TWM595331U - Optical sensor and optical sensing system - Google Patents

Optical sensor and optical sensing system Download PDF

Info

Publication number
TWM595331U
TWM595331U TW109200507U TW109200507U TWM595331U TW M595331 U TWM595331 U TW M595331U TW 109200507 U TW109200507 U TW 109200507U TW 109200507 U TW109200507 U TW 109200507U TW M595331 U TWM595331 U TW M595331U
Authority
TW
Taiwan
Prior art keywords
light
optical sensor
microlens
layer
optical
Prior art date
Application number
TW109200507U
Other languages
Chinese (zh)
Inventor
鄭裕國
范成至
Original Assignee
神盾股份有限公司
鄭裕國
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司, 鄭裕國 filed Critical 神盾股份有限公司
Publication of TWM595331U publication Critical patent/TWM595331U/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/16Human faces, e.g. facial parts, sketches or expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)
  • Optical Head (AREA)

Abstract

An optical sensor includes a substrate having a plurality of sensor pixels. The optical sensor also includes a first light-shielding layer disposed on the substrate and having a plurality of first apertures corresponding to the sensor pixels. The optical sensor further includes a transparent medium layer disposed on the first light-shielding layer. The optical sensor includes a plurality of light-directing structures. Each of the light-directing structures includes a micro-prism and a micro-lens. The micro-prism is disposed in the transparent medium layer and corresponds to one of the first apertures. The micro-lens is disposed on the micro-prism.

Description

光學感測器以及光學感測系統Optical sensor and optical sensing system

本創作實施例是有關於一種光學感測器以及應用其的光學感測系統,且特別是有關於一種具有可控角度的光(能量)導向結構(angle controllable light (energy) directing structure)的光學感測器以及應用其的光學感測系統。This creative embodiment relates to an optical sensor and an optical sensing system using the same, and particularly relates to an optical device with an angle controllable light (energy) directing structure Sensors and optical sensing systems using them.

現今的行動電子裝置(例如手機、平板電腦、筆記本電腦等)通常配備有生物識別系統,例如指紋識別、臉部識別、虹膜識別等,用以保護個人資料安全。由於行動支付普及化,生物識別更是變成一種標準的功能。Today's mobile electronic devices (such as mobile phones, tablet computers, laptop computers, etc.) are usually equipped with biometric systems, such as fingerprint recognition, face recognition, iris recognition, etc., to protect the security of personal data. Due to the popularization of mobile payment, biometrics has become a standard function.

隨著行動電子裝置走向大顯示區域及窄邊框的趨勢,已發展出新的光學成像裝置設置於螢幕下方。這種光學成像裝置可透過螢幕(例如,有機發光二極體(organic light emitting diode, OLED)螢幕)部分透光,以擷取按壓於螢幕上方的物體的影像(例如,指紋影像,其可稱為螢幕下指紋感測(fingerprint on display, FOD)。With the trend of mobile electronic devices towards large display areas and narrow bezels, new optical imaging devices have been developed to be arranged below the screen. Such an optical imaging device can partially transmit light through a screen (for example, an organic light emitting diode (OLED) screen) to capture an image of an object pressed on the screen (for example, a fingerprint image, which can be called Fingerprint on display (FOD).

然而,前述光學成像裝置的模組由於內部結構導致無法薄型化(例如其厚度至少3 mm),且為了配合使用者按壓位置的習慣,此模組的位置會與行動電子裝置中設置電池的部分區域重疊,必須要縮小電池的尺寸以讓出空間設置此光學成像裝置,可能導致行動電子裝置的續航力下降。此外,隨著技術發展,行動電子裝置的耗電量越來越大,因此,如何在不犧牲電池空間的前提下薄型化光學成像裝置,為各家努力之重點。However, due to the internal structure, the module of the aforementioned optical imaging device cannot be thinned (for example, its thickness is at least 3 mm), and in order to match the user's habit of pressing the position, the position of the module will be the same as that of the mobile electronic device where the battery is installed The areas overlap, and the size of the battery must be reduced to make room for the optical imaging device, which may cause the endurance of the mobile electronic device to decrease. In addition, with the development of technology, the power consumption of mobile electronic devices is increasing. Therefore, how to thin the optical imaging device without sacrificing battery space is the focus of efforts.

本創作實施例提出一種具有可控角度的光能量導向結構(光導向元件)的光學感測器以及應用其的光學感測系統。在一些實施例中,藉由此光導向元件可消除不必要的雜散光,並可有效縮小光學感測器的厚度。This creative embodiment proposes an optical sensor with a controllable angle light energy guiding structure (light guiding element) and an optical sensing system using the same. In some embodiments, the light guide element can eliminate unnecessary stray light, and can effectively reduce the thickness of the optical sensor.

本創作實施例包含一種光學感測器。光學感測器包含一基板,基板具有複數個感測像素。光學感測器也包含一第一遮光層,第一遮光層設置於基板之上,並具有複數個第一通孔,第一通孔對應於感測像素。光學感測器更包含一透明介質層,透明介質層設置於第一遮光層之上。光學感測器包含複數個光導向元件。光導向元件中的每一個包含一微稜鏡及一微透鏡。微稜鏡設置於透明介質層中並對應於第一通孔的其中之一。微透鏡設置於微稜鏡之上。The authoring embodiment includes an optical sensor. The optical sensor includes a substrate with a plurality of sensing pixels. The optical sensor also includes a first light-shielding layer. The first light-shielding layer is disposed on the substrate and has a plurality of first through holes. The first through holes correspond to the sensing pixels. The optical sensor further includes a transparent medium layer, and the transparent medium layer is disposed on the first light shielding layer. The optical sensor includes a plurality of light guide elements. Each of the light guide elements includes a microlens and a microlens. The microlens is disposed in the transparent dielectric layer and corresponds to one of the first through holes. The microlens is arranged on the microlens.

本創作實施例包含一種光學感測系統。光學感測系統包含一框架,框架具有一容置槽。光學感測系統也包含前述之光學感測器,光學感測器設置於容置槽中。光學感測系統更包含一顯示器,顯示器設置於光學感測器之上。This creative embodiment includes an optical sensing system. The optical sensing system includes a frame with a receiving slot. The optical sensing system also includes the aforementioned optical sensor, and the optical sensor is disposed in the receiving slot. The optical sensing system further includes a display, and the display is disposed on the optical sensor.

以下所創作之不同實施例可能重複使用相同的參考符號及/或標記。這些重複係為了簡化與清晰的目的,並非用以限定所討論的不同實施例及/或結構之間有特定的關係。Different embodiments created below may reuse the same reference symbols and/or marks. These repetitions are for simplicity and clarity, and are not intended to limit the specific relationships between the different embodiments and/or structures discussed.

在本創作的一些實施例中,可藉由光學感測器中的遮光層及光導向元件等部件,使感測像素接收來自特定入射角範圍的光,消除不必要的雜散光,並可有效縮小光學感測器的厚度。因此,可使本創作實施例的光學感測器能輕易地設置於手機等行動電子裝置的電池與顯示器之間,更可利用顯示器的光源實現螢幕下光學感測。In some embodiments of the present creation, the light-shielding layer and the light guide element in the optical sensor can be used to enable the sensing pixel to receive light from a specific incident angle range, eliminating unnecessary stray light, and can effectively Reduce the thickness of the optical sensor. Therefore, the optical sensor of the present embodiment can be easily installed between the battery of the mobile electronic device such as a mobile phone and the display, and the light source of the display can be used to realize the optical sensing under the screen.

第1圖至第4圖是一系列的剖面圖,其繪示根據本創作一實施例之光學感測器200的製造方法。要特別注意的是,為了清楚說明本創作實施例的特徵,第1圖至第4圖中可能省略部分元件。FIGS. 1 to 4 are a series of cross-sectional views illustrating a method of manufacturing the optical sensor 200 according to an embodiment of the present invention. It should be particularly noted that, in order to clearly explain the features of the authoring embodiment, some elements may be omitted in FIGS. 1 to 4.

參照第1圖,首先,提供一基板201,基板201可具有複數個感測像素(sensor pixel)203。在一些實施例中,基板201可為半導體基板,例如矽基板。此外,在一些實施例中,前述半導體基板亦可包含元素半導體(elemental semiconductor),例如:鍺(germanium);化合物半導體(compound semiconductor),例如:氮化鎵(gallium nitride)、碳化矽(silicon carbide)、砷化鎵(gallium arsenide)、磷化鎵(gallium phosphide)、磷化銦(indium phosphide)、砷化銦(indium arsenide)及/或銻化銦(indium antimonide);合金半導體(alloy semiconductor),例如:矽鍺合金(SiGe)、磷砷鎵合金(GaAsP)、砷鋁銦合金(AlInAs)、砷鋁鎵合金(AlGaAs)、砷銦鎵合金(GaInAs)、磷銦鎵合金(GaInP)及/或磷砷銦鎵合金(GaInAsP)或前述材料的組合。Referring to FIG. 1, first, a substrate 201 is provided, and the substrate 201 may have a plurality of sensor pixels 203. In some embodiments, the substrate 201 may be a semiconductor substrate, such as a silicon substrate. In addition, in some embodiments, the aforementioned semiconductor substrate may also include an elemental semiconductor (elemental semiconductor), for example: germanium; a compound semiconductor (e.g., gallium nitride), silicon carbide (silicon carbide) ), gallium arsenide, gallium phosphide, indium phosphide, indium arsenide and/or indium antimonide; alloy semiconductor , Such as: silicon germanium alloy (SiGe), phosphorous arsenic gallium alloy (GaAsP), arsenic aluminum indium alloy (AlInAs), arsenic aluminum gallium alloy (AlGaAs), arsenic indium gallium alloy (GaInAs), phosphorous indium gallium alloy (GaInP) and And/or phosphorous arsenic indium gallium alloy (GaInAsP) or a combination of the foregoing materials.

在一些實施例中,基板201也可以是絕緣層上覆半導體(semiconductor on insulator)基板,前述絕緣層上覆半導體基板可包含底板、設置於底板上的埋藏氧化層及設置於埋藏氧化層上的半導體層。此外,基板201的導電類型可為n型或p型。In some embodiments, the substrate 201 may also be a semiconductor on insulator substrate. The semiconductor substrate on the insulating layer may include a bottom plate, a buried oxide layer disposed on the bottom plate, and a buried oxide layer disposed on the buried oxide layer. Semiconductor layer. In addition, the conductivity type of the substrate 201 may be n-type or p-type.

在一些實施例中,基板201可包含各種隔離部件(未示出),用以定義主動區,並電性隔離基板201之中/之上的主動區元件。在一些實施例中,隔離部件包含淺溝槽隔離(shallow trench isolation, STI)部件、局部矽氧化(local oxidation of silicon, LOCOS)部件、其他合適的隔離部件或前述的組合。In some embodiments, the substrate 201 may include various isolation components (not shown) to define active regions and electrically isolate the active region elements in/on the substrate 201. In some embodiments, the isolation features include shallow trench isolation (STI) features, local oxidation of silicon (LOCOS) features, other suitable isolation features, or a combination of the foregoing.

在一些實施例中,基板201可包含各種以如離子佈植及/或擴散工藝所形成的p型摻雜區及/或n型摻雜區(未示出)。在一些實施例中,摻雜區可形成電晶體、光電二極體(photodiode)等元件。此外,基板201亦可包含各種主動元件、無源元件以及各種導電部件(例如,導電墊、導線或導孔)。In some embodiments, the substrate 201 may include various p-type doped regions and/or n-type doped regions (not shown) formed by ion implantation and/or diffusion processes, for example. In some embodiments, the doped regions may form transistors, photodiodes, and other elements. In addition, the substrate 201 may also include various active components, passive components, and various conductive components (for example, conductive pads, wires, or vias).

在一些實施例中,感測像素203可與訊號處理電路(signal processing circuitry)(未示出)連接。在一些實施例中,感測像素203的數量取決於光學感測區的面積(如第4圖所示的光學感測區的面積SR)的大小。每個感測像素203可包含一或多個光偵測器(photodetector)。在一些實施例中,光偵測器可包含光電二極體。光電二極體可包含p型半導體層、本質層(intrinsic layer)、以及n型半導體層的三層結構的光電材料(photoelectric material)。本質層可吸收光以產生出激子(exciton),並且激子會在p型半導體層及n型半導體層的接面分成電子與電洞,進而產生電流訊號。在一些實施例中,光偵測器可為CMOS影像感測器,例如前照式(front-side illumination, FSI)CMOS影像感測器或背照式(back-side illumination, BSI)CMOS影像感測器。在一些其他實施例中,光偵測器也可包含電荷耦合元件(charged coupling device, CCD)感測器、主動感測器、被動感測器、其他適合的感測器或前述的組合。在一些實施例中,感測像素203可透過光偵測器將接收到的光訊號轉換成電訊號,並透過訊號處理電路處理前述電訊號。In some embodiments, the sensing pixel 203 may be connected to signal processing circuitry (not shown). In some embodiments, the number of sensing pixels 203 depends on the size of the area of the optical sensing area (the area SR of the optical sensing area shown in FIG. 4). Each sensing pixel 203 may include one or more photodetectors. In some embodiments, the photodetector may include a photodiode. The photodiode may include a p-type semiconductor layer, an intrinsic layer, and an n-type semiconductor layer of a three-layer structured photoelectric material. The intrinsic layer can absorb light to generate exciton, and the exciton will be divided into electrons and holes at the junction of the p-type semiconductor layer and the n-type semiconductor layer, thereby generating a current signal. In some embodiments, the light detector may be a CMOS image sensor, such as a front-side illumination (FSI) CMOS image sensor or a back-side illumination (BSI) CMOS image sensor Tester. In some other embodiments, the light detector may also include a charged coupled device (CCD) sensor, an active sensor, a passive sensor, other suitable sensors, or a combination of the foregoing. In some embodiments, the sensing pixel 203 can convert the received optical signal into an electrical signal through a light detector, and process the aforementioned electrical signal through a signal processing circuit.

在一些實施例中,感測像素203可為陣列排列,從而形成感測像素陣列,但本創作實施例並非以此為限。在本創作的圖式中所示的剖面圖僅示出感測像素203的陣列的其中一列,並位於基板201的上表面的下方。應注意的是,在所有實施例的圖式中所示的感測像素203的數量與排列方式僅為示例性的,本創作實施例並非以此為限。感測像素203可為任意行列數目的陣列或其他的排列方式。In some embodiments, the sensing pixels 203 may be arranged in an array to form an array of sensing pixels, but this creative embodiment is not limited thereto. The cross-sectional view shown in the drawing of this creation shows only one row of the array of sensing pixels 203 and is located below the upper surface of the substrate 201. It should be noted that the number and arrangement of the sensing pixels 203 shown in the drawings of all the embodiments are only exemplary, and the present embodiment is not limited thereto. The sensing pixels 203 may be an array with any number of rows and columns or other arrangements.

參照第2圖,在基板201上形成一介電層202。如第2圖所示,介電層202可覆蓋感測像素203。在一些實施例中,介電層202的材料可包含透明光阻、聚亞醯胺、環氧樹脂、其他適當之材料或前述材料之組合,但本創作實施例並非以此為限。在一些實施例中,介電層202可包括光固化材料、熱固化材料或前述之組合。舉例而言,可使用旋轉塗佈製程(spin-on coating process)將介電層202塗佈於基板201與感測像素203之上,但本創作實施例並非以此為限。Referring to FIG. 2, a dielectric layer 202 is formed on the substrate 201. As shown in FIG. 2, the dielectric layer 202 may cover the sensing pixel 203. In some embodiments, the material of the dielectric layer 202 may include transparent photoresist, polyimide, epoxy resin, other suitable materials, or a combination of the foregoing materials, but this creative embodiment is not limited thereto. In some embodiments, the dielectric layer 202 may include a photo-curable material, a thermal-curable material, or a combination of the foregoing. For example, a spin-on coating process may be used to coat the dielectric layer 202 on the substrate 201 and the sensing pixels 203, but the present embodiment is not limited thereto.

接著,在介電層202上形成一第一遮光層204。亦即,介電層202形成於基板201與第一遮光層204之間,但本創作實施例並非以此為限。在一些其他的實施例中,也可在基板201上直接形成第一遮光層204,而不包含介電層202。如第2圖所示,第一遮光層204可具有複數個第一通孔(aperture)204A,且第一通孔204A可對應於感測像素203。第一遮光層204可包含遮光材料,其對於在1200 nm波長範圍以下的光的穿透率小於1%以下,但本創作實施例並非以此為限。Next, a first light-shielding layer 204 is formed on the dielectric layer 202. That is, the dielectric layer 202 is formed between the substrate 201 and the first light-shielding layer 204, but this creative embodiment is not limited thereto. In some other embodiments, the first light-shielding layer 204 may also be formed directly on the substrate 201 without including the dielectric layer 202. As shown in FIG. 2, the first light-shielding layer 204 may have a plurality of first apertures 204A, and the first through holes 204A may correspond to the sensing pixels 203. The first light-shielding layer 204 may include a light-shielding material, and its transmittance for light below the wavelength range of 1200 nm is less than 1%, but the present embodiment is not limited thereto.

在一些實施例中,第一遮光層204可包含金屬材料,例如鎢(W)、鉻(Cr)、鋁(Al)或鈦(Ti)等,但本創作實施例並非以此為限。在此實施例中,可透過例如化學氣相沉積(chemical vapor deposition, CVD)、物理氣相沉積(physical vapor deposition, PVD)(例如:真空蒸鍍(vacuum evaporation)、濺鍍(sputtering)、脈衝激光沉積(pulsed laser deposition, PLD))、原子層沉積(atomic layer deposition, ALD)、其他適合的沉積或前述的組合,將第一遮光層204形成於基板201上。在一些實施例中,第一遮光層204可包含具有遮光特性的高分子材料,例如環氧樹脂、聚醯亞胺等。在此實施例中,可通過例如旋轉塗佈法(spin-coating)、化學氣相沉積法(CVD)、其他適當的方法或上述的組合,將第一遮光層204形成於基板201上。透過前述方法所形成的第一遮光層204的厚度在約0.3 µm至約5 µm的範圍,例如可為2 µm。在一些實施例中,第一遮光層204的厚度取決於第一遮光層204的材料的遮光能力。舉例來說,第一遮光層204所包含的遮光材料的遮光能力可與其厚度呈負相關。In some embodiments, the first light-shielding layer 204 may include metal materials, such as tungsten (W), chromium (Cr), aluminum (Al), or titanium (Ti), etc., but the present embodiment is not limited thereto. In this embodiment, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD) (eg, vacuum evaporation, sputtering, pulse) The first light-shielding layer 204 is formed on the substrate 201 by means of laser deposition (PLD), atomic layer deposition (ALD), other suitable deposition, or a combination of the foregoing. In some embodiments, the first light-shielding layer 204 may include a polymer material having light-shielding properties, such as epoxy resin, polyimide, and the like. In this embodiment, the first light-shielding layer 204 may be formed on the substrate 201 by, for example, spin-coating, chemical vapor deposition (CVD), other suitable methods, or a combination thereof. The thickness of the first light-shielding layer 204 formed by the foregoing method is in the range of about 0.3 μm to about 5 μm, for example, 2 μm. In some embodiments, the thickness of the first light-shielding layer 204 depends on the light-shielding ability of the material of the first light-shielding layer 204. For example, the light-shielding ability of the light-shielding material included in the first light-shielding layer 204 may be inversely related to its thickness.

接著,可對第一遮光層204執行圖案化製程,以形成具有第一孔徑A1的多個第一通孔204A。前述的圖案化製程可包含光刻製程與蝕刻製程。光刻製程可包含光刻膠塗佈(例如旋轉塗佈)、軟烘烤、曝光圖案、曝光後烘烤、光刻膠顯影、清洗及乾燥(例如硬烘烤)、其他適當的製程或前述的組合。蝕刻製程可包含濕式蝕刻工藝、乾式蝕刻製程(例如反應離子蝕刻(reactive ion etching, RIE))、等離子體蝕刻、離子研磨)、其他適合的製程或前述的組合。透過前述方法所形成的第一通孔204A的第一孔徑A1在約0.3 µm至約50 µm的範圍,例如可為約4 µm至約5 µm,但本創作實施例並非以此為限。Next, a patterning process may be performed on the first light-shielding layer 204 to form a plurality of first through holes 204A having a first aperture A1. The aforementioned patterning process may include a photolithography process and an etching process. The photolithography process may include photoresist coating (e.g. spin coating), soft baking, exposure pattern, post-exposure baking, photoresist development, cleaning and drying (e.g. hard baking), other suitable processes or the aforementioned The combination. The etching process may include a wet etching process, a dry etching process (such as reactive ion etching (RIE), plasma etching, ion milling), other suitable processes, or a combination of the foregoing. The first aperture A1 of the first through-hole 204A formed by the foregoing method is in the range of about 0.3 μm to about 50 μm, and may be, for example, about 4 μm to about 5 μm, but this creative embodiment is not limited thereto.

應注意的是,在第2圖中所示的第一通孔204A與感測像素203是以一對一的方式對應設置。然而,在本創作的其他實施例中,第一通孔204A與感測像素203亦可以一對多或多對一的方式對應設置。舉例來說,一個第一通孔204A可露出兩個以上的感測像素203,或者一個感測像素203可從兩個以上的第一通孔204A露出。第2圖僅示出示例性的設置方式,本創作實施例並非以此為限。根據本創作的一些實施例,透過控制圖案化第一遮光層204的第一孔徑A1,可調整入射光的視角(field of view, FOV)範圍。It should be noted that the first through holes 204A and the sensing pixels 203 shown in FIG. 2 are provided in a one-to-one correspondence. However, in other embodiments of the present creation, the first through holes 204A and the sensing pixels 203 can also be correspondingly arranged in a one-to-many or many-to-one manner. For example, one first through hole 204A may expose more than two sensing pixels 203, or one sensing pixel 203 may be exposed from more than two first through holes 204A. Fig. 2 only shows an exemplary setting manner, and the authoring embodiment is not limited thereto. According to some embodiments of the present invention, by controlling the first aperture A1 of the patterned first light-shielding layer 204, the field of view (FOV) range of incident light can be adjusted.

參照第3圖,在第一遮光層204上依序形成一保護層205及一光學濾波層206。在一些實施例中,保護層205可作為積體電路的保護層,且保護層205的材料可包含氧化矽、氮化矽、其他合適的材料或前述之組合,但本創作實施例並非以此為限。在一些實施例中,例如在第一遮光層204的材料包含具有遮光特性的高分子材料的狀況下,也可不形成此保護層205。在一些實施例中,光學濾波層206可為紅外線濾光層(infrared cut filter, ICF)。可見光(visible light)對於此紅外線濾光層具有高穿透率(transmittance),而紅外光對於此紅外線濾光層則具有高反射率(reflectivity),可以減少例如來自太陽光的紅外線干擾。Referring to FIG. 3, a protective layer 205 and an optical filter layer 206 are sequentially formed on the first light-shielding layer 204. In some embodiments, the protective layer 205 can be used as a protective layer of an integrated circuit, and the material of the protective layer 205 can include silicon oxide, silicon nitride, other suitable materials, or a combination of the foregoing, but this creative embodiment is not based on this Limited. In some embodiments, for example, when the material of the first light-shielding layer 204 includes a polymer material having light-shielding properties, the protective layer 205 may not be formed. In some embodiments, the optical filter layer 206 may be an infrared cut filter (ICF). Visible light has a high transmittance for the infrared filter layer, and infrared light has a high reflectivity for the infrared filter layer, which can reduce infrared interference from sunlight, for example.

參照第4圖,在光學濾波層206之上形成一透明介質層207。亦即,光學濾波層206可形成於第一遮光層204與透明介質層207之間,但本創作並非以此為限。在一些其他的實施例中,透明介質層207也可直接形成於第一遮光層204上,而不設置光學濾波層206或將光學濾波層206以其他形式設置。舉例來說,光學濾波層206可以一獨立的光學濾波板的形式,設置於透明介質層207之上(類似於後方第8圖所示的結構)。Referring to FIG. 4, a transparent dielectric layer 207 is formed on the optical filter layer 206. That is, the optical filter layer 206 may be formed between the first light-shielding layer 204 and the transparent dielectric layer 207, but this is not limited to this. In some other embodiments, the transparent dielectric layer 207 may also be directly formed on the first light-shielding layer 204 without providing the optical filter layer 206 or disposing the optical filter layer 206 in other forms. For example, the optical filter layer 206 can be provided in the form of an independent optical filter plate on the transparent dielectric layer 207 (similar to the structure shown in FIG. 8 in the rear).

在一些實施例中,透明介質層207可包含光固化材料(UV-curable material)、熱固化材料(thermosetting material)或前述的組合。舉例來說,透明介質層207可包含例如聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA)、聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate, PEN) 聚碳酸酯(polycarbonate, PC)、全氟環丁基(perfluorocyclobutyl, PFCB)聚合物、聚亞醯胺(polyimide, PI)、亞克力樹酯、環氧樹脂(epoxy resins)、聚丙烯(polypropylene, PP)、聚乙烯(polyethylene, PE)、聚苯乙烯(polystyrene, PS)、聚氯乙烯(polyvinyl chloride, PVC)、其他適當的材料或前述的組合,但本創作實施例並非以此為限。In some embodiments, the transparent medium layer 207 may include a UV-curable material, a thermosetting material, or a combination of the foregoing. For example, the transparent dielectric layer 207 may include, for example, poly(methyl methacrylate) (PMMA), polyethylene terephthalate (PET), polyethylene naphthalate (polyethylene naphthalate, PEN) polycarbonate (PC), perfluorocyclobutyl (PFCB) polymer, polyimide (PI), acrylic resin, epoxy resins, Polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl chloride (PVC), other suitable materials, or a combination of the foregoing, but this creative example is not This is the limit.

在一些實施例中,可以旋轉塗佈(spin-coating)、乾膜(dry film)製程、鑄模(casting)、棒狀塗佈(bar coating)、刮刀塗佈(blade coating)、滾筒塗佈(roller coating)、線棒塗佈(wire bar coating)、浸漬塗佈(dip coating)、化學氣相沉積法(CVD)或其他適合的方法,將透明介質層207形成於第一遮光層204上,但本創作實施例並非以此為限。在一些實施例中,透過前述製程所形成的透明介質層207的厚度在約1 µm至約100 µm的範圍,例如可為10 µm至50 µm。根據本創作的一些實施例,透過前述製程所形成的透明介質層207可具有高良率及良好的品質。此外,透過控制透明介質層207的厚度可增加或減少光線經過後續形成的光導向元件(210)後偏移的距離,進而提升感測像素203的陣列所能接收的入射光角度的精準度。In some embodiments, spin-coating, dry film process, casting, bar coating, blade coating, roller coating ( roller coating, wire bar coating, dip coating, chemical vapor deposition (CVD) or other suitable methods, the transparent dielectric layer 207 is formed on the first light-shielding layer 204, However, this creative embodiment is not limited to this. In some embodiments, the thickness of the transparent dielectric layer 207 formed through the foregoing process is in the range of about 1 μm to about 100 μm, for example, 10 μm to 50 μm. According to some embodiments of the present creation, the transparent dielectric layer 207 formed through the foregoing process can have a high yield and good quality. In addition, by controlling the thickness of the transparent medium layer 207, the distance by which light passes through the light guide element (210) formed later can be increased or decreased, thereby improving the accuracy of the angle of incident light that the array of sensing pixels 203 can receive.

如第4圖所示,在透明介質層207中形成複數個微稜鏡212並在透明介質層207上形成複數個微透鏡211,舉例來說,可在微稜鏡212之上形成微透鏡211。在一些實施例中,微透鏡211與微稜鏡212可對應於感測像素203。具體而言,每個微稜鏡212對應於第一遮光層204的複數個第一通孔204A的其中之一,而微稜鏡212可連接(直接接觸)於微透鏡211,但本創作實施例並非以此為限。在一些其他的實施例中,微透鏡211與微稜鏡212也可彼此分離,即微透鏡211與微稜鏡212可間隔一距離。As shown in FIG. 4, a plurality of microlenses 212 are formed in the transparent dielectric layer 207 and a plurality of microlenses 211 are formed on the transparent dielectric layer 207, for example, the microlenses 211 can be formed on the microlenses 212 . In some embodiments, the microlens 211 and the microlens 212 may correspond to the sensing pixel 203. Specifically, each microlens 212 corresponds to one of the plurality of first through holes 204A of the first light-shielding layer 204, and the microlens 212 can be connected (directly contacted) to the microlens 211, but this creation is implemented Examples are not limited to this. In some other embodiments, the microlens 211 and the microlens 212 may also be separated from each other, that is, the microlens 211 and the microlens 212 may be separated by a distance.

在一些實施例中,透明介質層207、微透鏡211及微稜鏡212可以是同質材料或異質材料,可依據實際需求而選擇合適的材料組合。舉例來說,可使用灰階光罩在透明介質層207進行曝光、顯影、蝕刻成形等製程後填入合適的材料,以形成微稜鏡212。In some embodiments, the transparent dielectric layer 207, the microlens 211, and the microlens 212 may be a homogeneous material or a heterogeneous material, and a suitable material combination may be selected according to actual needs. For example, a gray-scale photomask can be used to fill the transparent dielectric layer 207 with a suitable material after exposure, development, etching, etc. to form the microlens 212.

在一些實施例中,可透過高溫回焊(reflow)將一高分子材料的厚膜形成於透明介質層207上,並透過其內聚力形成半球結構,以形成微透鏡211,但本創作實施例並非以此為限。在一些實施例中,透明介質層207、微透鏡211及微稜鏡212也可包含介電材料,例如玻璃等,其可進一步提高透光性,但本創作實施例並非以此為限。在這些實施例中,可在光刻製程的乾燥(例如硬烘烤)步驟中,利用表面張力的效果來形成半球狀的微透鏡211,並可透過控制加熱的溫度來調整所需要的微透鏡211的曲率半徑。在一些實施例中,微透鏡211的厚度在約1 µm至約50 µm之間的範圍。應注意的是,微透鏡211的輪廓並不以半球狀為限,本創作實施例亦可根據所需要的入射光角度調整微透鏡211的輪廓,例如可為非球面狀(aspheric)。In some embodiments, a thick film of a polymer material can be formed on the transparent dielectric layer 207 through high temperature reflow (reflow), and a hemispherical structure can be formed through its cohesion to form the microlens 211, but this creative embodiment is not This is the limit. In some embodiments, the transparent dielectric layer 207, the microlens 211, and the microlens 212 may also include dielectric materials, such as glass, etc., which can further improve the light transmittance, but this creative embodiment is not limited thereto. In these embodiments, the hemispherical microlens 211 can be formed by the effect of surface tension during the drying (eg hard baking) step of the lithography process, and the microlens needed can be adjusted by controlling the heating temperature The radius of curvature of 211. In some embodiments, the thickness of the microlens 211 ranges from about 1 µm to about 50 µm. It should be noted that the contour of the microlens 211 is not limited to a hemispherical shape. The present embodiment can also adjust the contour of the microlens 211 according to the required incident light angle, for example, it can be aspherical.

在本創作實施例中,微透鏡211與微稜鏡212可視為一光導向元件210,光導向元件210可排列成陣列,但本創作實施例並非以此為限。亦即,光導向元件210與感測像素203可以一對一、一對多或多對一方式對應設置,但本創作實施例並非以此為限。在形成光導向元件210後,即完成本創作實施例的光學感測器200。在一些其他實施例中,光學感測器200的光學濾波層206可以一獨立的光學濾波板的形式,設置於光導向元件210之上(類似於後方第8圖所示的結構),但本創作實施例並非以此為限。In this creative embodiment, the microlens 211 and the microlens 212 can be regarded as a light guide element 210, and the light guide elements 210 can be arranged in an array, but this creative embodiment is not limited thereto. That is to say, the light guide element 210 and the sensing pixel 203 may be correspondingly arranged in a one-to-one, one-to-many, or many-to-one manner, but this creative embodiment is not limited thereto. After the light guide element 210 is formed, the optical sensor 200 of this inventive embodiment is completed. In some other embodiments, the optical filter layer 206 of the optical sensor 200 may be in the form of an independent optical filter plate, which is disposed above the light guide element 210 (similar to the structure shown in FIG. 8 in the rear), but this The creative embodiment is not limited to this.

如第4圖所示,在本創作的一些實施例中,微稜鏡212可具有一頂面212T與一底面212B,且頂面212T與底面212B可形成一夾角θ。在一些實施例中,頂面212T與底面212B所形成的夾角θ為可變的(variable),其可依據微稜鏡212設置的位置調整。此外,如第4圖所示,在這些光導向元件212中,越靠近光學感測器200中央的微稜鏡212,其頂面212T與底面212B所形成的夾角θ越小,但本創作實施例並非以此為限。As shown in FIG. 4, in some embodiments of the present creation, the microlens 212 may have a top surface 212T and a bottom surface 212B, and the top surface 212T and the bottom surface 212B may form an angle θ. In some embodiments, the angle θ formed by the top surface 212T and the bottom surface 212B is variable, which can be adjusted according to the position set by the microlens 212. In addition, as shown in FIG. 4, in these light guide elements 212, the closer to the center of the optical sensor 200, the smaller the angle θ formed by the top surface 212T and the bottom surface 212B, but this creative implementation Examples are not limited to this.

由於各光導向元件隨其設置的位置而有所不同,為便於說明,將以210_N代表各光導向元件,以TA_N代表各光導向元件的光能量傳導軸,以ANG_N代表各光導向元件的收光方位角,以L_N代表各光導向元件的平行的目標入射光,以LX_N代表各光導向元件的平行的非目標入射光,以ANGX_N代表各光導向元件的平行的非目標入射光相對於其光能傳導軸TA_N的偏離方位角。其中,“_N”為各光能量導向元件的數字編號。Since each light guide element differs according to its installed position, 210_N represents each light guide element, TA_N represents the light energy transmission axis of each light guide element, and ANG_N represents the collection of each light guide element for ease of explanation. Light azimuth, L_N represents the parallel target incident light of each light guide element, LX_N represents the parallel non-target incident light of each light guide element, and ANGX_N represents the parallel non-target incident light of each light guide element relative to its The off-azimuth angle of the light energy transmission axis TA_N. Among them, "_N" is the digital number of each light energy guiding element.

第5圖是第4圖所示的光學感測器200的部分放大圖。參照第5圖,光導向元件210_N可包含一微透鏡211_N與一微稜鏡212_N,微透鏡211_N可用於會聚光線,而微稜鏡212_N可用於偏折光線。微稜鏡212_N的底面212_NB(或稱為傾斜面)與垂直於光學感測器200的法線NORM的平面之間具有一傾斜角ANG_212_N(或微稜鏡212_N的頂面212_NT與底面212_NB所形成的夾角),其可使微透鏡211_N會聚後的入射光入射至此底面212_NB時發生偏折。FIG. 5 is a partially enlarged view of the optical sensor 200 shown in FIG. 4. Referring to FIG. 5, the light guide element 210_N may include a microlens 211_N and a microlens 212_N. The microlens 211_N may be used to condense light, and the microlens 212_N may be used to deflect light. There is an inclination angle ANG_212_N (or formed by the top surface 212_NT and bottom surface 212_NB of the microlens 212_N) between the bottom surface 212_NB (or called inclined surface) of the microlens 212_N and the plane perpendicular to the normal line NORM of the optical sensor 200 Angle), which can make the incident light after the micro lens 211_N converges to the bottom surface 212_NB to deflect.

如第5圖所示,光導向元件210_N可具有一光能量傳導軸TA_N,光能量傳導軸TA_N所對應的一收光方位角ANG_N是光學感測器200的法線NORM與光能量傳導軸TA_N在微透鏡211_N交界處朝向目標物所張的方位角。若入射光沿著此光能量傳導軸TA_N傳輸,則光導向元件210_N可導引入射光最後正向入射至對應的感測像素203。因此,前述多個平行的目標入射光,即為平行各光能量傳導軸TA_N而入射至微透鏡211_N的入射光L_N;而前述多個平行的非目標入射光,即不平行各光能量傳導軸TA_N而入射至微透鏡211_N的入射光LX_N。此外,非目標入射光LX_N與各光能量傳導軸TA_N具有一偏離方位角ANGX_N。As shown in FIG. 5, the light guide element 210_N may have a light energy transmission axis TA_N, and a light receiving azimuth angle ANG_N corresponding to the light energy transmission axis TA_N is the normal line NORM of the optical sensor 200 and the light energy transmission axis TA_N The azimuth angle toward the target at the junction of the microlenses 211_N. If the incident light is transmitted along this light energy transmission axis TA_N, the light guide element 210_N can guide the incident light to finally enter the corresponding sensing pixel 203 in the positive direction. Therefore, the multiple parallel target incident lights are incident light L_N parallel to each light energy transmission axis TA_N and incident on the microlens 211_N; and the multiple parallel non-target incident lights are not parallel to each light energy transmission axis TA_N is incident light LX_N incident on the microlens 211_N. In addition, the non-target incident light LX_N and each light energy transmission axis TA_N have a deviation azimuth angle ANGX_N.

在第5圖所示的實施例中,目標入射光L_N是沿著光能量傳導軸TA_N行進(即與光能量傳導軸TA_N平行),但本創作實施例並非以此為限。在一些實施例中,可以透過光導向元件210_N被感測像素203接收到的目標入射光L_N與光能量傳導軸TA_N的夾角的範圍可介於-3.5度至3.5度之間、-4度至+4度之間或-5度至+5度之間;偏離方位角ANGX_N可介於3.5度到90度之間、4度到90度之間或5度到90度之間。亦即,與光能量傳導軸TA_N的夾角大於3.5度(或大於4度、或大於5度)的非目標入射光LX_N將無法入射至感測像素203。In the embodiment shown in FIG. 5, the target incident light L_N travels along the light energy transmission axis TA_N (that is, parallel to the light energy transmission axis TA_N), but this creative embodiment is not limited thereto. In some embodiments, the angle between the target incident light L_N and the light energy transmission axis TA_N that can be received by the sensing pixel 203 through the light guide element 210_N can range from -3.5 degrees to 3.5 degrees, -4 degrees to +4 degrees or -5 degrees to +5 degrees; the azimuth deviation ANGX_N can be between 3.5 degrees to 90 degrees, 4 degrees to 90 degrees or 5 degrees to 90 degrees. That is, non-target incident light LX_N with an angle greater than 3.5 degrees (or greater than 4 degrees or greater than 5 degrees) from the light energy transmission axis TA_N will not be able to enter the sensing pixel 203.

簡單來說,光學感測器200的光導向元件210_N可將從外界進入光學感測器200的目標入射光L_N,通過透明介質層207而入射至感測像素203,並將從外界進入光學感測器200的非目標入射光LX_N入射於感測像素203的外部,藉此感測目標物的一影像。舉例來說,目標入射光L_N可通過第一通孔204A而入射至感測像素203,非目標入射光LX_N則不會通過第一通孔204A(例如入射至第一遮光層204扣除第一通孔204A的其他區域)。In short, the light guide element 210_N of the optical sensor 200 can enter the target incident light L_N from the outside into the optical sensor 200 through the transparent medium layer 207 and enter the sensing pixel 203 and enter the optical sensor from the outside The non-target incident light LX_N of the sensor 200 is incident outside the sensing pixel 203, thereby sensing an image of the target object. For example, the target incident light L_N may be incident on the sensing pixel 203 through the first through hole 204A, and the non-target incident light LX_N will not pass through the first through hole 204A (for example, incident on the first light-shielding layer 204 to deduct the first through Other areas of hole 204A).

本創作實施例之光學感測器200透過光導向元件210的透鏡211、微稜鏡212與第一光孔204A(及感測像素203)的相對位置(例如對準光能量傳導軸),可以控制特定入射光的角度(平行光能量傳導軸)才能被感測像素203感測,因此可以有效提高光學感測器200的品質。相較於習知的光學感測器,本創作實施例之光學感測器可有效降低製程成本及並簡化製造流程。In the optical sensor 200 of the present embodiment, through the relative positions of the lens 211, the microlens 212 of the light guide element 210 and the first light hole 204A (and the sensing pixel 203) (for example, alignment with the light energy transmission axis), it can be Only by controlling the angle of a specific incident light (parallel light energy transmission axis) can it be sensed by the sensing pixel 203, so the quality of the optical sensor 200 can be effectively improved. Compared with the conventional optical sensor, the optical sensor of the present embodiment can effectively reduce the manufacturing cost and simplify the manufacturing process.

由於各光導向元件隨其設置的位置而有所不同,各光導向元件的目標入射光與非目標入射光可能有所不同。舉例來說,如第4圖所示,光導向元件210_1與光導向元件210_K分別具有不同的光能量傳導軸TA_1與光能量傳導軸TA_K。光導向元件210_1的目標入射光L_1與光導向元件210_K的目標入射光L_K雖然來自不同的收光方位角,但其分別經由光導向元件210_1與光導向元件210_K導向正面入射至對應的感測像素203。光導向元件210_1的非目標入射光LX_1與光導向元件210_K的非目標入射光LX_K分別具有偏離方位角ANGX_1與偏離方位角ANGX_K,其分別入射至光導向元件210_1與光導向元件210_K後,將無法進入對應的感測像素203。Since each light guide element differs according to the position where it is disposed, the target incident light and the non-target incident light of each light guide element may be different. For example, as shown in FIG. 4, the light guide element 210_1 and the light guide element 210_K respectively have different light energy transmission axes TA_1 and light energy transmission axes TA_K. Although the target incident light L_1 of the light guide element 210_1 and the target incident light L_K of the light guide element 210_K come from different light receiving azimuths, they are directed toward the corresponding sensing pixels through the light guide element 210_1 and the light guide element 210_K respectively. 203. The non-target incident light LX_1 of the light guide element 210_1 and the non-target incident light LX_K of the light guide element 210_K respectively have an off-azimuth angle ANGX_1 and an off-azimuth angle ANGX_K, which are incident on the light guide element 210_1 and the light guide element 210_K, respectively Enter the corresponding sensing pixel 203.

如第4圖所示,在感測像素203所排列成的陣列中,由中心至外圍所對應的光導向元件210的光能量傳導軸(例如,第4圖中的TA_1、TA_K、TA_I與TA_J),可透過各光導向元件的微稜鏡,將各光導向元件的收光方位角從0度偏移到可對應至預定的斜向角度(例如,35度)。舉例來說,可漸進式地改變入射斜向角度(光能量傳導軸的收光方位角連續性變化)。如同第4圖所示,光學感測器200可以較小的感測像素203的陣列的面積SR,感測較大的待測物面積CR(例如指紋接觸面積),藉此增加感測的精準度並有效降低成本,但本創作實施例並非以此為限。As shown in FIG. 4, in the array in which the sensing pixels 203 are arranged, the light energy transmission axes of the light guide elements 210 corresponding from the center to the periphery (for example, TA_1, TA_K, TA_I, and TA_J in FIG. 4) ), through the microlens of each light guide element, the azimuth angle of each light guide element is shifted from 0 degrees to correspond to a predetermined oblique angle (for example, 35 degrees). For example, the incident oblique angle (continuous change of the receiving azimuth angle of the light energy transmission axis) can be gradually changed. As shown in FIG. 4, the optical sensor 200 can sense a smaller area SR of the array of pixels 203 and a larger area CR of the object to be measured (eg, fingerprint contact area), thereby increasing the accuracy of sensing And effectively reduce costs, but this creative embodiment is not limited to this.

第6圖繪示根據本創作另一實施例之光學感測器200-1的剖面圖。與第4圖所示的光學感測器200的不同之處在於,光學感測器200-1可以較大的感測像素203的陣列的面積SR,感測較小的待測物面積CR。可依據實際需求調整光導向元件210(微稜鏡212)的位置,以達成不同的收光效果。FIG. 6 is a cross-sectional view of an optical sensor 200-1 according to another embodiment of the present invention. The difference from the optical sensor 200 shown in FIG. 4 is that the optical sensor 200-1 can sense a larger area SR of the array of pixels 203 and a smaller area CR to be measured. The position of the light guide element 210 (microlens 212) can be adjusted according to actual needs to achieve different light receiving effects.

第7圖繪示根據本創作一實施例之光學感測系統600的剖面圖。在一些實施例中,光學感測系統600可例如是手機或平板電腦等電子設備,其可包含一框架400、一光學感測器200及一顯示器300,但本創作實施例並非以此為限。FIG. 7 shows a cross-sectional view of an optical sensing system 600 according to an embodiment of the present invention. In some embodiments, the optical sensing system 600 may be an electronic device such as a mobile phone or a tablet computer, which may include a frame 400, an optical sensor 200, and a display 300, but this creative embodiment is not limited thereto .

參照第7圖,在一些實施例中,光學感測系統600可進一步包含一底座610,底座610可例如為電子設備的外殼的一部分。電池500可設置於底座610上。框架400可設置於電池500的上方,並具有一容置槽410,但本創作實施例並非以此為限。在一些其他實施例中,框架400也可不具有容置槽410,可視實際需求而定。Referring to FIG. 7, in some embodiments, the optical sensing system 600 may further include a base 610, which may be, for example, a part of a housing of an electronic device. The battery 500 can be disposed on the base 610. The frame 400 can be disposed above the battery 500 and has a receiving slot 410, but the present embodiment is not limited thereto. In some other embodiments, the frame 400 may not have the accommodating groove 410, depending on actual needs.

光學感測器200可設置於框架400之上。如第7圖所示,光學感測器200可設置於框架400的容置槽410中,並位於容置槽410的一底部420上,用以感測一目標物F的影像。光學感測器200的結構可如前所述,在此不多加贅述。顯示器300可設置於光學感測器200的上方,用於顯示資訊。目標物F可位於顯示器300上或上方。在一些實施例中,光學感測器200可透過顯示器300感測目標物F的影像,而電池500可供給電力至光學感測器200與顯示器300,以維持電子設備的運作。The optical sensor 200 may be disposed on the frame 400. As shown in FIG. 7, the optical sensor 200 may be disposed in the accommodating groove 410 of the frame 400 and located on a bottom 420 of the accommodating groove 410 for sensing the image of a target F. The structure of the optical sensor 200 may be as described above, and will not be described in detail here. The display 300 can be disposed above the optical sensor 200 for displaying information. The target F may be located on or above the display 300. In some embodiments, the optical sensor 200 can sense the image of the target F through the display 300, and the battery 500 can supply power to the optical sensor 200 and the display 300 to maintain the operation of the electronic device.

在一些實施例中,容置槽410的底部420與顯示器300之間的一距離d可介於0.1 mm至0.5 mm之間、0.2至0.5mm之間、0.3至0.5mm之間或0.4至0.5mm之間,但本創作實施例並非以此為限。在此,距離d可定義為容置槽410的底部420與顯示器300在平行於框架400的法線方向的一方向ND的最短距離。In some embodiments, a distance d between the bottom 420 of the receiving slot 410 and the display 300 may be between 0.1 mm to 0.5 mm, 0.2 to 0.5 mm, 0.3 to 0.5 mm, or 0.4 to 0.5 between mm, but this creative example is not limited to this. Here, the distance d may be defined as the shortest distance between the bottom 420 of the accommodating groove 410 and the display 300 in a direction ND parallel to the normal direction of the frame 400.

在一些實施例中,將光學感測器200應用於光學感測系統600中,可使模組的整體高度或厚度低於0.5 mm,達到薄型化的需求,因此可在不影響電池500的配置下,將光學感測器200設置於電子裝置的螢幕(例如顯示器300)下與電池之間。要特別注意的是,本創作實施例的光學感測器與應用其之光學感測系統,並不受限於指紋辨識,其也可應用於例如靜脈、血流速及血氧偵測。或者,本創作實施例的光學感測器與應用其之光學感測系統可用以進行非接觸的影像拍攝(例如螢幕下相機等),以拍攝例如人臉(例如用於臉部辨識)或眼睛(例如用於虹膜辨識)或者執行一般的拍照功能。In some embodiments, applying the optical sensor 200 to the optical sensing system 600 can make the overall height or thickness of the module less than 0.5 mm to achieve the requirement of thinness, so it can not affect the configuration of the battery 500 Next, the optical sensor 200 is disposed between the screen of the electronic device (such as the display 300) and the battery. It should be particularly noted that the optical sensor and the optical sensing system applying the same in the creative embodiment are not limited to fingerprint recognition, but can also be applied to, for example, vein, blood flow rate, and blood oxygen detection. Alternatively, the optical sensor and the optical sensing system applying the same in the creative embodiment can be used for non-contact image shooting (for example, an on-screen camera, etc.) to take pictures of human faces (for example, for facial recognition) or eyes (E.g. for iris recognition) or to perform general photographing functions.

在一些實施例中,顯示器300可包含有機發光二極體(organic light-emitting diode, OLED)顯示器或微型發光二極體(micro LED)顯示器或者其他各種顯示器。在一些實施例中,可利用光學感測系統600中的顯示器300作為光源,其發出的光線將照射與顯示器300的上表面接觸或非接觸的目標物F,目標物F再將此光線反射至設置於顯示器300下的光學感測器200,以對目標物F的輪廓特徵(例如,手指的指紋特徵)進行感測與識別。應注意的是,光學感測系統600中的光學感測器200也可搭配其他形態及波長的光源(例如,紅外線光源),但本創作實施例並非以此為限。在一些實施例中,光學感測器也可以可進行被動式影像擷取,即不需要投射光源至待測目標物(物體)F。In some embodiments, the display 300 may include an organic light-emitting diode (OLED) display or a micro LED display or other various displays. In some embodiments, the display 300 in the optical sensing system 600 may be used as a light source, and the light emitted by it will illuminate the target F that is in contact or non-contact with the upper surface of the display 300, and then the target F will reflect this light to The optical sensor 200 disposed under the display 300 is used to sense and recognize the outline feature of the target F (for example, the fingerprint feature of the finger). It should be noted that the optical sensor 200 in the optical sensing system 600 can also be used with light sources of other shapes and wavelengths (for example, infrared light sources), but this creative embodiment is not limited thereto. In some embodiments, the optical sensor can also perform passive image capture, that is, there is no need to project the light source to the target object (object) F to be measured.

如第7圖所示,在一些實施例中,光學感測器200可被設置為包含於一光學感測器模組1300中。舉例來說,光學感測器模組1300可包含一承載板1301、一軟性電路板1302及將光學感測器200與軟性電路板1302電性連接的銲線(bond wire)1303,銲線1303可由封膠層1306所封裝並保護。封膠層1306的頂面可與透明介質層207的頂面齊平,但本創作實施例並非以此為限。在一些實施例中,銲線1303的材料可包含鋁(Al)、銅(Cu)、金(Au)、前述的合金、其他合適的導電材料或前述的組合,但本創作實施例並非以此為限。As shown in FIG. 7, in some embodiments, the optical sensor 200 may be configured to be included in an optical sensor module 1300. For example, the optical sensor module 1300 may include a carrier board 1301, a flexible circuit board 1302, and a bond wire 1303 electrically connecting the optical sensor 200 and the flexible circuit board 1302, the bonding wire 1303 It can be encapsulated and protected by the sealant layer 1306. The top surface of the sealant layer 1306 may be flush with the top surface of the transparent medium layer 207, but this creative embodiment is not limited thereto. In some embodiments, the material of the bonding wire 1303 may include aluminum (Al), copper (Cu), gold (Au), the foregoing alloy, other suitable conductive materials, or a combination of the foregoing, but this creative embodiment is not based on this Limited.

第8圖繪示根據本創作另一實施例之光學感測系統600’的剖面圖。與第7圖所示之光學感測系統600的不同之處在於,光學感測系統600’以光學濾波板900來取代光學濾波層206。舉例來說,光學濾波板900可為一獨立的光學濾波板,可利用設置於軟性電路板1302上的支撐體(dam structure)或框體1305承載光學濾波板900。亦即,光學濾波板900可透過光學感測器模組1300設置於微透鏡210的上方。如第8圖所示,在本實施例中,透明介質層207設置於保護層250上。光學濾波板900設置於光導向元件210的上方,並對入射光進行光線波長過濾。其餘與第7圖相同的部分在此不多加贅述。FIG. 8 shows a cross-sectional view of an optical sensing system 600' according to another embodiment of the present creation. The difference from the optical sensing system 600 shown in FIG. 7 is that the optical sensing system 600' uses an optical filter plate 900 instead of the optical filter layer 206. For example, the optical filter board 900 may be an independent optical filter board, and the optical filter board 900 may be carried by a dam structure or a frame 1305 provided on the flexible circuit board 1302. That is, the optical filter board 900 can be disposed above the microlens 210 through the optical sensor module 1300. As shown in FIG. 8, in this embodiment, the transparent dielectric layer 207 is provided on the protective layer 250. The optical filter plate 900 is disposed above the light guide element 210, and filters the wavelength of the incident light. The rest of the same parts as in Fig. 7 will not be repeated here.

應注意的是,雖然第8圖所示的光學感測器模組1300與光學濾波板900是設置於框架400之上並與顯示器300分離,但本創作實施例並非以此為限。在一些其他實施例中,光學感測器模組1300與光學濾波板900也可貼合於顯示器300的下表面300B。It should be noted that although the optical sensor module 1300 and the optical filter board 900 shown in FIG. 8 are disposed on the frame 400 and separated from the display 300, the present embodiment is not limited thereto. In some other embodiments, the optical sensor module 1300 and the optical filter board 900 can also be attached to the lower surface 300B of the display 300.

第9圖繪示根據本創作一實施例之光學感測器200-2的剖面圖。與第4圖所示的光學感測器200的不同之處在於,第9圖繪示之光學感測器200-2更包含一透鏡遮光層213(可視為第二遮光層),透鏡遮光層213設置於第一遮光層204之上。更詳細來說,透鏡遮光層213可設置於透明介質層207上,並位於微透鏡211之間的多個間隙G中。透鏡遮光層213可例如裸露微透鏡211的(至少部分)曲面區域。換言之,透鏡遮光層213可具有複數個通孔(對應於間隙G),且光導向元件210的微透鏡211可設置於這些通孔中,但本創作實施例並非以此為限。FIG. 9 is a cross-sectional view of an optical sensor 200-2 according to an embodiment of the present invention. The difference from the optical sensor 200 shown in FIG. 4 is that the optical sensor 200-2 shown in FIG. 9 further includes a lens shading layer 213 (which can be regarded as a second shading layer), and the lens shading layer 213 is disposed on the first light-shielding layer 204. In more detail, the lens shading layer 213 may be disposed on the transparent medium layer 207 and located in the plurality of gaps G between the micro lenses 211. The lens shading layer 213 may, for example, expose (at least partly) the curved surface area of the microlens 211. In other words, the lens shading layer 213 can have a plurality of through holes (corresponding to the gap G), and the microlenses 211 of the light guide element 210 can be disposed in these through holes, but this creative embodiment is not limited thereto.

在一些情況下,可能有光線(例如第9圖所示之雜散光L1)從微透鏡211之間的空白區域(譬如間隙G所指的區域)入射,並通過第一通孔204A入射至感測像素203,因而造成干擾,降低影像品質。在第9圖所示的光學感測器200-2中,透鏡遮光層213可阻擋前述雜散光L1入射至感測像素203,有效防止雜散光干擾,並提升影像品質。In some cases, light (for example, stray light L1 shown in FIG. 9) may enter from the blank area between the microlenses 211 (such as the area indicated by the gap G), and enter the sensor through the first through hole 204A Measuring pixels 203, thus causing interference and degrading the image quality. In the optical sensor 200-2 shown in FIG. 9, the lens light-shielding layer 213 can block the stray light L1 from entering the sensing pixel 203, effectively preventing stray light interference and improving image quality.

第10圖繪示根據本創作另一實施例之光學感測器200-3的剖面圖。與第4圖所示的光學感測器200的不同之處在於,第10圖繪示之光學感測器200-3更包含一第二遮光層208及一透明介質層209,第二遮光層208及透明介質層209皆設置於第一遮光層204之上。更詳細來說,第二遮光層208位於透明介質層207上,透明介質層209位於第二遮光層208上,而光導向元件210位於透明介質層209上(例如,微透鏡211設置於透明介質層209上,而微稜鏡212設置於透明介質層209中)。FIG. 10 is a cross-sectional view of an optical sensor 200-3 according to another embodiment of the present invention. The difference from the optical sensor 200 shown in FIG. 4 is that the optical sensor 200-3 shown in FIG. 10 further includes a second light-shielding layer 208 and a transparent dielectric layer 209, and the second light-shielding layer Both 208 and the transparent dielectric layer 209 are disposed on the first light-shielding layer 204. In more detail, the second light-shielding layer 208 is located on the transparent medium layer 207, the transparent medium layer 209 is located on the second light-shielding layer 208, and the light guide element 210 is located on the transparent medium layer 209 (for example, the microlens 211 is disposed on the transparent medium On the layer 209, and the microlens 212 is disposed in the transparent medium layer 209).

參照第10圖,第二遮光層208可具有複數個第二通孔208A,第二通孔208A可對應於第一通孔204A,且每個第二通孔208A可具有第二孔徑A2。在一些實施例中,第二通孔208A的第二孔徑A2大於第一通孔204的第一孔徑A1,但本創作實施例並非以此為限。在一些實施例中,第二遮光層208的厚度與第一遮光層204的厚度不同。舉例來說,第二遮光層208的厚度可大於第一遮光層204的厚度,但本創作實施例並非以此為限。如第10圖所示,在一些實施例中,光導向元件210的微稜鏡212設置於第二通孔208A中。舉例來說,微稜鏡212可完全或只有部分設置於第二通孔208A中,但本創作實施例並非以此為限。Referring to FIG. 10, the second light-shielding layer 208 may have a plurality of second through holes 208A, the second through holes 208A may correspond to the first through holes 204A, and each second through hole 208A may have a second aperture A2. In some embodiments, the second aperture A2 of the second through-hole 208A is greater than the first aperture A1 of the first through-hole 204, but this embodiment is not limited thereto. In some embodiments, the thickness of the second light shielding layer 208 is different from the thickness of the first light shielding layer 204. For example, the thickness of the second light-shielding layer 208 may be greater than the thickness of the first light-shielding layer 204, but this embodiment is not limited thereto. As shown in FIG. 10, in some embodiments, the microlens 212 of the light guide element 210 is disposed in the second through hole 208A. For example, the microlens 212 may be completely or only partially disposed in the second through hole 208A, but the present embodiment is not limited thereto.

在一些情況下,相鄰的光導向元件210之間(不限於最鄰近的光導向元件210)可能會產生串擾(cross talk)。亦即,一目標光導向元件的相鄰光導向元件的雜散光(例如第10圖所示之雜散光L2)可能會耦合進入目標光導向元件的目標入射光,一起通過第一通孔204A入射至與目標光導向元件對應的感測像素203,因而造成干擾,降低影像品質。在第10圖所示的光學感測器200-3中,第二遮光層208可遮蔽從外界進入此等相鄰光導向元件的雜散光L2入射至感測像素203,有效防止雜散光干擾,並提升影像品質。In some cases, cross talk may occur between adjacent light guide elements 210 (not limited to the nearest light guide element 210). That is, stray light (such as the stray light L2 shown in FIG. 10) of an adjacent light guide element of a target light guide element may couple into the target incident light of the target light guide element and enter through the first through hole 204A together To the sensing pixel 203 corresponding to the target light guide element, thus causing interference and degrading the image quality. In the optical sensor 200-3 shown in FIG. 10, the second light shielding layer 208 can shield stray light L2 entering these adjacent light guide elements from the outside from entering the sensing pixel 203, effectively preventing stray light interference, And improve the image quality.

在一些實施例中,可以第9圖所示之光學感測器200-2或第10圖所示之光學感測器200-3取代第4圖所示之光學感測器200設置於第7圖所示之光學感測系統600(或第8圖所示之光學感測系統600’)中,在此不多加贅述。In some embodiments, the optical sensor 200-2 shown in FIG. 9 or the optical sensor 200-3 shown in FIG. 10 can be used in place of the optical sensor 200 shown in FIG. In the optical sensing system 600 shown in the figure (or the optical sensing system 600' shown in FIG. 8), no more details will be given here.

綜上所述,本創作的實施例透過光導向元件,可達成在不具備額外的遮光層的情況下,使得感測像素亦能接收來自特定範圍的視角入射的光線,並可降低光學感測器的厚度。In summary, the embodiments of the present invention can achieve that without additional light shielding layers, the sensing pixels can also receive light from a specific range of viewing angles through the light guide element, and can reduce optical sensing The thickness of the device.

以上概述數個實施例的部件,以便在本創作所屬技術領域中具有通常知識者可以更理解本創作實施例的觀點。在本創作所屬技術領域中具有通常知識者應該理解,他們能以本創作實施例為基礎,設計或修改其他製程和結構以達到與在此介紹的實施例相同之目的及/或優勢。在本創作所屬技術領域中具有通常知識者也應該理解到,此類等效的結構並無悖離本創作的精神與範圍,且他們能在不違背本創作之精神和範圍之下,做各式各樣的改變、取代和替換。因此,本創作之保護範圍當視後附之申請專利範圍所界定者為準。另外,雖然本創作已以數個較佳實施例創作如上,然其並非用以限定本創作。The above summarizes the components of several embodiments, so that those with ordinary knowledge in the technical field to which this creation belongs can better understand the viewpoints of this creation embodiment. Those with ordinary knowledge in the technical field to which this creation belongs should understand that they can design or modify other processes and structures based on this creation embodiment to achieve the same purposes and/or advantages as the embodiments described herein. Those with ordinary knowledge in the technical field to which this creation belongs should also understand that such equivalent structures do not deviate from the spirit and scope of this creation, and they can do their own work without violating the spirit and scope of this creation. Various changes, substitutions and replacements. Therefore, the scope of protection of this creation shall be deemed as defined by the scope of the attached patent application. In addition, although this creation has been created in several preferred embodiments as above, it is not intended to limit this creation.

整份說明書對特徵、優點或類似語言的引用,並非意味可以利用本創作實現的所有特徵和優點應該或者可以在本創作的任何單個實施例中實現。相對地,涉及特徵和優點的語言被理解為其意味著結合實施例描述的特定特徵、優點或特性包括在本創作的至少一個實施例中。因而,在整份說明書中對特徵和優點以及類似語言的討論可以但不一定代表相同的實施例。Reference throughout the specification to features, advantages, or similar language does not mean that all features and advantages that can be realized with this creation should or can be implemented in any single embodiment of this creation. In contrast, language referring to features and advantages is understood to mean that a particular feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present creation. Thus, discussion of features and advantages and similar language throughout this specification may, but does not necessarily, represent the same embodiment.

再者,在一個或多個實施例中,可以任何合適的方式組合本創作的所描述的特徵、優點和特性。根據本文的描述,相關領域的技術人員將意識到,可在沒有特定實施例的一個或多個特定特徵或優點的情況下實現本創作。在其他情況下,在某些實施例中可辨識附加的特徵和優點,這些特徵和優點可能不存在於本創作的所有實施例中。Furthermore, in one or more embodiments, the described features, advantages, and characteristics of the authoring may be combined in any suitable manner. From the description herein, those skilled in the relevant art will realize that the present creation can be implemented without one or more specific features or advantages of specific embodiments. In other cases, additional features and advantages may be recognized in certain embodiments, which may not be present in all embodiments of this creation.

200,200-1,200-2,200-3:光學感測器 201:基板 202:介電層 203:感測像素 204:第一遮光層 204A:第一通孔 205:保護層 206:光學濾波層 207:透明介質層 208:第二遮光層 208A:第二通孔 209:透明介質層 210,210_1,210_K,210_N:光導向元件 211,211_1,211_K,211_N:微透鏡 212,212_1,212_K,212_N:微稜鏡 212T,212_NT:頂面 212B,212_NB:底面 213:透鏡遮光層 300:顯示器 300B:下表面 400:框架 410:容置槽 420:底部 500:電池 600,600’:光學感測系統 610:底座 900:光學濾波板 1300光學感測器模組 1301:承載板 1302:軟性電路板 1303:銲線 1305:框體 1306:封膠層 A1:第一孔徑 A2:第二孔徑 ANG_1,ANG_N:收光方位角 ANG_212_N:傾斜角 ANGX_1,ANGX_K,ANGX_N:偏離方位角 CR:待測物面積 d:距離 F:目標物 G:間隙 L1:雜散光 L2:雜散光 L_1,L_K,L_N:目標入射光 LX_1,LX_K,LX_N:非目標入射光 NORM:光學感測器的法線 SR:感測像素的陣列的面積 TA_1,TA_I,TA_J,TA_K,TA_N:光能量傳導軸 θ:夾角 200,200-1,200-2,200-3: optical sensor 201: substrate 202: dielectric layer 203: Sensing pixels 204: first shading layer 204A: the first through hole 205: protective layer 206: Optical filter layer 207: transparent medium layer 208: second shading layer 208A: Second through hole 209: transparent medium layer 210,210_1,210_K,210_N: light guide element 211,211_1,211_K,211_N: micro lens 212,212_1,212_K,212_N: Homo 珜鏡 212T, 212_NT: top surface 212B, 212_NB: bottom surface 213: lens shading layer 300: display 300B: Lower surface 400: frame 410: accommodation slot 420: bottom 500: battery 600,600’: Optical sensing system 610: Base 900: Optical filter plate 1300 Optical Sensor Module 1301: Carrier board 1302: Flexible circuit board 1303: Bonding wire 1305: Frame 1306: Sealant layer A1: First aperture A2: Second aperture ANG_1,ANG_N: receiving azimuth ANG_212_N: tilt angle ANGX_1, ANGX_K, ANGX_N: deviation from azimuth CR: area to be measured d: distance F: target G: gap L1: Stray light L2: Stray light L_1, L_K, L_N: target incident light LX_1, LX_K, LX_N: non-target incident light NORM: normal to optical sensor SR: area of the array of sensing pixels TA_1, TA_I, TA_J, TA_K, TA_N: optical energy transmission axis θ: included angle

以下將配合所附圖式詳述本創作實施例。應注意的是,各種特徵部件並未按照比例繪製且僅用以說明例示。事實上,元件的尺寸可能經放大或縮小,以清楚地表現出本創作實施例的技術特徵。 第1圖至第4圖是一系列的剖面圖,其繪示根據本創作一實施例之光學感測器的製造方法。 第5圖是第4圖所示的光學感測器的部分放大圖。 第6圖繪示根據本創作另一實施例之光學感測器的剖面圖。 第7圖繪示根據本創作一實施例之光學感測系統的剖面圖。 第8圖繪示根據本創作另一實施例之光學感測系統的剖面圖。 第9圖繪示根據本創作一實施例之光學感測器的剖面圖。 第10圖繪示根據本創作另一實施例之光學感測器的剖面圖。 The creative embodiment will be described in detail below in conjunction with the attached drawings. It should be noted that the various feature parts are not drawn to scale and are used for illustration only. In fact, the size of the element may be enlarged or reduced to clearly show the technical characteristics of the present authoring embodiment. FIGS. 1 to 4 are a series of cross-sectional views illustrating a method of manufacturing an optical sensor according to an embodiment of the present invention. FIG. 5 is a partially enlarged view of the optical sensor shown in FIG. 4. FIG. 6 is a cross-sectional view of an optical sensor according to another embodiment of the present invention. FIG. 7 is a cross-sectional view of an optical sensing system according to an embodiment of the present invention. FIG. 8 shows a cross-sectional view of an optical sensing system according to another embodiment of the present creation. FIG. 9 is a cross-sectional view of an optical sensor according to an embodiment of the present invention. FIG. 10 is a cross-sectional view of an optical sensor according to another embodiment of the present invention.

200:光學感測器 200: optical sensor

201:基板 201: substrate

202:介電層 202: dielectric layer

203:感測像素 203: Sensing pixels

204:第一遮光層 204: first shading layer

204A:第一通孔 204A: the first through hole

205:保護層 205: protective layer

206:光學濾波層 206: Optical filter layer

207:透明介質層 207: transparent medium layer

210,210_1,210_K:光導向元件 210,210_1,210_K: light guide element

211,211_1,211_K:微透鏡 211,211_1,211_K: micro lens

212,212_1,212_K:微稜鏡 212,212_1,212_K: Hiroshi

212T:頂面 212T: top surface

212B:底面 212B: Underside

A1:第一孔徑 A1: First aperture

ANGX_1,ANGX_K:偏離方位角 ANGX_1, ANGX_K: deviation from azimuth

CR:待測物面積 CR: area to be measured

L_1,L_K:目標入射光 L_1, L_K: target incident light

LX_1,LX_K:非目標入射光 LX_1, LX_K: non-target incident light

SR:感測像素的陣列的面積 SR: area of the array of sensing pixels

TA_1,TA_I,TA_J,TA_K:光能量傳導軸 TA_1, TA_I, TA_J, TA_K: optical energy transmission axis

θ:夾角 θ: included angle

Claims (16)

一種光學感測器,包括: 一基板,具有複數個感測像素; 一第一遮光層,設置於該基板之上,並具有複數個第一通孔,該些第一通孔對應於該些感測像素; 一透明介質層,設置於該第一遮光層之上;以及 複數個光導向元件,其中該些光導向元件中的每一個包括: 一微稜鏡,設置於該透明介質層中並對應於該些第一通孔的其中之一;及 一微透鏡,設置於該微稜鏡之上。 An optical sensor, including: A substrate with a plurality of sensing pixels; A first light-shielding layer disposed on the substrate and having a plurality of first through holes, the first through holes corresponding to the sensing pixels; A transparent dielectric layer disposed on the first light-shielding layer; and A plurality of light guide elements, each of which includes: A microlens, disposed in the transparent dielectric layer and corresponding to one of the first through holes; and A microlens is arranged on the microlens. 如申請專利範圍第1項所述之光學感測器,其中該微稜鏡連接於該微透鏡。The optical sensor as described in item 1 of the patent application scope, wherein the microlens is connected to the microlens. 如申請專利範圍第1項所述之光學感測器,其中該微稜鏡具有一頂面與一底面,且該頂面與該底面形成一夾角。The optical sensor as described in item 1 of the patent application scope, wherein the microlens has a top surface and a bottom surface, and the top surface forms an angle with the bottom surface. 如申請專利範圍第3項所述之光學感測器,其中該夾角為可變的。The optical sensor as described in item 3 of the patent application scope, wherein the included angle is variable. 如申請專利範圍第4項所述之光學感測器,其中在該些光導向元件中,越靠近該光學感測器中央的微稜鏡的該夾角越小。The optical sensor as described in item 4 of the patent application scope, wherein in the light guide elements, the closer the angle of the microlens closer to the center of the optical sensor is, the smaller. 申請專利範圍第1項所述之光學感測器,更包括: 一介電層,設置於該基板與該第一遮光層之間,並覆蓋該些感測像素。 The optical sensor described in item 1 of the patent application scope further includes: A dielectric layer is disposed between the substrate and the first light-shielding layer, and covers the sensing pixels. 如申請專利範圍第1項所述之光學感測器,更包括: 一光學濾波層,設置於該第一遮光層與該透明介質層之間。 The optical sensor as described in item 1 of the patent application scope further includes: An optical filter layer is disposed between the first light-shielding layer and the transparent medium layer. 如申請專利範圍第1項所述之光學感測器,更包括: 一光學濾波板,設置於該些光導向元件之上。 The optical sensor as described in item 1 of the patent application scope further includes: An optical filter board is disposed on the light guide elements. 如申請專利範圍第1項所述之光學感測器,更包括: 至少一第二遮光層,設置於該第一遮光層之上,並具有複數個第二通孔。 The optical sensor as described in item 1 of the patent application scope further includes: At least one second light-shielding layer is disposed on the first light-shielding layer and has a plurality of second through holes. 如申請專利範圍第9項所述之光學感測器,其中該些第二通孔中的每一個的孔徑大於該些第一通孔中的每一個的孔徑。The optical sensor as described in item 9 of the patent application scope, wherein the aperture of each of the second through holes is larger than the aperture of each of the first through holes. 如申請專利範圍第9項所述之光學感測器,其中該第二遮光層的厚度與該第一遮光層的厚度不同。The optical sensor as described in item 9 of the patent application range, wherein the thickness of the second light shielding layer is different from the thickness of the first light shielding layer. 如申請專利範圍第9項所述之光學感測器,其中該第二遮光層設置於該透明介質層之上,且該些光導向元件的微透鏡設置於該些第二通孔中。The optical sensor as described in item 9 of the patent application range, wherein the second light shielding layer is disposed above the transparent dielectric layer, and the microlenses of the light guide elements are disposed in the second through holes. 如申請專利範圍第9項所述之光學感測器,其中該第二遮光層設置於該透明介質層中,且該些第二通孔對應於該些第一通孔。The optical sensor as described in item 9 of the patent application range, wherein the second light-shielding layer is disposed in the transparent dielectric layer, and the second through holes correspond to the first through holes. 如申請專利範圍第13項所述之光學感測器,其中在該些光導向元件中的部分微稜鏡位於該些第二通孔中。The optical sensor as described in item 13 of the patent application scope, wherein a part of the microlens in the light guide elements is located in the second through holes. 一種光學感測系統,包括: 一框架,具有一容置槽; 如申請專利範圍第1~14項中任一項所述之光學感測器,設置於該容置槽中;以及 一顯示器,設置於該光學感測器之上。 An optical sensing system, including: A frame with a receiving slot; The optical sensor as described in any one of the items 1 to 14 of the patent application scope is arranged in the accommodating groove; and A display is arranged on the optical sensor. 如申請專利範圍第15項所述之光學感測系統,其中該容置槽的底部與該顯示器之間的距離介於0.1 mm至0.5 mm。The optical sensing system as described in item 15 of the patent application range, wherein the distance between the bottom of the accommodating groove and the display is between 0.1 mm and 0.5 mm.
TW109200507U 2019-09-12 2020-01-14 Optical sensor and optical sensing system TWM595331U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962899218P 2019-09-12 2019-09-12
US62/899,218 2019-09-12

Publications (1)

Publication Number Publication Date
TWM595331U true TWM595331U (en) 2020-05-11

Family

ID=70489275

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109200507U TWM595331U (en) 2019-09-12 2020-01-14 Optical sensor and optical sensing system
TW109101188A TWI791938B (en) 2019-09-12 2020-01-14 Optical sensor, optical sensing system and manufacturing method of optical sensor

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109101188A TWI791938B (en) 2019-09-12 2020-01-14 Optical sensor, optical sensing system and manufacturing method of optical sensor

Country Status (3)

Country Link
CN (2) CN211045440U (en)
TW (2) TWM595331U (en)
WO (1) WO2021047138A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI759153B (en) * 2020-08-17 2022-03-21 友達光電股份有限公司 Fingerprint sensing module
US11308307B2 (en) 2020-08-17 2022-04-19 Au Optronics Corporation Fingerprint sensing module
TWI791938B (en) * 2019-09-12 2023-02-11 神盾股份有限公司 Optical sensor, optical sensing system and manufacturing method of optical sensor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220052090A1 (en) * 2020-08-17 2022-02-17 Au Optronics Corporation Sensing device
US11600099B2 (en) * 2020-08-17 2023-03-07 Au Optronics Corporation Biological feature identification device and manufacturing method of the same
TWI749864B (en) * 2020-11-12 2021-12-11 友達光電股份有限公司 Optical sensing module
CN113673455B (en) * 2021-02-20 2023-05-30 友达光电股份有限公司 Biological feature sensing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000041461A (en) * 1998-12-22 2000-07-15 김영환 Fabrication method of improved image sensor
JP2000266950A (en) * 1999-03-16 2000-09-29 Fuji Xerox Co Ltd Optical wave-guide
CN101226949A (en) * 2007-01-15 2008-07-23 采钰科技股份有限公司 Image sensing apparatus and encapsulation method thereof
US20190096930A1 (en) * 2017-09-26 2019-03-28 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor image sensor
TWM595331U (en) * 2019-09-12 2020-05-11 神盾股份有限公司 Optical sensor and optical sensing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI791938B (en) * 2019-09-12 2023-02-11 神盾股份有限公司 Optical sensor, optical sensing system and manufacturing method of optical sensor
TWI759153B (en) * 2020-08-17 2022-03-21 友達光電股份有限公司 Fingerprint sensing module
US11308307B2 (en) 2020-08-17 2022-04-19 Au Optronics Corporation Fingerprint sensing module

Also Published As

Publication number Publication date
TW202122981A (en) 2021-06-16
CN111129056A (en) 2020-05-08
TWI791938B (en) 2023-02-11
CN211045440U (en) 2020-07-17
WO2021047138A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
CN210349840U (en) Optical sensor
TWI791938B (en) Optical sensor, optical sensing system and manufacturing method of optical sensor
TWI765170B (en) Optical sensor, optical sensing system and method for manufacturing the same
US10332929B2 (en) Integrated sensing module and integrated sensing assembly using the same
TWI765237B (en) Integrated optical fingerprint sensor and method of manufacturing the same
US10417473B2 (en) Optical imaging system with variable light field for biometrics application
WO2020147018A1 (en) Optical image acquisition system and electronic device
US10915727B2 (en) Optical sensor and method for forming the same
US11621287B2 (en) Optical sensor device with reduced thickness and method for forming the same
TWI803863B (en) Optical imaging device
TW202109355A (en) Optical sensor having offset micro lens group and optical sensing system using the same
CN111199167B (en) Optical sensing structure and forming method thereof
TWI686940B (en) Optical sensor structure and method for forming the same
CN110970449B (en) Optical sensor and method of forming the same
TWI758093B (en) Biological feature identification device
TW202013241A (en) Optical sensor and method for forming the same
CN112018138A (en) Optical sensor