US20020174850A1 - Control system for internal combustion engine and method - Google Patents

Control system for internal combustion engine and method Download PDF

Info

Publication number
US20020174850A1
US20020174850A1 US10/119,694 US11969402A US2002174850A1 US 20020174850 A1 US20020174850 A1 US 20020174850A1 US 11969402 A US11969402 A US 11969402A US 2002174850 A1 US2002174850 A1 US 2002174850A1
Authority
US
United States
Prior art keywords
intake air
internal combustion
combustion engine
valve
air quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/119,694
Other versions
US6675768B2 (en
Inventor
Hiroshi Kanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KANAI, HIROSHI
Publication of US20020174850A1 publication Critical patent/US20020174850A1/en
Application granted granted Critical
Publication of US6675768B2 publication Critical patent/US6675768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/107Safety-related aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a control system for an internal combustion engine, and more particularly to an air intake control system having an intake air flow control valve disposed downstream of a throttle valve.
  • Japanese Patent Laid-Open No. 7-83101 or Japanese Patent Laid-Open No. 2000-73843 discloses an air intake control system for an internal combustion engine.
  • an intake air flow control valve disposed downstream of a throttle valve within an intake air passage is closed upon cold starting for raising the negative pressure in the intake air passage to enhance volatility of the injected fuel using a boiling effect under reduced pressure, and to generate a tumble flow in a cylinder, thus improving a combustion in the cylinder.
  • the invention thus provides a control system for an internal combustion engine having a fail-safe function against a failure in the throttle valve or damage to the air inlet system.
  • a control system for an internal combustion engine is provided with a throttle valve provided within an intake passage of the internal combustion engine and controlling an intake air quantity, an intake air flow control valve that is provided downstream of the throttle valve within the intake passage, and a controller that controls the intake air flow control valve to be opened and closed in accordance with an operation state of the internal combustion engine.
  • the controller controls an intake air quantity by adjusting an opening amount of the intake air flow control valve when it is determined that the intake air quantity cannot be controlled by the throttle valve.
  • the intake air flow control valve has a vent hole and, therefore, is not expected to have a function of adjusting the intake air quantity.
  • a rough adjustment of the intake air quantity can be made by adjusting an opening amount of the intake air flow control valve, though such adjustment is not performed as accurately as being performed by the throttle valve.
  • a torque of the internal combustion engine be controlled parallel with the air quantity control.
  • the intake air flow control valve is not expected to have the function of adjusting the intake air quantity, and the range for adjusting the intake air quantity is thus limited.
  • a fine adjustment of the torque by correcting at least one of the ignition timing, fuel injection amount, and variable valve timing prevents an increase in emissions and allows stable limp-home running.
  • FIG. 1 is a schematic structural view of an internal combustion engine provided with an air intake control system for an internal combustion engine according to the invention
  • FIG. 2 is a flowchart showing an air intake control routine executed in the air intake control system for the internal combustion engine as shown in FIG. 1;
  • FIG. 3 is a graph representing a relationship between an opening degree of the accelerator-pedal and the opening degree of the intake air flow control valve upon occurrence of a failure
  • FIG. 4 is a map showing an ignition retard control amount defined by the opening degree of the accelerator and the vehicle speed.
  • FIG. 1 is a schematic view of an internal combustion engine in which an intake air control system according to an exemplary embodiment of the invention is employed.
  • an intake pipe 2 and an exhaust pipe 3 are connected to a spark-ignition type multi-cylinder internal combustion engine 1 (in this case, gasoline engine, and hereinafter referred to as an “internal combustion engine”).
  • a spark-ignition type multi-cylinder internal combustion engine 1 in this case, gasoline engine, and hereinafter referred to as an “internal combustion engine”.
  • an intake air temperature sensor 22 which detects a temperature of the intake air
  • an airflow meter 23 which detects intake air quantity
  • a throttle valve 24 which detects intake air quantity
  • a throttle valve 24 which detects an opening amount of the throttle valve 24 .
  • the throttle valve 24 is connected to an actuator 71 , actuation of which is controlled by an engine ECU 6 to be described later in accordance with a position of an accelerator pedal 4 (detected by an accelerator pedal position sensor 41 ) and the vehicle speed.
  • an intake air pressure sensor 26 for detecting pressure in the intake pipe 2 is disposed in a surge tank 20 of the intake pipe 2 .
  • an electromagnetic injector (fuel injection device) 27 is disposed in an intake port 21 connected to each cylinder of the internal combustion engine 1 . Gasoline as a fuel is supplied to the injector 27 from a fuel tank 5 .
  • An injection system of the internal combustion engine 1 shown in FIG. 1 is a multi-point injection system provided with the injector 27 for each cylinder.
  • An intake air flow control valve 28 is disposed between the surge tank 20 and the intake port 21 .
  • the intake air flow control valve 28 is closed to block a part of the intake pipe 2 such that the cross sectional area of the intake pipe 2 is reduced.
  • an actuator 72 is connected to the intake air flow control valve 28 for opening/closing the intake air flow control valve 28 .
  • a piston 11 that reciprocates in a vertical direction in the drawing.
  • the piston 11 is connected to a crank shaft (not shown) via a connecting rod 12 .
  • a combustion chamber 14 is defined by the cylinder 10 and a cylinder head 13 above the piston 11 .
  • a spark plug 15 is provided upward of the combustion chamber 14 that is connected to the intake pipe 2 and the exhaust pipe 3 via an intake valve 16 and an exhaust valve 17 respectively, which can be opened and closed.
  • an air-fuel ratio sensor 31 which outputs an electric signal corresponding to an oxygen concentration in exhaust gas.
  • the engine ECU 6 (including a control section of the intake control device in the internal combustion engine according to the exemplary embodiment of the invention) for controlling the internal combustion engine 1 is mainly constructed by a microcomputer.
  • the engine ECU 6 receives signals sent from the various sensors such as an intake air temperature sensor 22 , an airflow meter 23 , a throttle opening sensor 25 , an intake air pressure sensor 26 , an air-fuel ratio sensor 31 , and an accelerator pedal position sensor 41 , a vehicle speed sensor 60 , and a crank position sensor 61 , and controls the spark plug 15 , the injector 27 and the actuators 71 , 72 .
  • FIG. 2 is a flowchart representing a control routine executed in the air intake control system.
  • the control is repeatedly executed by the engine ECU 6 at predetermined time intervals when an ignition key is turned on.
  • step S1 signals indicating the state of the operation of the air intake system are read. Those signals are sent from the intake air temperature sensor 22 , the airflow meter 23 , the throttle opening sensor 25 , the intake air pressure sensor 26 , the air-fuel ratio sensor 31 , the accelerator pedal position sensor 41 , the vehicle speed sensor 60 , and the crank position sensor 61 .
  • step S2 it is determined whether the intake air quantity control is normally executed by the throttle valve 25 . More specifically, when a difference between an actual opening amount of the throttle valve 24 derived from the signal sent from the throttle opening sensor 25 and a target opening amount calculated by the engine ECU 6 is large, it is determined that the opening amount of the throttle valve 24 is not able to be controlled owing to an immovable state of the throttle valve 24 , for example.
  • step S2 If YES is obtained, that is, it is determined that the intake air quantity control is not normally executed in step S2, the process proceeds to step S3. In step S3, a flag indicating the uncontrollable state is set, and the process proceeds to step S4.
  • step S4 an opening amount of the intake air flow control valve 28 at a time when failure occurs is calculated.
  • This opening amount is set in accordance with the accelerator pedal position detected by the accelerator pedal position sensor 41 to obtain required quantity of the intake air.
  • FIG. 3 is a graph that represents an example of the opening amount of the intake air flow control valve 28 , which is set in accordance with the accelerator pedal position derived from the accelerator pedal position sensor 41 .
  • the aforementioned control is executed upon failure in the intake system.
  • the opening amount of the intake air flow control valve 28 is controlled to a predetermined value and not controlled to a full open state when the accelerator pedal position 2 that is, the depressing force applied to the accelerator pedal, is kept at a predetermined level or greater.
  • step S5 a torque correction amount is calculated. Even in a full closed state, the air flow control valve 28 allows a greater quantity of the intake air to pass therethrough than the quantity of the intake air to pass through the throttle valve 24 in the full closing state. Therefore, engine speed increases in a low-speed region and, thus, a higher torque is generated. Hence, the torque is corrected such that the generated torque is reduced as the depressing force applied to the accelerator pedal decreases and the vehicle speed decreases. More specifically, for example, an amount by which the spark ignition timing of the spark plug 15 is retarded is set to be increased as the depressing force applied to the accelerator pedal decreases and the vehicle speed decreases using a torque correction map as shown in FIG. 4 in the engine ECU 6 .
  • step S8 the actuator 72 and the spark plug 15 are controlled in accordance with the calculated opening amount of the intake air flow control valve 28 and the torque correction amount (retard amount of the ignition timing) to obtain the torque in accordance with the accelerator pedal position and the vehicle speed.
  • the intake air flow control valve 28 is controlled so as not to be fully opened. Therefore, the intake air quantity is limited, and therefore, the maximum torque is limited. However, the resultant output is sufficient to allow the safe and stable limp-home running.
  • step S6 the flag indicating the uncontrollable state is reset, and then the process proceeds to step S7.
  • step S7 the opening of the intake air flow control valve 28 in a normal condition is calculated and, in step S8, the opening of the intake air flow control valve 28 is set at the calculated opening amount by the actuator 72 .
  • the intake air flow control valve 28 is closed to localize the downstream airflow in the intake pipe 2 .
  • atomization of the fuel and generation of turbulence within the combustion chamber 14 may be promoted owing to the boiling effect under reduced pressure, thus improving combustion.
  • the intake air flow control valve 28 is opened.
  • the torque is controlled by correcting the retard amount of the ignition timing.
  • the torque can be reduced by decreasing the fuel injection amount.
  • the torque can be reduced by decreasing the advance amount of the variable valve-timing mechanism.
  • the intake air quantity may be controlled by adjusting the opening of the intake air flow control valve even when the failure occurs in the throttle valve 24 , preventing the intake air quantity controlling. Accordingly, the fail-safe performance can be improved.
  • unnecessarily excessive torque generation may be prevented within a low vehicle speed range by adjusting the torque, which is performed by correcting at least one of the retard amount of the ignition timing, the fuel injection amount, and the variable valve-timing.
  • the engine ECU 6 of the illustrated embodiment is implemented as one or more programmed general purpose computers. It will be appreciated by those skilled in the art that the controller can be implemented using a single special purpose integrated circuit (e.g., ASIC) having a main or central processor section for overall, system-level control, and separate sections dedicated to performing various different specific computations, functions and other processes under control of the central processor section.
  • the controller can be a plurality of separate dedicated or programmable integrated or other electronic circuits or devices (e.g., hardwired electronic or logic circuits such as discrete element circuits, or programmable logic devices such as PLDs, PLAs, PALs or the like).
  • the controller can be implemented using a suitably programmed general purpose computer, e.g., a microprocessor, microcontroller or other processor device (CPU or MPU), either alone or in conjunction with one or more peripheral (e.g., integrated circuit) data and signal processing devices.
  • a suitably programmed general purpose computer e.g., a microprocessor, microcontroller or other processor device (CPU or MPU)
  • CPU or MPU processor device
  • peripheral e.g., integrated circuit
  • a distributed processing architecture can be used for maximum data/signal processing capability and speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

A system and method for controlling an internal combustion engine with an intake air flow control valve provided downstream of a throttle valve within an intake passage of the internal combustion engine includes controlling an opening amount of the intake air flow valve of the internal combustion engine to adjust the intake air quantity when the intake air quantity cannot be controlled by the throttle valve.

Description

    INCORPORATION BY REFERENCE
  • The disclosure of Japanese Patent Application No. 2001-124579 filed on Apr. 23, 2001, including the specification, drawing and abstract is incorporated herein by reference in its entirety. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0002]
  • The invention relates to a control system for an internal combustion engine, and more particularly to an air intake control system having an intake air flow control valve disposed downstream of a throttle valve. [0003]
  • 2. Description of Related Art [0004]
  • Japanese Patent Laid-Open No. 7-83101 or Japanese Patent Laid-Open No. 2000-73843 discloses an air intake control system for an internal combustion engine. In the aforementioned control system, an intake air flow control valve disposed downstream of a throttle valve within an intake air passage is closed upon cold starting for raising the negative pressure in the intake air passage to enhance volatility of the injected fuel using a boiling effect under reduced pressure, and to generate a tumble flow in a cylinder, thus improving a combustion in the cylinder. [0005]
  • Recently further improvement in fail-safe performance has been required, and various arts have been developed to cope with the demand. The aforementioned related arts respectively disclose fail-safe technologies against a failure in the intake air flow control valve, but disclose no fail-safe technologies against a failure in the throttle valve or a damage to an intake system. [0006]
  • SUMMARY OF THE INVENTION
  • The invention thus provides a control system for an internal combustion engine having a fail-safe function against a failure in the throttle valve or damage to the air inlet system. [0007]
  • According to an aspect of the invention, a control system for an internal combustion engine is provided with a throttle valve provided within an intake passage of the internal combustion engine and controlling an intake air quantity, an intake air flow control valve that is provided downstream of the throttle valve within the intake passage, and a controller that controls the intake air flow control valve to be opened and closed in accordance with an operation state of the internal combustion engine. The controller controls an intake air quantity by adjusting an opening amount of the intake air flow control valve when it is determined that the intake air quantity cannot be controlled by the throttle valve. [0008]
  • Unlike the throttle valve, the intake air flow control valve has a vent hole and, therefore, is not expected to have a function of adjusting the intake air quantity. However a rough adjustment of the intake air quantity can be made by adjusting an opening amount of the intake air flow control valve, though such adjustment is not performed as accurately as being performed by the throttle valve. Thus, it is possible to realize a fail-safe function that allows a safe limp-home running by adjusting the intake air quantity using the intake air flow control valve upon an unexpected abnormal state of the engine such as a failure in the throttle valve or the damage to the intake system. [0009]
  • Further, it is preferable that a torque of the internal combustion engine be controlled parallel with the air quantity control. As described above, the intake air flow control valve is not expected to have the function of adjusting the intake air quantity, and the range for adjusting the intake air quantity is thus limited. A fine adjustment of the torque by correcting at least one of the ignition timing, fuel injection amount, and variable valve timing prevents an increase in emissions and allows stable limp-home running.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and further objects, features and advantages of the invention will become apparent from the following description of preferred exemplary embodiments with reference to the accompanying drawings, wherein like numerals are used to represent like elements and wherein: [0011]
  • FIG. 1 is a schematic structural view of an internal combustion engine provided with an air intake control system for an internal combustion engine according to the invention; [0012]
  • FIG. 2 is a flowchart showing an air intake control routine executed in the air intake control system for the internal combustion engine as shown in FIG. 1; [0013]
  • FIG. 3 is a graph representing a relationship between an opening degree of the accelerator-pedal and the opening degree of the intake air flow control valve upon occurrence of a failure; and [0014]
  • FIG. 4 is a map showing an ignition retard control amount defined by the opening degree of the accelerator and the vehicle speed.[0015]
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Hereinafter a detail explanation will be given for a preferred exemplary embodiment of the invention with reference to the attached drawings. In those drawings, the same reference numerals will be used for the same elements such that the same description of those elements may be omitted. [0016]
  • FIG. 1 is a schematic view of an internal combustion engine in which an intake air control system according to an exemplary embodiment of the invention is employed. [0017]
  • Referring to FIG. 1, an [0018] intake pipe 2 and an exhaust pipe 3 are connected to a spark-ignition type multi-cylinder internal combustion engine 1 (in this case, gasoline engine, and hereinafter referred to as an “internal combustion engine”). Provided within the intake pipe 2 are an intake air temperature sensor 22 which detects a temperature of the intake air, an airflow meter 23 which detects intake air quantity, a throttle valve 24, and a throttle opening sensor 25 which detects an opening amount of the throttle valve 24. The throttle valve 24 is connected to an actuator 71, actuation of which is controlled by an engine ECU 6 to be described later in accordance with a position of an accelerator pedal 4 (detected by an accelerator pedal position sensor 41) and the vehicle speed.
  • Also an intake [0019] air pressure sensor 26 for detecting pressure in the intake pipe 2 is disposed in a surge tank 20 of the intake pipe 2. Further, an electromagnetic injector (fuel injection device) 27 is disposed in an intake port 21 connected to each cylinder of the internal combustion engine 1. Gasoline as a fuel is supplied to the injector 27 from a fuel tank 5. An injection system of the internal combustion engine 1 shown in FIG. 1 is a multi-point injection system provided with the injector 27 for each cylinder.
  • An intake air [0020] flow control valve 28 is disposed between the surge tank 20 and the intake port 21. In FIG. 1, the intake air flow control valve 28 is closed to block a part of the intake pipe 2 such that the cross sectional area of the intake pipe 2 is reduced. Further, an actuator 72 is connected to the intake air flow control valve 28 for opening/closing the intake air flow control valve 28.
  • Provided within a [0021] cylinder 10 which constitutes the cylinder of the internal combustion engine 1 is a piston 11 that reciprocates in a vertical direction in the drawing. The piston 11 is connected to a crank shaft (not shown) via a connecting rod 12. A combustion chamber 14 is defined by the cylinder 10 and a cylinder head 13 above the piston 11. A spark plug 15 is provided upward of the combustion chamber 14 that is connected to the intake pipe 2 and the exhaust pipe 3 via an intake valve 16 and an exhaust valve 17 respectively, which can be opened and closed.
  • Provided in the [0022] exhaust pipe 3 is an air-fuel ratio sensor 31 which outputs an electric signal corresponding to an oxygen concentration in exhaust gas.
  • The engine ECU [0023] 6 (including a control section of the intake control device in the internal combustion engine according to the exemplary embodiment of the invention) for controlling the internal combustion engine 1 is mainly constructed by a microcomputer. The engine ECU 6 receives signals sent from the various sensors such as an intake air temperature sensor 22, an airflow meter 23, a throttle opening sensor 25, an intake air pressure sensor 26, an air-fuel ratio sensor 31, and an accelerator pedal position sensor 41, a vehicle speed sensor 60, and a crank position sensor 61, and controls the spark plug 15, the injector 27 and the actuators 71, 72.
  • Next, operation of the air intake control system for the internal combustion engine will be described. FIG. 2 is a flowchart representing a control routine executed in the air intake control system. The control is repeatedly executed by the [0024] engine ECU 6 at predetermined time intervals when an ignition key is turned on.
  • In step S1, signals indicating the state of the operation of the air intake system are read. Those signals are sent from the intake [0025] air temperature sensor 22, the airflow meter 23, the throttle opening sensor 25, the intake air pressure sensor 26, the air-fuel ratio sensor 31, the accelerator pedal position sensor 41, the vehicle speed sensor 60, and the crank position sensor 61.
  • Then in step S2, it is determined whether the intake air quantity control is normally executed by the [0026] throttle valve 25. More specifically, when a difference between an actual opening amount of the throttle valve 24 derived from the signal sent from the throttle opening sensor 25 and a target opening amount calculated by the engine ECU 6 is large, it is determined that the opening amount of the throttle valve 24 is not able to be controlled owing to an immovable state of the throttle valve 24, for example. When an actual intake air quantity obtained based on the signal sent from the airflow meter 23 is unnecessarily greater than the intake air quantity to be obtained based on the opening amount of the throttle valve 24, it is determined that the intake air quantity control is not normally executed because a damage to the intake pipe 2 may occur downstream of the throttle valve 24.
  • If YES is obtained, that is, it is determined that the intake air quantity control is not normally executed in step S2, the process proceeds to step S3. In step S3, a flag indicating the uncontrollable state is set, and the process proceeds to step S4. [0027]
  • In step S4, an opening amount of the intake air [0028] flow control valve 28 at a time when failure occurs is calculated. This opening amount is set in accordance with the accelerator pedal position detected by the accelerator pedal position sensor 41 to obtain required quantity of the intake air. FIG. 3 is a graph that represents an example of the opening amount of the intake air flow control valve 28, which is set in accordance with the accelerator pedal position derived from the accelerator pedal position sensor 41. Referring to FIG. 3, the aforementioned control is executed upon failure in the intake system. Thus, the opening amount of the intake air flow control valve 28 is controlled to a predetermined value and not controlled to a full open state when the accelerator pedal position 2 that is, the depressing force applied to the accelerator pedal, is kept at a predetermined level or greater.
  • In step S5, a torque correction amount is calculated. Even in a full closed state, the air [0029] flow control valve 28 allows a greater quantity of the intake air to pass therethrough than the quantity of the intake air to pass through the throttle valve 24 in the full closing state. Therefore, engine speed increases in a low-speed region and, thus, a higher torque is generated. Hence, the torque is corrected such that the generated torque is reduced as the depressing force applied to the accelerator pedal decreases and the vehicle speed decreases. More specifically, for example, an amount by which the spark ignition timing of the spark plug 15 is retarded is set to be increased as the depressing force applied to the accelerator pedal decreases and the vehicle speed decreases using a torque correction map as shown in FIG. 4 in the engine ECU 6.
  • Next, in step S8, the [0030] actuator 72 and the spark plug 15 are controlled in accordance with the calculated opening amount of the intake air flow control valve 28 and the torque correction amount (retard amount of the ignition timing) to obtain the torque in accordance with the accelerator pedal position and the vehicle speed. The intake air flow control valve 28 is controlled so as not to be fully opened. Therefore, the intake air quantity is limited, and therefore, the maximum torque is limited. However, the resultant output is sufficient to allow the safe and stable limp-home running.
  • If NO is obtained in step S2, that is, it is determined that the intake quantity control can be normally executed using the [0031] throttle valve 24, the process proceeds to step S6. In step S6, the flag indicating the uncontrollable state is reset, and then the process proceeds to step S7. In step S7, the opening of the intake air flow control valve 28 in a normal condition is calculated and, in step S8, the opening of the intake air flow control valve 28 is set at the calculated opening amount by the actuator 72. Upon cold starting, the intake air flow control valve 28 is closed to localize the downstream airflow in the intake pipe 2. As a result, atomization of the fuel and generation of turbulence within the combustion chamber 14 may be promoted owing to the boiling effect under reduced pressure, thus improving combustion. When the combustion improvement is not required, the intake air flow control valve 28 is opened.
  • In the exemplary embodiment described above, the torque is controlled by correcting the retard amount of the ignition timing. However, it is possible to control the torque by correcting the fuel injection amount or advance amount of a variable valve-timing mechanism. In the former case, the torque can be reduced by decreasing the fuel injection amount. In the latter case, the torque can be reduced by decreasing the advance amount of the variable valve-timing mechanism. [0032]
  • As described above, in the exemplary embodiment of the invention, the intake air quantity may be controlled by adjusting the opening of the intake air flow control valve even when the failure occurs in the [0033] throttle valve 24, preventing the intake air quantity controlling. Accordingly, the fail-safe performance can be improved.
  • Further, unnecessarily excessive torque generation may be prevented within a low vehicle speed range by adjusting the torque, which is performed by correcting at least one of the retard amount of the ignition timing, the fuel injection amount, and the variable valve-timing. [0034]
  • The [0035] engine ECU 6 of the illustrated embodiment is implemented as one or more programmed general purpose computers. It will be appreciated by those skilled in the art that the controller can be implemented using a single special purpose integrated circuit (e.g., ASIC) having a main or central processor section for overall, system-level control, and separate sections dedicated to performing various different specific computations, functions and other processes under control of the central processor section. The controller can be a plurality of separate dedicated or programmable integrated or other electronic circuits or devices (e.g., hardwired electronic or logic circuits such as discrete element circuits, or programmable logic devices such as PLDs, PLAs, PALs or the like). The controller can be implemented using a suitably programmed general purpose computer, e.g., a microprocessor, microcontroller or other processor device (CPU or MPU), either alone or in conjunction with one or more peripheral (e.g., integrated circuit) data and signal processing devices. In general, any device or assembly of devices on which a finite state machine capable of implementing the procedures described herein can be used as the controller. A distributed processing architecture can be used for maximum data/signal processing capability and speed.
  • While the invention has been described with reference to preferred exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments or constructions. On the contrary, the invention is intended to cover various modifications and equivalent arrangements. In addition, while the various elements of the disclosed invention are shown in various combinations and configurations, which are exemplary, other combinations and configurations, including more less or only a single element, are also within the spirit and scope of the invention. [0036]

Claims (12)

What is claimed is:
1. A control system for an internal combustion engine, comprising:
a throttle valve provided within an intake passage of the internal combustion engine and controlling an intake air quantity;
an intake air flow control valve provided downstream of the throttle valve within the intake passage; and
a controller controlling the intake air flow control valve to be opened and closed in accordance with an operation state of the internal combustion engine, wherein the intake air quantity is controlled by adjusting an opening amount of the intake air flow control valve when it is determined that the intake air quantity cannot be controlled by the throttle valve.
2. The control system according to claim 1, wherein the controller adjusts a torque generated in the internal combustion engine along with the control of the intake air quantity when the controller determines that the intake air quantity cannot be controlled by the throttle valve.
3. The control system according to claim 2, wherein the controller controls the torque generated in the internal combustion engine by correcting at least one of a spark ignition timing, a fuel injection amount, and a variable valve timing.
4. The control system according to claim 3, wherein the controller reduces the torque generated in the internal combustion engine by increasing an amount by which the spark ignition timing is retarded.
5. The control system according to claim 3, wherein the controller reduces the torque generated in the internal combustion engine by decreasing the fuel injection amount.
6. The control system according to claim 3, wherein the controller reduces the torque generated in the internal combustion engine by decreasing an advance amount of the variable valve timing.
7. A control method for an internal combustion engine including an intake air flow control valve that is provided downstream of a throttle valve within an intake passage of the internal combustion engine, comprising:
controlling the intake air flow control valve to be opened and closed in accordance with an operation state of the internal combustion engine; and
controlling an intake air quantity by adjusting an opening amount of the intake air flow control valve when the intake air quantity cannot be controlled by the throttle valve.
8. The control method according to claim 7, wherein a torque generated in the internal combustion engine is adjusted along with the control of the intake air quantity when the intake air quantity cannot be controlled by the throttle valve.
9. The control method according to claim 8, wherein the torque generated in the internal combustion engine is controlled by correcting at least one of a spark ignition timing, a fuel injection amount, and a variable valve timing.
10. The control method according to claim 9, wherein the torque generated in the internal combustion engine is reduced by increasing an amount by which the spark ignition timing is retarded.
11. The control method according to claim 9, wherein the torque generated in the internal combustion engine is reduced by decreasing the fuel injection amount.
12. The control method according to claim 9, wherein the torque generated in the internal combustion engine is reduced by decreasing an advance amount of the variable valve timing.
US10/119,694 2001-04-23 2002-04-11 Control system for internal combustion engine and method Expired - Fee Related US6675768B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001124579A JP3700051B2 (en) 2001-04-23 2001-04-23 Intake control device for internal combustion engine
JP2001-124579 2001-04-23

Publications (2)

Publication Number Publication Date
US20020174850A1 true US20020174850A1 (en) 2002-11-28
US6675768B2 US6675768B2 (en) 2004-01-13

Family

ID=18973943

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/119,694 Expired - Fee Related US6675768B2 (en) 2001-04-23 2002-04-11 Control system for internal combustion engine and method

Country Status (2)

Country Link
US (1) US6675768B2 (en)
JP (1) JP3700051B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060191512A1 (en) * 2005-02-28 2006-08-31 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US20090250037A1 (en) * 2005-08-22 2009-10-08 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
US20130066539A1 (en) * 2011-09-08 2013-03-14 Ford Global Technologies, Llc Method and system for improving engine starting
US20180073448A1 (en) * 2016-09-13 2018-03-15 Ford Global Technologies, Llc Secondary system and method for controlling an engine
DE102004014977B4 (en) 2003-03-27 2018-10-31 Toyota Jidosha Kabushiki Kaisha An intake air quantity control apparatus and method for an internal combustion engine

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302645A3 (en) * 2001-10-12 2004-09-29 Hitachi Unisia Automotive Ltd. Apparatus and method for controlling the intake air amount of an internal combustion engine
DE10224213C1 (en) * 2002-05-31 2003-10-09 Siemens Ag Regulating combustion air filling of internal combustion engine, involves tuning model using measurement and model values, deriving actuator element desired values using inverted version of tuned model
US8312710B2 (en) * 2009-01-09 2012-11-20 Ford Global Technologies, Llc Cold-start reliability and reducing hydrocarbon emissions in a gasoline direct injection engine
US8408176B2 (en) * 2009-01-09 2013-04-02 Ford Global Technologies, Llc System and method for reducing hydrocarbon emissions in a gasoline direct injection engine
JP5263209B2 (en) * 2010-03-29 2013-08-14 トヨタ自動車株式会社 Vehicle control device
US8694231B2 (en) 2010-06-01 2014-04-08 GM Global Technology Operations LLC Vehicle rollback control systems and methods
US8855896B2 (en) 2010-06-01 2014-10-07 GM Global Technology Operations LLC Intake manifold refill and holding control systems and methods
US8892339B2 (en) 2010-06-01 2014-11-18 GM Global Technology Operations LLC Transmission load predicting system for a stop-start system and a hybrid electric vehicle
US8972150B2 (en) 2010-06-01 2015-03-03 GM Global Technology Operations LLC Selective cylinder disablement control systems and methods
US8635987B2 (en) * 2010-06-01 2014-01-28 GM Global Technology Operations LLC Engine speed control systems and methods
US9022001B2 (en) 2011-02-01 2015-05-05 GM Global Technology Operations LLC Starter control systems and methods for engine rockback
US8776754B2 (en) 2011-09-08 2014-07-15 Ford Global Technologies, Llc Method and system for adjusting port throttles
US8977470B2 (en) 2011-09-13 2015-03-10 Ford Global Technologies, Llc Method and system for sampling intake manifold pressure
US8899212B2 (en) * 2011-12-14 2014-12-02 Ford Global Technologies, Llc Method and system for improving engine starting
US9322352B2 (en) 2012-05-14 2016-04-26 GM Global Technology Operations LLC System and method for preventing misfire during engine startup
US9249750B2 (en) 2012-11-08 2016-02-02 GM Global Technology Operations LLC System and method for controlling fuel injection when an engine is automatically started to decrease an engine startup period
US10099675B2 (en) 2014-10-27 2018-10-16 GM Global Technology Operations LLC System and method for improving fuel economy and reducing emissions when a vehicle is decelerating
JP2016148298A (en) * 2015-02-13 2016-08-18 アイシン精機株式会社 Intake system for internal combustion engine and internal combustion engine
US10107219B2 (en) * 2017-03-17 2018-10-23 Ford Global Technologies, Llc Method and system for engine cold-start
JP7087440B2 (en) * 2018-02-26 2022-06-21 トヨタ自動車株式会社 Vehicle control unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131837A (en) * 1981-02-10 1982-08-14 Suzuki Motor Co Ltd Fuel injection control device
US4955448A (en) * 1988-02-29 1990-09-11 Toyota Jidosha Kabushiki Kaisha Controller for reducing acceleration slippage of a driven wheel
JPH0343642A (en) * 1989-07-10 1991-02-25 Nippondenso Co Ltd Intake air controller of internal combsution engine
JPH0539743A (en) 1991-08-05 1993-02-19 Toyota Motor Corp Internal combustion engine with fuel injection device
JPH06213049A (en) * 1993-01-14 1994-08-02 Toyota Motor Corp Trouble judger
JPH0783101A (en) 1993-09-17 1995-03-28 Nissan Motor Co Ltd Trouble detecting device of internal combustion engine
JP3209036B2 (en) * 1994-08-17 2001-09-17 トヨタ自動車株式会社 An intake flow control device for an internal combustion engine
JP3089992B2 (en) 1995-07-03 2000-09-18 トヨタ自動車株式会社 Intake control device for internal combustion engine
JP3503479B2 (en) * 1998-07-15 2004-03-08 トヨタ自動車株式会社 Evaporative fuel treatment system for lean burn internal combustion engines
JP2000073843A (en) 1998-08-31 2000-03-07 Hitachi Ltd Internal combustion engine control device
US6497212B2 (en) * 2000-02-10 2002-12-24 Denso Corporation Control apparatus for a cylinder injection type internal combustion engine capable of suppressing undesirable torque shock

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004014977B4 (en) 2003-03-27 2018-10-31 Toyota Jidosha Kabushiki Kaisha An intake air quantity control apparatus and method for an internal combustion engine
US20060191512A1 (en) * 2005-02-28 2006-08-31 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US7159546B2 (en) * 2005-02-28 2007-01-09 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US20090250037A1 (en) * 2005-08-22 2009-10-08 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
US7856305B2 (en) * 2005-08-22 2010-12-21 Toyota Jidosha Kabushiki Kaisha Control system and control method for internal combustion engine
US20130066539A1 (en) * 2011-09-08 2013-03-14 Ford Global Technologies, Llc Method and system for improving engine starting
US9002627B2 (en) * 2011-09-08 2015-04-07 Ford Global Technologies, Llc Method and system for improving engine starting
US9835103B2 (en) 2011-09-08 2017-12-05 Ford Global Technologies, Llc Method and system for improving engine starting
US20180073448A1 (en) * 2016-09-13 2018-03-15 Ford Global Technologies, Llc Secondary system and method for controlling an engine
US10087857B2 (en) * 2016-09-13 2018-10-02 Ford Global Technologies, Llc Secondary system and method for controlling an engine
US10605182B2 (en) * 2016-09-13 2020-03-31 Ford Global Technologies, Llc Secondary system and method for controlling an engine

Also Published As

Publication number Publication date
JP3700051B2 (en) 2005-09-28
JP2002317652A (en) 2002-10-31
US6675768B2 (en) 2004-01-13

Similar Documents

Publication Publication Date Title
US6675768B2 (en) Control system for internal combustion engine and method
US6732707B2 (en) Control system and method for internal combustion engine
US6779508B2 (en) Control system of internal combustion engine
US7418942B2 (en) Control apparatus and control method for internal combustion engine
US7654133B2 (en) Malfunction diagnostic apparatus and malfunction diagnostic method for combustion improvement device
JP3817991B2 (en) Control device for internal combustion engine
EP2851541B1 (en) Engine control device
JP3331789B2 (en) Ignition timing control device for internal combustion engine
US6263858B1 (en) Powertrain output monitor
JP4779543B2 (en) Electric throttle learning device
US6041756A (en) Active adaptive EGR and spark advance control system
JP3546703B2 (en) Actuator control device for internal combustion engine
US6712038B2 (en) Intake device for an internal combustion engine and method thereof
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP2003301766A (en) Torque control device of internal combustion engine
JP3785764B2 (en) EGR control device for internal combustion engine
JP3114352B2 (en) Air-fuel ratio control device for internal combustion engine
JP3327043B2 (en) Engine ignition timing control device
US8219301B2 (en) Control device for internal combustion engine
JP2518317B2 (en) Fail-safe device for internal combustion engine for vehicles
JP3129082B2 (en) Air-fuel ratio control device for engine with EGR device
JP3572996B2 (en) Throttle control device for internal combustion engine
JP3089390B2 (en) Diagnostic device for exhaust gas recirculation system of internal combustion engine
JPS63306285A (en) Idle ignition timing control device
JPS63129139A (en) Fuel supply amount control device for electronic fuel injection engine

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KANAI, HIROSHI;REEL/FRAME:012789/0035

Effective date: 20020311

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120113