TWM335092U - zero-voltage conversion flyback converter - Google Patents

zero-voltage conversion flyback converter Download PDF

Info

Publication number
TWM335092U
TWM335092U TW97200552U TW97200552U TWM335092U TW M335092 U TWM335092 U TW M335092U TW 97200552 U TW97200552 U TW 97200552U TW 97200552 U TW97200552 U TW 97200552U TW M335092 U TWM335092 U TW M335092U
Authority
TW
Taiwan
Prior art keywords
auxiliary
main
circuit
transformer
switch
Prior art date
Application number
TW97200552U
Other languages
Chinese (zh)
Inventor
Qing-Long Zhu
Ming-Zhu Zhong
Original Assignee
Univ Southern Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Southern Taiwan filed Critical Univ Southern Taiwan
Priority to TW97200552U priority Critical patent/TWM335092U/en
Publication of TWM335092U publication Critical patent/TWM335092U/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

M335092 八、新型說明: 【新型所屬之技術領域】 本創作係有關於一種零電壓轉換返馳式轉換器,尤其 是指一種利用外加的輔助電路來讓輔助開關達到共振,因 而實現返馳式〔 Flyback〕轉換器電路零電壓的切換,以降 低電路中開關的損耗,有助於整體系統上的效率提高,而 在其整體施行使用上更增實用便利性的零電壓轉換返驰式 轉換器創新設計者。 【先前技術】 按,以目前的傳統脈寬調變電源轉換器而言,在其開 關切換截止的瞬間,該切換開關上的電壓值會以非常大的 斜率上升,而造成電磁干擾〔EMI〕之狀況發生,且該切換 開關在硬式切換操作的情況下,會導致極大的切換損失, 因而使得該電源轉換器的工作效率大幅降低。 而為了改善上述電源轉換器工作效率低之缺點,即可 採用具有零電壓或零電流切換之方式的電路,此類型的電 源轉換器是利用電感與電容共振電路產生弦波波形,當該 弦波電壓或電流為零時,其開關電壓才開始導通,以降低 切換開關的切換損失;然而,由於零電壓或零電流在電源 供應器的電路操作過程中,因為其電路會產生諧振的緣 故,會使得切換開關元件上有較大的電壓及電流應力的產 生,因此通常需要藉著提高相關元件的額定容量以供應共 振電路所需。 也因此,亦有利用柔性開關技術降低元件的電壓及電 流應力之方式,該柔切式可以分為零電壓/零電流切換脈波 5 M335092 寬度調變電力轉換器,此種設計方式主要是在主架構中加 入一個辅助開關電路,利用該辅助開關電路的共振因而使 得主開關達到零電壓或零電流轉換。 該零電壓/零電流柔性切換電力轉換器雖然具有降低 元件的電壓及電流應力、減少導通所造成的損失之優點, 但此電路較為複雜,使得電路的驅動極為不易設計,且元 ' 件數量會因此而増加,導致其所花費之成本的上升。 ' 已知的柔性開關技術中實現返馳式〔F1 yback〕轉換器 § 軟開關的方法如下: 1·主動箝位返馳式〔Flyback〕轉換器: 請參閱第六圖現有之主動箝位返馳式轉換器電路圖 所不,該主動箝位返馳式〔Flyback〕轉換器(3)之箝位 電容(31)可箝制住主開關(32)及辅助開關(33)的汲極電 壓,同時此電路架構也提供主開關(32)及辅助開關(33) 零電壓切換,減少了主開關(32)及輔助開關(33)的切換 損失,進而大幅提高整體電路之效率,主開關(32)及輔 _ 助開關(33)之切換頻率也可因此而提高,使得變壓器(34) 體積能縮減。 、 該主動箝位返馳式〔Flyback〕轉換器(3)取代了傳 • 統RC、RCD箝位方式,能將儲存在變壓器(34)漏電感之 能量送回電源侧,並可以減少主開關(32)及輔助開關(33) 兩端所承受的電壓應力及電磁干擾問題。然而,該 主動箝位返馳式〔Flyback〕轉換器(3),由於在輔助電 路方面並沒有和主電路共接地,而容易導致在控制電路 設計方面相當的不易。 2·零電壓切換脈波寬度調變返馳式〔Flyback〕轉換器: 6 M335092 請參閱第七圖現有之零電壓切換脈波寬度調變返馳 式轉換器電路圖所示,該零電壓切換脈波寬度調變返馳 式〔Flyback〕轉換器(4),其輔助開關(41)先行導通, 產生共振使得主開關(42)能在零電壓的情況下導通,同 時在輔助開關(41)也是以零電流的模式底下被導通,減 少了該主開關(42)及辅助開關(41)的切換損失,進而同 樣大幅提高整體電路之效率,主開關(42)及輔助開關(41) 之切換頻率同樣也可以因此而提高,使得其變壓器(43) 體積縮減。 該零電壓切換脈波寬度調變返馳式〔Flyback〕轉換 器(4),使得於轉換器中所有半導體元件皆具有柔性切換 的功能,因此改善現有返馳式〔Flyback〕轉換器的EMI 電磁干擾、切換損失及功率消耗等問題。然而,該零電 壓切換脈波寬度調變返馳式〔Flyback〕轉換器(4),同 樣在辅助電路方面並沒有和主電路共接地,而容易導致 在控制電路設計方面相當的不易。 為了提高電源供應器的工作效率及產品的體積輕量 化,提高工作頻率是必需的,但其導通損耗也會相對的上 升,所以要提升工作頻率相對的也必須降低切換開關的切 換損耗。基於上述的各種原因,對柔性切換技術的研究變 得十分的重要。 緣是,創作人有鑑於此,秉持多年該相關行業之豐富 設計開發及實際製作經驗,針對現有之結構及缺失再予以 研究改良,提供一種零電壓轉換返馳式轉換器,以期達到 更佳實用價值性之目的者。 【新型内容】 7 M335092 本創作在充分的研究各種的柔性切換技術基礎下,提 出了一種零電壓轉換返馳式轉換器,主要是利用外加的辅 助電路來讓輔助開關達到共振,因而實現返馳式〔 Flyback〕 轉換器電路零電壓的切換,以降低電路中開關的損耗,有 助於整體系統上的效率提高。 本創作之零電壓轉換返馳式轉換器,其包含了主電路 架構及輔助電路,於該主電路架構具有主變壓器及負載裝 置,將主開關一端連接於該主變壓器一次側、另一端則予 以接地,及將整流二極體單元與該主變壓器二次侧連接, 該輔助電路具有辅助變壓器,令輔助開關一端連接該辅助 變壓器一次侧、另一端則予以接地,及具有共振電感、共 振電容與輔助整流二極體單元,並將另一辅助整流二極體 單元與該輔助變壓器之二次侧;藉此,使得該輔助電路能 領先主電路架構共振,達到主電路架構零電壓導通、截止, 輔助電路零電流導通的狀態下切換之功效目的,而在其整 體施行使用上更增實用價值性者。 【實施方式】 為令本創作所運用之技術内容、創作目的及其達成之 功效有更完整且清楚的揭露,茲於下詳細說明之,並請一 併參閱所揭之圖式及圖號: 首先,請參閱第一圖本創作之電路示意圖所示,本創 作主要係包含了輸入電壓(Vin)、主電路架構(1)及輔助電路 (2);其中: 該主電路架構(1),其設有主變壓器(Tmain),該主變壓 器(Tmain)之匝數比係為/71 : /72,該主變壓器(Tmain)分別 會於其一次侧及二次侧產生主變壓器一次側電流(ipri)與 M335092 主變壓器二次侧電流(isec),於該主變壓器(Tmain) —次側分 別連接有磁化電感(Ln)及漏電感(Ls),於該磁化電感(Ln)上 會產生磁化電感電流(iLm),於該漏電感(Ls)上會產生漏電 感電流(iLS),且於該主電路架構(1)設有主開關(Smain),該 主開關(Smain)產生有主開關電流(ismain) ’於該主開關(Smain) 並聯有内部本體二極體(D)〔 Body Diode〕,令主開關(Smain) 一端連接於該主變壓器(Tmain)之一次侧、另一端則予以接 地,而於該主變壓器(Tmain)之二次側則連接設有整流二極 體單元(D。)、輸出電容(c。)及負載裝置(RL),該整流二極體 單元(D。)可為二極體整流電路所組成。 該辅助電路(2),其設有輔助變壓器(Taux),該輔助變 壓器(Taux)之匝數比為:万,於該辅助變壓器(Taux) — 次侧分別連接有共振電感(Lr)、共振電容(Cr)及輔助整流二 極體單元(DO,於該共振電感(Lr)上會產生共振電感電流 (iLr),該共振電容(Cr)則會產生共振電容電壓(Vcr),且於 該輔助電路(2)設有辅助開關(Saux),令該辅助開關(Saux) — 端連接於該辅助變壓器(Taux)—次侧、另一端則予以接地, 而於該辅助變壓器(Taux)二次側則連接有另一辅助整流二 極體單元(D2),該辅助整流二極體單元(Dl)、(D2)可為二極 體整流電路所組成,以能防止輸入電壓逆流。 而根據主電路架構(1)及輔助電路(2)之各開關切換和 二極體導通狀態可將本創作轉換器動作在一個切換週期Ts 分為八個階段,請一併參閱第二圖本創作切換的工作時序 圖所不輔助開關(Saux)在t = to時導通,而主開關(Smain) 在t=t3時導通,該辅助開關(Saux)及主開關(Smain)皆在區 段t=ts時截止,請一併參閱第三、四圖本創作之實驗圖 9 M335092 所示,其電路動作原理說明如下: CCM 模式 1〔t〇〜t!〕: 當時間t=t。時,辅助開關(Saux)以零電流狀態領先主 開關(s.ain)導通,此時共振電感(Lr)和共振電容(Cr)透過辅 助開關ο及辅助變壓器(Taux)產生共振’共振電感電流 ⑹由初始值零開始增加,共振電容電壓⑹由初始值t。M335092 VIII. New Description: [New Technology Field] This creation is about a zero-voltage conversion flyback converter, especially one that uses an auxiliary circuit to make the auxiliary switch reach resonance, thus achieving the flyback type [ Flyback] Zero-voltage switching of the converter circuit to reduce the loss of the switch in the circuit, which contributes to the efficiency improvement of the overall system, and the zero-voltage conversion flyback converter innovation which is more practical and convenient in its overall implementation. Designer. [Prior Art] According to the current traditional pulse width modulation power converter, at the moment when the switching of the switch is turned off, the voltage value of the switch will rise with a very large slope, causing electromagnetic interference [EMI] The situation occurs, and in the case of a hard switching operation, the switching switch causes a great switching loss, thereby greatly reducing the operating efficiency of the power converter. In order to improve the shortcomings of the above-mentioned power converter, it is possible to use a circuit with zero voltage or zero current switching. This type of power converter uses an inductor and a capacitor resonance circuit to generate a sine wave waveform. When the voltage or current is zero, the switching voltage begins to conduct to reduce the switching loss of the switching switch; however, since the zero voltage or zero current is in the circuit operation of the power supply, because the circuit will generate resonance, This results in a large voltage and current stress on the switching element, so it is usually necessary to supply the resonant circuit by increasing the rated capacity of the associated element. Therefore, there are also ways to reduce the voltage and current stress of the component by using flexible switching technology. The flexible cutting can be divided into zero voltage/zero current switching pulse wave 5 M335092 width modulation power converter, this design method is mainly in An auxiliary switching circuit is added to the main architecture, and the resonance of the auxiliary switching circuit is used to cause the main switch to achieve zero voltage or zero current conversion. The zero-voltage/zero-current flexible switching power converter has the advantages of reducing the voltage and current stress of the component and reducing the loss caused by the conduction, but the circuit is complicated, so that the driving of the circuit is extremely difficult to design, and the number of components is As a result, it has increased, resulting in an increase in the cost it costs. ' Known flexible switching technology to achieve the flyback [F1 yback] converter § soft switch method is as follows: 1 · active clamp flyback [Flyback] converter: Please refer to the sixth figure of the existing active clamp back The chirp converter circuit diagram does not, the clamp capacitor (31) of the active clamp flyback converter (3) can clamp the gate voltage of the main switch (32) and the auxiliary switch (33) while The circuit structure also provides zero voltage switching of the main switch (32) and the auxiliary switch (33), which reduces the switching loss of the main switch (32) and the auxiliary switch (33), thereby greatly improving the efficiency of the overall circuit, the main switch (32) The switching frequency of the auxiliary _ assist switch (33) can also be increased, so that the transformer (34) can be reduced in volume. The active clamp flyback converter (3) replaces the RC and RCD clamp modes, and can return the energy stored in the transformer (34) leakage inductance back to the power supply side, and can reduce the main switch. (32) and auxiliary switch (33) The voltage stress and electromagnetic interference problems at both ends. However, the active clamp flyback converter (3) is relatively difficult to design in the control circuit because it is not commonly grounded with the main circuit in the auxiliary circuit. 2·Zero voltage switching pulse width modulation flyback type [Flyback] converter: 6 M335092 Please refer to the circuit diagram of the current zero voltage switching pulse width modulation flyback converter shown in the seventh figure, the zero voltage switching pulse The wave width modulation flyback converter (4), whose auxiliary switch (41) is turned on first, generates resonance so that the main switch (42) can be turned on under zero voltage, and at the same time, the auxiliary switch (41) It is turned on under the zero current mode, which reduces the switching loss of the main switch (42) and the auxiliary switch (41), thereby greatly improving the efficiency of the overall circuit, and the switching frequency of the main switch (42) and the auxiliary switch (41). It can also be increased as a result of reducing the size of its transformer (43). The zero-voltage switching pulse width modulation flyback converter (4) enables all semiconductor components in the converter to have a flexible switching function, thereby improving the EMI electromagnetic of the existing flyback converter Problems such as interference, switching loss, and power consumption. However, the zero-voltage switching pulse width modulation flyback converter (4) is also not commonly grounded with the main circuit in the auxiliary circuit, and is liable to be relatively difficult in the design of the control circuit. In order to improve the working efficiency of the power supply and the light weight of the product, it is necessary to increase the operating frequency, but the conduction loss will also rise relatively. Therefore, in order to increase the operating frequency, the switching loss of the switching switch must also be reduced. Based on the above various reasons, research on flexible switching technology has become very important. The reason is that, in view of this, the creators have been providing years of experience in the design and development of the relevant industries and the research and improvement of the existing structure and the lack of a zero-voltage conversion flyback converter in order to achieve better and practical. The purpose of value. [New Content] 7 M335092 Based on the full study of various flexible switching technologies, this paper proposes a zero-voltage conversion flyback converter, which mainly uses an auxiliary circuit to make the auxiliary switch reach resonance, thus achieving the return. Flyback The switching of the zero voltage of the converter circuit to reduce the loss of the switch in the circuit contributes to the efficiency improvement of the overall system. The zero voltage conversion flyback converter of the present invention comprises a main circuit structure and an auxiliary circuit, wherein the main circuit structure has a main transformer and a load device, and one end of the main switch is connected to the primary side of the main transformer, and the other end is Grounding, and connecting the rectifying diode unit to the secondary side of the main transformer. The auxiliary circuit has an auxiliary transformer, and one end of the auxiliary switch is connected to the primary side of the auxiliary transformer, and the other end is grounded, and has a resonant inductor, a resonant capacitor, and Auxiliary rectifying diode unit and another auxiliary rectifying diode unit and a secondary side of the auxiliary transformer; thereby, the auxiliary circuit can lead the main circuit structure to resonate, and achieve zero voltage conduction and cutoff of the main circuit structure. The purpose of switching the auxiliary circuit in the state of zero current conduction is more practical value in its overall implementation. [Embodiment] In order to make the technical content, creative purpose and the effect achieved by this creation more complete and clear, please elaborate below, and please refer to the drawings and drawings: First, please refer to the circuit diagram of the first picture. The creation mainly includes the input voltage (Vin), the main circuit architecture (1) and the auxiliary circuit (2); wherein: the main circuit architecture (1), It is provided with a main transformer (Tmain), and the main transformer (Tmain) has a turns ratio of /71: /72, and the main transformer (Tmain) generates primary current of the main transformer on its primary side and secondary side, respectively ( Ipri) and M335092 main transformer secondary current (isec), magnetization inductance (Ln) and leakage inductance (Ls) are connected to the secondary side of the main transformer (Tmain), respectively, magnetization is generated on the magnetizing inductance (Ln) The inductor current (iLm) generates a leakage inductance current (iLS) on the leakage inductance (Ls), and a main switch (Smain) is provided in the main circuit structure (1), and the main switch (Smain) generates a main switch Current (ismain) is connected in parallel with the main switch (Smain) a body diode (D), such that one end of the main switch (Smain) is connected to the primary side of the main transformer (Tmain), and the other end is grounded, and on the secondary side of the main transformer (Tmain) A rectifying diode unit (D.), an output capacitor (c.), and a load device (RL) are connected, and the rectifying diode unit (D.) can be composed of a diode rectifying circuit. The auxiliary circuit (2) is provided with an auxiliary transformer (Taux). The auxiliary transformer (Taux) has a turns ratio of 10,000, and a resonant inductor (Lr) and a resonance are respectively connected to the secondary side of the auxiliary transformer (Taux). a capacitor (Cr) and an auxiliary rectifying diode unit (DO) generates a resonant inductor current (iLr) on the resonant inductor (Lr), and the resonant capacitor (Cr) generates a resonant capacitor voltage (Vcr), and The auxiliary circuit (2) is provided with an auxiliary switch (Saux), the auxiliary switch (Saux) is connected to the auxiliary transformer (Taux) - the secondary side and the other end are grounded, and the auxiliary transformer (Taux) is secondarily The other side is connected with another auxiliary rectifying diode unit (D2), which can be composed of a diode rectifying circuit to prevent the input voltage from flowing backward. Circuit switching (1) and auxiliary circuit (2) switching and diode conduction state can be used to operate the authoring converter in a switching cycle Ts divided into eight stages, please refer to the second picture of this creation switching The working sequence diagram does not have an auxiliary switch (Saux) at t = to turn on, and the main switch (Smain) turns on when t=t3, the auxiliary switch (Saux) and the main switch (Smain) are both cut off when the segment t=ts, please refer to the third and fourth pictures together. The experimental experiment shown in Figure 9 M335092 shows the principle of circuit operation as follows: CCM mode 1 [t〇~t!]: When time t=t, the auxiliary switch (Saux) leads the main switch with zero current state (s. Ain) is turned on, at which time the resonant inductor (Lr) and the resonant capacitor (Cr) generate resonance through the auxiliary switch ο and the auxiliary transformer (Taux). The resonant inductor current (6) increases from an initial value of zero, and the resonant capacitor voltage (6) is represented by an initial value t.

^下降’直到共振電容電壓⑹下降到L價。時,本狀 態結束。 CCM 模式 2〔 : 當時間t=七時,共振電容電壓(Vcr)下降到 =助整流二極體單元㈤順向偏壓導通,同時,漏電感 電流(Us)由初始值零開始增加,而±變壓器一次侧電流 (“)與主變壓器二次側電流(Μ仍然持續下降,因磁通 量^不允許_改變其磁通量卜““,當漏電感 電流㈤上升至與磁化電感電流(h〇相同而主變壓界: 次側電流(ipri)與主變麼器二次側電流(Μ同時下; 零’此¥主變壓Hd)主繞組上之電壓極性將會, 整流二極體單元(D。)截止,共振電感電流⑹持續以址振 方式作變化,共振電容㈤則持續下降,直至共^ 容電壓(Vcr)下降到t2時,本狀態結束。 ’、 CCM 模式 3〔 t2〜t3〕: 當時間t=t2時,共振電感⑹、共振 感透過輸入電㈣n)、輔助整流二極體單丄二= 助變m)及辅助開關(Saux)形成共振迴路,渴 =㈤持續增加,共振電感電流⑹持續以共振的方々 變化’共振電容電遷(Vcr)由匕持續下降,直到共振電容電 10 电 M335092 壓(Vcr)下降到零,本狀態結束。 CCM 模式 4〔t3〜t〇: 、當時間t=t3時,共振電感電流(iLr)的初始 的初始值,所以主開關(s-)上的逆電流流 貝H。· M一極體(D)〔BodyDiode〕,主開關電流⑴“) ' lLS仏,將主開關(Smain)兩端的電壓箝位在 V此日守可將主開關(Smain)由截止切換至導通,達^: =電壓=’故漏電感電流㈤持續上升,而共振電感電 持續下降,直到共振電感電流叫下降至零,本狀 悲結束。 CCM 模式 5〔 t4〜ts〕: ^間t=t4時’共振電感電流仏)下降至零,此時 車==二極體單元㈤、⑽自然截止將辅助開關㈤ 制在零,輸人電壓⑹將對磁化電感⑹與漏 電感(Ls)作線性充電。 CCM 模式 θ〔 t5〜t6〕·· 當時間t=t5時,主開·。與辅助開關⑹同時 2通切換至截止,此_關_一在零t流的狀態下 被截止。而磁化電感電流(iu)將開始對共振電容⑹以電 感電容〔IX〕串聯共振方式由零充電至u肌,1並振電 路,共振電容⑹、漏電感(Ls)及磁化電感(Lm)所構成,主 變壓器D二次側之整流二極體單元(D。)仍然截止,本狀 態結束。 CCM 模式 7〔 t6〜t7〕: 當時間t=t6時’共振電容電壓(Vcr)上升至υ肌 11 M335092 時,主變壓器(Τ-η)二次側之整流二極體單元(D。)順向偏壓 導通,磁化電感電流(iLm)傳送能量給負載並對輸出電容(C。) 充電;此時漏電感(Ls)與共振電容(Cr)將產生串聯共振,共 振電容電壓(Vcr)以共振方式遞增,漏電感電流(iLs)以共振 的方式遞減,直到漏電感電流(iLs)下降至零,本狀態結束。 CCM 模式 8〔 t?〜ts〕: ' 當時間t = t?時,漏電感電流(iLs)下降至零時,辅助 整流二極體單元(DO由導通轉變為截止,磁化電感電流(iu) | 持續將能量傳給負載裝置(RL)並對輸出電容(C。)充電。當輔 助開關(S_)由截止切換至導通時,此狀態結束,重新進入 第一階段。 如此一來,請再一併參閱第五圖本創作之效率圖所 示,即可清楚得知,本創作之輸出效率平均維持在89%左 前述之實施例或圖式並非限定本創作之結構樣態或尺 寸,任何所屬技術領域中具有通常知識者之適當變化或修 p 飾,皆應視為不脫離本創作之專利範疇。 藉由以上所述,該元件之組成與使用實施說明可知, - 本創作與現有結構相較之下,本創作所加入之柔性辅助電 _ 路,不僅能使主開關運作在零電壓狀態下切換,其輔助開 關亦能在零電流狀態下切換;此外,所加入之輔助開關並 非浮接而是和主開關共地,所以輔助開關的控制信號無需 隔離,因而降低了控制電路的複雜度,而在其整體施行使 用上更增實用價值性者。 綜上所述,本創作實施例確能達到所預期之使用功 效,又其所揭露之具體構造,不僅未曾見於同類產品中, 12 M335092 亦未曾公開於申請前,誠已完全符合專利法之規定與要 求,爰依法提出新型專利之申請,懇請惠予審查,並賜准 專利,則實感德便。^Drops until the resonant capacitor voltage (6) drops to the L price. At the end of this state. CCM mode 2 [ : When time t=7, the resonant capacitor voltage (Vcr) drops to = the helper rectifier diode unit (5) forward bias is turned on, and the leakage inductor current (Us) increases from the initial value of zero, and ± transformer primary current (") and secondary current of the main transformer (Μ continues to drop, because the magnetic flux ^ does not allow _ change its magnetic flux "", when the leakage inductance current (five) rises to the same as the magnetizing inductor current (h〇 Main transformer boundary: secondary current (ipri) and main transformer secondary current (Μ simultaneously; zero 'this ¥ main transformer Hd) voltage polarity on the main winding will, rectifier diode unit (D .) Cutoff, the resonant inductor current (6) continues to change in the address mode, and the resonant capacitor (5) continues to decrease until the total voltage (Vcr) drops to t2, the state ends. ', CCM mode 3 [t2~t3] : When time t=t2, the resonance inductance (6), the resonance inductance through the input power (4) n), the auxiliary rectifier diode unit 2 = auxiliary variable m) and the auxiliary switch (Saux) form a resonance circuit, and the thirst = (5) continues to increase, resonance The inductor current (6) continues to change in the direction of resonance' The vibrating capacitor electromigration (Vcr) continues to decrease from 匕 until the resonant capacitor power 10 M335092 voltage (Vcr) drops to zero, this state ends. CCM mode 4 [t3~t〇: When time t=t3, resonant inductor The initial initial value of the current (iLr), so the reverse current flow on the main switch (s-) is H. · M one body (D) [BodyDiode], the main switch current (1) ") ' lLS 仏, the main switch (Smain) The voltage clamp at both ends of the S can switch the main switch (Smain) from off to on, reaching ^: = voltage = 'so the leakage inductance current (five) continues to rise, while the resonant inductor continues to drop until resonance The inductor current is called to drop to zero, and the sorrow ends. CCM mode 5 [ t4~ts]: ^Resonance inductor current 仏 drops to zero when t=t4, at this time, vehicle == diode unit (5), (10) natural cutoff will be auxiliary switch (5) at zero, input voltage (6) The magnetizing inductance (6) and the leakage inductance (Ls) will be linearly charged. CCM mode θ[ t5~t6]·· When the time t=t5, the main open ·. Simultaneously with the auxiliary switch (6), the two-way switch is turned off, and this_off_one is cut off in the state of zero t flow. The magnetizing inductor current (iu) will start to charge the resonant capacitor (6) from zero to the u muscle in the series resonance mode of the inductor and capacitor [IX], 1 resonant circuit, resonant capacitor (6), leakage inductance (Ls) and magnetizing inductance (Lm). In this configuration, the rectifying diode unit (D.) on the secondary side of the main transformer D is still turned off, and the state ends. CCM mode 7 [ t6 to t7]: When the resonance capacitor voltage (Vcr) rises to the diaphragm 11 M335092 at time t=t6, the rectifying diode unit (D.) on the secondary side of the main transformer (Τ-η) The forward bias is turned on, and the magnetizing inductor current (iLm) transfers energy to the load and charges the output capacitor (C.); at this time, the leakage inductance (Ls) and the resonant capacitor (Cr) will generate series resonance, and the resonant capacitor voltage (Vcr) In the resonant mode, the leakage inductance current (iLs) is decremented in a resonant manner until the leakage inductance current (iLs) drops to zero, and the state ends. CCM mode 8 [ t? ~ ts ]: ' When the leakage inductance current (iLs) drops to zero when the time t = t?, the auxiliary rectifier diode unit (DO turns from on to off, magnetizing inductor current (iu) Continue to transfer energy to the load device (RL) and charge the output capacitor (C.). When the auxiliary switch (S_) is switched from off to on, this state ends and re-enters the first phase. As a result, please Referring to the fifth diagram of the efficiency diagram of the creation, it can be clearly seen that the output efficiency of the creation is maintained at an average of 89%. The foregoing embodiment or schema does not limit the structural form or size of the creation, any Appropriate changes or modifications of the person having ordinary skill in the art should be regarded as not departing from the patent scope of the present invention. By the above, the composition and use of the components can be known, - the present creation and the existing structure In contrast, the flexible auxiliary electric circuit added by this creation not only enables the main switch to switch at zero voltage, but also the auxiliary switch can be switched at zero current; in addition, the auxiliary switch is added. Non-floating is shared with the main switch, so the control signal of the auxiliary switch does not need to be isolated, thus reducing the complexity of the control circuit, and increasing the practical value in its overall implementation. In summary, the creation The embodiment can achieve the expected use efficiency, and the specific structure disclosed is not only found in similar products. 12 M335092 has not been disclosed before the application, and has fully complied with the requirements and requirements of the Patent Law. If you apply for a patent, you can ask for a review and grant a patent.

13 M335092 【圖式簡單說明】 第一圖:本創作之電路示意圖 第二圖:本創作切換的工作時序圖 第三圖:本創作之實驗圖(一) 第四圖··本創作之實驗圖(二) 第五圖:本創作之效率圖 ,六圖:現有之主動箝位返馳式轉換器電路圖13 M335092 [Simple description of the diagram] The first picture: The circuit diagram of this creation The second picture: The working sequence diagram of this creation switching The third picture: The experimental picture of this creation (1) The fourth picture··The experimental picture of this creation (2) Figure 5: Efficiency map of the creation, six diagrams: existing active clamp-return converter circuit diagram

第七圖:現有之零電壓切換脈波寬度調變返馳式轉換 器電路圖 【主要元件符號說明】Figure 7: Existing zero-voltage switching pulse width modulation flyback converter circuit diagram [Main component symbol description]

(Di) 辅助整流二極體身 (D2) 辅助整流二極體淨 主動箝位返馳式轉換器 箝位電容 (32)主開關 輔助開關 (34)變壓哭 零電屋切換脈波寬度調變返馳式轉換器 d) 輸入電壓 (Tmain)主變壓器 Usee)主變壓器二次侧電流 (iu) 磁化電感電流 (1ls) 漏電感電流 (ismain)主開關電流 (D。) 整流二極體單元 d) 負載裝置 (Τ^)輔助變壓器 (hr)共振電感電流 Wcr) 共振電容電壓 (saux)辅助開關 (3) (31) (33) (4) (1) 主電路架構 (iPri)主變壓器一次侧電流 (Lor) 磁化電感 (Ls)漏電感 (Sinain)主開關 (D) 内部本體二極體 (C。) 輸出電容 (2 ) 辅助電路 (Lr) 共振電感 14 M335092 (41) 辅助開關 (42) (43) 變壓器 主開關(Di) Auxiliary rectified diode body (D2) Auxiliary rectifying diode net active clamp return-type converter clamp capacitor (32) Main switch auxiliary switch (34) Transforming crying zero electric house switching pulse width adjustment Variable return converter d) Input voltage (Tmain) main transformer Usee) Main transformer secondary current (iu) Magnetizing inductor current (1ls) Leakage inductor current (ismain) main switching current (D.) Rectifier diode unit d) Load device (Τ^) Auxiliary transformer (hr) Resonant inductor current Wcr) Resonant capacitor voltage (saux) Auxiliary switch (3) (31) (33) (4) (1) Main circuit architecture (iPri) main transformer once Side current (Lor) Magnetizing inductance (Ls) Leakage inductance (Sinain) main switch (D) Internal body diode (C.) Output capacitor (2) Auxiliary circuit (Lr) Resonant inductor 14 M335092 (41) Auxiliary switch (42 ) (43) Transformer main switch

Claims (1)

M335092 九、申請專利範圍: 1. 一種零電壓轉換返驰式轉換器,主要係包含了輸入電 壓、主電路架構及辅助電路;其中: 該主電路架構,其設有主變壓器,於該主變壓器一 次側分別連接有磁化電感及漏電感,且於該主電路架構 設有主開關,令主開關一端連接於該主變壓器之一次 ' 侧、另一端則予以接地,而於該主變壓器之二次侧則連 _ 接設有整流二極體單元、輸出電容及負載裝置; 藝該輔助電路,其設有輔助變壓器,於該輔助變壓器 一次侧分別連接有共振電感、共振電容及輔助整流二極 體單元,且於該輔助電路設有輔助開關,令該輔助開關 一端連接於該辅助變壓器一次侧、另一端則予以接地, 而於該輔助變壓器二次側則連接有另一輔助整流二極體 單元。 2. 如申請專利範圍第1項所述零電壓轉換返馳式轉換器, 其中,該主變壓器之匝數比係為/71 ·· /72。 _ 3.如申請專利範圍第1項所述零電壓轉換返馳式轉換器, 其中,該主開關並聯有内部本體二極體〔Body Diode〕。 - 4.如申請專利範圍第1項所述零電壓轉換返驰式轉換器, . 其中,該整流二極體單元為二極體整流電路所組成。 5·如申請專利範圍第1項所述零電壓轉換返驰式轉換器, 其中,該輔助變壓器之匝數比為。 6·如申請專利範圍第1項所述零電壓轉換返馳式轉換器, 其中,該輔助整流二極體單元為二極體整流電路所組成。 16M335092 IX. Patent application scope: 1. A zero-voltage conversion flyback converter mainly includes an input voltage, a main circuit structure and an auxiliary circuit; wherein: the main circuit structure is provided with a main transformer, and the main transformer The primary side is respectively connected with a magnetizing inductance and a leakage inductance, and a main switch is arranged in the main circuit structure, so that one end of the main switch is connected to one side of the main transformer, and the other end is grounded, and the main transformer is twice. The side is connected with a rectifying diode unit, an output capacitor and a load device; the auxiliary circuit is provided with an auxiliary transformer, and a resonant inductor, a resonant capacitor and an auxiliary rectifying diode are respectively connected to the primary side of the auxiliary transformer. a unit, and an auxiliary switch is disposed in the auxiliary circuit, the one end of the auxiliary switch is connected to the primary side of the auxiliary transformer, and the other end is grounded, and the auxiliary auxiliary transformer secondary side is connected with another auxiliary rectifying diode unit . 2. The zero voltage conversion flyback converter according to claim 1, wherein the main transformer has a turns ratio of /71 ·· /72. 3. The zero voltage conversion flyback converter according to claim 1, wherein the main switch is connected in parallel with an internal body diode. - 4. The zero voltage conversion flyback converter according to claim 1, wherein the rectifying diode unit is composed of a diode rectifying circuit. 5. The zero voltage conversion flyback converter according to claim 1, wherein the auxiliary transformer has a turns ratio. 6. The zero voltage conversion flyback converter according to claim 1, wherein the auxiliary rectifying diode unit is a diode rectifying circuit. 16
TW97200552U 2008-01-09 2008-01-09 zero-voltage conversion flyback converter TWM335092U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97200552U TWM335092U (en) 2008-01-09 2008-01-09 zero-voltage conversion flyback converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97200552U TWM335092U (en) 2008-01-09 2008-01-09 zero-voltage conversion flyback converter

Publications (1)

Publication Number Publication Date
TWM335092U true TWM335092U (en) 2008-06-21

Family

ID=44328192

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97200552U TWM335092U (en) 2008-01-09 2008-01-09 zero-voltage conversion flyback converter

Country Status (1)

Country Link
TW (1) TWM335092U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383558B (en) * 2009-08-21 2013-01-21 Physics Hsu Radiation stack storage
TWI581554B (en) * 2016-05-19 2017-05-01 義守大學 Interleaved flyback converter
TWI621328B (en) * 2017-04-18 2018-04-11 立錡科技股份有限公司 Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof
CN110912414A (en) * 2019-12-11 2020-03-24 亚瑞源科技(深圳)有限公司 Dual-mode active-clamping flyback converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI383558B (en) * 2009-08-21 2013-01-21 Physics Hsu Radiation stack storage
TWI581554B (en) * 2016-05-19 2017-05-01 義守大學 Interleaved flyback converter
TWI621328B (en) * 2017-04-18 2018-04-11 立錡科技股份有限公司 Flyback Power Converter Circuit with Active Clamping and Zero Voltage Switching and Control Circuit thereof
CN110912414A (en) * 2019-12-11 2020-03-24 亚瑞源科技(深圳)有限公司 Dual-mode active-clamping flyback converter

Similar Documents

Publication Publication Date Title
Chen et al. A family of zero-voltage-switching magnetic coupling nonisolated bidirectional DC–DC converters
Gu et al. Hybrid-switching full-bridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers
Li et al. Secondary-side phase-shift-controlled ZVS DC/DC converter with wide voltage gain for high input voltage applications
TWI236207B (en) Soft-switched power converters
TWI297977B (en) Soft switching dc-dc converter
US20130301308A1 (en) Switching power supply device
CN104871421B (en) Mono-pole switch power supply
TWI397250B (en) Two way full bridge zero-voltage and zero-current switching dc-dc converter
Chen et al. Step-up AC voltage regulators with high-frequency link
TWI596880B (en) A quasi-resonant half-bridge converter and control method
WO2016177194A1 (en) Isolation type switch power supply and control method for same
Li et al. Three-level forward–flyback phase-shift ZVS converter with integrated series-connected coupled inductors
TWI397249B (en) Resonant converter with phase shift output path
KR101000561B1 (en) Series resonant converter
CN207218541U (en) A kind of quasi-resonance soft switch double-transistor flyback DC/DC converters
TWI495245B (en) Method of controlling phase-shift full-bridge converter at light load operation
TWM335092U (en) zero-voltage conversion flyback converter
Mirzaei et al. A novel soft switching bidirectional coupled inductor buck-boost converter for battery discharging-charging
TW201622324A (en) DC-DC flyback converter for recycling leakage energy
CN109302078A (en) DC-DC Switching Power Supply based on synchronous rectification mode
Davidson Zero voltage switching isolated boost converter topology
TW201138304A (en) Zero-voltage switching converter for high input voltage and high output current
WO2011160383A1 (en) Dc-dc converting circuit
CN109889043A (en) High-efficiency pulse power supply for plasma sewage treatment system by corona discharge method
Medina-Garcia et al. Hybrid-flyback and GaN enable ultra-high power density 240W USB-PD EPR adaptor

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees