TWI836980B - Asymmetric half-bridge flyback converter power supply and its control chip and control method - Google Patents

Asymmetric half-bridge flyback converter power supply and its control chip and control method Download PDF

Info

Publication number
TWI836980B
TWI836980B TW112117188A TW112117188A TWI836980B TW I836980 B TWI836980 B TW I836980B TW 112117188 A TW112117188 A TW 112117188A TW 112117188 A TW112117188 A TW 112117188A TW I836980 B TWI836980 B TW I836980B
Authority
TW
Taiwan
Prior art keywords
signal
power switch
state
voltage
control signal
Prior art date
Application number
TW112117188A
Other languages
Chinese (zh)
Inventor
方倩
孫運
劉拓夫
張秀紅
林元
Original Assignee
大陸商昂寶電子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昂寶電子(上海)有限公司 filed Critical 大陸商昂寶電子(上海)有限公司
Application granted granted Critical
Publication of TWI836980B publication Critical patent/TWI836980B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一種非對稱半橋返馳式變換器電源及其控制晶片和控制方法。非對稱半橋返馳式變換器電源包括第一功率開關、第二功率開關、諧振電容、變壓器,該變壓器的一次側勵磁電感包括一次側電感和一次側漏感,該控制晶片被配置為:基於表徵非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號和表徵流過一次側電感的電流的電流感測信號,生成用於控制第一功率開關的導通與關斷的上管控制信號;以及基於輸出回饋信號和表徵變壓器的輔助繞組上的電壓的電壓感測信號,生成用於控制第二功率開關的導通與關斷的下管控制信號,其中,控制晶片被配置為基於輸出回饋信號和電壓感測信號識別變壓器的一次側勵磁電感退磁結束的時刻,並且基於該時刻來生成下管控制信號。 An asymmetric half-bridge flyback converter power supply, a control chip and a control method thereof are provided. The asymmetric half-bridge flyback converter power supply includes a first power switch, a second power switch, a resonant capacitor, and a transformer. The primary side excitation inductance of the transformer includes a primary side inductance and a primary side leakage inductance. The control chip is configured as : Based on the output feedback signal characterizing the output voltage of the asymmetric half-bridge flyback converter power supply and the current sensing signal characterizing the current flowing through the primary side inductor, an upper signal for controlling the turn-on and turn-off of the first power switch is generated. tube control signal; and based on the output feedback signal and the voltage sensing signal representing the voltage on the auxiliary winding of the transformer, generate a lower tube control signal for controlling the turn-on and turn-off of the second power switch, wherein the control chip is configured as The moment when demagnetization of the primary side excitation inductor of the transformer ends is identified based on the output feedback signal and the voltage sensing signal, and a down-tube control signal is generated based on the moment.

Description

非對稱半橋返馳式變換器電源及其控制晶片和控制方法 Asymmetric half-bridge flyback converter power supply and its control chip and control method

本發明涉及電路領域,更具體地涉及一種非對稱半橋返馳式變換器電源及其控制晶片和控制方法。 The present invention relates to the field of circuits, and more specifically to an asymmetric half-bridge flyback converter power supply and its control chip and control method.

開關電源又稱交換式電源、開關變換器,是電源供應器的一種。開關電源的功能是通過不同形式的架構(例如,返馳(fly-back)架構、降壓(BUCK)架構、或升壓(BOOST)架構等)將一個位準的電壓轉換為使用者端所需要的電壓或電流。 A switching power supply, also known as an alternating current power supply or a switching converter, is a type of power supply. The function of a switching power supply is to convert a voltage level into the voltage or current required by the user through different forms of architecture (for example, fly-back architecture, buck architecture, or boost architecture, etc.).

本發明的一方面提供了一種用於非對稱半橋返馳式變換器電源的控制晶片。非對稱半橋返馳式變換器電源包括第一功率開關、第二功率開關、諧振電容、變壓器,該變壓器的一次側勵磁電感包括一次側電感和一次側漏感。該控制晶片被配置為:基於表徵非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號和表徵流過一次側電感的電流的電流感測信號,生成用於控制第一功率開關的導通與關斷的上管控制信號;以及基於輸出回饋信號和表徵變壓器的輔助繞組上的電壓的電壓感測信號,生成用於控制第二功率開關的導通與關斷的下管控制信號,其中,控制晶片被配置為基於輸出回饋信號和電壓感測信號識別變壓器的一次側勵磁電感退磁結束的時刻,並且基於該時刻來生成下管控制信號。 One aspect of the present invention provides a control chip for an asymmetric half-bridge flyback converter power supply. The asymmetric half-bridge flyback converter power supply includes a first power switch, a second power switch, a resonant capacitor, and a transformer, wherein the primary magnetizing inductor of the transformer includes a primary inductor and a primary leakage inductor. The control chip is configured to: generate an upper tube control signal for controlling the on and off of a first power switch based on an output feedback signal representing the output voltage of an asymmetric half-bridge flyback converter power supply and an inductive sensing signal representing the current flowing through a primary inductor; and generate a lower tube control signal for controlling the on and off of a second power switch based on the output feedback signal and a voltage sensing signal representing the voltage on an auxiliary winding of the transformer, wherein the control chip is configured to identify the moment when the demagnetization of the primary magnetizing inductor of the transformer is completed based on the output feedback signal and the voltage sensing signal, and generate the lower tube control signal based on the moment.

本發明的另一方面提供了一種用於非對稱半橋返馳式變換器電源的控制方法。非對稱半橋返馳式變換器電源包括第一功率開關、第二功率開關、諧振電容、變壓器,該變壓器的一次側勵磁電 感包括一次側電感和一次側漏感。該控制方法包括基於表徵非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號和表徵流過一次側電感的電流的電流感測信號,生成用於控制第一功率開關的導通與關斷的上管控制信號;以及基於輸出回饋信號和表徵變壓器的輔助繞組上的電壓的電壓感測信號,生成用於控制第二功率開關的導通與關斷的下管控制信號,其中,控制晶片被配置為基於輸出回饋信號和電壓感測信號識別變壓器的一次側勵磁電感退磁結束的時刻,並且基於該時刻來生成下管控制信號。 Another aspect of the present invention provides a control method for an asymmetric half-bridge flyback converter power supply. The asymmetric half-bridge flyback converter power supply includes a first power switch, a second power switch, a resonant capacitor, and a transformer, wherein the primary magnetizing inductance of the transformer includes a primary inductance and a primary leakage inductance. The control method includes generating an upper tube control signal for controlling the on and off of a first power switch based on an output feedback signal representing an output voltage of an asymmetric half-bridge flyback converter power supply and an inductive sensing signal representing a current flowing through a primary inductor; and generating a lower tube control signal for controlling the on and off of a second power switch based on the output feedback signal and a voltage sensing signal representing a voltage on an auxiliary winding of the transformer, wherein the control chip is configured to identify the moment when the demagnetization of the primary magnetizing inductor of the transformer is completed based on the output feedback signal and the voltage sensing signal, and generate the lower tube control signal based on the moment.

本發明的再一方面提供了一種使用上述控制晶片或控制方法的非對稱半橋返馳式變換器電源。 Another aspect of the present invention provides an asymmetric half-bridge flyback converter power supply using the above-mentioned control chip or control method.

0A,t0,t1,t2,t3,t4,t5,t6,t7:時刻 0A,t0,t1,t2,t3,t4,t5,t6,t7: time

100:非對稱半橋返馳式變換器電源 100: Asymmetric half-bridge flyback converter power supply

400:控制晶片 400: Control chip

401:比較器 401: Comparator

402:死區時間控制單元 402: Dead time control unit

403:第一邏輯控制單元(Logic1) 403: First logical control unit (Logic1)

404:頻率控制單元 404: Frequency control unit

405:退磁(Demagnetization,DEM)檢測單元 405: Demagnetization (DEM) detection unit

405-1,405-1’:採樣模組 405-1, 405-1’: Sampling module

405-2:壓控電流源 405-2: Voltage-controlled current source

405-2’:第一壓控電流源 405-2’: The first voltage-controlled current source

405-3:比較模組 405-3: Compare Modules

405-3’:第二壓控電流源 405-3’: Second voltage-controlled current source

405-4’:運算模組 405-4’: Computation module

405-5’:比較模組 405-5’: Compare modules

406:零電壓導通(Zero Voltage Switching,ZVS)控制單元 406: Zero Voltage Switching (ZVS) control unit

407:第二邏輯控制單元 407: Second logic control unit

ADJ:外部調整信號 ADJ: External adjustment signal

C1,C2,C3:電容器 C1,C2,C3:Capacitors

Cr:諧振電容 Cr: resonant capacitor

CV_off:上管關斷控制信號 CV_off: upper tube shutdown control signal

DCM_on:頻率控制信號 DCM_on: frequency control signal

DEM_off:退磁檢測信號 DEM_off: Demagnetization detection signal

down_on:下管導通控制信號 down_on: down tube conduction control signal

FB:輸出回饋信號 FB: Output feedback signal

Gate_down:下管控制信號 Gate_down: down tube control signal

Gate_up:上管控制信號 Gate_up: Upper tube control signal

HB:第一功率開關Q1和第二功率開關Q2之間的中間點 HB: the midpoint between the first power switch Q1 and the second power switch Q2

I1,I2,I3:電流 I1,I2,I3: current

IDo:二次側電流 I Do : Secondary current

ILm:一次側勵磁電流 I Lm : primary side excitation current

ILr:一次側諧振電流 I Lr : primary side resonant current

INV:電壓感測信號 INV: voltage sensing signal

Io:負載輸出電流 Io: load output current

Ip:峰值電流 IP: peak current

k1,k2,k3:係數 k1,k2,k3: coefficients

Lm:一次側勵磁電感 Lm: primary side magnetic inductance

Lp:一次側電感 Lp: primary side inductance

Lr:一次側漏感 Lr: primary side leakage sense

Ls:二次側電感 Ls: secondary side inductance

Naux,Np,Ns:線圈匝數 Naux, Np , Ns : Number of coil turns

NVo:退磁電壓 NVo: demagnetization voltage

Q1:第一功率開關 Q1: First power switch

Q2:第二功率開關 Q2: Second power switch

R1,R2:分壓電阻 R1, R2: voltage divider resistors

Rcs:電流感測電阻 Rcs: Inductive flow measurement resistance

S0,S1,S2,S3,S4,S5:開關 S0,S1,S2,S3,S4,S5: switch

T:變壓器 T: Transformer

Tdem,Ton,TZVS:時長 T dem ,T on ,T ZVS : duration

TL431:穩壓管 TL431: Voltage regulator

up_on:上管導通控制信號 up_on: upper tube conduction control signal

V1:採樣電壓 V1: sampling voltage

V2:第一採樣電壓 V2: first sampling voltage

V3:第二採樣電壓 V3: Second sampling voltage

Vaux:輔助繞組電壓 Vaux: auxiliary winding voltage

VC1,VC3:受控信號(電壓) VC1 , VC3 : controlled signal (voltage)

VC2,VFB_2:電壓 V C2 , V FB_2 : voltage

Vcs:電流感測信號 Vcs: current sensing signal

VHB:第一功率開關Q1和第二功率開關Q2之間的中間點HB處的電壓(HB電壓) V HB : The voltage at the midpoint HB between the first power switch Q1 and the second power switch Q2 (HB voltage)

Vin:非對稱半橋返馳式變換器電源100的輸入電壓(直流輸入電壓) Vin: Input voltage of asymmetric half-bridge flyback converter power supply 100 (DC input voltage)

Vo:非對稱半橋返馳式變換器電源100的輸出電壓 Vo: the output voltage of the asymmetric half-bridge flyback converter power supply 100

ZVS_off:下管關斷控制信號 ZVS_off: Lower tube shutdown control signal

從下面結合圖式對本發明的具體實施方式的描述中可以更好地理解本發明。圖式不是按比例繪製的,其中可以省略公知的結構或部分。 The present invention can be better understood from the following description of specific embodiments of the invention in conjunction with the drawings. The drawings are not to scale and well-known structures or portions may be omitted.

圖1示出了根據本發明實施例的非對稱半橋返馳式變換器電源的拓撲結構示意圖。 Figure 1 shows a schematic diagram of the topology of an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention.

圖2示出了圖1所示的非對稱半橋返馳式變換器電源在臨界導通模式(Critical Current Mode,CRM)下的多個信號的工作波形圖。 FIG2 shows the operating waveforms of multiple signals of the asymmetric half-bridge flyback converter power supply shown in FIG1 in the critical current mode (CRM).

圖3示出了圖1所示的非對稱半橋返馳式變換器電源在非連續導通模式(Discontinuous Conduction Mode,DCM)下的多個信號的工作波形圖。 Figure 3 shows the operating waveform diagram of multiple signals of the asymmetric half-bridge flyback converter power supply shown in Figure 1 in discontinuous conduction mode (Discontinuous Conduction Mode, DCM).

圖4示出了根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制晶片的電路原理圖。 FIG4 shows a circuit schematic diagram of a control chip for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention.

圖5示出了採用圖4所示的控制晶片的非對稱半橋返馳式變換器電源在臨界導通模式下工作時的多個信號的工作波形圖。 FIG. 5 shows the operating waveform diagrams of multiple signals when the asymmetric half-bridge flyback converter power supply using the control chip shown in FIG. 4 operates in critical conduction mode.

圖6示出了採用圖4所示的控制晶片的非對稱半橋返馳式變換器電源在非連續導通模式下工作時的多個信號的工作波形圖。 FIG6 shows the operating waveforms of multiple signals when the asymmetric half-bridge flyback converter power supply using the control chip shown in FIG4 operates in a discontinuous conduction mode.

圖7示出了圖4所示的控制晶片中的退磁檢測單元的一種示例實現的電路原理圖。 FIG. 7 shows a circuit schematic diagram of an example implementation of the demagnetization detection unit in the control chip shown in FIG. 4 .

圖8示出了圖4所示的控制晶片中的退磁檢測單元的另一種示例實現的電路原理圖。 FIG. 8 shows a circuit schematic diagram of another example implementation of the demagnetization detection unit in the control chip shown in FIG. 4 .

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的透徹理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在圖式和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention are described in detail below. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the present invention may be practiced without some of these specific details. The following description of the embodiments is merely intended to provide a better understanding of the invention by illustrating examples of the invention. The present invention is in no way limited to any specific configurations and algorithms set forth below, but covers any modifications, substitutions and improvements of elements, components and algorithms without departing from the spirit of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessarily obscuring the present invention.

圖1示出了根據本發明實施例的非對稱半橋返馳式變換器電源100的拓撲結構示意圖。如圖1所示,在非對稱半橋返馳式變換器電源100中,第一功率開關Q1和第二功率開關Q2均為金屬氧化物半導體場效應電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET),通過諧振電容Cr和變壓器T的一次側電感Lp、一次側漏感Lr的諧振可以實現第一功率開關Q1和第二功率開關Q2的零電壓導通。本發明中將變壓器T的一次側電感Lp和一次側漏感Lr之和稱為變壓器T的一次側勵磁電感Lm,變壓器T的二次側電感用Ls表示。 FIG1 shows a schematic diagram of the topological structure of an asymmetric half-bridge flyback converter power supply 100 according to an embodiment of the present invention. As shown in FIG1 , in the asymmetric half-bridge flyback converter power supply 100, the first power switch Q1 and the second power switch Q2 are both metal-oxide-semiconductor field-effect transistors (MOSFET), and the resonance of the resonant capacitor Cr and the primary inductance Lp and the primary leakage inductance Lr of the transformer T can realize zero-voltage conduction of the first power switch Q1 and the second power switch Q2. In the present invention, the sum of the primary side inductance Lp and the primary side leakage inductance Lr of the transformer T is called the primary side magnetizing inductance Lm of the transformer T, and the secondary side inductance of the transformer T is represented by Ls.

圖2示出了圖1所示的非對稱半橋返馳式變換器電源100在臨界導通模式(CRM)下的多個信號的工作波形圖。在圖2中,Gate_up表示用於控制第一功率開關Q1的導通與關斷的上管控制信號,Gate_down表示用於控制第二功率開關Q2的導通與關斷的下管 控制信號,ILr表示變壓器T的一次側諧振電流(簡稱一次側諧振電流),ILm表示變壓器T的一次側勵磁電流(簡稱一次側勵磁電流),IDo表示流過變壓器T的二次側電感Ls的電流(簡稱二次側電流),VHB表示第一功率開關Q1和第二功率開關Q2之間的中間點HB處的電壓(簡稱HB電壓)。 FIG. 2 shows operating waveform diagrams of multiple signals of the asymmetric half-bridge flyback converter power supply 100 shown in FIG. 1 in critical conduction mode (CRM). In Figure 2, Gate_up represents the upper-side control signal used to control the turn-on and turn-off of the first power switch Q1, Gate_down represents the low-side control signal used to control the turn-on and turn-off of the second power switch Q2, and I Lr represents The primary side resonance current of the transformer T (referred to as the primary side resonant current), I Lm represents the primary side excitation current of the transformer T (referred to as the primary side excitation current), and I Do represents the current flowing through the secondary side inductance Ls of the transformer T (referred to as the secondary side current), V HB represents the voltage at the midpoint HB between the first power switch Q1 and the second power switch Q2 (referred to as the HB voltage).

結合圖1和圖2所示,在t0時刻,第一功率開關Q1從關斷狀態變為導通狀態,非對稱半橋返馳式變換器電源100的輸入電壓(即,直流輸入電壓)Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(包括一次側電感Lp和一次側漏感Lr)充電,一次側諧振電流ILr正向增大;在t1時刻,第一功率開關Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,一次側諧振電流ILr給第二功率開關Q2的寄生電容放電、第一功率開關Q1的寄生電容充電,HB電壓下降;在t2時刻,HB電壓下降至0V,第二功率開關Q2的體二極體從關斷狀態變為導通狀態,第二功率開關Q2實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,變壓器一次側諧振電流ILr下降至0A後負向增大,同時變壓器T的二次側電感Ls退磁,一次側勵磁電流ILm線性減小;在t3時刻,一次側勵磁電流ILm減小到0A,一次側諧振電流ILr仍然為負電流,因此諧振繼續;在t4時刻,一次側諧振電流ILr諧振至和一次側勵磁電流ILm一樣大,變壓器二次側退磁結束,IDo回到0A,之後諧振電容Cr通過第二功率開關Q2對變壓器T的一次側勵磁電感Lm放電,一次側諧振電流ILr負向增大;在t5時刻,第二功率開關Q2從導通狀態變為關斷狀態,諧振電容Cr對變壓器T的一次側勵磁電感Lm放電的回路斷開,由於電感中的電流無法突變,變壓器一次側諧振電流ILr給第一功率開關Q1的寄生電容放電、第二功率開關Q2的寄生電容充電,HB電壓上升(若負向的一次側諧振電流ILr足夠大,HB電壓將上升直至輸入 電壓Vin);在t6時刻,HB電壓上升至輸入電壓Vin,第一功率開關Q1的體二極體從關斷狀態變為導通狀態,第一功率開關Q1實現零電壓導通。 As shown in FIG. 1 and FIG. 2 , at time t0, the first power switch Q1 changes from the off state to the on state, and the input voltage (i.e., the DC input voltage) Vin of the asymmetric half-bridge flyback converter power supply 100 charges the primary-side magnetizing inductance Lm (including the primary-side inductance Lp and the primary-side leakage inductance Lr) of the transformer T through the resonant capacitor Cr, and the primary-side resonant current I Lr increases in a positive direction; at time t1, the first power switch Q1 changes from the on state to the off state, and the circuit for the input voltage Vin to charge the primary-side magnetizing inductance Lm of the transformer T is disconnected. Since the current in the inductor cannot suddenly change, the primary-side resonant current I Lr discharges the parasitic capacitance of the second power switch Q2 and charges the parasitic capacitance of the first power switch Q1, and the HB voltage decreases; at t2, the HB voltage drops to 0V, the body diode of the second power switch Q2 changes from the off state to the on state, and the second power switch Q2 realizes zero-voltage conduction. After that, the resonant capacitor Cr resonates with the primary-side leakage inductance Lr of the transformer T, and the transformer primary-side resonant current I Lr drops to 0A and then increases negatively. At the same time, the secondary-side inductance Ls of the transformer T demagnetizes, and the primary-side magnetizing current I Lm decreases linearly; at t3, the primary-side magnetizing current I Lm decreases to 0A, and the primary-side resonant current I Lr is still a negative current, so the resonance continues; at t4, the primary side resonant current I Lr resonates to the same value as the primary side magnetizing current I Lm , the transformer secondary side demagnetization is completed, I Do returns to 0A, and then the resonant capacitor Cr discharges the primary side magnetizing inductance Lm of the transformer T through the second power switch Q2, and the primary side resonant current I Lr increases negatively; at t5, the second power switch Q2 changes from the on state to the off state, and the circuit for the resonant capacitor Cr to discharge the primary side magnetizing inductance Lm of the transformer T is disconnected. Since the current in the inductor cannot suddenly change, the transformer primary side resonant current I Lr discharges the parasitic capacitance of the first power switch Q1 and charges the parasitic capacitance of the second power switch Q2, and the HB voltage rises (if the negative primary side resonant current I Lr is large enough, the HB voltage will rise until it reaches the input voltage Vin); at time t6, the HB voltage rises to the input voltage Vin, the body diode of the first power switch Q1 changes from the off state to the on state, and the first power switch Q1 achieves zero-voltage conduction.

圖3示出了圖1所示的非對稱半橋返馳式變換器電源100在非連續導通模式(DCM)下的多個信號的工作波形圖。在圖3中,Gate_up表示用於控制第一功率開關Q1的導通與關斷的上管控制信號,Gate_down表示用於控制第二功率開關Q2的導通與關斷的下管控制信號,ILr表示變壓器T的一次側諧振電流(簡稱一次側諧振電流),ILm表示變壓器T的一次側勵磁電流(簡稱一次側勵磁電流),IDo表示流過變壓器T的二次側電感Ls的電流(簡稱二次側電流),VHB表示第一功率開關Q1和第二功率開關Q2之間的中間點HB處的電壓(簡稱HB電壓)。 FIG. 3 shows operating waveforms of multiple signals of the asymmetric half-bridge flyback converter power supply 100 shown in FIG. 1 in discontinuous conduction mode (DCM). In Figure 3, Gate_up represents the upper-side control signal used to control the turn-on and turn-off of the first power switch Q1, Gate_down represents the low-side control signal used to control the turn-on and turn-off of the second power switch Q2, and I Lr represents The primary side resonance current of the transformer T (referred to as the primary side resonant current), I Lm represents the primary side excitation current of the transformer T (referred to as the primary side excitation current), and I Do represents the current flowing through the secondary side inductance Ls of the transformer T (referred to as the secondary side current), V HB represents the voltage at the midpoint HB between the first power switch Q1 and the second power switch Q2 (referred to as the HB voltage).

結合圖1和圖3所示,在t0時刻,第一功率開關Q1從關斷狀態變為導通狀態,非對稱半橋返馳式變換器電源100的輸入電壓(即,直流輸入電壓)Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(包括一次側電感Lp和一次側漏感Lr)充電,一次側諧振電流ILr正向增大;在t1時刻,第一功率開關Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,正向的一次側諧振電流ILr給第二功率開關Q2的寄生電容放電、第一功率開關Q1的寄生電容充電,HB電壓下降;在t2時刻,HB電壓下降至0V,第二功率開關Q2的體二極體從關斷狀態變為導通狀態,第二功率開關Q2實現零電壓導通,之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,一次側諧振電流ILr下降至0A後負向增大,同時變壓器T的二次側電感Ls退磁,一次側勵磁電流ILm線性減小;在t3時刻,一次側勵磁電流ILm減小到0A,一次側諧振電流ILr仍然為負電流,因此諧振繼續;在t4時刻,第二功率開關Q2從導通狀態變為關斷狀態,變壓器T的諧 振電容Cr和一次側漏感Lr的諧振回路斷開,但是一次側諧振電流ILr仍為負電流,所以第一功率開關Q1的體二極體將能量返回輸入電壓Vin,之後第一功率開關Q1和第二功率開關Q2的寄生電容和一次側勵磁電感Lm進行諧振;在t5時刻,第二功率開關Q2再次從關斷狀態變為導通狀態,諧振電容Cr通過第二功率開關Q2對變壓器T的一次側勵磁電感Lm放電,使得一次側諧振電流ILr負向增大;在t6時刻,第二功率開關Q2再次從導通狀態變為關斷狀態,諧振電容Cr對變壓器T的一次側勵磁電感Lm放電的回路斷開,變壓器T的一次側勵磁電感Lm和第一功率開關Q1和第二功率開關Q2的寄生電容諧振,由於一次側勵磁電感Lm中的電流無法突變,負向的一次側諧振電流ILr給第一功率開關Q1的寄生電容放電、第二功率開關Q2的寄生電容充電,HB電壓上升(若負向的一次側諧振電流ILr足夠大,HB電壓將上升直至輸入電壓Vin);在t7時刻,HB電壓上升至輸入電壓Vin,第一功率開關Q1的體二極體從關斷狀態變為導通狀態,第一功率開關Q1實現零電壓導通。 As shown in FIG. 1 and FIG. 3 , at time t0, the first power switch Q1 changes from the off state to the on state, and the input voltage (ie, DC input voltage) Vin of the asymmetric half-bridge flyback converter power supply 100 passes through The resonant capacitor Cr charges the primary side excitation inductance Lm (including the primary side inductance Lp and the primary side leakage inductance Lr) of the transformer T, and the primary side resonant current I Lr increases positively; at time t1, the first power switch Q1 is turned on. The state changes to the off state, and the circuit in which the input voltage Vin charges the primary side excitation inductor Lm of the transformer T is disconnected. Since the current in the inductor cannot change suddenly, the forward primary side resonance current I Lr supplies the second power switch Q2 with The parasitic capacitance is discharged, the parasitic capacitance of the first power switch Q1 is charged, and the HB voltage drops; at time t2, the HB voltage drops to 0V, and the body diode of the second power switch Q2 changes from the off state to the on state, and the second power switch Q2 Switch Q2 achieves zero-voltage conduction, and then the resonant capacitor Cr resonates with the primary side leakage inductance Lr of the transformer T. The primary side resonant current I Lr decreases to 0A and then increases in the negative direction. At the same time, the secondary side inductance Ls of the transformer T demagnetizes, and the primary side The excitation current I Lm decreases linearly; at time t3, the primary side excitation current I Lm decreases to 0A, and the primary side resonance current I Lr is still a negative current, so the resonance continues; at time t4, the second power switch Q2 starts from The on-state changes to the off-state, and the resonant circuit of the resonant capacitance Cr of the transformer T and the primary-side leakage inductance Lr is disconnected, but the primary-side resonant current I Lr is still a negative current, so the body diode of the first power switch Q1 will The energy returns to the input voltage Vin, and then the parasitic capacitances of the first power switch Q1 and the second power switch Q2 and the primary side excitation inductance Lm resonate; at time t5, the second power switch Q2 changes from the off state to the on state again, The resonant capacitor Cr discharges the primary side excitation inductor Lm of the transformer T through the second power switch Q2, causing the primary side resonant current I Lr to increase negatively; at time t6, the second power switch Q2 changes from the on state to the off state again. state, the circuit of the resonant capacitor Cr discharging to the primary side excitation inductance Lm of the transformer T is disconnected, the primary side excitation inductance Lm of the transformer T resonates with the parasitic capacitances of the first power switch Q1 and the second power switch Q2, due to the primary side The current in the excitation inductor Lm cannot change suddenly. The negative primary side resonant current I Lr discharges the parasitic capacitance of the first power switch Q1 and charges the parasitic capacitance of the second power switch Q2. The HB voltage rises (if the negative primary side The resonant current I Lr is large enough, and the HB voltage will rise until the input voltage Vin); at time t7, the HB voltage rises to the input voltage Vin, and the body diode of the first power switch Q1 changes from the off state to the on state. Power switch Q1 achieves zero-voltage conduction.

在如圖2所示的臨界導通模式中,在第二功率開關Q2關斷後、第一功率開關Q1導通前,即t5時刻到t6時刻之間的時間段,負向的一次側諧振電流ILr的大小由第一功率開關Q1零電壓導通所需要的負向電流的大小決定,即由第一功率開關Q1和第二功率開關Q2的寄生電容的大小決定。在臨界導通模式中,負載輸出電流Io降低後,正向峰值電流Ip也會降低,第一功率開關Q1的導通時長隨之降低,非對稱半橋返馳式變換器電源100的工作頻率升高,而在輕載情況下,頻率升高會導致效率變差,所以需要進入圖3所示的非連續導通模式。在非連續導通模式中,第二功率開關Q2第二次關斷後、第一功率開關Q1導通前,即t6時刻到t7時刻之間的時間段,負向的一次側諧振電流ILr的大小由第一功率開關Q1零電壓導通所需要的負向電流的大小決定,即由第一功率開關Q1和第二功率開關Q2 的寄生電容的大小決定,這個負向電流通常較小;而第一功率開關Q1第一次關斷(即t1時刻)後的負向的一次側諧振電流ILr的幅值In大小由第二功率開關Q2的導通時間決定,第二功率開關Q2導通時間越長,第二功率開關Q2關斷時的負向的一次側諧振電流ILr的幅值In越大,輸出恆定所需的正向峰值電流Ip越大,非對稱半橋返馳式變換器電源100的工作頻率越高,所以非連續導通模式下的第二功率開關Q2的導通時間決定了非對稱半橋返馳式變換器電源100的降頻速度。而第二功率開關Q2的導通時間也不能太短,否則一次側勵磁電流ILm未到0A,即使第二功率開關Q2關斷後,正向的一次側勵磁電流ILm會通過第二功率開關Q2的體二極體繼續退磁,體二極體導通壓降較大,這樣也會大大影響效率。所以,針對非連續導通模式(見圖3),第二功率開關Q2在一次側勵磁電流ILm退磁到0A的時刻關斷,效率最優,而針對臨界導通模式(見圖2),需要從一次側勵磁電流ILm退磁到0A的時刻開始,對一次側諧振電流ILr負向增大到足以使第一功率開關Q1零電壓導通的時間進行計時。而第二功率開關Q2導通期間,非對稱半橋返馳式變換器電源100中的電流感測電阻Rcs(見圖1)檢測到的只是漏感中的一次側諧振電流ILr,而一次側勵磁電流ILm只有在第二功率開關Q2關斷後才能在電流感測電阻Rcs上檢測到,所以無法直接根據電流感測電阻Rcs上的一次側諧振電流ILr檢測一次側勵磁電感Lm退磁結束來決定第二功率開關Q2的關斷時刻。 In the critical conduction mode shown in FIG2, after the second power switch Q2 is turned off and before the first power switch Q1 is turned on, that is, in the time period from t5 to t6, the magnitude of the negative primary resonant current I Lr is determined by the magnitude of the negative current required for the zero-voltage conduction of the first power switch Q1, that is, by the magnitude of the parasitic capacitance of the first power switch Q1 and the second power switch Q2. In the critical conduction mode, after the load output current Io decreases, the forward peak current Ip will also decrease, and the conduction time of the first power switch Q1 will decrease accordingly, and the operating frequency of the asymmetric half-bridge flyback converter power supply 100 will increase. Under light load conditions, the increase in frequency will lead to poor efficiency, so it is necessary to enter the discontinuous conduction mode shown in FIG3. In the discontinuous conduction mode, after the second power switch Q2 is turned off for the second time and before the first power switch Q1 is turned on, that is, during the time period from t6 to t7, the magnitude of the negative primary resonant current I Lr is determined by the magnitude of the negative current required for the zero-voltage conduction of the first power switch Q1, that is, by the magnitude of the parasitic capacitance of the first power switch Q1 and the second power switch Q2. This negative current is usually small; and the magnitude of the amplitude In of the negative primary resonant current I Lr after the first power switch Q1 is turned off for the first time (that is, at t1) is determined by the conduction time of the second power switch Q2. The longer the conduction time of the second power switch Q2 is, the greater the negative primary resonant current I Lr when the second power switch Q2 is turned off. The larger the amplitude In of Lr , the larger the forward peak current Ip required for output stability, and the higher the operating frequency of the asymmetric half-bridge flyback converter power supply 100. Therefore, the conduction time of the second power switch Q2 in the non-continuous conduction mode determines the frequency reduction speed of the asymmetric half-bridge flyback converter power supply 100. The conduction time of the second power switch Q2 cannot be too short, otherwise the primary side magnetizing current I Lm does not reach 0A. Even after the second power switch Q2 is turned off, the positive primary side magnetizing current I Lm will continue to demagnetize through the body diode of the second power switch Q2, and the body diode conduction voltage drop will be large, which will also greatly affect the efficiency. Therefore, for the discontinuous conduction mode (see Figure 3), the second power switch Q2 is turned off when the primary side magnetizing current I Lm is demagnetized to 0A, which is the most efficient. For the critical conduction mode (see Figure 2), it is necessary to start from the moment when the primary side magnetizing current I Lm is demagnetized to 0A and count the time when the primary side resonant current I Lr increases in the negative direction to a point sufficient to turn on the first power switch Q1 at zero voltage. During the conduction period of the second power switch Q2, the inductive sensing resistor Rcs (see FIG. 1 ) in the asymmetric half-bridge flyback converter power supply 100 detects only the primary-side resonant current I Lr in the leakage inductance, and the primary-side magnetizing current I Lm can be detected on the inductive sensing resistor Rcs only after the second power switch Q2 is turned off. Therefore, it is not possible to directly detect the end of demagnetization of the primary-side magnetizing inductance Lm based on the primary-side resonant current I Lr on the inductive sensing resistor Rcs to determine the turn-off time of the second power switch Q2.

至少鑒於上述問題,提出了根據本發明實施例的用於非對稱半橋返馳式變換器電源100的控制晶片和控制方法,能夠在不同輸入電壓、不同輸出電壓或不同負載電流下計算第二功率開關Q2導通時期一次側勵磁電流退磁到0A的時刻,從而控制第二功率開關Q2的關斷時刻,使得使用非對稱半橋返馳式變換器電源100的電路系統進入輕載後可以順利降頻,進而優化輕載效率。 At least in view of the above problems, a control chip and a control method for an asymmetric half-bridge flyback converter power supply 100 according to embodiments of the present invention are proposed, which can calculate the second time under different input voltages, different output voltages or different load currents. During the conduction period of the power switch Q2, the moment when the primary side excitation current demagnetizes to 0A, thereby controlling the turn-off moment of the second power switch Q2, so that the circuit system using the asymmetric half-bridge flyback converter power supply 100 can smoothly enter the light load. frequency reduction to optimize light load efficiency.

圖4示出了根據本發明實施例的用於非對稱半橋返馳式變換器電源的控制晶片400的電路原理圖。下面結合圖1和圖4,描述圖4所示的控制晶片400應用於圖1所示的非對稱半橋返馳式變換器電源100的情況。 FIG. 4 shows a circuit schematic diagram of a control chip 400 for an asymmetric half-bridge flyback converter power supply according to an embodiment of the present invention. The following describes a situation in which the control chip 400 shown in FIG. 4 is applied to the asymmetric half-bridge flyback converter power supply 100 shown in FIG. 1 with reference to FIG. 1 and FIG. 4 .

如圖1和圖4所示,在一些實施例中,控制晶片400可以被配置為:基於表徵非對稱半橋返馳式變換器電源100的輸出電壓Vo的輸出回饋信號FB和表徵流過變壓器T的一次側電感Lp的電流的電流感測信號Vcs,生成用於控制第一功率開關Q1的導通與關斷的上管控制信號Gate_up;以及基於輸出回饋信號FB和表徵變壓器T的輔助繞組上的電壓的電壓感測信號INV,生成用於控制第二功率開關Q2的導通與關斷的下管控制信號Gate_down。具體地,例如,控制晶片400可以被配置為至少基於輸出回饋信號FB和電壓感測信號INV識別非對稱半橋返馳式變換器電源100的變壓器的一次側勵磁電感Lm退磁結束的時刻,也即一次側勵磁電流ILm減小到0A的時刻,並且基於該時刻來生成下管控制信號Gate_down。 As shown in FIG. 1 and FIG. 4 , in some embodiments, the control chip 400 can be configured to: generate an upper tube control signal Gate_up for controlling the on and off state of the first power switch Q1 based on the output feedback signal FB representing the output voltage Vo of the asymmetric half-bridge flyback converter power supply 100 and the current sensing signal Vcs representing the current flowing through the primary-side inductor Lp of the transformer T; and generate a lower tube control signal Gate_down for controlling the on and off state of the second power switch Q2 based on the output feedback signal FB and the voltage sensing signal INV representing the voltage on the auxiliary winding of the transformer T. Specifically, for example, the control chip 400 can be configured to identify the moment when the primary-side magnetizing inductance Lm of the transformer of the asymmetric half-bridge flyback converter power supply 100 is demagnetized, that is, the moment when the primary-side magnetizing current I Lm is reduced to 0 A, at least based on the output feedback signal FB and the voltage sensing signal INV, and generate the lower tube control signal Gate_down based on this moment.

可選地,控制晶片400被配置為基於輸出回饋信號FB、電壓感測信號INV以及外部調整信號ADJ來識別非對稱半橋返馳式變換器電源100的變壓器的一次側勵磁電感Lm退磁結束的時刻。 Optionally, the control chip 400 is configured to identify the moment when the primary-side magnetizing inductance Lm of the transformer of the asymmetric half-bridge flyback converter power supply 100 is demagnetized based on the output feedback signal FB, the voltage sensing signal INV, and the external adjustment signal ADJ.

如圖1和圖4所示,在一些實施例中,輸出電壓Vo通過電阻分壓以及穩壓管TL431和光耦之後產生輸出回饋信號FB;輸出回饋信號FB經過二極體降壓和電阻分壓後產生的電壓VFB_2與電流感測信號Vcs一起被送入控制晶片400的比較器401。比較器401通過比較VFB_2和Vcs的大小生成決定第一功率開關Q1從導通狀態變為關斷狀態的關斷時刻的上管關斷控制信號CV_off。也就是說,控制晶片400被進一步配置為:基於輸出回饋信號FB和電流感測信號Vcs,生成用於控制第一功率開關Q1從導通狀態變為關斷狀態的上管關斷控制信號CV_off。 As shown in FIG. 1 and FIG. 4 , in some embodiments, the output voltage Vo generates an output feedback signal FB after passing through a resistor divider, a voltage regulator TL431, and an optocoupler; the output feedback signal FB generates a voltage V FB_2 after a diode step-down and a resistor divider, and is sent to the comparator 401 of the control chip 400 together with the current sensing signal Vcs. The comparator 401 compares the magnitudes of V FB_2 and Vcs to generate an upper tube shut-down control signal CV_off that determines the turn-off moment when the first power switch Q1 changes from the on state to the off state. That is, the control chip 400 is further configured to generate a high-side tube off control signal CV_off for controlling the first power switch Q1 to change from an on state to an off state based on the output feedback signal FB and the current sensing signal Vcs.

如圖1和圖4所示,在一些實施例中,控制晶片400包括死區時間控制單元402,該死區時間控制單元402在第二功率開關Q2從導通狀態變為關斷狀態時開始對第二功率開關Q2處於關斷狀態的持續時間進行計時,並在第二功率開關Q2處於關斷狀態的持續時間達到預設死區時間時生成用於控制第一功率開關Q1從關斷狀態變為導通狀態的上管導通控制信號up_on。 As shown in FIG. 1 and FIG. 4 , in some embodiments, the control chip 400 includes a dead time control unit 402, which starts timing the duration of the second power switch Q2 being in the off state when the second power switch Q2 changes from the on state to the off state, and generates an upper tube conduction control signal up_on for controlling the first power switch Q1 to change from the off state to the on state when the duration of the second power switch Q2 being in the off state reaches a preset dead time.

如圖1和圖4所示,在一些實施例中,控制晶片400包括第一邏輯控制單元(Logic1)403,該第一邏輯控制單元403基於上管關斷控制信號CV_off和上管導通控制信號up_on生成上管控制信號Gate_up。 As shown in FIG. 1 and FIG. 4 , in some embodiments, the control chip 400 includes a first logic control unit (Logic1) 403, which generates an upper tube control signal Gate_up based on an upper tube shutdown control signal CV_off and an upper tube conduction control signal up_on.

如圖1和圖4所示,在一些實施例中,控制晶片400包括頻率控制單元404、退磁(Demagnetization,DEM)檢測單元405、以及零電壓導通(Zero Voltage Switching,ZVS)控制單元406,其中,頻率控制單元404基於輸出回饋信號FB(如VFB_2),生成用於控制非對稱半橋返馳式變換器電源100的工作頻率的頻率控制信號DCM_on,例如,當負載較重時,非對稱半橋返馳式變換器電源100工作於臨界導通模式,而在負載降低時,頻率控制信號DCM_on可以使得非對稱半橋返馳式變換器電源100的工作頻率降低,以工作於非連續導通模式;退磁檢測單元405至少基於電壓感測信號INV和輸出回饋信號FB(如VFB_2),生成用於表徵變壓器T的一次側勵磁電感Lm的退磁情況的退磁檢測信號DEM_off;零電壓導通控制單元406基於頻率控制信號DCM_on、退磁檢測信號DEM_off、以及電壓感測信號INV,生成用於控制第二功率開關Q2從導通狀態變為關斷狀態的下管關斷控制信號ZVS_off。可選地,在另外一些實施例中,退磁檢測單元405可被配置為基於電壓感測信號INV、輸出回饋信號FB(如VFB_2)以及外部調整信號ADJ,生成退磁檢測信號DEM_off。 As shown in Figures 1 and 4, in some embodiments, the control chip 400 includes a frequency control unit 404, a demagnetization (DEM) detection unit 405, and a zero voltage conduction (Zero Voltage Switching, ZVS) control unit 406, where , the frequency control unit 404 generates a frequency control signal DCM_on for controlling the operating frequency of the asymmetric half-bridge flyback converter power supply 100 based on the output feedback signal FB (such as V FB_2 ). For example, when the load is heavy, the asymmetric The half-bridge flyback converter power supply 100 operates in the critical conduction mode. When the load is reduced, the frequency control signal DCM_on can cause the asymmetric half-bridge flyback converter power supply 100 to reduce the operating frequency to operate in the discontinuous conduction mode. ; The demagnetization detection unit 405 is based at least on the voltage sensing signal INV and the output feedback signal FB (such as V FB_2 ), and generates a demagnetization detection signal DEM_off used to characterize the demagnetization situation of the primary side excitation inductor Lm of the transformer T; the zero-voltage conduction control unit 406 generates the low-side turn-off control signal ZVS_off for controlling the second power switch Q2 to change from the on state to the off state based on the frequency control signal DCM_on, the demagnetization detection signal DEM_off, and the voltage sensing signal INV. Alternatively, in some other embodiments, the demagnetization detection unit 405 may be configured to generate the demagnetization detection signal DEM_off based on the voltage sensing signal INV, the output feedback signal FB (such as V FB_2 ), and the external adjustment signal ADJ.

在本發明的實施例中,控制晶片400能夠基於退磁檢 測信號DEM_off來識別非對稱半橋返馳式變換器電源100的變壓器的一次側勵磁電感Lm退磁結束的時刻。僅作為示例,下面將分別結合圖7和圖8來具體描述如何基於退磁檢測信號DEM_off識別非對稱半橋返馳式變換器電源100的變壓器的一次側勵磁電感Lm退磁結束的時刻。 In an embodiment of the present invention, the control chip 400 can identify the moment when the primary magnetizing inductance Lm of the transformer of the asymmetric half-bridge flyback converter power supply 100 is demagnetized based on the demagnetization detection signal DEM_off. As an example only, the following will specifically describe how to identify the moment when the primary magnetizing inductance Lm of the transformer of the asymmetric half-bridge flyback converter power supply 100 is demagnetized based on the demagnetization detection signal DEM_off.

如圖1和圖4所示,在一些實施例中,死區時間控制單元402還在第一功率開關Q1從導通狀態變為關斷狀態時開始對第一功率開關Q1處於關斷狀態的持續時間進行計時,並在第一功率開關Q1處於關斷狀態的持續時間達到預設死區時間時生成用於控制第二功率開關Q2從關斷狀態變為導通狀態的下管導通控制信號down_on。 As shown in FIG1 and FIG4, in some embodiments, the dead time control unit 402 also starts timing the duration of the first power switch Q1 being in the off state when the first power switch Q1 changes from the on state to the off state, and generates a down-tube conduction control signal down_on for controlling the second power switch Q2 to change from the off state to the on state when the duration of the first power switch Q1 being in the off state reaches the preset dead time.

如圖1和圖4所示,在一些實施例中,控制晶片400還包括第二邏輯控制單元407,該第二邏輯控制單元407基於下管關斷控制信號ZVS_off、退磁檢測信號DEM_off、頻率控制信號DCM_on、以及下管導通控制信號down_on,生成下管控制信號Gate_down。 As shown in FIG. 1 and FIG. 4 , in some embodiments, the control chip 400 further includes a second logic control unit 407, which generates a lower tube control signal Gate_down based on the lower tube shutdown control signal ZVS_off, the demagnetization detection signal DEM_off, the frequency control signal DCM_on, and the lower tube conduction control signal down_on.

具體地,第二邏輯控制單元407可以基於頻率控制信號DCM_on來確定非對稱半橋返馳式變換器電源100的不同工作狀態。例如,當頻率控制信號DCM_on持續為高位準或者在退磁檢測信號DEM_off出現暫態脈衝前變為高位準時,非對稱半橋返馳式變換器電源100工作於臨界導通模式,當頻率控制信號DCM_on在退磁檢測信號DEM_off出現暫態脈衝時為低位準時,非對稱半橋返馳式變換器電源100工作於非連續導通模式。第二邏輯控制單元407可以基於下管關斷控制信號ZVS_off和退磁檢測信號DEM_off來確定使第二功率開關Q2從導通狀態變為關斷狀態的關斷時刻,並且結合由頻率控制信號DCM_on確定的非對稱半橋返馳式變換器電源100的工作模式,來生成下管控制信號Gate_down。 Specifically, the second logic control unit 407 may determine different operating states of the asymmetric half-bridge flyback converter power supply 100 based on the frequency control signal DCM_on. For example, when the frequency control signal DCM_on continues to be at a high level or becomes a high level before a transient pulse occurs in the demagnetization detection signal DEM_off, the asymmetric half-bridge flyback converter power supply 100 operates in the critical conduction mode. When the frequency control signal DCM_on is at The demagnetization detection signal DEM_off is low when a transient pulse occurs, and the asymmetric half-bridge flyback converter power supply 100 operates in the discontinuous conduction mode. The second logic control unit 407 may determine the turn-off moment of the second power switch Q2 from the on-state to the off-state based on the low-side turn-off control signal ZVS_off and the demagnetization detection signal DEM_off, and in conjunction with the frequency control signal DCM_on determined by the frequency control signal DCM_on. The working mode of the asymmetric half-bridge flyback converter power supply 100 is used to generate the down-side control signal Gate_down.

具體地,例如,第二邏輯控制單元407可以在頻率控 制信號DCM_on持續為高位準或者在退磁檢測信號DEM_off出現暫態脈衝前變為高位準時,確定非對稱半橋返馳式變換器電源100工作於臨界導通模式,並且在退磁檢測信號DEM_off出現暫態脈衝時,使下管關斷控制信號ZVS_off保持為低位準,直到流過變壓器T的一次側漏感Lr的反向的一次側諧振電流ILr足夠實現第一功率開關Q1的零電壓導通時,使下管關斷控制信號ZVS_off出現暫態脈衝以關斷第二功率開關Q2;以及在頻率控制信號DCM_on在退磁檢測信號DEM_off出現暫態脈衝時為低位準時,確定非對稱半橋返馳式變換器電源100工作於非連續導通模式並且使第二功率開關Q2由導通狀態變為關斷狀態,在頻率控制信號DCM_on出現暫態脈衝時,使第二功率開關Q2由關斷狀態變為導通狀態,並且在流過變壓器T的一次側漏感Lr的反向的一次側諧振電流ILr足夠實現第一功率開關Q1的零電壓導通時,使下管關斷控制信號ZVS_off出現暫態脈衝以關斷所述第二功率開關。 Specifically, for example, the second logic control unit 407 may determine that the asymmetric half-bridge flyback converter power supply 100 is operating when the frequency control signal DCM_on continues to be at a high level or when the demagnetization detection signal DEM_off changes to a high level before a transient pulse occurs. In the critical conduction mode, and when a transient pulse occurs in the demagnetization detection signal DEM_off, the low-side turn-off control signal ZVS_off is maintained at a low level until the reverse primary-side resonance current I flows through the primary-side leakage inductance Lr of the transformer T When Lr is enough to realize the zero-voltage turn-on of the first power switch Q1, a transient pulse appears in the low-side turn-off control signal ZVS_off to turn off the second power switch Q2; and when the frequency control signal DCM_on causes a transient pulse in the demagnetization detection signal DEM_off When is low, it is determined that the asymmetric half-bridge flyback converter power supply 100 operates in the discontinuous conduction mode and causes the second power switch Q2 to change from the on state to the off state. When a transient pulse occurs in the frequency control signal DCM_on, When the second power switch Q2 is changed from the off state to the on state, and the reverse primary side resonance current I Lr flowing through the primary side leakage inductance Lr of the transformer T is enough to realize the zero voltage conduction of the first power switch Q1, The low-side turn-off control signal ZVS_off is caused to have a transient pulse to turn off the second power switch.

圖1所示的非對稱半橋返馳式變換器電源100,在圖4所示的控制晶片400的控制下,當第一功率開關Q1從關斷狀態進入導通狀態後,輸入電壓(即,直流輸入電壓)Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(包括一次側電感Lp和一次側漏感Lr)充電,一次側諧振電流ILr正向增大,電流感測信號Vcs增大,當電流感測信號Vcs高於輸出回饋信號FB經過分壓後的電壓VFB_2時,比較器401生成上管關斷控制信號CV_off(例如,高位準),以指示第一功率開關Q1從導通狀態變為關斷狀態。第一功率開關Q1關斷後,由於電感中的電流無法突變,正向的一次側諧振電流ILr給第二功率開關Q2的寄生電容放電、第一功率開關Q1的寄生電容充電,使得HB電壓下降至0V,第二功率開關Q2的體二極體從關斷狀態變為導通狀態。此時,死區時間控制單元402從第一功率開關Q1從導通狀態變為關斷狀態時開始對第一功率開關Q1處於關斷狀態的 持續時間進行計時,並在第一功率開關Q1處於關斷狀態的持續時間達到預設死區時間時生成用於控制第二功率開關Q2從關斷狀態變為導通狀態的下管導通控制信號down_on,實現第二功率開關Q2的零電壓導通。 In the asymmetric half-bridge flyback converter power supply 100 shown in Figure 1, under the control of the control chip 400 shown in Figure 4, when the first power switch Q1 enters the on state from the off state, the input voltage (i.e., DC input voltage) Vin charges the primary side excitation inductance Lm (including primary side inductance Lp and primary side leakage inductance Lr) of the transformer T through the resonant capacitor Cr. The primary side resonant current I Lr increases positively, and the current sensing signal Vcs increases, when the current sensing signal Vcs is higher than the divided voltage V FB_2 of the output feedback signal FB, the comparator 401 generates a high-side turn-off control signal CV_off (for example, a high level) to instruct the first power switch Q1 changes from the on state to the off state. After the first power switch Q1 is turned off, since the current in the inductor cannot change suddenly, the forward primary side resonance current I Lr discharges the parasitic capacitance of the second power switch Q2 and charges the parasitic capacitance of the first power switch Q1, so that the HB voltage drops to 0V, the body diode of the second power switch Q2 changes from the off state to the on state. At this time, the dead time control unit 402 starts timing the duration of the first power switch Q1 in the off state from when the first power switch Q1 changes from the on state to the off state, and continues to count the duration when the first power switch Q1 is in the off state. When the duration of the off state reaches the preset dead time, a low-side conduction control signal down_on is generated for controlling the second power switch Q2 to change from the off state to the on state, thereby realizing zero-voltage conduction of the second power switch Q2.

如上所述,頻率控制單元404基於輸出回饋信號FB經過分壓後的電壓VFB_2,生成頻率控制信號DCM_on;退磁檢測單元405基於電壓感測信號INV和輸出回饋信號FB經過分壓後的電壓VFB_2(可選地,還基於外部調整信號ADJ),生成退磁檢測信號DEM_off;零電壓導通控制單元406基於頻率控制信號DCM_on、退磁檢測信號DEM_off、以及電壓感測信號INV,生成用於控制第二功率開關Q2從導通狀態變為關斷狀態的下管關斷控制信號ZVS_off。第二功率開關Q2關斷後,由於電感中的電流無法突變,負向的一次側諧振電流ILr給第一功率開關Q1的寄生電容放電、第二功率開關Q2的寄生電容充電,使得HB電壓上升至Vin,第一功率開關Q1的體二極體從關斷狀態變為導通狀態。死區時間控制單元402在第二功率開關Q2從導通狀態變為關斷狀態時開始對第二功率開關Q2處於關斷狀態的持續時間進行計時,並在第二功率開關Q2處於關斷狀態的持續時間達到預設死區時間時生成用於控制第一功率開關Q1從關斷狀態變為導通狀態的上管導通控制信號up_on,實現第一功率開關Q1的零電壓導通。 As described above, the frequency control unit 404 generates a frequency control signal DCM_on based on the voltage V FB_2 obtained by dividing the output feedback signal FB; the demagnetization detection unit 405 generates a demagnetization detection signal DEM_off based on the voltage sensing signal INV and the voltage V FB_2 obtained by dividing the output feedback signal FB (optionally, also based on the external adjustment signal ADJ); the zero voltage turn-on control unit 406 generates a lower tube turn-off control signal ZVS_off for controlling the second power switch Q2 to change from the on state to the off state based on the frequency control signal DCM_on, the demagnetization detection signal DEM_off, and the voltage sensing signal INV. After the second power switch Q2 is turned off, since the current in the inductor cannot change suddenly, the negative primary resonant current I Lr discharges the parasitic capacitance of the first power switch Q1 and charges the parasitic capacitance of the second power switch Q2, causing the HB voltage to rise to Vin, and the body diode of the first power switch Q1 changes from the off state to the on state. The dead time control unit 402 starts to count the duration of the second power switch Q2 being in the off state when the second power switch Q2 changes from the on state to the off state, and generates an upper tube conduction control signal up_on for controlling the first power switch Q1 to change from the off state to the on state when the duration of the second power switch Q2 being in the off state reaches the preset dead time, thereby realizing zero-voltage conduction of the first power switch Q1.

圖5示出了採用圖4所示的控制晶片400的非對稱半橋返馳式變換器電源100在臨界導通模式下工作時的多個信號的工作波形圖。如圖5所示,在t0時刻,第一功率開關Q1從關斷狀態變為導通狀態,非對稱半橋返馳式變換器電源100的輸入電壓(即,直流輸入電壓)Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(包括一次側電感Lp和一次側漏感Lr)充電,一次側諧振電流ILr正向增大,電流感測信號Vcs增大;在t1時刻,電流感測信號Vcs高 於輸出回饋信號FB經過分壓後的電壓VFB_2,第一功率開關Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,正向的一次側諧振電流ILr給第二功率開關Q2的寄生電容放電、第一功率開關Q1的寄生電容充電,第一功率開關Q1和第二功率開關Q2之間的中間點HB處的電壓(簡稱HB電壓)下降;在HB電壓下降至0V時,第二功率開關Q2的體二極體從關斷狀態變為導通狀態;死區時間控制單元402從t1時刻開始對第一功率開關Q1處於關斷狀態的持續時間進行計時,並在第一功率開關Q1處於關斷狀態的持續時間達到預設死區時間時,在t2時刻,生成下管導通控制信號down_on(例如,高位準)使第二功率開關Q2從關斷狀態變為導通狀態,實現第二功率開關Q2的零電壓導通;之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,變壓器一次側諧振電流ILr下降至0A後負向增大,同時變壓器T的二次側電感Ls退磁,一次側勵磁電流ILm減小;在t3時刻,一次側勵磁電流ILm減小到0A,退磁檢測信號DEM_off出現暫態脈衝,若頻率控制信號DCM_on持續為高位準或者在退磁檢測信號DEM_off出現暫態脈衝前變為高位準(即,非對稱半橋返馳式變換器電源100工作於臨界導通模式),第二功率開關Q2繼續處於導通狀態,諧振電容Cr通過第二功率開關Q2對變壓器T的一次側勵磁電感Lm放電,一次側諧振電流ILr負向增大,直至一次側諧振電流ILr的負向幅值足夠實現第一功率開關Q1的零電壓導通;在t4時刻,下管關斷控制信號ZVS_off出現暫態脈衝,第二功率開關Q2從導通狀態變為關斷狀態,諧振電容Cr對變壓器T的一次側勵磁電感Lm放電的回路斷開,由於電感中的電流無法突變,負向的一次側諧振電流ILr給第一功率開關Q1的寄生電容放電、第二功率開關Q2的寄生電容充電,HB電壓上升(若負向的一次側諧振電流ILr足夠大,HB電壓將上升直至輸入電壓Vin);HB電壓上升至輸入電壓Vin後,第 一功率開關Q1的體二極體從關斷狀態變為導通狀態;死區時間控制單元402從t4時刻開始對第二功率開關Q2處於關斷狀態的持續時間進行計時,並在第二功率開關Q2處於關斷狀態的持續時間達到預設死區時間時,在t5時刻,生成上管導通控制信號up_on(例如,高位準)使第一功率開關Q1從關斷狀態變為導通狀態,實現第一功率開關Q1的零電壓導通。 FIG. 5 shows operating waveform diagrams of multiple signals when the asymmetric half-bridge flyback converter power supply 100 using the control chip 400 shown in FIG. 4 operates in the critical conduction mode. As shown in Figure 5, at time t0, the first power switch Q1 changes from the off state to the on state, and the input voltage (ie, DC input voltage) Vin of the asymmetric half-bridge flyback converter power supply 100 passes through the resonant capacitor Cr. The primary side excitation inductance Lm of the transformer T (including the primary side inductance Lp and the primary side leakage inductance Lr) is charged, the primary side resonance current I Lr increases positively, and the current sensing signal Vcs increases; at time t1, the current sensing signal When the measurement signal Vcs is higher than the divided voltage V FB_2 of the output feedback signal FB, the first power switch Q1 changes from the on state to the off state, and the input voltage Vin charges the primary side excitation inductance Lm of the transformer T. The loop is disconnected. , since the current in the inductor cannot mutate, the forward primary side resonant current I Lr discharges the parasitic capacitance of the second power switch Q2 and charges the parasitic capacitance of the first power switch Q1. The first power switch Q1 and the second power switch Q2 The voltage at the midpoint HB (referred to as the HB voltage) drops; when the HB voltage drops to 0V, the body diode of the second power switch Q2 changes from the off state to the on state; the dead time control unit 402 changes from the off state to the on state. At time t1, the duration of the first power switch Q1 in the off state is started to be counted, and when the duration of the first power switch Q1 in the off state reaches the preset dead time, at the time t2, the down-side conduction control is generated The signal down_on (for example, high level) causes the second power switch Q2 to change from the off state to the on state, realizing zero-voltage conduction of the second power switch Q2; then the resonant capacitor Cr resonates with the primary side leakage inductance Lr of the transformer T, and the transformer The primary side resonant current I Lr decreases to 0A and then increases in the negative direction. At the same time, the secondary side inductance Ls of the transformer T demagnetizes, and the primary side excitation current I Lm decreases; at time t3, the primary side excitation current I Lm decreases to 0A, the demagnetization detection signal DEM_off has a transient pulse. If the frequency control signal DCM_on continues to be at a high level or becomes a high level before the demagnetization detection signal DEM_off has a transient pulse (that is, the asymmetric half-bridge flyback converter power supply 100 is working (in the critical conduction mode), the second power switch Q2 continues to be in the on state, the resonant capacitor Cr discharges the primary side excitation inductor Lm of the transformer T through the second power switch Q2, and the primary side resonant current I Lr increases negatively until The negative amplitude of the side resonance current I Lr is enough to achieve zero-voltage conduction of the first power switch Q1; at time t4, a transient pulse appears in the low-side turn-off control signal ZVS_off, and the second power switch Q2 changes from the on state to the off state. state, the circuit in which the resonant capacitor Cr discharges the primary side excitation inductance Lm of the transformer T is disconnected. Since the current in the inductor cannot mutate, the negative primary side resonant current I Lr discharges the parasitic capacitance of the first power switch Q1, and the third The parasitic capacitance of the second power switch Q2 is charged, and the HB voltage rises (if the negative primary side resonance current I Lr is large enough, the HB voltage will rise until the input voltage Vin); after the HB voltage rises to the input voltage Vin, the first power switch Q1 The body diode changes from the off state to the on state; the dead time control unit 402 starts timing the duration of the second power switch Q2 in the off state from time t4, and when the second power switch Q2 is in the off state, When the duration of the state reaches the preset dead time, at time t5, the upper tube conduction control signal up_on (for example, high level) is generated to change the first power switch Q1 from the off state to the on state, realizing the first power switch Q1 zero voltage conduction.

在圖5中,第一功率開關Q1的導通時間(從t0時刻到t1時刻)的時長Ton由輸出回饋信號FB的大小決定;第二功率開關Q2變為導通狀態的t2時刻到一次側勵磁電流ILm從峰值電流Ip退磁至0A的t3時刻的時長Tdem由退磁檢測單元405計算的退磁時間控制;退磁檢測單元405判斷退磁結束的t3時刻到一次側諧振電流ILr負向增大到足以使第一功率開關Q1零電壓導通的t4時刻(此時使第二功率開關Q2由導通狀態變為關斷狀態)的時長TZVS由零電壓導通控制單元406根據電壓感測信號INV確定的第一功率開關Q1變為導通狀態時的HB電壓控制。 In Figure 5, the duration T on of the conduction time of the first power switch Q1 (from time t0 to time t1) is determined by the size of the output feedback signal FB; the second power switch Q2 becomes conductive from the time t2 to the primary side. The duration T dem of the excitation current I Lm from the peak current Ip to 0 A at the time t3 is controlled by the demagnetization time calculated by the demagnetization detection unit 405; the demagnetization detection unit 405 determines that the demagnetization is completed at the time t3 to the time when the primary side resonance current I Lr is negative. The duration T ZVS is increased enough to make the first power switch Q1 turn on at zero voltage at time t4 (when the second power switch Q2 changes from the on state to the off state), which is sensed by the zero voltage turn on control unit 406 according to the voltage. The signal INV determines the HB voltage control when the first power switch Q1 becomes conductive.

圖6示出了採用圖4所示的控制晶片400的非對稱半橋返馳式變換器電源100在非連續導通模式下工作時的多個信號的工作波形圖。如圖6所示,在t0時刻,第一功率開關Q1從關斷狀態變為導通狀態,非對稱半橋返馳式變換器電源100的輸入電壓(即,直流輸入電壓)Vin通過諧振電容Cr給變壓器T的一次側勵磁電感Lm(包括一次側電感Lp和一次側漏感Lr)充電,一次側諧振電流ILr正向增大,電流感測信號Vcs增大;在t1時刻,電流感測信號Vcs高於輸出回饋信號FB經過分壓後的電壓VFB_2,第一功率開關Q1從導通狀態變為關斷狀態,輸入電壓Vin給變壓器T的一次側勵磁電感Lm充電的回路斷開,由於電感中的電流無法突變,正向的一次側諧振電流ILr給第二功率開關Q2的寄生電容放電、第一功率開關Q1的寄生電容充電,HB電壓下降;在HB電壓下降至0V時,第二功率 開關Q2的體二極體從關斷狀態變為導通狀態;死區時間控制單元402從t1時刻開始對第一功率開關Q1處於關斷狀態的持續時間進行計時,並在第一功率開關Q1處於關斷狀態的持續時間達到預設死區時間時,在t2時刻,生成下管導通控制信號down_on(例如,高位準)使第二功率開關Q2從關斷狀態變為導通狀態,實現第二功率開關Q2的零電壓導通;之後諧振電容Cr和變壓器T的一次側漏感Lr諧振,變壓器一次側諧振電流ILr下降至0A後負向增大,同時變壓器T的二次側電感Ls退磁,一次側勵磁電流ILm減小;在t3時刻,一次側勵磁電流ILm減小到0A,退磁檢測信號DEM_off出現暫態脈衝,若頻率控制信號DCM_on此時為低位準(即,非對稱半橋返馳式變換器電源100工作於非連續導通模式),則直接使第二功率開關Q2變為關斷狀態;在t4時刻,頻率控制單元404基於輸出回饋信號FB使輸出的頻率控制信號DCM_on變為高位準,使第二功率開關Q2再次變為導通狀態,諧振電容Cr通過第二功率開關Q2對變壓器T的一次側勵磁電感Lm放電,一次側諧振電流ILr負向增大,直至一次側諧振電流ILr的負向幅值足夠實現第一功率開關Q1的零電壓導通;在t5時刻,下管關斷控制信號ZVS_off出現暫態脈衝,第二功率開關Q2再次從導通狀態變為關斷狀態,諧振電容Cr對變壓器T的一次側勵磁電感Lm放電的回路斷開,由於電感中的電流無法突變,負向的一次側諧振電流ILr給第一功率開關Q1的寄生電容放電、第二功率開關Q2的寄生電容充電,HB電壓上升(若負向的一次側諧振電流ILr足夠大,HB電壓將上升直至輸入電壓Vin);HB電壓上升至輸入電壓Vin後,第一功率開關Q1的體二極體從關斷狀態變為導通狀態;死區時間控制單元402從t5時刻開始對第二功率開關Q2處於關斷狀態的持續時間進行計時,並在第二功率開關Q2處於關斷狀態的持續時間達到預設死區時間時,在t6時刻,生成上管導通控制信號up_on(例如,高位準)使第一功率開關Q1從關斷狀態變為導通狀態,實 現第一功率開關Q1的零電壓導通。 FIG6 shows the operating waveforms of multiple signals when the asymmetric half-bridge flyback converter power supply 100 using the control chip 400 shown in FIG4 operates in a discontinuous conduction mode. As shown in FIG6, at time t0, the first power switch Q1 changes from the off state to the on state, and the input voltage (i.e., the DC input voltage) Vin of the asymmetric half-bridge flyback converter power supply 100 charges the primary side magnetizing inductance Lm (including the primary side inductance Lp and the primary side leakage inductance Lr) of the transformer T through the resonant capacitor Cr, and the primary side resonant current I Lr increases in a positive direction, and the current flow detection signal Vcs increases; at time t1, the current flow detection signal Vcs is higher than the voltage V FB_2 of the output feedback signal FB after voltage division. , the first power switch Q1 changes from the on state to the off state, the input voltage Vin charges the primary side magnetizing inductance Lm of the transformer T, and the current in the inductance cannot change suddenly, the positive primary side resonant current I Lr discharges the parasitic capacitance of the second power switch Q2 and charges the parasitic capacitance of the first power switch Q1, and the HB voltage decreases; when the HB voltage drops to 0V, the body diode of the second power switch Q2 changes from the off state to the on state; the dead time control unit 402 starts to count the duration of the first power switch Q1 being in the off state from the moment t1, and counts the duration of the first power switch Q1 being in the off state at the moment t2. When the duration of the switch Q1 being in the off state reaches the preset dead time, at time t2, a lower tube conduction control signal down_on (for example, a high level) is generated to change the second power switch Q2 from the off state to the on state, thereby realizing zero-voltage conduction of the second power switch Q2; thereafter, the resonant capacitor Cr resonates with the primary leakage inductance Lr of the transformer T, and the transformer primary resonant current I Lr decreases to 0A and then increases in a negative direction. At the same time, the secondary inductance Ls of the transformer T is demagnetized, and the primary magnetizing current I Lm decreases; at time t3, the primary magnetizing current I Lm decreases to 0A, and a transient pulse appears in the demagnetization detection signal DEM_off. If the frequency control signal DCM_on is at a low level at this time (i.e., the asymmetric half-bridge flyback converter power supply 100 operates in a discontinuous conduction mode), the second power switch Q2 is directly turned off. At time t4, the frequency control unit 404 changes the output frequency control signal DCM_on to a high level based on the output feedback signal FB, so that the second power switch Q2 is turned on again. The resonant capacitor Cr discharges the primary side magnetizing inductance Lm of the transformer T through the second power switch Q2, and the primary side resonant current I Lr increases negatively until the primary side resonant current I The negative amplitude of Lr is sufficient to realize the zero voltage conduction of the first power switch Q1; at time t5, the lower tube shutdown control signal ZVS_off has a transient pulse, and the second power switch Q2 changes from the on state to the off state again, and the circuit of the resonant capacitor Cr discharging the primary side magnetizing inductance Lm of the transformer T is broken. Since the current in the inductor cannot change suddenly, the negative primary side resonant current I Lr discharges the parasitic capacitance of the first power switch Q1 and charges the parasitic capacitance of the second power switch Q2, and the HB voltage rises (if the negative primary side resonant current I Lr is large enough, the HB voltage will rise until it reaches the input voltage Vin); after the HB voltage rises to the input voltage Vin, the body diode of the first power switch Q1 changes from the off state to the on state; the dead time control unit 402 starts to time the duration of the second power switch Q2 being in the off state from moment t5, and when the duration of the second power switch Q2 being in the off state reaches the preset dead time, at moment t6, an upper tube conduction control signal up_on (for example, a high level) is generated to make the first power switch Q1 change from the off state to the on state, thereby realizing zero-voltage conduction of the first power switch Q1.

在圖6中,第一功率開關Q1的導通時間(從t0時刻到t1時刻)的時長Ton由輸出回饋信號FB的大小決定;第二功率開關Q2變為導通狀態的t2時刻到一次側勵磁電流ILm從峰值電流Ip退磁至0A的t3時刻(此時使第二功率開關Q2由導通狀態變為關斷狀態)的時長Tdem由退磁檢測單元405計算的退磁時間控制;頻率控制信號DCM_on變為高位準使第二功率開關Q2再次變為導通狀態的t4時刻到一次側諧振電流ILr負向增大到足以使第一功率開關Q1零電壓導通的t5時刻(此時使第二功率開關Q2由導通狀態變為關斷狀態)之間的時長TZVS由零電壓導通控制單元406根據電壓感測信號INV確定的第一功率開關Q1變為導通狀態時的HB電壓控制。 In Figure 6, the duration T on of the conduction time of the first power switch Q1 (from time t0 to time t1) is determined by the size of the output feedback signal FB; the second power switch Q2 becomes conductive from the time t2 to the primary side. The duration T dem when the excitation current I Lm demagnetizes from the peak current Ip to 0A at time t3 (at which time the second power switch Q2 changes from the on state to the off state) is controlled by the demagnetization time calculated by the demagnetization detection unit 405; the frequency From the time t4 when the control signal DCM_on becomes high level and the second power switch Q2 turns on again to the time t5 when the primary side resonant current I Lr increases negatively enough to make the first power switch Q1 conduct at zero voltage (at this time, the first power switch Q1 is turned on at zero voltage). The time period T ZVS between the second power switch Q2 changing from the on state to the off state is controlled by the HB voltage when the first power switch Q1 becomes the on state determined by the zero voltage conduction control unit 406 according to the voltage sensing signal INV. .

結合圖1、圖4-圖6可以得出,由於第二功率開關Q2導通期間,通過電流感測電阻Rcs檢測到的只是一次側漏感Lr中的一次側諧振電流ILr,而無法直接檢測一次側勵磁電流ILm,所以無法直接根據電流感測信號Vcs檢測勵磁電流變為0A來確定t3時刻。第一功率開關Q1變為關斷狀態時刻的峰值電流Ip由輸出回饋信號FB經過分壓後的電壓VFB_2決定:Ip=VFB_2/Rcs,基於電壓感測信號INV可以確定退磁電壓,從而可以通過計算來得出退磁時間。 Combining Figure 1, Figure 4-Figure 6, it can be concluded that, during the conduction period of the second power switch Q2, only the primary side resonant current I Lr in the primary side leakage inductance Lr is detected by the inductive sensing resistor Rcs, and the primary side magnetizing current I Lm cannot be directly detected. Therefore, the moment t3 cannot be determined directly based on the inductive sensing signal Vcs to detect that the magnetizing current becomes 0A. The peak current Ip when the first power switch Q1 becomes off is determined by the voltage V FB_2 of the output feedback signal FB after voltage division: Ip=V FB_2 /Rcs. The demagnetization voltage can be determined based on the voltage sensing signal INV, and the demagnetization time can be calculated.

無論非對稱半橋返馳式變換器電源100工作於臨界導通模式還是非連續導通模式,第二功率開關Q2導通時的退磁期間一次側勵磁電感Lm的退磁電壓都是N‧Vo,其中N=NP:Ns,NP表示變壓器T的一次繞組的線圈匝數,Ns表示變壓器T的二次繞組的線圈匝數,Vo表示非對稱半橋返馳式變換器電源100的輸出電壓。因此,一次側勵磁電流ILm從峰值電流Ip退磁到0A所需的時長Tdem大小為: Regardless of whether the asymmetric half-bridge flyback converter power supply 100 operates in the critical conduction mode or the discontinuous conduction mode, the demagnetization voltage of the primary-side magnetizing inductor Lm during the demagnetization period when the second power switch Q2 is turned on is N‧Vo, where N= NP : Ns , NP represents the number of turns of the primary winding of the transformer T, Ns represents the number of turns of the secondary winding of the transformer T, and Vo represents the output voltage of the asymmetric half-bridge flyback converter power supply 100. Therefore, the time Tdem required for the primary-side magnetizing current I Lm to demagnetize from the peak current Ip to 0A is:

Tdem=Lp×Ip/(N‧Vo)=Lp×VFB_2/(Rcs×N‧Vo) (1)。 Tdem =Lp×Ip/(N‧Vo)=Lp× VFB_2 /(Rcs×N‧Vo) (1).

圖7示出了圖4所示的控制晶片400中的退磁檢測單 元405的一種示例實現的電路原理圖。在該示例實現中,退磁檢測單元405基於電壓感測信號INV、輸出回饋信號FB經過分壓後的電壓VFB_2以及外部調整信號ADJ,生成用於表徵變壓器T的一次側勵磁電感Lm的退磁情況的退磁檢測信號DEM_off。 Fig. 7 shows a circuit schematic diagram of an exemplary implementation of the demagnetization detection unit 405 in the control chip 400 shown in Fig. 4. In this exemplary implementation, the demagnetization detection unit 405 generates a demagnetization detection signal DEM_off for characterizing the demagnetization condition of the primary-side magnetizing inductance Lm of the transformer T based on the voltage sensing signal INV, the voltage V FB_2 obtained by dividing the output feedback signal FB, and the external adjustment signal ADJ.

具體地,退磁檢測單元405可以被配置為在一次側勵磁電感Lm的退磁期間,對電壓感測信號進行採樣得到與退磁電壓N.Vo成比例的採樣電壓V1,基於該採樣電壓V1和外部調整信號ADJ生成受控信號VC1,通過比較受控信號VC1和輸出回饋信號FB經過分壓後的電壓VFB_2的大小來確定是否使退磁檢測信號DEM_off出現暫態脈衝,以及通過設置外部調整信號ADJ來使得退磁檢測信號DEM_off恰在變壓器T的一次側勵磁電感Lm退磁結束的時刻出現暫態脈衝,從而能夠通過退磁檢測信號DEM_off識別變壓器T的一次側勵磁電感Lm退磁結束的時刻,即圖5或圖6中所示的t3時刻。 Specifically, the demagnetization detection unit 405 may be configured to sample the voltage sensing signal during the demagnetization period of the primary side excitation inductor Lm to obtain the demagnetization voltage N. Vo is proportional to the sampling voltage V1. Based on the sampling voltage V1 and the external adjustment signal ADJ, the controlled signal V C1 is generated. By comparing the size of the controlled signal V C1 and the divided voltage V FB_2 of the output feedback signal FB, it is determined whether Make the demagnetization detection signal DEM_off appear a transient pulse, and set the external adjustment signal ADJ to make the demagnetization detection signal DEM_off appear a transient pulse just at the moment when the primary side excitation inductance Lm of the transformer T is demagnetized, so that the demagnetization detection signal DEM_off can be passed Identify the time when demagnetization of the primary side excitation inductance Lm of the transformer T ends, that is, the time t3 shown in Figure 5 or Figure 6.

圖7中示出了退磁檢測單元405在上述配置下的一種具體實現方式。如圖7所示,退磁檢測單元405可以包括採樣模組405-1、壓控電流源405-2、比較模組405-3、以及開關S0/S1和電容器C2,它們如圖中所示地連接。 FIG7 shows a specific implementation of the demagnetization detection unit 405 under the above configuration. As shown in FIG7 , the demagnetization detection unit 405 may include a sampling module 405-1, a voltage-controlled current source 405-2, a comparison module 405-3, and switches S0/S1 and capacitor C2, which are connected as shown in the figure.

採樣模組405-1在第二功率開關Q2導通後的退磁時段Tdem內對電壓感測信號INV進行採樣得到電壓V1: The sampling module 405-1 samples the voltage sensing signal INV in the demagnetization period Tdem after the second power switch Q2 is turned on to obtain the voltage V1:

Figure 112117188-A0101-12-0017-1
Figure 112117188-A0101-12-0017-1

其中,NP表示變壓器T的一次繞組的線圈匝數,Ns表示變壓器T的二次繞組的線圈匝數,N=NP:Ns表示變壓器T的一次繞組的線圈匝數與二次繞組的線圈匝數之比,Naux表示非對稱半橋返馳式變換器電源100的變壓器T的輔助繞組的線圈匝數,R1、R2分別為非對稱半橋返馳式變換器電源100的變壓器T的輔助繞組分壓結構中的分壓電阻的阻值,Vo表示非對稱半橋返馳式變換器電源 100的輸出電壓,NVo表示第二功率開關Q2導通時的退磁期間一次側勵磁電感Lm的退磁電壓。 Where, NP represents the number of turns of the primary winding of transformer T, Ns represents the number of turns of the secondary winding of transformer T, N= NP :N s represents the ratio of the number of turns of the primary winding of the transformer T to the number of turns of the secondary winding, Naux represents the number of turns of the auxiliary winding of the transformer T of the asymmetric half-bridge flyback converter power supply 100, R1 and R2 are respectively the resistance values of the divider resistor in the divider structure of the auxiliary winding of the transformer T of the asymmetric half-bridge flyback converter power supply 100, Vo represents the output voltage of the asymmetric half-bridge flyback converter power supply 100, and NVo represents the demagnetization voltage of the primary side magnetizing inductance Lm during the demagnetization period when the second power switch Q2 is turned on.

V1電壓和外部調整信號ADJ被送入壓控電流源405-2,生成電流I1,I1=k1‧V1,其中係數k1受外部調整信號ADJ控制。第二功率開關Q2導通時的退磁期間(即Tdem)內,開關S0導通,電流I1對電容器C1充電得到電壓VC1(即,受控信號VC1)。電壓VC1和輸出回饋信號FB經過分壓後的電壓VFB_2被送入比較模組405-3進行比較。當電壓VC1高於電壓VFB_2時,DEM_off信號由低位準變為高位準。 The voltage V1 and the external adjustment signal ADJ are sent to the voltage-controlled current source 405-2 to generate a current I1, I1=k1‧V1, where the coefficient k1 is controlled by the external adjustment signal ADJ. During the demagnetization period (i.e., T dem ) when the second power switch Q2 is turned on, the switch S0 is turned on, and the current I1 charges the capacitor C1 to obtain the voltage V C1 (i.e., the controlled signal V C1 ). The voltage V C1 and the output feedback signal FB are divided into a voltage V FB_2 and sent to the comparison module 405-3 for comparison. When the voltage V C1 is higher than the voltage V FB_2 , the DEM_off signal changes from a low level to a high level.

由此計算得出第二功率開關Q2導通時的退磁時段Tdem為: From this calculation, the demagnetization period T dem when the second power switch Q2 is turned on is:

Figure 112117188-A0101-12-0018-4
Figure 112117188-A0101-12-0018-4

其中,C1表示電容器C1的電容值。 Where C1 represents the capacitance value of capacitor C1.

DEM_off信號變為高位準後,立即使開關S0關斷、S1導通,將電壓VC1放電至0V,為下一次退磁充電做準備,之後使開關S1關斷。從而,DEM_off信號呈現為暫態脈衝狀。 When the DEM_off signal becomes high, the switch S0 is immediately turned off and S1 is turned on, discharging the voltage VC1 to 0V to prepare for the next demagnetization charge, and then the switch S1 is turned off. Therefore, the DEM_off signal appears as a transient pulse.

一次側勵磁電流ILm從峰值電流Ip退磁至0A所需的Tdem時長為: The time T dem required for the primary side excitation current I Lm to demagnetize from the peak current Ip to 0A is:

Tdem=Lp×VFB_2/(Rcs×NVo) (4)。 T dem =Lp×V FB_2 /(Rcs×NVo) (4).

因此,使等式(3)和等式(4)相等,只需保證

Figure 112117188-A0101-12-0018-2
,即
Figure 112117188-A0101-12-0018-3
就可以滿足DEM_off 信號出現暫態脈衝時恰好一次側勵磁電流ILm退磁到0A。 Therefore, to make equation (3) and equation (4) equal, we only need to ensure that
Figure 112117188-A0101-12-0018-2
,Right now
Figure 112117188-A0101-12-0018-3
It can be satisfied that the primary side excitation current I Lm demagnetizes to 0A when a transient pulse occurs in the DEM_off signal.

電容器C1的電容值是預先設置的固定參數,一次側電感Lp、一次繞組的線圈匝數Np、輔助繞組的線圈匝數Naux、輔助繞組分壓電阻R1和R2及電流感測電阻Rcs都由系統參數決定,所以只需要設置外部調整信號ADJ讓等式滿足即可。可替代地,在一些 實施例中,可以通過第一功率開關Q1導通期間內部計算電感充電斜率來確定k1的大小。因此,可以通過設置外部調整信號ADJ來使得退磁檢測信號恰在變壓器的一次側勵磁電感退磁結束的時刻出現暫態脈衝。 The capacitance value of capacitor C1 is a preset fixed parameter, and the primary inductor Lp, the number of turns of the primary winding Np , the number of turns of the auxiliary winding Naux, the auxiliary winding voltage divider resistors R1 and R2, and the current flow sensing resistor Rcs are all determined by system parameters, so it is only necessary to set the external adjustment signal ADJ to satisfy the equation. Alternatively, in some embodiments, the size of k1 can be determined by internally calculating the inductor charging slope during the conduction period of the first power switch Q1. Therefore, the demagnetization detection signal can be set by setting the external adjustment signal ADJ to have a transient pulse at the moment when the demagnetization of the primary magnetizing inductor of the transformer is completed.

圖8示出了圖4所示的控制晶片400中的退磁檢測單元405的另一種示例實現的電路原理圖。在該示例實現中,退磁檢測單元405僅基於電壓感測信號INV和輸出回饋信號FB經過分壓後的電壓VFB_2就能夠生成用於表徵變壓器T的一次側勵磁電感Lm的退磁情況的退磁檢測信號DEM_off。 FIG. 8 shows a circuit schematic diagram of another example implementation of the demagnetization detection unit 405 in the control chip 400 shown in FIG. 4 . In this example implementation, the demagnetization detection unit 405 can generate a demagnetization signal for characterizing the demagnetization of the primary side excitation inductance Lm of the transformer T based only on the voltage sensing signal INV and the divided voltage V FB_2 of the output feedback signal FB. Detect signal DEM_off.

具體地,退磁檢測單元405可以被配置為在第一功率開關Q1導通期間,對電壓感測信號INV進行採樣得到與(Vin-N‧Vo)成比例的第一採樣電壓V2,在第一功率開關Q1由導通狀態變為關斷狀態時,基於第一採樣電壓V2和輸出回饋信號FB經過分壓後的電壓VFB_2,運算得出比例控制信號,在一次側勵磁電感Lm的退磁期間,對電壓感測信號INV進行採樣得到與退磁電壓N‧Vo成比例的第二採樣電壓V3,基於比例控制信號和第二採樣電壓V3得到受控信號VC3,通過比較受控信號VC3和輸出回饋信號FB經過分壓後的電壓VFB_2的大小來確定是否使退磁檢測信號DEM_off出現暫態脈衝,以及通過設置比例控制信號來使得退磁檢測信號DEM_off恰在變壓器T的一次側勵磁電感Lm退磁結束的時刻出現暫態脈衝,從而能夠通過退磁檢測信號DEM_off識別變壓器T的一次側勵磁電感Lm退磁結束的時刻,即圖5或圖6中所示的t3時刻。 Specifically, the demagnetization detection unit 405 may be configured to sample the voltage sensing signal INV to obtain a first sampling voltage V2 proportional to (Vin-N‧Vo) during the conduction period of the first power switch Q1. When the switch Q1 changes from the on state to the off state, the proportional control signal is calculated based on the first sampling voltage V2 and the divided voltage V FB_2 of the output feedback signal FB. During the demagnetization period of the primary side excitation inductor Lm, The voltage sensing signal INV is sampled to obtain a second sampling voltage V3 that is proportional to the demagnetization voltage N‧Vo. Based on the proportional control signal and the second sampling voltage V3, a controlled signal V C3 is obtained. By comparing the controlled signal V C3 with the output The size of the divided voltage V FB_2 of the feedback signal FB is used to determine whether the demagnetization detection signal DEM_off will have a transient pulse, and the proportional control signal is set to make the demagnetization detection signal DEM_off just demagnetize the primary side excitation inductance Lm of the transformer T. A transient pulse appears at the end time, so that the demagnetization detection signal DEM_off can be used to identify the time at which demagnetization of the primary side excitation inductance Lm of the transformer T ends, that is, the t3 time shown in Figure 5 or Figure 6.

圖8中示出了退磁檢測單元405在上述配置下的一種具體實現方式。如圖8所示,退磁檢測單元405可以包括採樣模組405-1’、第一壓控電流源405-2’、第二壓控電流源405-3’、運算模組405-4’、比較模組405-5’、以及開關S2/S3/S4/S5和電容器C2/C3,它們如圖中所示地連接。 Figure 8 shows a specific implementation of the demagnetization detection unit 405 under the above configuration. As shown in Figure 8, the demagnetization detection unit 405 may include a sampling module 405-1', a first voltage-controlled current source 405-2', a second voltage-controlled current source 405-3', an operation module 405-4', Compare module 405-5', as well as switches S2/S3/S4/S5 and capacitors C2/C3, connected as shown in the figure.

採樣模組405-1’對電壓感測信號INV進行採樣分別得到電壓V2和V3,其中電壓V2為在第一功率開關Q1導通期間採樣的與充磁電壓(Vin-N‧Vo)成比例的電壓: The sampling module 405-1' samples the voltage sensing signal INV to obtain voltages V2 and V3 respectively, wherein the voltage V2 is a voltage proportional to the magnetizing voltage (Vin-N‧Vo) sampled during the conduction period of the first power switch Q1:

Figure 112117188-A0101-12-0020-8
Figure 112117188-A0101-12-0020-8

V3為在第二功率開關Q2導通後的退磁時段內採樣的與退磁電壓N‧Vo成比例的電壓: V3 is the voltage proportional to the demagnetization voltage N‧Vo sampled during the demagnetization period after the second power switch Q2 is turned on:

Figure 112117188-A0101-12-0020-7
Figure 112117188-A0101-12-0020-7

其中,Np表示非對稱半橋返馳式變換器電源100的變壓器T的一次繞組的線圈匝數,Naux表示非對稱半橋返馳式變換器電源100的變壓器T的輔助繞組的線圈匝數,R1、R2分別為非對稱半橋返馳式變換器電源100的變壓器T的輔助繞組分壓結構中的分壓電阻的阻值,(Vin-N‧Vo)表示第一功率開關Q1導通期間的充磁電壓,Vin表示非對稱半橋返馳式變換器電源100的輸入電壓,Vo表示非對稱半橋返馳式變換器電源100的輸出電壓,N=NP:Ns,NP表示變壓器T的一次繞組的線圈匝數,Ns表示變壓器T的二次繞組的線圈匝數。 Among them, N p represents the number of coil turns of the primary winding of the transformer T of the asymmetric half-bridge flyback converter power supply 100 , and Naux represents the number of coil turns of the auxiliary winding of the transformer T of the asymmetric half-bridge flyback converter power supply 100 , R1 and R2 are respectively the resistance values of the voltage dividing resistors in the auxiliary winding voltage dividing structure of the transformer T of the asymmetric half-bridge flyback converter power supply 100, (Vin-N‧Vo) represents the conduction period of the first power switch Q1 The magnetizing voltage, Vin represents the input voltage of the asymmetric half-bridge flyback converter power supply 100, Vo represents the output voltage of the asymmetric half-bridge flyback converter power supply 100, N= NP : N s , N P represents The number of coil turns of the primary winding of transformer T, N s represents the number of coil turns of the secondary winding of transformer T.

第一壓控電流源405-2’基於電壓V2生成電流I2:I2=k2‧V2,係數k2為預設的固定值。在第一功率開關Q1的導通時段Ton內,使開關S2導通,電流I2對電容器C2充電得到電壓VC2,在第一功率開關Q1變為關斷狀態的同時使開關S2關斷,對電容器C2的充電結束。在電容器C2的充電結束時,VC2=k2.(V in -N.Vo).

Figure 112117188-A0101-12-0020-5
。在第二功率開關Q2導通後的退磁時段內, 電壓VC2維持不變。根據變壓器的一次側電感充電伏秒公式計算得到第一功率開關Q1的導通時段
Figure 112117188-A0101-12-0020-6
。將等式(8) 代入等式(7)可以得出
Figure 112117188-A0101-12-0021-9
。 The first voltage-controlled current source 405-2' generates current I2 based on voltage V2: I2=k2‧V2, and coefficient k2 is a preset fixed value. During the conduction period Ton of the first power switch Q1, the switch S2 is turned on, and the current I2 charges the capacitor C2 to obtain the voltage V C2 . When the first power switch Q1 becomes the off state, the switch S2 is turned off, and the capacitor C2 is charged. The charging is completed. At the end of charging of capacitor C2, V C2 = k 2. (V in -N.Vo).
Figure 112117188-A0101-12-0020-5
. During the demagnetization period after the second power switch Q2 is turned on, the voltage V C2 remains unchanged. The conduction period of the first power switch Q1 is calculated according to the primary side inductance charging volt-second formula of the transformer.
Figure 112117188-A0101-12-0020-6
. Substituting equation (8) into equation (7) we get
Figure 112117188-A0101-12-0021-9
.

運算模組405-4’基於電壓VC2和輸出回饋信號FB經過分壓後的電壓VFB_2,得到比例控制信號k3×(VFB_2/VC2)。 The computing module 405-4' obtains the proportional control signal k3×(V FB_2 /V C2 ) based on the voltage V C2 and the divided voltage V FB_2 of the output feedback signal FB.

第二壓控電流源405-3’基於電壓V3和比例控制信號k3×(VFB_2/VC2)生成電流I3:I3=k3×(VFB_2/VC2)×V3。在第二功率開關Q2導通後的退磁時段Tdem內,使開關S4導通,電流I3對電容器C3充電得到電壓VC3(即,受控信號VC3)。電壓VC3和輸出回饋信號FB經過分壓後的電壓VFB_2被送入比較模組405-5’進行比較。當電壓VC3高於電壓VFB_2時,DEM_off信號由低位準變為高位準。由此計算得出第二功率開關Q2導通時的退磁時段Tdem為: The second voltage-controlled current source 405-3' generates a current I3 based on the voltage V3 and the proportional control signal k3×(V FB_2 /V C2 ): I3=k3×(V FB_2 /V C2 )×V3. In the demagnetization period T dem after the second power switch Q2 is turned on, the switch S4 is turned on, and the current I3 charges the capacitor C3 to obtain the voltage V C3 (i.e., the controlled signal V C3 ). The voltage V C3 and the output feedback signal FB are sent to the comparison module 405-5' for comparison after the voltage V FB_2 is divided. When the voltage V C3 is higher than the voltage V FB_2 , the DEM_off signal changes from a low level to a high level. The demagnetization period T dem when the second power switch Q2 is turned on is calculated as:

Figure 112117188-A0101-12-0021-10
Figure 112117188-A0101-12-0021-10

一次側勵磁電流ILm從峰值電流Ip退磁至0A所需的Tdem時長為: The time Tdem required for the primary magnetizing current I Lm to demagnetize from the peak current Ip to 0A is:

Figure 112117188-A0101-12-0021-11
Figure 112117188-A0101-12-0021-11

因此,使等式(10)和等式(11)相等,只需保證內部 參數

Figure 112117188-A0101-12-0021-12
,即可保證一次側勵磁電流ILm退磁到0A時DEM_off信號由低位準變為高位準。在DEM_off信號變為高位準後,立即使開關S3和S5導通,將電壓VC2和電壓VC3放電至0V,為下一次退磁計算的充電做準備,之後使開關S3和S5關斷。從而,DEM_off信號呈現為暫態脈衝狀。 Therefore, to make Equation (10) and Equation (11) equal, we only need to ensure that the internal parameters
Figure 112117188-A0101-12-0021-12
, which can ensure that the DEM_off signal changes from low level to high level when the primary side excitation current I Lm demagnetizes to 0A. After the DEM_off signal becomes high, the switches S3 and S5 are turned on immediately, and the voltage V C2 and the voltage V C3 are discharged to 0V to prepare for charging for the next demagnetization calculation, and then the switches S3 and S5 are turned off. Therefore, the DEM_off signal appears as a transient pulse.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有 方面都被看作是示例性的而非限定性的,本發明的範圍由所附請求項而非上述描述定義,並且,落入請求項的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The present invention may be implemented in other specific forms without departing from its spirit and essential features. For example, the algorithm described in a specific embodiment may be modified, and the system architecture does not depart from the basic spirit of the present invention. Therefore, the present embodiments are considered in all respects to be illustrative rather than restrictive, the scope of the present invention is defined by the attached claims rather than the above description, and all changes that fall within the meaning and scope of equivalents of the claims are thereby included in the scope of the present invention.

400:控制晶片 400: Control chip

401:比較器 401: Comparator

402:死區時間控制單元 402: Dead time control unit

403:第一邏輯控制單元(Logic1) 403: First logic control unit (Logic1)

404:頻率控制單元 404: Frequency control unit

405:退磁(Demagnetization,DEM)檢測單元 405: Demagnetization (DEM) detection unit

406:零電壓導通(Zero Voltage Switching,ZVS)控制單元 406: Zero Voltage Switching (ZVS) control unit

407:第二邏輯控制單元 407: Second logic control unit

AC:交流電 AC: alternating current

ADJ:外部調整信號 ADJ: external adjustment signal

Cr:諧振電容 Cr: resonant capacitor

CV_off:上管關斷控制信號 CV_off: Upper tube turn-off control signal

DCM_on:頻率控制信號 DCM_on: frequency control signal

DEM_off:退磁檢測信號 DEM_off: demagnetization detection signal

down_on:下管導通控制信號 down_on: Down tube conduction control signal

FB:輸出回饋信號 FB: Output feedback signal

Gate_down:下管控制信號 Gate_down: Down tube control signal

Gate_up:上管控制信號 Gate_up: Upper tube control signal

HB:第一功率開關Q1和第二功率開關Q2之間的中間點 HB: The midpoint between the first power switch Q1 and the second power switch Q2

IDo:二次側電流 I Do : secondary side current

ILr:一次側諧振電流 I Lr : primary side resonance current

INV:電壓感測信號 INV: voltage sensing signal

Lm:一次側勵磁電感 Lm: primary side magnetic inductance

Lp:一次側電感 Lp: primary side inductance

Lr:一次側漏感 Lr: primary side leakage inductance

Ls:二次側電感 Ls: Secondary inductance

Naux,Np,Ns:線圈匝數 Naux, Np , Ns : Number of coil turns

Q1:第一功率開關 Q1: The first power switch

Q2:第二功率開關 Q2: Second power switch

R1,R2:分壓電阻 R1, R2: voltage dividing resistor

Rcs:電流感測電阻 Rcs: Inductive flow measurement resistance

TL431:穩壓管 TL431: voltage regulator tube

up_on:上管導通控制信號 up_on: upper tube conduction control signal

Vaux:輔助繞組電壓 Vaux: auxiliary winding voltage

Vcs:電流感測信號 Vcs: current sensing signal

VFB_2:電壓 V FB_2 : Voltage

Vin:非對稱半橋返馳式變換器電源100的輸入電壓(直流輸入電壓) Vin: input voltage (DC input voltage) of the asymmetric half-bridge flyback converter power supply 100

Vo:非對稱半橋返馳式變換器電源100的輸出電壓 Vo: the output voltage of the asymmetric half-bridge flyback converter power supply 100

ZVS_off:下管關斷控制信號 ZVS_off: Lower tube shutdown control signal

Claims (17)

一種用於非對稱半橋返馳式變換器電源的控制晶片,其特徵在於,所述非對稱半橋返馳式變換器電源包括第一功率開關、第二功率開關、諧振電容、以及變壓器,該變壓器的一次側勵磁電感包括一次側電感和一次側漏感,所述控制晶片被配置為:基於表徵所述非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號和表徵流過所述一次側電感的電流的電流感測信號,生成用於控制所述第一功率開關的導通與關斷的上管控制信號;以及基於所述輸出回饋信號和表徵所述變壓器的輔助繞組上的電壓的電壓感測信號,生成用於控制所述第二功率開關的導通與關斷的下管控制信號,其中,所述控制晶片被配置為基於所述輸出回饋信號和所述電壓感測信號識別所述變壓器的一次側勵磁電感退磁結束的時刻,並且基於該時刻來生成所述下管控制信號;及基於所述輸出回饋信號和所述電流感測信號,生成用於控制所述第一功率開關從導通狀態變為關斷狀態的上管關斷控制信號;當所述第二功率開關從導通狀態變為關斷狀態時,對所述第二功率開關處於關斷狀態的持續時間進行計時;當所述第二功率開關處於關斷狀態的持續時間達到預設死區時間時,生成用於控制所述第一功率開關從關斷狀態變為導通狀態的上管導通控制信號;以及基於所述上管導通控制信號和所述上管關斷控制信號,生成所述上管控制信號。 A control chip for an asymmetric half-bridge flyback converter power supply, characterized in that the asymmetric half-bridge flyback converter power supply includes a first power switch, a second power switch, a resonant capacitor, and a transformer, the primary magnetizing inductor of the transformer includes a primary inductor and a primary leakage inductor, and the control chip is configured to: based on a characteristic of the output voltage of the asymmetric half-bridge flyback converter power supply, The control chip is configured to generate an upper tube control signal for controlling the on and off of the first power switch based on an output feedback signal and an inductive sensing signal representing the current flowing through the primary-side inductor; and a lower tube control signal for controlling the on and off of the second power switch based on the output feedback signal and a voltage sensing signal representing the voltage on the auxiliary winding of the transformer, wherein the control chip is configured to The invention relates to a method for generating a low-side control signal for controlling the first power switch to change from an on state to an off state based on the output feedback signal and the voltage sensing signal to identify the moment when the primary-side magnetizing inductance of the transformer is demagnetized, and to generate the low-side control signal based on the moment; and to generate a high-side off control signal for controlling the first power switch to change from an on state to an off state based on the output feedback signal and the voltage sensing signal; and to generate a high-side off control signal for controlling the second power switch to change from an on state to an off state. When the second power switch is in the off state, the duration of the second power switch in the off state is counted; when the duration of the second power switch in the off state reaches the preset dead time, an upper tube conduction control signal for controlling the first power switch to change from the off state to the on state is generated; and based on the upper tube conduction control signal and the upper tube off control signal, the upper tube control signal is generated. 如請求項1所述的控制晶片,進一步被配置為:基於所述輸出回饋信號,生成用於控制所述非對稱半橋返馳式變換器電源的工作頻率的頻率控制信號; 基於所述輸出回饋信號和所述電壓感測信號,生成用於表徵所述變壓器的一次側勵磁電感的退磁情況的退磁檢測信號;以及基於所述頻率控制信號、所述退磁檢測信號、以及所述電壓感測信號,生成用於控制所述第二功率開關從導通狀態變為關斷狀態的下管關斷控制信號。 The control chip as described in claim 1 is further configured to: generate a frequency control signal for controlling the operating frequency of the asymmetric half-bridge flyback converter power supply based on the output feedback signal; generate a demagnetization detection signal for characterizing the demagnetization condition of the primary-side magnetizing inductance of the transformer based on the output feedback signal and the voltage sensing signal; and generate a lower tube shutdown control signal for controlling the second power switch to change from the on state to the off state based on the frequency control signal, the demagnetization detection signal, and the voltage sensing signal. 如請求項2所述的控制晶片,進一步被配置為:當所述第一功率開關從導通狀態變為關斷狀態時,開始對所述第一功率開關處於關斷狀態的持續時間進行計時;當所述第一功率開關處於關斷狀態的持續時間達到預設死區時間時,生成用於控制所述第二功率開關從關斷狀態變為導通狀態的下管導通控制信號;以及基於所述下管導通控制信號、所述下管關斷控制信號、所述頻率控制信號以及所述退磁檢測信號,生成所述下管控制信號。 The control chip as described in claim 2 is further configured to: when the first power switch changes from the on state to the off state, start timing the duration of the first power switch being in the off state; when the duration of the first power switch being in the off state reaches a preset dead time, generate a lower tube conduction control signal for controlling the second power switch to change from the off state to the on state; and generate the lower tube control signal based on the lower tube conduction control signal, the lower tube off control signal, the frequency control signal and the demagnetization detection signal. 如請求項2所述的控制晶片,進一步被配置為:在所述第一功率開關導通期間,對所述電壓感測信號進行採樣得到與充磁電壓成比例的第一採樣電壓;在所述第一功率開關由導通狀態變為關斷狀態時,基於所述第一採樣電壓和所述輸出回饋信號,運算得出比例控制信號;在所述一次側勵磁電感的退磁期間,對所述電壓感測信號進行採樣得到與退磁電壓成比例的第二採樣電壓;基於所述比例控制信號和所述第二採樣電壓得到第一受控信號;通過比較所述第一受控信號和所述輸出回饋信號的大小來確定是否使所述退磁檢測信號出現暫態脈衝;以及通過設置所述比例控制信號來使得所述退磁檢測信號恰在所述變壓器的一次側勵磁電感退磁結束的時刻出現暫態脈衝。 The control chip according to claim 2, further configured to: during the conduction period of the first power switch, sample the voltage sensing signal to obtain a first sampling voltage proportional to the magnetizing voltage; When the first power switch changes from the on state to the off state, a proportional control signal is calculated based on the first sampling voltage and the output feedback signal; during the demagnetization period of the primary side excitation inductor, the proportional control signal is calculated The voltage sensing signal is sampled to obtain a second sampling voltage proportional to the demagnetization voltage; a first controlled signal is obtained based on the proportional control signal and the second sampling voltage; by comparing the first controlled signal and the Output the size of the feedback signal to determine whether to cause a transient pulse to appear in the demagnetization detection signal; and set the proportional control signal so that the demagnetization detection signal appears exactly at the moment when the demagnetization of the primary side excitation inductor of the transformer ends. transient pulse. 如請求項2所述的控制晶片,進一步被配置為:除所述輸出回饋信號和所述電壓感測信號外,還基於外部調整 信號來生成所述退磁檢測信號。 The control chip as described in claim 2 is further configured to: in addition to the output feedback signal and the voltage sensing signal, based on external adjustment signal to generate the demagnetization detection signal. 如請求項5所述的控制晶片,進一步被配置為:在所述一次側勵磁電感的退磁期間,對所述電壓感測信號進行採樣得到與退磁電壓成比例的第三採樣電壓;基於所述第三採樣電壓和所述外部調整信號生成第二受控信號;通過比較所述第二受控信號和所述輸出回饋信號的大小來確定是否使所述退磁檢測信號出現暫態脈衝;以及通過設置所述外部調整信號來使得所述退磁檢測信號恰在所述變壓器的一次側勵磁電感退磁結束的時刻出現暫態脈衝。 The control chip as described in claim 5 is further configured to: during the demagnetization period of the primary-side magnetizing inductor, sample the voltage sensing signal to obtain a third sampled voltage proportional to the demagnetization voltage; generate a second controlled signal based on the third sampled voltage and the external adjustment signal; determine whether to make the demagnetization detection signal have a transient pulse by comparing the magnitude of the second controlled signal and the output feedback signal; and set the external adjustment signal to make the demagnetization detection signal have a transient pulse at the moment when the demagnetization of the primary-side magnetizing inductor of the transformer is completed. 如請求項2所述的控制晶片,進一步被配置為:當所述頻率控制信號持續為高位準或者在所述退磁檢測信號出現暫態脈衝前變為高位準時,確定所述非對稱半橋返馳式變換器電源工作於臨界導通模式;並且在所述退磁檢測信號出現暫態脈衝後,使所述下管關斷控制信號保持為低位準,直到流過所述變壓器的所述一次側漏感的反向的諧振電流足夠實現所述第一功率開關的零電壓導通時,使所述下管關斷控制信號出現暫態脈衝以關斷所述第二功率開關。 The control chip as described in claim 2 is further configured to: when the frequency control signal continues to be high or becomes high before the demagnetization detection signal has a transient pulse, determine that the asymmetric half-bridge flyback converter power supply operates in a critical conduction mode; and after the demagnetization detection signal has a transient pulse, keep the lower tube shutdown control signal at a low level until the reverse resonant current flowing through the primary side leakage inductance of the transformer is sufficient to achieve zero voltage conduction of the first power switch, and make the lower tube shutdown control signal have a transient pulse to turn off the second power switch. 如請求項2所述的控制晶片,進一步被配置為:如果所述退磁檢測信號出現暫態脈衝時所述頻率控制信號為低位準,則確定所述非對稱半橋返馳式變換器電源工作於非連續導通模式,並且使所述第二功率開關由導通狀態變為關斷狀態;在所述頻率控制信號出現暫態脈衝時,使所述第二功率開關由關斷狀態變為導通狀態;並且在流過所述變壓器的所述一次側漏感的反向的諧振電流足夠實現所述第一功率開關的零電壓導通時,使所述下管關斷控制信號出現暫態脈衝以關斷所述第二功率開關。 The control chip as described in claim 2 is further configured to: if the frequency control signal is at a low level when the demagnetization detection signal has a transient pulse, determine that the asymmetric half-bridge flyback converter power supply operates in a discontinuous conduction mode, and change the second power switch from the on state to the off state; when the frequency control signal has a transient pulse, change the second power switch from the off state to the on state; and when the reverse resonant current flowing through the primary leakage inductance of the transformer is sufficient to realize the zero-voltage conduction of the first power switch, make the lower tube shutdown control signal have a transient pulse to turn off the second power switch. 一種用於非對稱半橋返馳式變換器電源的控制方 法,其特徵在於,所述非對稱半橋返馳式變換器電源包括第一功率開關、第二功率開關、諧振電容、以及變壓器,該變壓器的一次側勵磁電感包括一次側電感和一次側漏感,所述控制方法包括:基於表徵所述非對稱半橋返馳式變換器電源的輸出電壓的輸出回饋信號和表徵流過所述一次側電感的電流的電流感測信號,生成用於控制所述第一功率開關的導通與關斷的上管控制信號;以及基於所述輸出回饋信號和表徵所述變壓器的輔助繞組上的電壓的電壓感測信號,生成用於控制所述第二功率開關的導通與關斷的下管控制信號,其中,所述控制晶片被配置為基於所述輸出回饋信號和所述電壓感測信號識別所述變壓器的一次側勵磁電感退磁結束的時刻,並且基於該時刻來生成所述下管控制信號;所述上管控制信號的處理包括:基於所述輸出回饋信號和所述電流感測信號,生成用於控制所述第一功率開關從導通狀態變為關斷狀態的上管關斷控制信號;當所述第二功率開關從導通狀態變為關斷狀態時,對所述第二功率開關處於關斷狀態的持續時間進行計時;當所述第二功率開關處於關斷狀態的持續時間達到預設死區時間時,生成用於控制所述第一功率開關從關斷狀態變為導通狀態的上管導通控制信號;以及基於所述上管導通控制信號和所述上管關斷控制信號,生成所述上管控制信號。 A control method for an asymmetric half-bridge flyback converter power supply, characterized in that the asymmetric half-bridge flyback converter power supply includes a first power switch, a second power switch, a resonant capacitor, and a transformer, the primary magnetizing inductance of the transformer includes a primary inductance and a primary leakage inductance, and the control method includes: based on an output feedback representing an output voltage of the asymmetric half-bridge flyback converter power supply, The control chip is configured to generate an upper tube control signal for controlling the on and off of the first power switch based on the output feedback signal and the current sensing signal representing the current flowing through the primary inductor; and generate a lower tube control signal for controlling the on and off of the second power switch based on the output feedback signal and the voltage sensing signal representing the voltage on the auxiliary winding of the transformer, wherein the control chip is configured to generate an upper tube control signal for controlling the on and off of the second power switch based on the output feedback signal and the voltage sensing signal representing the voltage on the auxiliary winding of the transformer. The feedback signal and the voltage sensing signal identify the moment when the primary-side magnetizing inductance of the transformer is demagnetized, and the lower tube control signal is generated based on the moment; the processing of the upper tube control signal includes: based on the output feedback signal and the induction current sensing signal, generating an upper tube shutdown control signal for controlling the first power switch to change from an on state to an off state; when the second power switch changes from an on state to an off state, When the state changes to the off state, the duration of the second power switch being in the off state is counted; when the duration of the second power switch being in the off state reaches the preset dead time, an upper tube conduction control signal for controlling the first power switch to change from the off state to the on state is generated; and based on the upper tube conduction control signal and the upper tube off control signal, the upper tube control signal is generated. 如請求項9所述的控制方法,其中,生成所述下管控制信號的處理包括:基於所述輸出回饋信號,生成用於控制所述非對稱半橋返馳式變換器電源的工作頻率的頻率控制信號;基於所述輸出回饋信號和所述電壓感測信號,生成用於表徵所 述變壓器的一次側勵磁電感的退磁情況的退磁檢測信號;以及基於所述頻率控制信號、所述退磁檢測信號、以及所述電壓感測信號,生成用於控制所述第二功率開關從導通狀態變為關斷狀態的下管關斷控制信號。 The control method as described in claim 9, wherein the process of generating the lower tube control signal includes: generating a frequency control signal for controlling the operating frequency of the asymmetric half-bridge flyback converter power supply based on the output feedback signal; generating a demagnetization detection signal for characterizing the demagnetization condition of the primary-side magnetizing inductance of the transformer based on the output feedback signal and the voltage sensing signal; and generating a lower tube shutdown control signal for controlling the second power switch to change from an on state to an off state based on the frequency control signal, the demagnetization detection signal, and the voltage sensing signal. 如請求項10所述的控制方法,其中,生成所述下管控制信號的處理還包括:當所述第一功率開關從導通狀態變為關斷狀態時,開始對所述第一功率開關處於關斷狀態的持續時間進行計時;當所述第一功率開關處於關斷狀態的持續時間達到預設死區時間時,生成用於控制所述第二功率開關從關斷狀態變為導通狀態的下管導通控制信號;以及基於所述下管導通控制信號、所述下管關斷控制信號、所述頻率控制信號以及所述退磁檢測信號,生成所述下管控制信號。 The control method according to claim 10, wherein the process of generating the down-side control signal further includes: when the first power switch changes from the on state to the off state, starting to control the first power switch in the off state. The duration of the off state is timed; when the duration of the first power switch in the off state reaches the preset dead time, a signal is generated for controlling the second power switch to change from the off state to the on state. a lower tube conduction control signal; and generating the lower tube control signal based on the lower tube conduction control signal, the lower tube turn-off control signal, the frequency control signal and the demagnetization detection signal. 如請求項10所述的控制方法,其中,生成所述退磁檢測信號包括:在所述第一功率開關導通期間,對所述電壓感測信號進行採樣得到與充磁電壓成比例的第一採樣電壓;在所述第一功率開關由導通狀態變為關斷狀態時,基於所述第一採樣電壓和所述輸出回饋信號,運算得出比例控制信號;在所述一次側勵磁電感的退磁期間,對所述電壓感測信號進行採樣得到與退磁電壓成比例的第二採樣電壓;基於所述比例控制信號和所述第二採樣電壓得到第一受控信號;通過比較所述第一受控信號和所述輸出回饋信號的大小來確定是否使所述退磁檢測信號出現暫態脈衝;以及通過設置所述比例控制信號來使得所述退磁檢測信號恰在所述變壓器的一次側勵磁電感退磁結束的時刻出現暫態脈衝。 The control method as described in claim 10, wherein generating the demagnetization detection signal comprises: sampling the voltage sensing signal to obtain a first sampled voltage proportional to the magnetizing voltage during the conduction period of the first power switch; when the first power switch changes from the on state to the off state, calculating a proportional control signal based on the first sampled voltage and the output feedback signal; and during the demagnetization period of the primary-side magnetizing inductor, sampling the voltage sensing signal to obtain a first sampled voltage proportional to the magnetizing voltage. The signal is sampled to obtain a second sampled voltage proportional to the demagnetization voltage; a first controlled signal is obtained based on the proportional control signal and the second sampled voltage; whether to make the demagnetization detection signal have a transient pulse is determined by comparing the magnitude of the first controlled signal and the output feedback signal; and the proportional control signal is set to make the demagnetization detection signal have a transient pulse at the moment when the demagnetization of the primary side magnetizing inductance of the transformer is completed. 如請求項10所述的控制方法,其中,基於所述 輸出回饋信號和所述電壓感測信號生成所述退磁檢測信號包括:基於所述輸出回饋信號和所述電壓感測信號以及外部調整信號生成所述退磁檢測信號。 The control method as described in claim 10, wherein generating the demagnetization detection signal based on the output feedback signal and the voltage sensing signal includes: generating the demagnetization detection signal based on the output feedback signal, the voltage sensing signal and the external adjustment signal. 如請求項13所述的控制方法,其中,生成所述退磁檢測信號包括:在所述一次側勵磁電感的退磁期間,對所述電壓感測信號進行採樣得到與退磁電壓成比例的第三採樣電壓;基於所述第三採樣電壓和所述外部調整信號生成第二受控信號;通過比較所述第二受控信號和所述輸出回饋信號的大小來確定是否使所述退磁檢測信號出現暫態脈衝;以及通過設置所述外部調整信號來使得所述退磁檢測信號恰在所述變壓器的一次側勵磁電感退磁結束的時刻出現暫態脈衝。 The control method according to claim 13, wherein generating the demagnetization detection signal includes: during demagnetization of the primary side excitation inductor, sampling the voltage sensing signal to obtain a third voltage proportional to the demagnetization voltage. Sampling voltage; generating a second controlled signal based on the third sampling voltage and the external adjustment signal; determining whether to cause the demagnetization detection signal to appear by comparing the size of the second controlled signal and the output feedback signal Transient pulse; and by setting the external adjustment signal so that the demagnetization detection signal appears a transient pulse just at the moment when demagnetization of the primary side excitation inductor of the transformer ends. 如請求項10所述的控制方法,還包括:當所述頻率控制信號持續為高位準或者在所述退磁檢測信號出現暫態脈衝前變為高位準時,確定所述非對稱半橋返馳式變換器電源工作於臨界導通模式;並且在所述退磁檢測信號出現暫態脈衝後,使所述下管關斷控制信號保持為低位準,直到流過所述變壓器的所述一次側漏感的反向的諧振電流足夠實現所述第一功率開關的零電壓導通時,使所述下管關斷控制信號出現暫態脈衝以關斷所述第二功率開關。 The control method according to claim 10, further comprising: when the frequency control signal continues to be at a high level or becomes a high level before a transient pulse occurs in the demagnetization detection signal, determining the flyback mode of the asymmetric half-bridge The converter power supply operates in a critical conduction mode; and after a transient pulse occurs in the demagnetization detection signal, the low-side turn-off control signal is maintained at a low level until the primary-side leakage inductance flowing through the transformer When the reverse resonant current is sufficient to achieve zero-voltage conduction of the first power switch, a transient pulse appears in the low-side turn-off control signal to turn off the second power switch. 如請求項10所述的控制方法,還包括:如果所述退磁檢測信號出現暫態脈衝時所述頻率控制信號為低位準,則確定所述非對稱半橋返馳式變換器電源工作於非連續導通模式,並且使所述第二功率開關由導通狀態變為關斷狀態;在所述頻率控制信號出現暫態脈衝時,使所述第二功率開關由關斷狀態變為導通狀態;並且在流過所述變壓器的所述一次側漏感的反向的諧振電流足夠實 現所述第一功率開關的零電壓導通時,使所述下管關斷控制信號出現暫態脈衝以關斷所述第二功率開關。 The control method as described in claim 10 further includes: if the frequency control signal is at a low level when the demagnetization detection signal has a transient pulse, determining that the asymmetric half-bridge flyback converter power supply operates in a discontinuous conduction mode, and changing the second power switch from an on state to an off state; when the frequency control signal has a transient pulse, changing the second power switch from an off state to an on state; and when the reverse resonant current flowing through the primary-side leakage inductance of the transformer is sufficient to realize the zero-voltage conduction of the first power switch, causing the lower tube shutdown control signal to have a transient pulse to turn off the second power switch. 一種非對稱半橋返馳式變換器電源,包括請求項1至8中任一項所述的控制晶片。 An asymmetric half-bridge flyback converter power supply includes the control chip described in any one of claims 1 to 8.
TW112117188A 2023-03-14 2023-05-09 Asymmetric half-bridge flyback converter power supply and its control chip and control method TWI836980B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310245305.8A CN116073635A (en) 2023-03-14 2023-03-14 Asymmetric half-bridge flyback switching power supply, control chip and control method thereof
CN2023102453058 2023-03-14

Publications (1)

Publication Number Publication Date
TWI836980B true TWI836980B (en) 2024-03-21

Family

ID=86183914

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112117188A TWI836980B (en) 2023-03-14 2023-05-09 Asymmetric half-bridge flyback converter power supply and its control chip and control method

Country Status (2)

Country Link
CN (1) CN116073635A (en)
TW (1) TWI836980B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117040288B (en) * 2023-10-08 2024-01-12 深圳市德兰明海新能源股份有限公司 Direct-current boost conversion circuit and energy storage power supply
CN117155137B (en) * 2023-11-01 2024-02-06 艾科微电子(深圳)有限公司 Power supply controller, asymmetric half-bridge power supply and control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140109A1 (en) * 2012-11-20 2014-05-22 Texas Instruments Incorporated Flyback power supply regulation apparatus and methods
TW201603444A (en) * 2014-07-09 2016-01-16 On Bright Electronics Shanghai Charge control circuit, flyback type power source transformation system and charge control method
JP2016042765A (en) * 2014-08-18 2016-03-31 富士電機株式会社 Switching power supply apparatus
TW202008703A (en) * 2018-07-27 2020-02-16 立錡科技股份有限公司 ZVS control circuit for use in a flyback power converter
TW202201891A (en) * 2020-06-29 2022-01-01 立錡科技股份有限公司 Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TW202230940A (en) * 2021-01-18 2022-08-01 大陸商昂寶電子(上海)有限公司 Flyback switching power supply and control method thereof
CN115224951A (en) * 2022-08-23 2022-10-21 无锡市德科立光电子技术股份有限公司 Constant-voltage control system of primary-side feedback flyback converter
CN115360918A (en) * 2022-08-24 2022-11-18 南京理工大学 Primary side sampling resistor-based constant current control system, method and medium of primary side feedback flyback converter
CN115694145A (en) * 2022-11-01 2023-02-03 昂宝电子(上海)有限公司 Circuit for asymmetric half-bridge flyback power supply

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140140109A1 (en) * 2012-11-20 2014-05-22 Texas Instruments Incorporated Flyback power supply regulation apparatus and methods
TW201603444A (en) * 2014-07-09 2016-01-16 On Bright Electronics Shanghai Charge control circuit, flyback type power source transformation system and charge control method
JP2016042765A (en) * 2014-08-18 2016-03-31 富士電機株式会社 Switching power supply apparatus
TW202008703A (en) * 2018-07-27 2020-02-16 立錡科技股份有限公司 ZVS control circuit for use in a flyback power converter
TW202201891A (en) * 2020-06-29 2022-01-01 立錡科技股份有限公司 Resonant half-bridge flyback power converter and primary controller circuit and control method thereof
TW202230940A (en) * 2021-01-18 2022-08-01 大陸商昂寶電子(上海)有限公司 Flyback switching power supply and control method thereof
CN115224951A (en) * 2022-08-23 2022-10-21 无锡市德科立光电子技术股份有限公司 Constant-voltage control system of primary-side feedback flyback converter
CN115360918A (en) * 2022-08-24 2022-11-18 南京理工大学 Primary side sampling resistor-based constant current control system, method and medium of primary side feedback flyback converter
CN115694145A (en) * 2022-11-01 2023-02-03 昂宝电子(上海)有限公司 Circuit for asymmetric half-bridge flyback power supply

Also Published As

Publication number Publication date
CN116073635A (en) 2023-05-05

Similar Documents

Publication Publication Date Title
TWI628905B (en) Control method and control device for flyback converter circuit
TWI836980B (en) Asymmetric half-bridge flyback converter power supply and its control chip and control method
TWI568166B (en) A High Efficiency LLC Resonant Converter with Secondary Side Synchronous Rectifier Blind Control
KR100517552B1 (en) Switching power supply device
US7965523B2 (en) Switching power supply device
US6469913B2 (en) Switching power supply device having series capacitance
WO2019062264A1 (en) Wave valley control circuit and wave valley control method
US8749996B2 (en) Switching power supply apparatus
CN103490636B (en) For the quasi-resonance control method of Switching Power Supply, system and device
KR101658207B1 (en) Synchronous rectification circuit and synchronous rectification m1ethod
US20150280574A1 (en) System and Method for a Switched-Mode Power Supply
TWI664801B (en) Switching power, control apparatus and control method
CN111669055B (en) Voltage conversion circuit and control method thereof
US11716010B2 (en) Driving control circuit, method and device for gallium nitride (GaN) transistor, and medium
CN114204817A (en) Asymmetric half-bridge flyback converter and peak current suppression method thereof
CN111628654B (en) Switching power supply circuit
CN115378265A (en) Converter suitable for wide-range output voltage and control method thereof
TWI699957B (en) A quasi-resonant power supply controller
CN114679071A (en) Asymmetric half-bridge flyback switching power supply and control chip and control method thereof
CN113708633B (en) Flyback converter control method, flyback converter and control device
CN115776236A (en) Half-bridge flyback converter and control method thereof
TWI841989B (en) Asymmetric half-bridge flyback converter power supply and control chip and control method thereof
TWI842520B (en) Asymmetric half-bridge flyback converter power supply and its control circuit
US20100085779A1 (en) Switching power source apparatus
TWI815214B (en) Quasi-resonant switching power supply and its control chip and control method