0028868 0.0015952 0.000626 0.7343838 0.4335892 0.0102808 0.0071024

    * = BULK

    + = SMALL
  • As seen from the above Table 2, the sodium levels for 6/4 are very low on the order of 69 ppm and for certain runs, sodium levels have been undetectable. This result was unexpected because over two hundred runs of CP titanium have been made using the Armstrong Process, and sodium has always been present in the range of from about 400-700 ppm. Therefore, the lack of sodium in the 6/4 alloy was not only unexpected but an important consideration since sodium may adversely affect the welds of CP titanium.
  • Other important aspects shown in Table 2 are the percentages of vanadium and aluminum in the 6/4 showing an average of about 5.91% aluminum and about 4.29% vanadium for all of the runs. The runs reported in Table 2 were made with an experimental loop and the valving and control systems for metering the appropriate amount of both vanadium and aluminum were rudimentary. Advanced valving systems have now been installed to control more closely the amount of vanadium and aluminum in the 6/4 produced from the Armstrong Process, although even with the rudimentary control system, the 6/4 alloy was within ASTM specifications. Also of significance is the low iron and chloride content of the 6/4 alloy.
  • An additional unexpected feature of the 6/4 alloy compared to the CP titanium is the surface area, as determined using BET Specific Surface Area analysis with krypton as the adsorbate. In general, the specific surface area of the 6/4 alloy is much larger than the CP titanium and this also was unexpected. Surface analysis of CP particles which were distilled overnight (about 8-12 hours) between 500-575° C. were 0.534 square meters/gram whereas 6/4 alloy measured 3.12 square meters/gram, indicating that the alloy is significantly smaller than the CP.
  • The SEMs show that the 6/4 powder is “frillier” than CP powder, see FIGS. 4-9 and 10-12. As reported by Moxson et al., Innovations in Titanium Powder Processing in the Journal of Metallurgy May 2000, it is clear that by-product fines from the Kroll or Hunter Processes contain large amounts of undesirable chlorine which is not present in the CP titanium powder made by the Armstrong Process (see Table 1). Moreover, the morphology of the Hunter and Kroll fines, as previously discussed, is different from the CP powder made by the Armstrong Process. Neither the Kroll nor the Hunter process has been adapted to produce 6/4 alloy. Alloy powders have been produced by melting prealloyed stock and thereafter using either gas atomization or a hydride-dehydride process (MHR). The Moxson et al. article discloses 6/4 powder made in Tula, Russia and as seen from FIG. 2 in that article, particularly FIGS. 2 c and 2 d the powders made by Tula Hydride Reduction process are significantly different than those made by the Armstrong Process. Moreover, referring to the Moxson et al. article in the 1998 issue of the International Journal of Powder Metallurgy, Vol. 4, No. 5, pages 45-47, it is seen that the chemical analysis for the pre-alloy 6/4 powder produced by the metal-hydride reduction (MHD) process contains exceptional amounts of calcium and also is not within ASTM specifications for aluminum.
  • Because the 6/4 alloy made by the Armstrong Process is made without the presence of either calcium or magnesium, these metals should be present, if at all, only in trace amounts and certainly much less than 100 ppm. Sodium which would be expected to be present in significant quantities based on the operation of the Armstrong Process to produce CP titanium in fact is present only at minium quantities in the 6/4 alloy. Specifically, sodium in the 6/4 alloy made by the Armstrong Process is almost always present less than 200 ppm and generally less than 100 ppm. In some instances, 6/4 alloy has been produced using the Armstrong Process in which sodium is undetectable so that this is a great and unexpected advantage of the 6/4 alloy vis a vis CP titanium made by the Armstrong Process.
  • Both the Armstrong CP titanium and 6/4 alloy have tap densities or packing fractions in the range of from about 4% to 11%. This tap density or packing fraction is unique and inherent in the Armstrong Process and, while not advantageous particularly with respect to powder metallurgical processing, distinguishes the CP powder and the 6/4 powder made by the Armstrong Process from all other known powders.
  • As is well known in the art, solid objects can be made by forming 6/4 or CP titanium into a near net shapes and thereafter sintering, see the Moxson et al. article and can also be formed by hot isostatic pressing, laser deposition, metal injecting molding, direct powder rolling or various other well known techniques. Therefore, the titanium alloy powder made by the Armstrong method may be formed into a sintered product or may be formed into a solid object by well known methods in the art and the subject invention is intended to cover all such products made from the powder of the subject invention.
  • While the invention has been particularly shown and described with reference to a preferred embodiment hereof, it will be understood by those skilled in the art that several changes in form and detail may be made without departing from the spirit and scope of the invention which includes titanium base alloys having lesser amounts of aluminum and vanadium and is specifically not limited to the specific alloys disclosed.

Claims (39)

1. A titanium base alloy powder having lesser amounts of aluminum and vanadium with an alkali or alkaline earth metal being present in an amount of less than about 200 ppm and said alloy powder being neither spherical nor angular and flake shaped.
2. The titanium base alloy of claim 1, wherein the total amount of aluminum and vanadium is less than about 20% by weight.
3. The titanium alloy powder of claim 1, wherein said powder is in agglomerates having an average mean diameter as measured by sieve analysis greater than about 50 microns.
4. The titanium alloy powder of claim 1, wherein the surface area as determined by BET analysis is at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
5. The titanium alloy powder of claim 1, wherein sodium and magnesium and calcium are present in an amount of less than about 100 ppm.
6. The titanium alloy powder of claim 1, wherein the tap density is in the range of from about 4% to about 11%.
7. The titanium alloy powder of claim 1 formed into a sintered product.
8. A solid object made from the titanium alloy powder of claim 1.
9. A titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount of less than about 200 ppm and said alloy powder being neither spherical nor angular and flake shaped.
10. The titanium alloy powder of claim 9, wherein said powder is in agglomerates having an average mean diameter as measured by sieve analysis greater than about 50 microns.
11. The titanium alloy powder of claim 9, wherein the surface area as determined by BET analysis is at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
12. The titanium alloy powder of claim 9, wherein sodium and magnesium and calcium are present in an amount of less than about 100 ppm.
13. The titanium alloy powder of claim 9, wherein said powder meets ASTM B265 grade 5 chemical specifications.
14. The titanium alloy powder of claim 9, wherein the tap density is in the range of from about 4% to about 11%.
15. The titanium alloy powder of claim 9 agglomerated as seen in FIGS. 10-12.
16. The titanium alloy powder of claim 9 formed into a sintered product.
17. A solid object made from the titanium alloy powder of claim 9.
18. A titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 200 ppm and having a tap density in the range of from about 4% to about 11%.
19. The titanium alloy powder of claim 18, wherein the surface area as determined by BET analysis is at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
20. The titanium alloy powder of claim 18, wherein sodium and calcium and magnesium are present in an amount of less than about 100 ppm.
21. The titanium alloy powder of claim 18, wherein said powder meets ASTM B265 grade 5 chemical specifications.
22. The titanium alloy powder of claim 18 agglomerated as seen in Figs A to B.
23. The titanium alloy powder of claim 18 formed into a sintered product.
24. A solid object made from the titanium alloy powder of claim 18.
25. A titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or an alkaline earth metal being present in an amount less than about 200 ppm made by the subsurface reduction of chloride vapor with molten alkali metal or molten alkaline earth metal.
26. The titanium alloy powder of claim 25, wherein the surface area as determined by BET analysis is at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
27. The titanium alloy powder of claim 25, wherein sodium and calcium and magnesium are present in an amount of less than about 100 ppm.
28. The titanium alloy powder of claim 25, wherein said powder meets ASTM B265 grade 5 chemical specifications.
29. The titanium alloy powder of claim 25, wherein the chloride vapor is introduced at greater than sonic velocity into flowing liquid sodium.
30. The titanium alloy powder of claim 25, wherein the tap density is in the range of from about 4% to about 11%.
31. The titanium alloy powder of claim 25 agglomerated as seen in FIGS. 10-12.
32. The titanium alloy powder of claim 29 formed into a sintered product.
33. A solid object made from the titanium alloy powder of claim 29.
34. Agglomerated titanium base alloy powder having about 6% by weight aluminum and about 4% by weight vanadium with an alkali or alkaline earth metal being present in an amount less than about 100 ppm substantially as seen in FIGS. 10-12.
35. The titanium alloy powder of claim 34, wherein the surface area as determined by BET analysis is at least about 3 square meters per gram after distillation of the powder at temperatures between about 500° C. and about 575° C. for about 8 to about 12 hours.
36. The titanium alloy powder of claim 34, wherein said powder meets ASTM B265 grade 5 chemical specifications.
37. The titanium alloy powder of claim 34, wherein the tap density is in the range of from about 4% to about 11.
38. The titanium alloy powder of claim 34 formed into a sintered product.
39. A solid object made from the titanium alloy powder of claim 34.
US11/186,724 2005-07-21 2005-07-21 Titanium alloy Abandoned US20070017319A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/186,724 US20070017319A1 (en) 2005-07-21 2005-07-21 Titanium alloy
PCT/US2006/028396 WO2008013518A1 (en) 2005-07-21 2006-07-22 Titanium alloy
US12/879,598 US8894738B2 (en) 2005-07-21 2010-09-10 Titanium alloy
US14/521,646 US9630251B2 (en) 2005-07-21 2014-10-23 Titanium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/186,724 US20070017319A1 (en) 2005-07-21 2005-07-21 Titanium alloy
PCT/US2006/028396 WO2008013518A1 (en) 2005-07-21 2006-07-22 Titanium alloy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/879,598 Continuation US8894738B2 (en) 2005-07-21 2010-09-10 Titanium alloy

Publications (1)

Publication Number Publication Date
US20070017319A1 true US20070017319A1 (en) 2007-01-25

Family

ID=39273248

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/186,724 Abandoned US20070017319A1 (en) 2005-07-21 2005-07-21 Titanium alloy
US12/879,598 Expired - Fee Related US8894738B2 (en) 2005-07-21 2010-09-10 Titanium alloy
US14/521,646 Active 2026-06-17 US9630251B2 (en) 2005-07-21 2014-10-23 Titanium alloy

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/879,598 Expired - Fee Related US8894738B2 (en) 2005-07-21 2010-09-10 Titanium alloy
US14/521,646 Active 2026-06-17 US9630251B2 (en) 2005-07-21 2014-10-23 Titanium alloy

Country Status (2)

Country Link
US (3) US20070017319A1 (en)
WO (1) WO2008013518A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050284824A1 (en) * 2002-09-07 2005-12-29 International Titanium Powder, Llc Filter cake treatment apparatus and method
US20060107790A1 (en) * 2002-10-07 2006-05-25 International Titanium Powder, Llc System and method of producing metals and alloys
US20060123950A1 (en) * 2002-09-07 2006-06-15 Anderson Richard P Process for separating ti from a ti slurry
US20060150769A1 (en) * 2002-09-07 2006-07-13 International Titanium Powder, Llc Preparation of alloys by the armstrong method
US20060230878A1 (en) * 2001-10-09 2006-10-19 Richard Anderson System and method of producing metals and alloys
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US20080152533A1 (en) * 2006-12-22 2008-06-26 International Titanium Powder, Llc Direct passivation of metal powder
US20080199348A1 (en) * 1994-08-01 2008-08-21 International Titanium Powder, Llc Elemental material and alloy
US20080264208A1 (en) * 2007-04-25 2008-10-30 International Titanium Powder, Llc Liquid injection of VCI4 into superheated TiCI4 for the production of Ti-V alloy powder
US20100329919A1 (en) * 2005-07-21 2010-12-30 Jacobsen Lance E Titanium Alloy
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
KR20170010592A (en) 2015-07-20 2017-02-01 부산대학교 산학협력단 Metal Oxide Nanowire and Nano Energetic Materials Composite based on bacteriophage and Method for Fabricating the same
CN113427016A (en) * 2021-07-08 2021-09-24 安徽理工大学 Device for preparing fine titanium-aluminum intermetallic compound powder and production method thereof
CN115846671A (en) * 2023-03-01 2023-03-28 北京理工大学 Preparation method of multi-state multi-scale titanium alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958332B2 (en) 2014-09-08 2021-03-23 Mimosa Networks, Inc. Wi-Fi hotspot repeater
US10851437B2 (en) * 2016-05-18 2020-12-01 Carpenter Technology Corporation Custom titanium alloy for 3-D printing and method of making same
RU2725589C1 (en) 2016-10-21 2020-07-02 Дженерал Электрик Компани Obtaining titanium alloy materials by reducing titanium tetrachloride
EP3512655B1 (en) 2016-10-21 2022-11-30 General Electric Company Producing titanium alloy materials through reduction of titanium tetrahalide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771928A (en) * 1927-05-02 1930-07-29 Jung Hans Filter press
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US5779761A (en) * 1994-08-01 1998-07-14 Kroftt-Brakston International, Inc. Method of making metals and other elements
US20020005090A1 (en) * 1994-08-01 2002-01-17 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal
US20030145682A1 (en) * 1994-08-01 2003-08-07 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus

Family Cites Families (175)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2607675A (en) * 1948-09-06 1952-08-19 Int Alloys Ltd Distillation of metals
US2647826A (en) * 1950-02-08 1953-08-04 Jordan James Fernando Titanium smelting process
GB722184A (en) 1951-09-04 1955-01-19 Joseph Peppo Levy Improvements in or relating to the production of pure titanium and zirconium
BE515246A (en) * 1951-11-01
US2846303A (en) * 1953-08-11 1958-08-05 Nat Res Corp Method of producing titanium
US2846304A (en) * 1953-08-11 1958-08-05 Nat Res Corp Method of producing titanium
US2823991A (en) * 1954-06-23 1958-02-18 Nat Distillers Chem Corp Process for the manufacture of titanium metal
GB778021A (en) 1954-08-23 1957-07-03 Bayer Ag Process for the production of titanium
US2890112A (en) * 1954-10-15 1959-06-09 Du Pont Method of producing titanium metal
US2835567A (en) * 1954-11-22 1958-05-20 Du Pont Method of producing granular refractory metal
US2882144A (en) * 1955-08-22 1959-04-14 Allied Chem Method of producing titanium
DE1069884B (en) * 1956-01-17 1960-04-21 Imperial Chemical Industries Limited, London Process for the production of titanium
DE1071350B (en) * 1956-03-20
US2816828A (en) 1956-06-20 1957-12-17 Nat Res Corp Method of producing refractory metals
US3067025A (en) 1957-04-05 1962-12-04 Dow Chemical Co Continuous production of titanium sponge
US2941867A (en) * 1957-10-14 1960-06-21 Du Pont Reduction of metal halides
US2915382A (en) 1957-10-16 1959-12-01 Nat Res Corp Production of metals
US3085871A (en) * 1958-02-24 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3085872A (en) * 1958-07-01 1963-04-16 Griffiths Kenneth Frank Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium
US3058820A (en) 1958-07-25 1962-10-16 Bert W Whitehurst Method of producing titanium metal
US3113017A (en) 1960-07-06 1963-12-03 Vernon E Homme Method for reacting titanic chloride with an alkali metal
US3519258A (en) * 1966-07-23 1970-07-07 Hiroshi Ishizuka Device for reducing chlorides
US3331666A (en) * 1966-10-28 1967-07-18 William C Robinson One-step method of converting uranium hexafluoride to uranium compounds
US3535109A (en) 1967-06-22 1970-10-20 Dal Y Ingersoll Method for producing titanium and other reactive metals
US3847596A (en) 1968-02-28 1974-11-12 Halomet Ag Process of obtaining metals from metal halides
US3650681A (en) * 1968-08-08 1972-03-21 Mizusawa Industrial Chem Method of treating a titanium or zirconium salt of a phosphorus oxyacid
US3867515A (en) * 1971-04-01 1975-02-18 Ppg Industries Inc Treatment of titanium tetrachloride dryer residue
GB1355433A (en) * 1971-07-28 1974-06-05 Electricity Council Production of titanium
US3836302A (en) 1972-03-31 1974-09-17 Corning Glass Works Face plate ring assembly for an extrusion die
SU411962A1 (en) 1972-06-05 1974-01-25
US3919087A (en) 1972-07-25 1975-11-11 Secondary Processing Systems Continuous pressure filtering and/or screening apparatus for the separation of liquids and solids
JPS4942518A (en) 1972-08-31 1974-04-22
US4062679A (en) 1973-03-29 1977-12-13 Fansteel Inc. Embrittlement-resistant tantalum wire
US3927993A (en) 1973-11-21 1975-12-23 Ronald W Griffin Fire starter and method
JPS5812545B2 (en) * 1974-05-08 1983-03-09 ドウリヨクロ カクネンリヨウカイハツジギヨウダン How to drain argon gas
CA1062466A (en) 1974-06-03 1979-09-18 John R. Adsetts Methanation
US3966460A (en) * 1974-09-06 1976-06-29 Amax Specialty Metal Corporation Reduction of metal halides
US4007055A (en) * 1975-05-09 1977-02-08 Exxon Research And Engineering Company Preparation of stoichiometric titanium disulfide
USRE32260E (en) 1975-07-14 1986-10-07 Fansteel Inc. Tantalum powder and method of making the same
US4009007A (en) * 1975-07-14 1977-02-22 Fansteel Inc. Tantalum powder and method of making the same
US4017302A (en) * 1976-02-04 1977-04-12 Fansteel Inc. Tantalum metal powder
US4070252A (en) * 1977-04-18 1978-01-24 Scm Corporation Purification of crude titanium tetrachloride
US4141719A (en) * 1977-05-31 1979-02-27 Fansteel Inc. Tantalum metal powder
US4149876A (en) * 1978-06-06 1979-04-17 Fansteel Inc. Process for producing tantalum and columbium powder
US4190442A (en) * 1978-06-15 1980-02-26 Eutectic Corporation Flame spray powder mix
JPS5811497B2 (en) * 1978-10-04 1983-03-03 日本電気株式会社 Ti↓-Al porous alloy and its manufacturing method
LU81469A1 (en) * 1979-07-05 1981-02-03 Luniversite Libre Bruxelles PROCESS AND PLANT FOR THE PRODUCTION OF REACTIVE METALS BY REDUCTION OF THEIR HALIDES
DE3017782C2 (en) * 1980-05-09 1982-09-30 Th. Goldschmidt Ag, 4300 Essen Process for the production of sinterable alloy powders based on titanium
GB2085031B (en) * 1980-08-18 1983-11-16 Diamond Shamrock Techn Modified lead electrode for electrowinning metals
US4445931A (en) * 1980-10-24 1984-05-01 The United States Of America As Represented By The Secretary Of The Interior Production of metal powder
US4401467A (en) 1980-12-15 1983-08-30 Jordan Robert K Continuous titanium process
FR2502181B1 (en) 1981-03-23 1985-09-27 Servimetal PROCESS AND APPARATUS FOR THE PRECISE AND CONTINUOUS INJECTION OF A HALOGENATED DERIVATIVE IN A GASEOUS STATE IN A LIQUID METAL
US4379718A (en) * 1981-05-18 1983-04-12 Rockwell International Corporation Process for separating solid particulates from a melt
US4519837A (en) * 1981-10-08 1985-05-28 Westinghouse Electric Corp. Metal powders and processes for production from oxides
US4432813A (en) * 1982-01-11 1984-02-21 Williams Griffith E Process for producing extremely low gas and residual contents in metal powders
US4454169A (en) * 1982-04-05 1984-06-12 Diamond Shamrock Corporation Catalytic particles and process for their manufacture
US4414188A (en) 1982-04-23 1983-11-08 Aluminum Company Of America Production of zirconium diboride powder in a molten salt bath
US4556420A (en) 1982-04-30 1985-12-03 Westinghouse Electric Corp. Process for combination metal reduction and distillation
US4423004A (en) 1983-03-24 1983-12-27 Sprague Electric Company Treatment of tantalum powder
US4487677A (en) * 1983-04-11 1984-12-11 Metals Production Research, Inc. Electrolytic recovery system for obtaining titanium metal from its ore
GB8317243D0 (en) 1983-06-24 1983-07-27 Alcan Int Ltd Producing aluminium boride
US4521281A (en) * 1983-10-03 1985-06-04 Olin Corporation Process and apparatus for continuously producing multivalent metals
US4687632A (en) 1984-05-11 1987-08-18 Hurd Frank W Metal or alloy forming reduction process and apparatus
AU587782B2 (en) 1984-05-25 1989-08-31 William Reginald Bulmer Martin Reducing of metals with liquid metal reducing agents
JPS60255300A (en) 1984-05-31 1985-12-16 Yamato Sangyo Kk Screw press type sludge dehydrator
JPS6112837A (en) 1984-06-28 1986-01-21 Hiroshi Ishizuka Manufacture of metallic titanium
US4555268A (en) 1984-12-18 1985-11-26 Cabot Corporation Method for improving handling properties of a flaked tantalum powder composition
CH666639A5 (en) * 1985-04-16 1988-08-15 Battelle Memorial Institute METHOD FOR MANUFACTURING METAL POWDERS.
US4689129A (en) 1985-07-16 1987-08-25 The Dow Chemical Company Process for the preparation of submicron-sized titanium diboride
JPS6265921A (en) 1985-09-12 1987-03-25 Toho Titanium Co Ltd Production of titanium carbide
US4606902A (en) 1985-10-03 1986-08-19 The United States Of America As Represented By The Secretary Of Commerce Process for preparing refractory borides and carbides
FR2595101A1 (en) * 1986-02-28 1987-09-04 Rhone Poulenc Chimie PROCESS FOR THE PREPARATION BY LITHIOTHERMIA OF METAL POWDERS
US4985069A (en) * 1986-09-15 1991-01-15 The United States Of America As Represented By The Secretary Of The Interior Induction slag reduction process for making titanium
JPS63207612A (en) * 1987-02-24 1988-08-29 日本碍子株式会社 Ceramic extruding method and device
US4828008A (en) * 1987-05-13 1989-05-09 Lanxide Technology Company, Lp Metal matrix composites
JPS6415334A (en) 1987-07-09 1989-01-19 Toho Titanium Co Ltd Production of metal from metal halide
CA1328561C (en) 1987-07-17 1994-04-19 Toho Titanium Co., Ltd. Method for producing metallic titanium and apparatus therefor
JPS6447823A (en) 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
JPS6452031A (en) * 1987-08-24 1989-02-28 Toho Titanium Co Ltd Production of titanium alloy
JPH0643248B2 (en) 1987-09-18 1994-06-08 科学技術庁金属材料技術研究所長 Method for producing transition metal boride fiber
US5211741A (en) * 1987-11-30 1993-05-18 Cabot Corporation Flaked tantalum powder
US4940490A (en) * 1987-11-30 1990-07-10 Cabot Corporation Tantalum powder
US4897116A (en) * 1988-05-25 1990-01-30 Teledyne Industries, Inc. High purity Zr and Hf metals and their manufacture
US4923577A (en) * 1988-09-12 1990-05-08 Westinghouse Electric Corp. Electrochemical-metallothermic reduction of zirconium in molten salt solutions
US5167271A (en) 1988-10-20 1992-12-01 Lange Frederick F Method to produce ceramic reinforced or ceramic-metal matrix composite articles
US4941646A (en) * 1988-11-23 1990-07-17 Bethlehem Steel Corporation Air cooled gas injection lance
US5338379A (en) 1989-04-10 1994-08-16 General Electric Company Tantalum-containing superalloys
IT1230774B (en) 1989-05-05 1991-10-29 Sir Ind Spa HIGH MECHANICAL RESISTANCE CERAMIC PREFORMS, PROCEDURE FOR THEIR PREPARATION AND METALLIC MATRIX COMPOUNDS WITH THEM OBTAINED.
JPH0747787B2 (en) * 1989-05-24 1995-05-24 株式会社エヌ・ケイ・アール Method for producing titanium powder or titanium composite powder
US5242481A (en) 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
US5028491A (en) * 1989-07-03 1991-07-02 General Electric Company Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
JPH0357595A (en) 1989-07-24 1991-03-12 Kuri Kagaku Sochi Kk Continuous filtering device
US5082491A (en) * 1989-09-28 1992-01-21 V Tech Corporation Tantalum powder with improved capacitor anode processing characteristics
FI87896C (en) * 1990-06-05 1993-03-10 Outokumpu Oy Process for making metal powder
JPH04116161A (en) 1990-09-05 1992-04-16 Hitachi Metals Ltd Titanium target material and production thereof
US5176741A (en) * 1990-10-11 1993-01-05 Idaho Research Foundation, Inc. Producing titanium particulates from in situ titanium-zinc intermetallic
US5064463A (en) 1991-01-14 1991-11-12 Ciomek Michael A Feedstock and process for metal injection molding
US5147451A (en) 1991-05-14 1992-09-15 Teledyne Industries, Inc. Method for refining reactive and refractory metals
JPH0578762A (en) 1991-05-23 1993-03-30 Sumitomo Light Metal Ind Ltd Tial-based composite material having excellent strength and its production
US5149497A (en) 1991-06-12 1992-09-22 General Electric Company Oxidation resistant coatings of gamma titanium aluminum alloys modified by chromium and tantalum
DE4214720C2 (en) 1992-05-04 1994-10-13 Starck H C Gmbh Co Kg Device for the production of fine-particle metal and ceramic powder
US5259862A (en) 1992-10-05 1993-11-09 The United States Of America As Represented By The Secretary Of The Interior Continuous production of granular or powder Ti, Zr and Hf or their alloy products
GB2274467A (en) 1993-01-26 1994-07-27 London Scandinavian Metall Metal matrix alloys
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
US5439750A (en) 1993-06-15 1995-08-08 General Electric Company Titanium metal matrix composite inserts for stiffening turbine engine components
US5951822A (en) 1993-09-09 1999-09-14 Marcal Paper Mills, Inc. Apparatus for making granular material
US5460642A (en) 1994-03-21 1995-10-24 Teledyne Industries, Inc. Aerosol reduction process for metal halides
US5498446A (en) * 1994-05-25 1996-03-12 Washington University Method and apparatus for producing high purity and unagglomerated submicron particles
US5437854A (en) 1994-06-27 1995-08-01 Westinghouse Electric Corporation Process for purifying zirconium tetrachloride
US7445658B2 (en) 1994-08-01 2008-11-04 Uchicago Argonne, Llc Titanium and titanium alloys
US7435282B2 (en) 1994-08-01 2008-10-14 International Titanium Powder, Llc Elemental material and alloy
US5958106A (en) 1994-08-01 1999-09-28 International Titanium Powder, L.L.C. Method of making metals and other elements from the halide vapor of the metal
US6861038B2 (en) 1994-08-01 2005-03-01 International Titanium Powder, Llc. Ceramics and method of producing ceramics
US20030061907A1 (en) * 1994-08-01 2003-04-03 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US5427602A (en) * 1994-08-08 1995-06-27 Aluminum Company Of America Removal of suspended particles from molten metal
US6027585A (en) * 1995-03-14 2000-02-22 The Regents Of The University Of California Office Of Technology Transfer Titanium-tantalum alloys
USH1642H (en) * 1995-03-20 1997-04-01 The United States Of America As Represented By The Secretary Of The Navy Wear and impact tolerant plow blade
US5637816A (en) * 1995-08-22 1997-06-10 Lockheed Martin Energy Systems, Inc. Metal matrix composite of an iron aluminide and ceramic particles and method thereof
US6103651A (en) 1996-02-07 2000-08-15 North American Refractories Company High density ceramic metal composite exhibiting improved mechanical properties
US5954856A (en) 1996-04-25 1999-09-21 Cabot Corporation Method of making tantalum metal powder with controlled size distribution and products made therefrom
US5948495A (en) 1996-07-01 1999-09-07 Alyn Corporation Ceramic-metal matrix composites for magnetic disk substrates for hard disk drives
US20080187455A1 (en) 1996-08-02 2008-08-07 International Titanium Powder, Llc Titanium and titanium alloys
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
DE59801634D1 (en) * 1997-02-19 2001-11-08 Starck H C Gmbh Co Kg TANTAL POWDER, METHOD FOR THE PRODUCTION THEREOF AND SITER ANODES AVAILABLE therefrom
CN1088761C (en) * 1997-02-19 2002-08-07 H.C.施塔克公司 Tantalum powder, method for producing same powder and sintered anodes obtained from it
US5914440A (en) * 1997-03-18 1999-06-22 Noranda Inc. Method and apparatus removal of solid particles from magnesium chloride electrolyte and molten magnesium by filtration
US6309595B1 (en) 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
US6180258B1 (en) * 1997-06-04 2001-01-30 Chesapeake Composites Corporation Metal-matrix composites and method for making such composites
JPH1190692A (en) 1997-06-24 1999-04-06 Chiyoda Corp Screw press
JP2894326B2 (en) * 1997-06-30 1999-05-24 日本電気株式会社 Tantalum powder and solid electrolytic capacitor using the same
US5993512A (en) 1997-12-09 1999-11-30 Allmettechnologies, Inc. Method and system for recycling byproduct streams from metal processing operations
US6309570B1 (en) 1998-01-14 2001-10-30 American Equipment Systems Vacuum extrusion system for production of cement-based articles
US6210461B1 (en) 1998-08-10 2001-04-03 Guy R. B. Elliott Continuous production of titanium, uranium, and other metals and growth of metallic needles
JP4116161B2 (en) 1998-09-03 2008-07-09 三菱電機株式会社 Semiconductor device with overvoltage protection function and manufacturing method thereof
DE19847012A1 (en) 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobium powder and process for its manufacture
JP3871824B2 (en) * 1999-02-03 2007-01-24 キャボットスーパーメタル株式会社 Tantalum powder for high capacity capacitors
US6010661A (en) * 1999-03-11 2000-01-04 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production
GB9915394D0 (en) 1999-07-02 1999-09-01 Rolls Royce Plc A method of adding boron to a heavy metal containung titanium aluminide alloy and a heavy containing titanium aluminide alloy
AT407393B (en) * 1999-09-22 2001-02-26 Electrovac Process for producing a metal matrix composite (MMC) component
AT408345B (en) * 1999-11-17 2001-10-25 Electrovac METHOD FOR FIXING A BODY MADE OF METAL MATRIX COMPOSITE (MMC) MATERIAL ON A CERAMIC BODY
IT1307298B1 (en) * 1999-12-20 2001-10-30 Ct Sviluppo Materiali Spa PROCEDURE FOR THE PREPARATION OF LOW DENSITY COMPONENTS, CONSUBSTRATED IF ANY COMPOSITE WITH METAL OR POLYMER MATRIX,
US6432161B1 (en) 2000-02-08 2002-08-13 Cabot Supermetals K.K. Nitrogen-containing metal powder, production process thereof, and porous sintered body and solid electrolytic capacitor using the metal powder
JP3671133B2 (en) 2000-03-30 2005-07-13 東邦チタニウム株式会社 Method for producing titanium
DE10030252A1 (en) 2000-06-20 2002-01-03 Degussa Separation of metal chlorides from their suspensions in chlorosilanes
US6884522B2 (en) * 2002-04-17 2005-04-26 Ceramics Process Systems Corp. Metal matrix composite structure and method
US6921510B2 (en) 2003-01-22 2005-07-26 General Electric Company Method for preparing an article having a dispersoid distributed in a metallic matrix
US7410610B2 (en) 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US7329381B2 (en) * 2002-06-14 2008-02-12 General Electric Company Method for fabricating a metallic article without any melting
WO2004022799A1 (en) 2002-09-07 2004-03-18 International Titanium Powder, Llc. Safety mechanism
WO2004026511A2 (en) 2002-09-07 2004-04-01 International Titanium Powder, Llc. Method and apparatus for controlling the size of powder produced by the armstrong process
CN1681950A (en) 2002-09-07 2005-10-12 国际钛金属粉末公司 Screw device for transfer of Ti-containing reaction slurry into a vacuum vessel
AU2003273279B2 (en) * 2002-09-07 2007-05-03 Cristal Us, Inc. Process for separating ti from a ti slurry
US7351272B2 (en) * 2002-09-07 2008-04-01 International Titanium Powder, Llc Method and apparatus for controlling the size of powder produced by the Armstrong process
UA79310C2 (en) * 2002-09-07 2007-06-11 Int Titanium Powder Llc Methods for production of alloys or ceramics with the use of armstrong method and device for their realization
US20050284824A1 (en) 2002-09-07 2005-12-29 International Titanium Powder, Llc Filter cake treatment apparatus and method
US20050225014A1 (en) 2002-09-07 2005-10-13 International Titanium Powder, Llc Filter extraction mechanism
US6902601B2 (en) * 2002-09-12 2005-06-07 Millennium Inorganic Chemicals, Inc. Method of making elemental materials and alloys
AU2003263082A1 (en) 2002-10-07 2004-05-04 International Titanium Powder, Llc. System and method of producing metals and alloys
WO2004033737A1 (en) 2002-10-07 2004-04-22 International Titanium Powder, Llc. System and method of producing metals and alloys
UA78623C2 (en) 2002-11-20 2007-04-10 Int Titanium Powder Llc Method of separating, meant for separation of metal powder from a slurry (variants) and separating system for realization the same
US6824585B2 (en) 2002-12-03 2004-11-30 Adrian Joseph Low cost high speed titanium and its alloy production
US6955703B2 (en) * 2002-12-26 2005-10-18 Millennium Inorganic Chemicals, Inc. Process for the production of elemental material and alloys
WO2005019485A1 (en) * 2003-08-22 2005-03-03 International Titanium Powder, Llc. Indexing separation system
AU2004269422B2 (en) * 2003-09-02 2009-09-10 Cristal Us, Inc. Separation system, method and apparatus
US7803235B2 (en) * 2004-01-08 2010-09-28 Cabot Corporation Passivation of tantalum and other metal powders using oxygen
AU2005267419B2 (en) 2004-06-24 2010-11-18 H.C. Starck Gmbh Production of valve metal powders with improved physical and electrical properties
US7531021B2 (en) * 2004-11-12 2009-05-12 General Electric Company Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix
US20070017319A1 (en) 2005-07-21 2007-01-25 International Titanium Powder, Llc. Titanium alloy
US20070079908A1 (en) * 2005-10-06 2007-04-12 International Titanium Powder, Llc Titanium boride
WO2007089400A1 (en) 2006-02-02 2007-08-09 International Titanium Powder, L.L.C. Metal matrix with ceramic particles dispersed therein
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US7753989B2 (en) * 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
CN101568398A (en) 2006-12-22 2009-10-28 国际钛粉有限责任公司 Direct passivation of metal powder
JP6112837B2 (en) 2012-11-28 2017-04-12 日本放送協会 Mobile communication system, mobile communication device, fixed relay device, and concentrator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1771928A (en) * 1927-05-02 1930-07-29 Jung Hans Filter press
US2882143A (en) * 1953-04-16 1959-04-14 Nat Lead Co Continuous process for the production of titanium metal
US5779761A (en) * 1994-08-01 1998-07-14 Kroftt-Brakston International, Inc. Method of making metals and other elements
US20020005090A1 (en) * 1994-08-01 2002-01-17 International Titanium Powder Llc Method of making metals and other elements from the halide vapor of the metal
US20030145682A1 (en) * 1994-08-01 2003-08-07 Kroftt-Brakston International, Inc. Gel of elemental material or alloy and liquid metal and salt
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080199348A1 (en) * 1994-08-01 2008-08-21 International Titanium Powder, Llc Elemental material and alloy
US20060230878A1 (en) * 2001-10-09 2006-10-19 Richard Anderson System and method of producing metals and alloys
US20060123950A1 (en) * 2002-09-07 2006-06-15 Anderson Richard P Process for separating ti from a ti slurry
US20060150769A1 (en) * 2002-09-07 2006-07-13 International Titanium Powder, Llc Preparation of alloys by the armstrong method
US20050284824A1 (en) * 2002-09-07 2005-12-29 International Titanium Powder, Llc Filter cake treatment apparatus and method
US20090202385A1 (en) * 2002-09-07 2009-08-13 Donn Reynolds Armstrong Preparation of alloys by the armstrong method
US20060107790A1 (en) * 2002-10-07 2006-05-25 International Titanium Powder, Llc System and method of producing metals and alloys
US20070180951A1 (en) * 2003-09-03 2007-08-09 Armstrong Donn R Separation system, method and apparatus
US9630251B2 (en) 2005-07-21 2017-04-25 Cristal Metals Inc. Titanium alloy
US8894738B2 (en) 2005-07-21 2014-11-25 Cristal Metals Inc. Titanium alloy
US20100329919A1 (en) * 2005-07-21 2010-12-30 Jacobsen Lance E Titanium Alloy
US8821611B2 (en) 2005-10-06 2014-09-02 Cristal Metals Inc. Titanium boride
US20080031766A1 (en) * 2006-06-16 2008-02-07 International Titanium Powder, Llc Attrited titanium powder
US20110103997A1 (en) * 2006-06-16 2011-05-05 Dariusz Kogut Attrited titanium powder
US7753989B2 (en) 2006-12-22 2010-07-13 Cristal Us, Inc. Direct passivation of metal powder
US20080152533A1 (en) * 2006-12-22 2008-06-26 International Titanium Powder, Llc Direct passivation of metal powder
US9127333B2 (en) 2007-04-25 2015-09-08 Lance Jacobsen Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder
US20080264208A1 (en) * 2007-04-25 2008-10-30 International Titanium Powder, Llc Liquid injection of VCI4 into superheated TiCI4 for the production of Ti-V alloy powder
KR20170010592A (en) 2015-07-20 2017-02-01 부산대학교 산학협력단 Metal Oxide Nanowire and Nano Energetic Materials Composite based on bacteriophage and Method for Fabricating the same
CN113427016A (en) * 2021-07-08 2021-09-24 安徽理工大学 Device for preparing fine titanium-aluminum intermetallic compound powder and production method thereof
CN115846671A (en) * 2023-03-01 2023-03-28 北京理工大学 Preparation method of multi-state multi-scale titanium alloy

Also Published As

Publication number Publication date
US20100329919A1 (en) 2010-12-30
US9630251B2 (en) 2017-04-25
WO2008013518A1 (en) 2008-01-31
US20150040726A1 (en) 2015-02-12
US8894738B2 (en) 2014-11-25

Similar Documents

Publication Publication Date Title
US9630251B2 (en) Titanium alloy
US20080199348A1 (en) Elemental material and alloy
US5032176A (en) Method for manufacturing titanium powder or titanium composite powder
US8821611B2 (en) Titanium boride
US6409797B2 (en) Method of making metals and other elements from the halide vapor of the metal
US20230116899A1 (en) Method and apparatus for improving powder flowability
US20080187455A1 (en) Titanium and titanium alloys
US6551377B1 (en) Spherical rhenium powder
Goso et al. Production of titanium metal powder by the HDH process
US20180043437A1 (en) Methods For Producing Metal Powders And Metal Masterbatches
US5917113A (en) Process for producing spherical metal particles
US20030061907A1 (en) Gel of elemental material or alloy and liquid metal and salt
US7435282B2 (en) Elemental material and alloy
US7445658B2 (en) Titanium and titanium alloys
WO2007089400A1 (en) Metal matrix with ceramic particles dispersed therein
CA2672300C (en) Liquid injection of vcl4 into superheated ticl4 for the production of ti-v alloy powder
US20030145682A1 (en) Gel of elemental material or alloy and liquid metal and salt
Unal et al. Production of aluminum and aluminum-alloy powder
Koehler Powder metallurgy nickel and nickel alloys
Mathias et al. Metal powder as feedstock for laser-based additive manufacturing: From production to powder modification
Colella et al. Powder production techniques for high-pressure cold spray
Samal et al. Production of Aluminum and Aluminum-Alloy Powder
Motsai A parametric study of loose sintering of titanium powders
Rubaiyat Hossain Production of iron powder from iron oxide (Mill Scale)
Vasquez et al. Influence of powder characteristics on final properties of powder-bed laser additively manufactured ods fe-14cr steel

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL TITANIUM POWDER, LLC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACOBSEN, LANCE;BENISH, ADAM JOHN;REEL/FRAME:016495/0853

Effective date: 20050831

AS Assignment

Owner name: TWACG, LLC, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:020497/0632

Effective date: 20070801

AS Assignment

Owner name: INTERNATIONAL TITANIUM POWDER, L.L.C., ILLINOIS

Free format text: CHANGE OF NAME;ASSIGNOR:TWACG, LLC;REEL/FRAME:020617/0212

Effective date: 20070802

AS Assignment

Owner name: THE NATIONAL TITANIUM DIOXIDE CO. LTD., MARYLAND

Free format text: SECURITY AGREEMENT;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:021127/0493

Effective date: 20080602

AS Assignment

Owner name: INTERNATIONAL TITANIUM POWDER, LLC, ILLINOIS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:THE NATIONAL TITANIUM DIOXIDE CO. LTD.;REEL/FRAME:021824/0319

Effective date: 20081111

AS Assignment

Owner name: CRISTAL US, INC., MARYLAND

Free format text: MERGER;ASSIGNOR:INTERNATIONAL TITANIUM POWDER, L.L.C.;REEL/FRAME:021845/0404

Effective date: 20081016

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION