TWM567485U - Continuous mass production mechanism for photovoltaic cells - Google Patents

Continuous mass production mechanism for photovoltaic cells Download PDF

Info

Publication number
TWM567485U
TWM567485U TW107207927U TW107207927U TWM567485U TW M567485 U TWM567485 U TW M567485U TW 107207927 U TW107207927 U TW 107207927U TW 107207927 U TW107207927 U TW 107207927U TW M567485 U TWM567485 U TW M567485U
Authority
TW
Taiwan
Prior art keywords
photovoltaic cell
unit
mass production
layer
production mechanism
Prior art date
Application number
TW107207927U
Other languages
Chinese (zh)
Inventor
張裕洋
劉修銘
黃松建
丁定國
王水泉
Original Assignee
位元奈米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 位元奈米科技股份有限公司 filed Critical 位元奈米科技股份有限公司
Priority to TW107207927U priority Critical patent/TWM567485U/en
Priority to CN201821177699.9U priority patent/CN208637461U/en
Publication of TWM567485U publication Critical patent/TWM567485U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種光伏電池的連續量產機構,係將透明導電膜捲材藉由增厚離型膜(保護膜)覆捲增厚,以增加在連續長度的傳遞,避免變形捲材變形,並且為消彌貼合增後之複合捲材應力產生皺摺扭曲,設置退火單元消彌複合捲材應力,並且利於在連續製程的塗佈作業,本創作可將透明導電膜連續卷材經貫穿各該塗佈與蝕刻作業與進行裁切封裝作業,達成光伏電池元件之製作。 A continuous mass production mechanism of a photovoltaic cell is characterized in that a transparent conductive film coil is thickened by thickening a release film (protective film) to increase the transmission in a continuous length, to avoid deformation of the deformed coil, and to eliminate The laminated composite material has a wrinkle distortion and a set of annealing unit to eliminate the stress of the composite coil, and facilitates the coating process in a continuous process, and the present invention can continuously pass the transparent conductive film through the coating. The fabrication of photovoltaic cell components is achieved with etching operations and cutting and packaging operations.

Description

光伏電池的連續量產機構 Continuous mass production mechanism of photovoltaic cells

本創作係有關一種連續量產機構,尤指一種用以連續性生產光伏電池的連續量產機構。 This creation is related to a continuous mass production organization, especially a continuous mass production mechanism for the continuous production of photovoltaic cells.

太陽能電池的研究是再生能源中受眾人期待的一個方向。雖然現今已商業化的多數產品是以矽為其主要材料,不過使用高分子材料所開發之太陽能電池因其製程簡單、造價便宜、材質輕盈、可撓曲等特性而受到業界與學術界的矚目。 Solar cell research is a direction that audiences in renewable energy look forward to. Although most of the products that have been commercialized today are based on bismuth, solar cells developed using polymer materials have attracted the attention of the industry and academia due to their simple process, low cost, light weight, and flexibility. .

目前在製備光伏太陽能電池時,可透過塗佈(Coating)或蒸鍍為製備太陽能電池薄膜之技術手段,其優點在於能夠使得該薄膜具有較佳之平整性與均勻性。而進一步可以結合R2R(Roll-to-Roll,R2R)製程即是一種具有潛力用以大面積製備光伏太陽能電池的技術,其在產業界已有配合,R2R製程即可良好地配合其運作,得以在較低成本之下生產這些具有可塑性、重量輕、耐衝擊等優點之光伏元件。 At present, in the preparation of a photovoltaic solar cell, coating or vapor deposition can be used as a technical means for preparing a solar cell film, which has the advantages of enabling the film to have better flatness and uniformity. The R2R (Roll-to-Roll, R2R) process can be combined with a technology that has the potential to prepare photovoltaic solar cells in large areas. It has been coordinated in the industry, and the R2R process can work well with its operation. These photovoltaic elements with the advantages of plasticity, light weight, and impact resistance are produced at a lower cost.

光伏電池結構100a(如圖1)的光電轉換元件,如有機光伏電池或者是鈣鈦礦太陽能電池,利用在基板101a上的光伏層103a提供光電轉換機制,經由上、下導電層104a、102a構成電性迴路,其中所謂的光伏層103a係以電子傳遞層1031a、主動層1032a、電洞傳遞層1033a所構成,藉由與上、下導電層104a、102a的結合達成光電轉換及電子傳遞的效果,其結構可參照圖1所示,其中所謂的主動層1032a可以是有機光伏(OPV)材料或鈣鈦礦PSC之光伏材料,進一步利用不同電子特性之電子傳遞層1031a與電洞傳遞層1033a,以增益主動層1032a之光電轉換效率。 The photoelectric conversion element of the photovoltaic cell structure 100a (such as FIG. 1), such as an organic photovoltaic cell or a perovskite solar cell, provides a photoelectric conversion mechanism by using the photovoltaic layer 103a on the substrate 101a, and is formed via the upper and lower conductive layers 104a, 102a. The electrical circuit, wherein the so-called photovoltaic layer 103a is composed of an electron transport layer 1031a, an active layer 1032a, and a hole transport layer 1033a, and achieves photoelectric conversion and electron transfer effects by combining with the upper and lower conductive layers 104a and 102a. The structure may be as shown in FIG. 1 , wherein the so-called active layer 1032a may be an organic photovoltaic (OPV) material or a photovoltaic material of a perovskite PSC, and further utilize an electron transfer layer 1031a and a hole transfer layer 1033a of different electronic characteristics. The photoelectric conversion efficiency of the active layer 1032a is increased.

為配合低廉的量產機制與成本,因此為使生產機制可以連續進行光伏層的塗佈製作,因此每個光伏層的塗佈製作甚至到封裝,應可以順利在同一捲基材上順利塗佈蝕刻完成,因此為使捲對捲可以連續塗佈作業,尤其是面臨大尺寸幅寬500mm以上之連續性量產需求,為避免於連續生產過程,因結構性幅寬限制導致產生曲折不良或材料膨脹係數差異限制而產生之外觀皺褶不良之發生,相關連續生產載具需加以設計改良。 In order to cope with the low-cost mass production mechanism and cost, in order to make the production mechanism continuous coating of the photovoltaic layer, the coating of each photovoltaic layer can be smoothly coated on the same roll substrate even if it is packaged. The etching is completed, so that the roll-to-roll can be continuously coated, especially in the face of continuous mass production demand of a large-size width of 500 mm or more. In order to avoid continuous production process, the tortuosity or material is caused by the structural width limitation. The occurrence of poor wrinkles caused by the difference in expansion coefficient, the related continuous production vehicles need to be designed and improved.

緣是,本創作人有感上述之結合可增益功能的提升,且依據多年來從事此方面之相關經驗,悉心觀察且研究之,並配合學理之運用,而提出一種設計合理且有效之本創作。 The reason is that the creator feels that the combination of the above-mentioned gains can be improved, and based on years of experience in this field, carefully observe and study, and with the use of academics, propose a design that is reasonable and effective. .

本創作之主要目的,在於本創作提供一種連續量產機構,係將透明導電膜捲材藉由增厚離型膜(保護膜)覆捲增厚,以增加在連續長度的傳遞,避免捲材變形,並且為消彌貼合增後之複合捲材應力產生皺摺扭曲,設置退火單元消彌複合捲材應力,並且利於在連續製程的塗佈作業,本創作可將透明導電膜連續卷材經貫穿各該塗佈與蝕刻作業與進行裁切封裝作業,達成光伏電池元件之製作。 The main purpose of this creation is to provide a continuous mass production mechanism in which the transparent conductive film coil is thickened by thickening the release film (protective film) to increase the transmission in the continuous length and avoid the coil. Deformation, and wrinkle distortion caused by the weight of the composite web after the elimination of the adhesion, the annealing unit is used to eliminate the stress of the composite coil, and the coating operation for the continuous process is facilitated, and the transparent conductive film can be continuously coiled. The fabrication of the photovoltaic cell element is achieved by performing the coating and etching operations and performing the cutting and packaging operations.

為達上述之目的,本創作提供一種光伏電池的連續量產機構,依生產順序配置包含:一透明導電膜捲材、一增厚離型膜覆膜(保護膜)單元、一退火單元、一第一材料層塗佈單元、一第一材料層烘乾單元、一第二材料層塗佈單元、一第二材料層烘乾單元、一第三材料層塗佈單元、一第三材料層烘乾單元、一第一蝕刻單元、一第四材料層塗佈單元、一第四材料層烘乾單元、一第二蝕刻單元、一裁切單元、一透明導電膜下腳料回收單元、一增厚離型膜回收單元、一上封裝膜單元、一下封裝膜單元、一封裝壓合單元、一裁切出料單元及複數滾輪組,配置於各該單元間,提供捲材之支撐與移轉。 In order to achieve the above purpose, the present invention provides a continuous mass production mechanism for a photovoltaic cell, which comprises: a transparent conductive film coil, a thickened release film (protective film) unit, an annealing unit, and a production sequence. a first material layer coating unit, a first material layer drying unit, a second material layer coating unit, a second material layer drying unit, a third material layer coating unit, and a third material layer drying a dry cell, a first etching unit, a fourth material layer coating unit, a fourth material layer drying unit, a second etching unit, a cutting unit, a transparent conductive film scrap recycling unit, and a thickening The release film recovery unit, an upper package film unit, a lower package film unit, a package press unit, a cutting discharge unit and a plurality of roller sets are disposed between the units to provide support and transfer of the coil.

在本創作之一實施例中,該透明導電膜捲材為幅寬大於150mm以上,厚度大於20um之透明導電膜。 In an embodiment of the present invention, the transparent conductive film coil is a transparent conductive film having a width greater than 150 mm and a thickness greater than 20 μm.

在本創作之一實施例中,該透明導電膜係由一塑料基材與一下導電層構成,其中該塑料基材厚度小於500um。 In one embodiment of the present invention, the transparent conductive film is composed of a plastic substrate and a lower conductive layer, wherein the plastic substrate has a thickness of less than 500 um.

在本創作之一實施例中,該塑料基材為聚醯亞胺、聚萘二甲酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯、聚乙烯對苯二甲酸酯。 In one embodiment of the present invention, the plastic substrate is polyimide, polyethylene naphthalate, polyurethane, polymethyl methacrylate, polyethylene, polyethylene terephthalate.

在本創作之一實施例中,該下導電層為金屬或金屬氧化物,或是有機導體材料。 In one embodiment of the present invention, the lower conductive layer is a metal or metal oxide or an organic conductor material.

在本創作之一實施例中,該金屬為如鋁、銀或金。 In one embodiment of the present creation, the metal is, for example, aluminum, silver or gold.

在本創作之一實施例中,該金屬氧化物為氧化銦錫。 In one embodiment of the present invention, the metal oxide is indium tin oxide.

在本創作之一實施例中,該有機導體材料為聚3,4-乙撑二氧噻吩、奈米碳管、石墨烯或前述之兩種以上材料之組合。 In an embodiment of the present invention, the organic conductor material is poly 3,4-ethylenedioxythiophene, a carbon nanotube, graphene or a combination of two or more of the foregoing.

在本創作之一實施例中,該塑料基材之一側或兩側設置有一硬化層以增益該透明導電膜捲材之挺性以利生產作業。 In one embodiment of the present invention, a hardened layer is disposed on one or both sides of the plastic substrate to increase the stiffness of the transparent conductive film web for production operations.

在本創作之一實施例中,該增厚離型膜為聚醯亞胺、聚萘二甲酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯、聚乙烯對苯二甲酸酯。 In one embodiment of the present invention, the thickened release film is polyimide, polyethylene naphthalate, polyurethane, polymethyl methacrylate, polyethylene, polyethylene terephthalate. .

在本創作之一實施例中,該增厚離型膜一側表面塗覆有離型膠,以該離型膠一側與該透明導電膜的塑料基材一側進行覆膜黏貼。 In one embodiment of the present invention, the surface of the thickened release film is coated with a release adhesive, and the release adhesive side is coated with the plastic substrate side of the transparent conductive film.

在本創作之一實施例中,該增厚離型膜幅寬寬於該透明導電膜,兩邊小於5mm-10mm為佳。 In an embodiment of the present invention, the thickened release film has a width wider than the transparent conductive film, and both sides are preferably less than 5 mm to 10 mm.

在本創作之一實施例中,該退火單元為熱風循環或是熱輻射方式的供熱方式。 In an embodiment of the present invention, the annealing unit is a hot air circulation or a heat radiation heating method.

在本創作之一實施例中,該供熱方式可以是熱油式、電熱式、紅外線、微波等方式進行,加熱可維持70℃-160℃為佳,捲材至單元出口需降溫回室溫為佳。 In an embodiment of the present invention, the heating mode may be hot oil type, electric heating type, infrared light, microwave, etc., the heating may be maintained at 70 ° C - 160 ° C, and the coil to the unit outlet needs to be cooled back to room temperature. It is better.

在本創作之一實施例中,該電子傳輸層主成分為氧化鋅或二氧化鈦之金屬氧化物。 In one embodiment of the present invention, the electron transport layer main component is a metal oxide of zinc oxide or titanium dioxide.

在本創作之一實施例中,該電子傳輸層經烘乾後厚度為1nm-500nm。 In one embodiment of the present invention, the electron transport layer is dried to a thickness of from 1 nm to 500 nm.

在本創作之一實施例中,該第一材料層烘乾單元、該第二材料層烘乾單元及該第三材料層烘乾單元的加熱烘乾為熱風循環或是熱輻射方式的供熱方式。 In an embodiment of the present invention, the first material layer drying unit, the second material layer drying unit, and the third material layer drying unit are heated and dried to be heated by hot air circulation or heat radiation. the way.

本創作之一實施例中,該供熱方式為熱油式、電熱式、紅外線、微波等方式進行,提供加熱50℃-120℃為佳。 In one embodiment of the present invention, the heating mode is performed by a hot oil type, an electrothermal type, an infrared ray, a microwave, or the like, and it is preferable to provide a heating of 50 ° C to 120 ° C.

在本創作之一實施例中,該主動層為有機光伏材料或是鈣鈦礦結構材料之光伏材料。 In an embodiment of the present invention, the active layer is an organic photovoltaic material or a photovoltaic material of a perovskite structural material.

在本創作之一實施例中,該主動層經烘乾後厚度為50nm-1000nm。 In one embodiment of the present invention, the active layer is dried to a thickness of 50 nm to 1000 nm.

在本創作之一實施例中,該電洞傳輸層材料為聚3,4-乙撑二氧噻吩(PEDOT)、三氧化鉬(MoO3)、或五氧化二釩(V2O5)。 In one embodiment of the present invention, the hole transport layer material is poly 3,4-ethylenedioxythiophene (PEDOT), molybdenum trioxide (MoO 3 ), or vanadium pentoxide (V 2 O 5 ).

在本創作之一實施例中,該電洞傳輸層經烘乾後厚度為1nm-1000nm。 In one embodiment of the present invention, the hole transport layer is dried to a thickness of from 1 nm to 1000 nm.

在本創作之一實施例中,該第一蝕刻單元及第二蝕單元的蝕刻以雷射乾式蝕刻作業,其中該雷射蝕刻是以雷射鏡組提供複數多重鏡頭配合該透明導電膜之移載行進速度,進行連續面蝕刻。 In an embodiment of the present invention, the etching of the first etching unit and the second etching unit is performed by a laser dry etching operation, wherein the laser etching provides a plurality of multiple lenses in cooperation with the transparent conductive film by a laser lens group. Carrying speed is carried out and continuous surface etching is performed.

在本創作之一實施例中,該上導電層為金屬或金屬氧化物。 In an embodiment of the present invention, the upper conductive layer is a metal or a metal oxide.

在本創作之一實施例中,該金屬為如鋁、銀或金。 In one embodiment of the present creation, the metal is, for example, aluminum, silver or gold.

在本創作之一實施例中,該金屬氧化物為氧化銦錫。 In one embodiment of the present invention, the metal oxide is indium tin oxide.

在本創作之一實施例中,該第四材料層烘乾單元的加熱烘乾為熱油式、電熱式、紅外線、微波等方式進行,提供加熱70℃-160℃為佳。 In an embodiment of the present invention, the heating and drying of the fourth material layer drying unit is performed by means of hot oil type, electrothermal type, infrared ray, microwave, etc., and heating of 70 ° C - 160 ° C is preferred.

在本創作之一實施例中,該裁切單元為沖壓機或是雷切機。 In an embodiment of the present invention, the cutting unit is a punch or a thunder cutting machine.

在本創作之一實施例中,該裁切單元裁切深度除完全切斷透明導電膜外,對於增厚離型膜僅裁切一部份深度不完全切斷,經裁切後之該半成品的光伏電池可以保留貼附於該增厚離型膜上。 In an embodiment of the present invention, the cutting unit has a cutting depth except that the transparent conductive film is completely cut, and only a part of the depth of the thickened release film is not completely cut, and the cut semi-finished product is cut. The photovoltaic cell can remain attached to the thickened release film.

在本創作之一實施例中,該封裝黏膠黏度大於該增厚離型膜之離型膠,該半成品的光伏電池可以轉貼於該上封裝膜上。 In one embodiment of the present invention, the package adhesive viscosity is greater than the release adhesive of the thickened release film, and the semi-finished photovoltaic cell can be attached to the upper package film.

在本創作之一實施例中,於該增厚離型膜覆膜單元與該退火單元間設置一表面處理單元,該表面處理單元為非接觸式或非接觸式之超音波、電弧或電漿表面處理,以提高該透明導電膜的下導電層表面之達因值,以利後續鍍膜作業之附著力提升。 In an embodiment of the present invention, a surface treatment unit is disposed between the thickened release film laminating unit and the annealing unit, and the surface treatment unit is non-contact or non-contact ultrasonic, arc or plasma. The surface treatment is performed to increase the value of the surface of the lower conductive layer of the transparent conductive film to improve the adhesion of the subsequent coating operation.

習知: Convention:

100a‧‧‧光伏電池結構 100a‧‧‧Photovoltaic cell structure

101a‧‧‧基板 101a‧‧‧Substrate

102a‧‧‧下導電層 102a‧‧‧lower conductive layer

103a‧‧‧光伏層 103a‧‧‧Photovoltaic layer

1031a‧‧‧電子傳遞層 1031a‧‧‧Electronic transfer layer

1032a‧‧‧主動層 1032a‧‧‧ active layer

1033a‧‧‧電洞傳遞 1033a‧‧‧ hole transmission

本創作: This creation:

10‧‧‧透明導電膜捲材 10‧‧‧Transparent conductive film coil

101‧‧‧透明導電膜 101‧‧‧Transparent conductive film

102‧‧‧塑料基材 102‧‧‧Plastic substrate

103‧‧‧下導電層 103‧‧‧lower conductive layer

20‧‧‧增厚離型膜覆膜單元 20‧‧‧Thickening release film laminating unit

201‧‧‧增厚離型膜 201‧‧‧ Thickened release film

30‧‧‧退火單元 30‧‧‧ Annealing unit

40‧‧‧第一材料層塗佈單元 40‧‧‧First material layer coating unit

401‧‧‧電子傳輸層 401‧‧‧Electronic transport layer

50‧‧‧第一材料層烘乾單元 50‧‧‧First material layer drying unit

60‧‧‧第二材料層塗佈單元 60‧‧‧Second material layer coating unit

601‧‧‧主動層 601‧‧‧ active layer

70‧‧‧第二材料層烘乾單元 70‧‧‧Second material layer drying unit

80‧‧‧第三材料層塗佈單元 80‧‧‧ Third material layer coating unit

801‧‧‧電洞傳輸層 801‧‧‧ hole transport layer

90‧‧‧第三材料層烘乾單元 90‧‧‧ Third material layer drying unit

100‧‧‧第一蝕刻單元 100‧‧‧First etching unit

1001‧‧‧第一蝕刻線 1001‧‧‧First etching line

110‧‧‧第四材料層塗佈單元 110‧‧‧fourth material layer coating unit

1101‧‧‧上導電層 1101‧‧‧Upper conductive layer

120‧‧‧第四材料層烘乾單元 120‧‧‧fourth material layer drying unit

130‧‧‧第二蝕刻單元 130‧‧‧Second etching unit

1301‧‧‧第二蝕刻線 1301‧‧‧second etching line

140‧‧‧裁切單元 140‧‧‧Cut unit

1401‧‧‧裁切 1401‧‧‧cut

150‧‧‧透明導電膜下腳料回收單元 150‧‧‧Transparent conductive film scrap recycling unit

160‧‧‧增厚離型膜回收單元 160‧‧‧Thickening release film recovery unit

170‧‧‧上封裝膜單元 170‧‧‧Upper encapsulation unit

1701‧‧‧上封裝膜 1701‧‧‧Upper encapsulation film

180‧‧‧下封裝膜單元 180‧‧‧ under the package film unit

1801‧‧‧下封裝膜 1801‧‧‧ under the encapsulation film

190‧‧‧封裝壓合單元 190‧‧‧Package nip unit

200‧‧‧裁切出料單元 200‧‧‧ Cutting and discharging unit

210‧‧‧複數滾輪組 210‧‧‧Multiple roller sets

A‧‧‧無效邊料 A‧‧‧Invalid edge material

圖1,為傳統的光伏電池結構示意圖;圖2,係本創作之光伏電池的連續量產機構示意圖;圖3a-3p,係本創作之光伏電池在量產過程中的每一層結構示意圖。 FIG. 1 is a schematic view of a conventional photovoltaic cell structure; FIG. 2 is a schematic diagram of a continuous mass production mechanism of the photovoltaic cell of the present invention; FIG. 3a-3p is a schematic structural view of each layer of the photovoltaic cell in the mass production process.

茲有關本創作之技術內容及詳細說明,現配合圖式說明如下:請參閱圖2,係本創作之光伏電池的連續量產機構示意圖。同時,配合圖3a-3p的光伏電在量產過程中的每一層結構示意圖進行說明,如圖所示:本創作之一種光伏電池的連續量產機構,依生產順序配置包含:一透明導電膜捲材10、一增厚離型膜覆膜(保護膜)單元20、一退火單元30、一第一材料層塗佈單元40、一第一材料層烘乾單元50、一第二材料層塗佈單元60、一第二材料層烘乾單元70、一第三材料層塗佈單元80、一第三材料層烘乾單元90、一第一蝕刻單元100、一第四材料層塗佈單元110、一第四材料層烘乾單元120、一第二蝕刻單元130、一裁切單元140、一透明導電膜下腳料回收單元150、一增厚離型膜回收單元160、一上封裝膜單元170、一下封裝膜單元180、一封裝壓合單元190、一裁切出料單元200及一複數滾輪組210,配置於各該單元間,提供捲材之支撐與移轉。 The technical content and detailed description of this creation are as follows: Please refer to Figure 2, which is a schematic diagram of the continuous mass production mechanism of the photovoltaic cell. At the same time, together with the schematic diagram of each layer of the photovoltaic power in the mass production process of Fig. 3a-3p, as shown in the figure: a continuous mass production mechanism of the photovoltaic cell of the present invention, according to the production sequence configuration: a transparent conductive film Coil 10, a thickened release film (protective film) unit 20, an annealing unit 30, a first material layer coating unit 40, a first material layer drying unit 50, and a second material layer coating The cloth unit 60, a second material layer drying unit 70, a third material layer coating unit 80, a third material layer drying unit 90, a first etching unit 100, and a fourth material layer coating unit 110 a fourth material layer drying unit 120, a second etching unit 130, a cutting unit 140, a transparent conductive film waste material recovery unit 150, a thickened release film recovery unit 160, and an upper package film unit 170 The lower package film unit 180, a package press unit 190, a cutting and discharging unit 200, and a plurality of roller sets 210 are disposed between the units to provide support and transfer of the coil.

本創作裝置係將該透明導電膜捲材10藉由增厚離型膜覆單元20增厚(如圖3a、3b),以增加在連續長度的傳遞,避免變形捲材變形,並且為消彌貼合增後之複合捲材應力產生皺摺扭曲,設置退火單元30消彌複合捲材應力,並且利於在連續製程的塗佈作業,本創作可將透明導電膜連續捲材10經貫穿各該塗佈與蝕刻作業與進行裁切封裝作業,達成光伏電池元件之製作。為詳述該各單元之功能說明如下:該透明導電膜捲材10,提供欲生產製作光伏電池所需之一透明導電膜101置放供料區域,其中該透明導電膜捲材10可以是幅寬大於150mm以上,厚度大於20um之透明導電膜101,該透明導電膜101係由一塑料基材102與一下導電層103構成;其中該塑料基材102厚度如小於500um,可以覆捲貼覆增厚離型膜201增厚該捲材,以利鍍膜作業;其中該塑料基材102為聚醯亞胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(PEN)、聚氨酯(Polyurethanes,PU)、聚甲基丙烯酸甲酯(poly(methyl methacrylate),簡稱PMMA)、聚乙烯(Polyethylene,PE)、聚乙烯對苯二甲酸酯(Polyethylene Terephthalate,PET),其中該下導電層103為金屬或金屬氧化物如鋁、銀、金或氧化銦錫等,或是有機導體材料如聚3,4-乙撑二氧噻吩(Poly-3,4-Ethylenedioxythiophene,PEDOT:PSS)、奈米碳管、石墨烯或前述之兩種以上材料之組合;其中該塑料基材102之一側或兩側可以設置一硬化層(圖中未示)以增益該透明導電膜捲材10之挺性以利生產作業。 In the authoring apparatus, the transparent conductive film web 10 is thickened by thickening the release film covering unit 20 (as shown in FIGS. 3a and 3b) to increase the transmission in the continuous length, to avoid deformation of the deformed web, and to eliminate the deformation. The composite coil material after the adhesion is increased to generate wrinkle distortion, the annealing unit 30 is disposed to eliminate the stress of the composite coil, and the coating operation for the continuous process is facilitated, and the transparent conductive film continuous coil 10 can be penetrated through the respective creations. Coating and etching operations and cutting and packaging operations are carried out to achieve the fabrication of photovoltaic cell components. The function of each unit is described as follows: the transparent conductive film coil 10 provides a transparent conductive film 101 for feeding a production area for producing a photovoltaic cell, wherein the transparent conductive film roll 10 can be a web. The transparent conductive film 101 is wider than 150 mm and thicker than 20 um. The transparent conductive film 101 is composed of a plastic substrate 102 and a lower conductive layer 103. The thickness of the plastic substrate 102 is less than 500 um, and the roll can be covered. The thick release film 201 thickens the web to facilitate the coating operation; wherein the plastic substrate 102 is Polyimide (PI), polyethylene naphthalate (PEN), polyurethane (Polyurethanes, PU) ), poly(methyl methacrylate) (PMMA), polyethylene (PE), polyethylene terephthalate (PET), wherein the lower conductive layer 103 is a metal Or metal oxides such as aluminum, silver, gold or indium tin oxide, or organic conductor materials such as poly-3,4-Ethylenedioxythiophene (PEDOT:PSS), carbon nanotubes , graphene or two or more of the foregoing materials Bonding; wherein one or both sides of the plastic substrate 102 may be provided with a hardened layer (not shown) to the gain of the very nature of the transparent conductive film 10 of the web to facilitate production operations.

該增厚離型膜覆膜單元20,以將該入料之透明導電膜101之基材一側貼附一增厚離型膜201,以利增加製作該光伏電池之基材強度,便於後續生產塗佈作業提供一大面積寬廣平坦低變形之作業面,其中該增厚離型膜201的材料為PI、PEN、PU、PMMA、PE、PET, 一側表面塗覆有離型膠(圖中未示),以該離型膠一側與該透明導電膜101的塑料基材102一側進行覆膜黏貼,該增厚離型膜201幅寬略寬於該透明導電膜101,兩邊略小於5mm-10mm為佳,而不致影響捲材之收卷;該退火單元30,以將該前述貼附增厚離型膜201之透明導電膜101提供加溫及冷卻回溫,以同時消彌改變前貼附增厚離型膜201之透明導電膜101之各該基材內部應力,便於後續塗佈作業避免基材變形,該加熱烘乾可以是熱風循環或是熱輻射方式,供熱方式可以是熱油式、電熱式、紅外線、微波等方式進行,加熱可維持70-160℃為佳,捲材至單元出口需降溫回室溫為佳。 The thickened release film coating unit 20 is attached with a thickened release film 201 on the substrate side of the transparent conductive film 101 to increase the strength of the substrate for manufacturing the photovoltaic cell, and is convenient for subsequent The production coating operation provides a large area of wide flat and low deformation working surface, wherein the material of the thickened release film 201 is PI, PEN, PU, PMMA, PE, PET, One side of the surface is coated with a release adhesive (not shown), and one side of the release adhesive is adhered to the side of the plastic substrate 102 of the transparent conductive film 101, and the thickness of the thickened release film 201 is wide. Slightly wider than the transparent conductive film 101, preferably less than 5 mm to 10 mm on both sides, without affecting the winding of the web; the annealing unit 30 is provided to the transparent conductive film 101 to which the above-mentioned thickened release film 201 is attached. Warming and cooling back to the temperature to simultaneously change the internal stress of each of the transparent conductive film 101 of the thickened release film 201 before the change, so as to facilitate the subsequent coating operation to avoid deformation of the substrate, the heating and drying may be Hot air circulation or heat radiation method, the heating mode can be hot oil type, electric heating type, infrared light, microwave, etc., heating can maintain 70-160 ° C is better, the coil to the unit outlet needs to be cooled back to room temperature is better.

該第一材料層塗佈單元40,以於前述該透明導電膜101之下導電層103一側表面進行狹縫式塗佈作業來製作電子傳輸層401(或第三材料層塗佈單元80的所塗佈的電洞傳輸層801)。其中該電子傳輸層401主成分可以是氧化鋅、二氧化鈦等金屬氧化物,經塗佈烘乾後厚度1nm-500nm(如圖3c)。 The first material layer coating unit 40 performs a slit coating operation on the surface of the conductive layer 103 under the transparent conductive film 101 to form the electron transport layer 401 (or the third material layer coating unit 80). The coated hole transport layer 801). The main component of the electron transport layer 401 may be a metal oxide such as zinc oxide or titanium dioxide, which is coated and dried to a thickness of 1 nm to 500 nm (see FIG. 3c).

該第一材料層烘乾單元50,以於前述第一材料層塗佈單元40的電子傳輸層401或第三材料層塗佈單元80所塗佈的電洞傳輸層802經塗佈後,以加熱方式進行烘乾,該加熱烘乾可以是熱風循環或是熱輻射方式,供熱方式可以是熱油式、電熱式、紅外線、微波等方式進行,提供加熱50℃-120℃為佳。 The first material layer drying unit 50 is coated with the hole transport layer 802 coated by the electron transport layer 401 or the third material layer coating unit 80 of the first material layer coating unit 40. The heating method is used for drying. The heating and drying may be a hot air circulation or a heat radiation method, and the heating method may be performed by a hot oil type, an electrothermal type, an infrared ray, a microwave or the like, and a heating of 50 ° C - 120 ° C is preferred.

該第二材料層塗佈單元60,以於前述之電子傳輸層401(或電洞傳輸層801)一側表面進行狹縫式塗佈作業來製作主動層601。其中該主動層601可以是有機光伏材料或是鈣鈦礦結構材料之光伏材料,經塗佈烘乾後厚度可以是50nm-1000nm(如圖3d)。 The second material layer applying unit 60 performs a slit coating operation on the surface of the electron transport layer 401 (or the hole transport layer 801) side to form the active layer 601. The active layer 601 may be an organic photovoltaic material or a photovoltaic material of a perovskite structural material, and the thickness after coating and drying may be 50 nm to 1000 nm (as shown in FIG. 3d).

該第二材料層烘乾單元70,以於前述第二材料層塗佈單元60的主動層601經塗佈後,以加熱方式進行烘乾,該加熱烘乾為熱風循環 或是熱輻射方式的供熱方式,該供熱方式為熱油式、電熱式、紅外線、微波等方式進行,提供加熱50℃-120℃為佳。 The second material layer drying unit 70 is configured to dry the active layer 601 of the second material layer coating unit 60 by heating, and the heating and drying is a hot air circulation. Or the heat radiation type heating mode, the heating mode is hot oil type, electric heating type, infrared light, microwave, etc., and heating is preferably 50 ° C - 120 ° C.

該第三材料層塗佈單元80,以於前述主動層601一側表面進行狹縫式塗佈作業來製作電洞傳輸層801(或第一材料層塗佈單元40所塗佈的電子傳輸層401)。其中該電洞傳輸層801材料可以是PEDOT、三氧化鉬(MoO3)、五氧化二釩(V2O5)等,厚度可以是1nm-1000nm(如圖3e)。在本圖式中,以該電子傳輸層、該主動層及該電洞傳輸層形成一光伏層。 The third material layer coating unit 80 performs a slit coating operation on the surface of the active layer 601 to form the hole transport layer 801 (or the electron transport layer coated by the first material layer coating unit 40). 401). The material of the hole transport layer 801 may be PEDOT, molybdenum trioxide (MoO 3 ), vanadium pentoxide (V 2 O 5 ), etc., and may have a thickness of 1 nm to 1000 nm (as shown in FIG. 3 e ). In the figure, a photovoltaic layer is formed by the electron transport layer, the active layer and the hole transport layer.

該第三材料層烘乾單元90,以於前述第三材料層塗佈單元80的電洞傳輸層801(或電子傳輸層401)經塗佈後,以加熱方式進行烘乾,該加熱烘乾可以是熱油式、電熱式、紅外線、微波等方式進行,提供加熱50℃-120℃為佳。 The third material layer drying unit 90 is coated in a heating manner after the hole transport layer 801 (or the electron transport layer 401) of the third material layer coating unit 80 is coated, and the heating is dried. It can be carried out by means of hot oil type, electrothermal type, infrared ray, microwave or the like, and it is preferred to provide heating at 50 ° C to 120 ° C.

該第一蝕刻單元100,以於該前述之光伏層,以雷射進行蝕刻並於該光伏層上形成有一第一蝕刻線1001(如圖3f),以利後續上或下導電層1101、103的導電線路連接構成電性線路。其中該蝕刻式以雷射乾式蝕刻作業。其中該雷射蝕刻是以雷射鏡組提供複數多重鏡頭配合該透明導電膜101之移載行進速度,進行連續面蝕刻。 The first etching unit 100 is etched by the laser for the foregoing photovoltaic layer and a first etched line 1001 is formed on the photovoltaic layer (as shown in FIG. 3f) to facilitate subsequent upper or lower conductive layers 1101, 103. The conductive line connections constitute an electrical line. Wherein the etching type is operated by a laser dry etching. The laser etching is performed by using a laser lens assembly to provide a plurality of multiple lenses to match the transfer traveling speed of the transparent conductive film 101 for continuous surface etching.

該第四材料層塗佈單元110,以於前述該經蝕刻後之光伏層的一側表面及該第一蝕刻線1001上以狹縫式塗佈作業來製作上導電層1101,該上導電層1101可以金屬或金屬氧化物,如鋁、銀、金或氧化銦錫等(如圖3g)。 The fourth material layer coating unit 110 is configured to form an upper conductive layer 1101 by a slit coating operation on one side surface of the etched photovoltaic layer and the first etched line 1001. 1101 may be a metal or metal oxide such as aluminum, silver, gold or indium tin oxide (Fig. 3g).

該第四材料層烘乾單元120,以於前述第四材料層塗佈單元110的上導電層1101經塗佈後,以加熱方式進行烘乾,該加熱烘乾可以是熱油式、電熱式、紅外線、微波等方式進行,提供加熱70℃-160℃為佳。 The fourth material layer drying unit 120 is configured to dry the upper conductive layer 1101 of the fourth material layer coating unit 110 by heating, and the heating and drying may be hot oil type or electric heating type. Infrared, microwave, etc., it is preferred to provide heating at 70 ° C - 160 ° C.

該第二蝕刻單元130,以於該前述完成之上導電層1101及光伏層,以雷射進行蝕刻並形成有第二蝕刻線1301(如圖3h),以利後續線路連接構成電性線路。其中該蝕刻式以雷射乾式蝕刻作業。其中該雷射蝕刻是以雷射鏡組提供複數多重鏡頭配合該透明導電膜101之行進速度,進行連續面蝕刻。 The second etching unit 130 is etched by the laser and formed with a second etched line 1301 (as shown in FIG. 3h) for the foregoing completed conductive layer 1101 and the photovoltaic layer, so that the subsequent line connection constitutes an electrical line. Wherein the etching type is operated by a laser dry etching. The laser etching is performed by providing a plurality of multiple lenses to match the traveling speed of the transparent conductive film 101 by the laser lens group, and performing continuous surface etching.

該裁切單元140,可以是沖壓機或是雷切機,已於前述之完成的光伏層的塗層之透明導電膜101進行裁切1401(如圖3i),其中裁切深度除完全切斷該透明導電膜101外,對於該增厚離型膜201僅裁切一部份深度不完全切斷,之後經裁切後之光伏電池半成品可以仍保留貼附於該增厚離型膜201上,經裁切後之該透明導電膜101的無效邊料A去除(如圖3j)經由透明導電膜下腳料回收單元150覆捲回收。 The cutting unit 140 can be a punching machine or a laser cutting machine. The transparent conductive film 101 of the coating of the completed photovoltaic layer is cut 1401 (as shown in FIG. 3i), wherein the cutting depth is completely cut off. Outside the transparent conductive film 101, only a part of the depth of the thickened release film 201 is not completely cut, and then the cut photovoltaic cell semi-finished product may remain attached to the thickened release film 201. After the cutting, the ineffective edge material A of the transparent conductive film 101 is removed (as shown in FIG. 3j) and recovered by the transparent conductive film scrap recycling unit 150.

之後,貼附於增厚離型膜201上之半成品的光伏電池,進行封裝,先由上封裝膜單元170進行貼覆,其中該上封裝膜1701之一側表面有封裝黏膠(圖中未示),該封裝黏膠一側貼覆該半成品的光伏電池一側,且該封裝黏膠黏度大於該增厚離型膜201之離型膠,如此該半成品的光伏電池可以轉貼於該上封裝膜1701上(如圖3k、3l),而增厚離型膜201於此機構後開始與該半成品的光伏電池脫離,該增厚離型膜201經由該增厚離型膜回收單元160進行回收。 Thereafter, the photovoltaic cell attached to the semi-finished product on the thickened release film 201 is packaged and firstly coated by the upper package film unit 170, wherein one side of the upper package film 1701 has a package adhesive (not shown) The side of the package adhesive is attached to the side of the photovoltaic cell of the semi-finished product, and the adhesive viscosity of the package is greater than the release adhesive of the thickened release film 201, so that the semi-finished photovoltaic cell can be re-attached to the upper package. On the film 1701 (as shown in FIG. 3k, 3l), the thickened release film 201 is separated from the semi-finished photovoltaic cell after the mechanism is thickened, and the thickened release film 201 is recovered through the thickened release film recovery unit 160. .

該下封裝膜單元180接續於該增厚離型膜回收單元160之後提供貼附於該半成品的光伏電池另一側表面,使該半成品的光伏電池藉由上、下封裝膜1701、1801貼合封裝(如圖3m),進一步進入封裝壓合單元190使該半成品的光伏電池完整被上、下封裝膜1701、1801貼合,其中該封裝壓合單元190可以提供溫度與真空抽氣,俾使該光伏電池確保封裝結構內脫氣及封裝膠之貼合完全(如圖3n)。 The lower package film unit 180 is connected to the thickened release film recovery unit 160 to provide the other side surface of the photovoltaic cell attached to the semi-finished product, so that the semi-finished photovoltaic cell is bonded by the upper and lower package films 1701 and 1801. The package (as shown in FIG. 3m) further enters the package press unit 190 such that the semi-finished photovoltaic cell is completely covered by the upper and lower package films 1701 and 1801, wherein the package press unit 190 can provide temperature and vacuum pumping. The photovoltaic cell ensures complete degassing of the package structure and complete bonding of the encapsulant (Figure 3n).

經由封裝光伏電池的半成品以該材切出料單元200,可以是沖壓機或雷切機,已於前述之完成封裝之光伏電池半成品,將上下貼合之上下封裝膜1701、1801無光伏電池之區域進行裁切(如圖30),並且裁切部分半成品的光伏電池表面使部分的上、下導線層1101、103的線路區域部分露出,以利後續電性連接之用,經裁切無效區域之封裝膜經覆捲回收,裁切之成品出料(如圖3p)。 The semi-finished product of the photovoltaic cell is used to cut the discharge unit 200, which may be a punching machine or a thunder cutting machine. The semi-finished photovoltaic cell that has been packaged as described above is attached to the upper and lower packaging films 1701 and 1801 without photovoltaic cells. The area is cut (as shown in FIG. 30), and the surface of the photovoltaic cell of the cut part of the semi-finished product partially exposes part of the line area of the upper and lower wire layers 1101, 103 for subsequent electrical connection, and the ineffective area is cut. The encapsulation film is recovered by winding, and the finished product is cut (Fig. 3p).

進一步於該增厚離型膜覆膜單元20與該退火單元30之間可以設置一表面處理單元可以是非接觸式或非接觸式之超音波、電弧或電漿表面處理,以提高透明導電膜101的下導電層103表面之達因值,以利後續鍍膜作業之附著力提升。 Further, a surface treatment unit may be disposed between the thickened release film laminating unit 20 and the annealing unit 30, which may be a non-contact or non-contact ultrasonic, arc or plasma surface treatment to improve the transparent conductive film 101. The value of the surface of the lower conductive layer 103 is such that the adhesion of the subsequent coating operation is improved.

惟以上所述僅為本創作之較佳實施例,非意欲侷限本創作的專利保護範圍,故舉凡運用本創作說明書或圖式內容所為的等效變化,均同理皆包含於本創作的權利保護範圍內,合予陳明。 However, the above description is only a preferred embodiment of the present invention, and it is not intended to limit the scope of patent protection of the present creation. Therefore, the equivalent changes made by using the present specification or the content of the schema are all included in the right of the creation. Within the scope of protection, it is given to Chen Ming.

Claims (31)

一種光伏電池的連續量產機構,依生產順序包含:一透明導電膜捲材,提供生產光伏電池所需之一透明導電膜,該透明導電膜係由一塑料基材與一下導電層構成;一增厚離型膜覆膜單元,將該入料的該透明導電膜一側貼附一增厚離型膜基材;一退火單元,將貼附該增厚離型膜之透明導電膜提供加溫及冷卻回溫,同時消彌改變前貼附該增厚離型膜的該透明導電膜之基材內部應力;一第一材料層塗佈單元,以於前述該透明導電膜之該下導電層一側表面進行狹縫式作業形成有一電子傳輸層或一電洞傳輸層;一第一材料層烘乾單元,以對前述該第一材料層塗佈單元形成的該電子傳輸層或該電洞傳輸層加熱方式進行烘乾;一第二材料層塗佈單元,以對於前述之該電子傳輸層或該電洞傳輸層一側表面進行狹縫式作業形成有一主動層;一第二材料層烘乾單元,以對前述該第二材料層塗佈單元的主動層以加熱方式進行烘乾;一第三材料層塗佈單元,以對前述該主動層一側表面進行狹縫式作業形成有該電洞傳輸層或該電子傳輸層,並以該電子傳輸層、該主動層及該電洞傳輸層形成一光伏層;一第三材料層烘乾單元,以對前述第三材料層塗佈單元的該電洞傳輸層或該電子傳輸層加熱方式進行烘乾;一第一蝕刻單元,以對前述完成的光伏層以雷射進行蝕刻,並於該光伏層上形成有一第一蝕刻線;一第四材料層塗佈單元,以對於前述經蝕刻後之該光伏層一側表面及該第一蝕刻線上以狹縫式形成有一上導電層; 一第四材料層烘乾單元,以對前述第四材料層塗佈單元的該上導電層以加熱方式進行烘乾;一第二蝕刻單元,以對該前述完成之該上導電層及該光伏層,以雷射進行蝕刻並形成有一第二蝕刻線,以利後續上導電層的線路連接構成電性線路;一裁切單元,以對前述完成半成品的光伏電池的透明導電膜進行元件裁切;一透明導電膜下腳料回收單元,以覆捲回收經裁切後之透明導電膜的無效邊料;一上封裝膜單元,以上封裝膜之一側表面有封裝黏膠,該封裝黏膠一側貼覆該半成品的光伏電池一側;一增厚離型膜回收單元,在該上封裝膜貼覆後,該增厚離型膜與該半成品的光伏電池脫離,該增厚離型膜經由該增厚離型膜回收單元進行回收;一下封裝膜單元,以貼附於該半成品的光伏電池另一側表面,使該光伏電池的半成品藉由上、下封裝膜貼合封裝;一封裝壓合單元,在該半成品的光伏電池被上、下封裝膜貼合後,以該封裝壓合單元提供溫度與真空抽氣,使該半成品的光伏電池確保封裝結構內脫氣及封裝膠之貼合完全;一裁切出料單元,以對前述貼合有上、下封裝膜且無該半成品的光伏電池之區域進行材切,並且裁切部分該半成品的光伏電池表面使部分的上、下導線層的線路區域部分露出,以利後續電性連接之用,經裁切無效區域之封裝膜經覆捲回收,裁切之成品出料;及複數滾輪組,係以配置於各該單元之間,提供捲材之支撐與移轉。 A continuous mass production mechanism of a photovoltaic cell comprises: a transparent conductive film coil, which provides one transparent conductive film required for producing a photovoltaic cell, and the transparent conductive film is composed of a plastic substrate and a lower conductive layer; Thickening the release film coating unit, attaching a thickened release film substrate to the side of the transparent conductive film to be fed; and an annealing unit for supplying the transparent conductive film attached to the thickened release film Warming and cooling back, while simultaneously changing the internal stress of the substrate of the transparent conductive film to which the thickened release film is attached; a first material layer coating unit for conducting the lower conductive layer of the transparent conductive film Forming an electron transport layer or a hole transport layer on a surface of one side of the layer; a first material layer drying unit to form the electron transport layer or the electricity formed by the first material layer coating unit The hole transport layer is heated by drying; a second material layer coating unit is formed by performing a slit operation on the surface of the electron transport layer or the side of the hole transport layer to form an active layer; a second material layer Drying unit to The active layer of the second material layer coating unit is dried by heating; a third material layer coating unit is formed by performing a slit operation on a surface of the active layer side to form the hole transport layer or The electron transport layer, and forming a photovoltaic layer by the electron transport layer, the active layer and the hole transport layer; and a third material layer drying unit for transmitting the hole to the third material layer coating unit The layer or the electron transport layer is dried by heating; a first etching unit is used to etch the aforementioned photovoltaic layer by laser, and a first etching line is formed on the photovoltaic layer; a fourth material layer is coated a cloth unit, wherein an upper conductive layer is formed in a slit pattern on the side surface of the photovoltaic layer after the etching and the first etching line; a fourth material layer drying unit for drying the upper conductive layer of the fourth material layer coating unit in a heating manner; a second etching unit to complete the foregoing upper conductive layer and the photovoltaic The layer is etched by laser and formed with a second etched line to facilitate subsequent connection of the conductive layer of the conductive layer to form an electrical line; a cutting unit for performing component cutting on the transparent conductive film of the semi-finished photovoltaic cell a transparent conductive film scrap recycling unit for recovering the ineffective edge material of the cut transparent conductive film; and an upper packaging film unit, one side surface of the above packaging film has a package adhesive, and the package adhesive is a side of the photovoltaic cell on the side of the semi-finished product; a thickened release film recovery unit, after the upper package film is pasted, the thickened release film is detached from the semi-finished photovoltaic cell, and the thickened release film is passed through The thickened release film recovery unit recovers; the lower package film unit is attached to the other side surface of the semi-finished photovoltaic cell, so that the semi-finished product of the photovoltaic cell is packaged by the upper and lower packaging films; The nip unit, after the semi-finished photovoltaic cell is bonded by the upper and lower package films, provides temperature and vacuum pumping by the package nip unit, so that the semi-finished photovoltaic cell ensures degassing in the package structure and the sticker of the package adhesive Completely cutting the discharge unit to cut the area of the photovoltaic cell to which the upper and lower encapsulating films are attached and without the semi-finished product, and cutting part of the semi-finished photovoltaic cell surface to partially upper and lower The circuit area of the wire layer is partially exposed for the purpose of subsequent electrical connection, the package film of the ineffective area is recovered by the roll, and the finished product is cut; and the plurality of roller sets are arranged in each unit. Provide support and transfer of the coil. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該透明導電膜捲材為幅寬大於150mm以上,厚度大於20um之透明導電膜。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the transparent conductive film coil is a transparent conductive film having a width greater than 150 mm and a thickness greater than 20 μm. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該塑料基材厚度小於500um。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the plastic substrate has a thickness of less than 500 um. 如申請專利範圍第3項所述之光伏電池的連續量產機構,其中,該塑料基材為聚醯亞胺、聚萘二甲酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯、聚乙烯對苯二甲酸酯。 The continuous mass production mechanism of the photovoltaic cell according to claim 3, wherein the plastic substrate is polyimide, polyethylene naphthalate, polyurethane, polymethyl methacrylate, polyethylene , polyethylene terephthalate. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該下導電層為金屬或金屬氧化物,或是有機導體材料。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the lower conductive layer is a metal or a metal oxide or an organic conductor material. 如申請專利範圍第5項所述之光伏電池的連續量產機構,其中,該金屬為如鋁、銀或金。 A continuous mass production mechanism for a photovoltaic cell according to claim 5, wherein the metal is, for example, aluminum, silver or gold. 如申請專利範圍第5項所述之光伏電池的連續量產機構,其中,該金屬氧化物為氧化銦錫。 The continuous mass production mechanism of the photovoltaic cell according to claim 5, wherein the metal oxide is indium tin oxide. 如申請專利範圍第5項所述之光伏電池的連續量產機構,其中,該有機導體材料為聚3,4-乙撑二氧噻吩、奈米碳管、石墨烯或前述之兩種以上材料之組合。 The continuous mass production mechanism of the photovoltaic cell according to claim 5, wherein the organic conductor material is poly 3,4-ethylenedioxythiophene, carbon nanotube, graphene or two or more of the foregoing materials. The combination. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該塑料基材之一側或兩側設置有一硬化層以增益該透明導電膜捲材之挺性以利生產作業。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein a hardened layer is disposed on one side or both sides of the plastic substrate to increase the stiffness of the transparent conductive film web to facilitate the production operation. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該增厚離型膜為聚醯亞胺、聚萘二甲酸乙二醇酯、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯、聚乙烯對苯二甲酸酯。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the thickened release film is polyimide, polyethylene naphthalate, polyurethane, polymethyl methacrylate, Polyethylene, polyethylene terephthalate. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該增厚離型膜一側表面塗覆有離型膠,以該離型膠一側與透明導電膜的塑料基材一側進行覆膜黏貼。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the surface of the thickened release film is coated with a release adhesive, and the plastic base of the release adhesive side and the transparent conductive film. The film is adhered to one side of the material. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該增厚離型膜幅寬寬於該透明導電膜,兩邊小於5mm-10mm為佳。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the thickened release film has a width wider than the transparent conductive film, and both sides are less than 5 mm to 10 mm. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該退火單元為熱風循環或是熱輻射方式的供熱方式。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the annealing unit is a hot air circulation or a heat radiation heating method. 如申請專利範圍第13項所述之光伏電池的連續量產機構,其中,該供熱方式為熱油式、電熱式、紅外線、微波等方式進行,加熱可維持70℃-160℃為佳,捲材至單元出口需降溫回室溫為佳。 The continuous mass production mechanism of the photovoltaic cell according to claim 13, wherein the heating mode is hot oil type, electrothermal type, infrared type, microwave method, etc., and heating can be maintained at 70 ° C - 160 ° C, preferably. It is better to cool the coil to the unit outlet to return to room temperature. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該電子傳輸層主成分為氧化鋅或二氧化鈦之金屬氧化物。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the main component of the electron transport layer is a metal oxide of zinc oxide or titanium dioxide. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該電子傳輸層經烘乾後厚度為1nm-500nm。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the electron transport layer has a thickness of 1 nm to 500 nm after drying. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該第一材料層烘乾單元、該第二材料層烘乾單元及該第三材料層烘乾單元的加熱烘乾為熱風循環或是熱輻射方式的供熱方式。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the first material layer drying unit, the second material layer drying unit, and the third material layer drying unit are heated and dried. It is a heating method for hot air circulation or heat radiation. 如申請專利範圍第17項所述之光伏電池的連續量產機構,其中,該供熱方式為熱油式、電熱式、紅外線、微波等方式進行,提供加熱50℃-120℃為佳。 The continuous mass production mechanism of the photovoltaic cell according to claim 17, wherein the heating mode is hot oil type, electrothermal type, infrared type, microwave or the like, and heating is preferably 50 ° C - 120 ° C. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該主動層為有機光伏材料或是鈣鈦礦結構材料之光伏材料。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the active layer is an organic photovoltaic material or a photovoltaic material of a perovskite structural material. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該主動層經烘乾後厚度為50nm-1000nm。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the active layer is dried to a thickness of 50 nm to 1000 nm. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該電洞傳輸層材料為聚3,4-乙撑二氧噻吩(PEDOT)、三氧化鉬(MoO3)、或五氧化二釩(V2O5)。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the hole transport layer material is poly 3,4-ethylenedioxythiophene (PEDOT), molybdenum trioxide (MoO 3 ), or Vanadium pentoxide (V 2 O 5 ). 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該電洞傳輸層經烘乾後厚度為1nm-1000nm。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the hole transport layer has a thickness of 1 nm to 1000 nm after drying. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該第一蝕刻單元及第二蝕單元的蝕刻以雷射乾式蝕刻作業,其中該雷射蝕刻,雷射鏡組提供複數多重鏡頭配合該透明導電膜之移載行進速度,進行連續面蝕刻。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the etching of the first etching unit and the second etching unit is performed by a laser dry etching operation, wherein the laser etching is provided by a laser beam group. The continuous multi-lens is matched with the transfer speed of the transparent conductive film to perform continuous surface etching. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該上導電層為金屬或金屬氧化物。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the upper conductive layer is a metal or a metal oxide. 如申請專利範圍第24項所述之光伏電池的連續量產機構,其中,該金屬為如鋁、銀或金。 A continuous mass production mechanism for a photovoltaic cell according to claim 24, wherein the metal is, for example, aluminum, silver or gold. 如申請專利範圍第24項所述之光伏電池的連續量產機構,其中,該金屬氧化物為氧化銦錫。 The continuous mass production mechanism of the photovoltaic cell according to claim 24, wherein the metal oxide is indium tin oxide. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該第四材料層烘乾單元的加熱烘乾為熱油式、電熱式、紅外線、微波等方式進行,提供加熱70℃-160℃為佳。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the heating and drying of the fourth material layer drying unit is performed by means of hot oil type, electric heating type, infrared ray, microwave, etc., and heating is provided. °C-160 °C is preferred. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該裁切單元為沖壓機或是雷切機。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the cutting unit is a punching machine or a thunder cutting machine. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該裁切單元裁切深度除完全切斷透明導電膜外,對於該增厚離型膜僅裁切一部份深度不完全切斷,經裁切後之該半成品的光伏電池可以保留貼附於該增厚離型膜上。 The continuous mass production mechanism of the photovoltaic cell according to the first aspect of the invention, wherein the cutting unit has a cutting depth, except that the transparent conductive film is completely cut, and only a part of the depth is cut for the thickened release film. If not completely cut, the cut semi-finished photovoltaic cell may remain attached to the thickened release film. 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,該封裝黏膠黏度大於該增厚離型膜之離型膠,該半成品的光伏電池可以轉貼於該上封裝膜上。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein the package adhesive viscosity is greater than the release adhesive of the thickened release film, and the semi-finished photovoltaic cell can be attached to the upper package film. . 如申請專利範圍第1項所述之光伏電池的連續量產機構,其中,於該增厚離型膜覆膜單元與該退火單元間設置一表面處理單元,該表面處理單元為非接觸式或非接觸式之超音波、電弧或電漿表 面處理,以提高該透明導電膜的下導電層表面之達因值,以利後續鍍膜作業之附著力提升。 The continuous mass production mechanism of the photovoltaic cell according to claim 1, wherein a surface treatment unit is disposed between the thickened release film laminating unit and the annealing unit, and the surface treatment unit is non-contact or Non-contact ultrasonic, arc or plasma meter The surface treatment is performed to increase the value of the surface of the lower conductive layer of the transparent conductive film to improve the adhesion of the subsequent coating operation.
TW107207927U 2018-06-13 2018-06-13 Continuous mass production mechanism for photovoltaic cells TWM567485U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW107207927U TWM567485U (en) 2018-06-13 2018-06-13 Continuous mass production mechanism for photovoltaic cells
CN201821177699.9U CN208637461U (en) 2018-06-13 2018-07-24 Continuous mass production mechanism for photovoltaic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107207927U TWM567485U (en) 2018-06-13 2018-06-13 Continuous mass production mechanism for photovoltaic cells

Publications (1)

Publication Number Publication Date
TWM567485U true TWM567485U (en) 2018-09-21

Family

ID=64399999

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107207927U TWM567485U (en) 2018-06-13 2018-06-13 Continuous mass production mechanism for photovoltaic cells

Country Status (2)

Country Link
CN (1) CN208637461U (en)
TW (1) TWM567485U (en)

Also Published As

Publication number Publication date
CN208637461U (en) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019006962A1 (en) Method for manufacturing ductile circuit
TWI602310B (en) Sealing film for solar cell and method of manufacturing the same, sealing structure for solar photovoltaic module
KR102641649B1 (en) Roll-to-roll metallization of solar cells
CN110073502A (en) Encapsulating film for lapping formula photovoltaic module
EP3013483A2 (en) Coating for aircraft fuselage surfaces to produce electricity for mission-critical systems on military aircraft
JP2019036722A (en) Sealing method of solar cell module
JP2011035070A (en) Back sheet for solar cell module, and method of manufacturing the same
TW201722703A (en) Method of producing laminate
TWM567485U (en) Continuous mass production mechanism for photovoltaic cells
EP3453059B1 (en) Method for fabricating a solar module
US20150367616A1 (en) Pressure-transferred components
JP2006295145A (en) Manufacturing method of solar cell module
JP5900047B2 (en) Current collecting sheet for solar cell
JP5406900B2 (en) Solar cell module and manufacturing method thereof
JP2005175131A (en) Photoelectric conversion element and manufacturing method thereof, electronic apparatus and manufacturing method thereof, and light emitting element and manufacturing method thereof
TWM529940U (en) Organic photoelectric conversion devices
JP2004153137A (en) Method and apparatus for manufacturing solar cell module
JP6179201B2 (en) Manufacturing method of organic thin film solar cell
JP2009260400A (en) Photoelectric conversion element, electronic device, and light emitting element
JP5435489B2 (en) Organic thin film solar cell element, solar cell module, and method for manufacturing organic thin film solar cell element
JP4765447B2 (en) Thin film solar cell module manufacturing method and manufacturing apparatus
JP4106608B2 (en) Manufacturing method of solar cell module
JP4379557B2 (en) Thin film solar cell manufacturing method and manufacturing apparatus
CN116528603B (en) Organic solar cell and preparation method thereof
CN109976591B (en) Touch sensor and preparation method and application thereof