TWI816395B - 高熔融強度聚丙烯 - Google Patents

高熔融強度聚丙烯 Download PDF

Info

Publication number
TWI816395B
TWI816395B TW111117817A TW111117817A TWI816395B TW I816395 B TWI816395 B TW I816395B TW 111117817 A TW111117817 A TW 111117817A TW 111117817 A TW111117817 A TW 111117817A TW I816395 B TWI816395 B TW I816395B
Authority
TW
Taiwan
Prior art keywords
melt strength
hms
polypropylene
high melt
strength polypropylene
Prior art date
Application number
TW111117817A
Other languages
English (en)
Other versions
TW202244074A (zh
Inventor
諾伯特 海謝爾特
Original Assignee
奧地利商柏列利斯股份公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商柏列利斯股份公司 filed Critical 奧地利商柏列利斯股份公司
Publication of TW202244074A publication Critical patent/TW202244074A/zh
Application granted granted Critical
Publication of TWI816395B publication Critical patent/TWI816395B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/22Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having three or more carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00
    • C08F291/18Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00 on to irradiated or oxidised macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本發明係關於包含衍生自至少一種多不飽和脂肪酸之單元的高熔融強度聚丙烯(HMS-PP),用於製備該高熔融強度聚丙烯(HMS-PP)之方法,以及包含該高熔融強度聚丙烯(HMS-PP)之製品。

Description

高熔融強度聚丙烯
本發明係關於包含衍生自至少一種多不飽和脂肪酸之單元的高熔融強度聚丙烯(high melt strength polypropylene;HMS-PP),用於製備該高熔融強度聚丙烯(HMS-PP)之方法,以及包含該高熔融強度聚丙烯(HMS-PP)之製品。
在應用丙烯類聚合物組成物以形成成型物件之情況下,需要組成物具有足夠高的熔融強度以能夠將組成物模製成所需形狀。舉例而言,當丙烯類聚合物組成物經由將組成物加熱至高於其熔融溫度且隨後成型為所需物件之方法成型為物件時情況如此。在此類方法中,需要丙烯類聚合物組成物在物件成型之溫度下具有高形狀穩定性。丙烯類聚合物組成物需要能夠在藉由冷卻發生固化之前在此類溫度條件下在熔融情況下維持其形狀。待使用丙烯類聚合物組成物製備之此類物件可例如包括泡沫結構。
一種使用丙烯類聚合物組成物生產泡沫結構之常見方法,如「Polypropylene foams」, Ratzsch等人, Springer, 1999, DOI: 0.007/978-94-01-4421-6-86,第635-642頁中所描述,係包含以下步驟之方法: (i)使丙烯類聚合物組成物處於熔融狀態; (ii)將氣態材料凹穴引入熔融丙烯類聚合物組成物以形成包含泡沫孔之熔融丙烯類聚合物組成物; (iii)將包含泡沫孔之熔融丙烯類聚合物組成物模製成包含泡沫結構之所需形狀;及 (iv)藉由冷卻至低於丙烯類聚合物組成物之熔點而固化成型泡沫結構。
一般而言,此等步驟以所呈現之順序進行。此方法中之關鍵要素為在步驟(ii)中形成泡沫孔。視經加工材料之性質而定,泡沫結構可包含一定數量之閉孔。在本發明之上下文中,閉孔可理解為氣態材料凹穴,其在所有側由閉孔壁包圍,使得各孔中之氣態材料不與另一孔中之氣態材料接觸。此類孔壁可例如包含丙烯類聚合物組成物。
對於某些應用,需要泡沫結構包含一定高分率之閉孔。高分率之閉孔可有助於發泡結構之熱絕緣值。此外,高分率之閉孔可有助於發泡結構之強度,諸如就撓曲模數及拉伸強度而言。此外,需要此等泡沫結構具有一定低密度。舉例而言,泡沫結構之密度可等於或低於100 kg/m 3,或者等於或低於80 kg/m 3。具有此類低密度之泡沫結構符合諸如肉類或水果托盤之應用的減重要求。
另一重要特徵為,可藉由擠壓泡沫生產方法生產具有此類所需高分率之閉孔且具有此類所需低密度之泡沫結構的溫度範圍足夠寬。此溫度範圍亦稱為發泡窗。較佳地,發泡窗等於或高於5℃。若發泡窗過窄,則此給泡沫加工設備帶來顯著負擔,因為需要避免加工溫度之波動。超出待發泡材料之發泡窗的波動可導致不合規格材料,其出於不符合品質要求之原因而不適合商業銷售。
為了達成以上特性,丙烯類聚合物組成物需要具有足夠高的熔融強度。熔融強度表示在聚合物組成物呈熔融狀態之條件下個別聚合分子設法維持其朝向彼此之位置之程度的指示。
高熔融強度聚丙烯為分支鏈的,且因此與線性聚丙烯之不同之處在於聚丙烯主鏈涵蓋側鏈,而非分支鏈聚丙烯,亦即線性聚丙烯,不涵蓋側鏈。已知此類長鏈分支顯著改變聚丙烯之流變行為,例如伸長及剪切黏度。
已知三種主要途徑以商業規模生產具有低密度泡沫所需之特性的分支鏈聚丙烯: A.  在無偶合劑/敏化劑之情況下照射聚丙烯; B.  使用單獨的低溫過氧化物/過氧碳酸酯或其與偶合劑之組合反應性擠壓聚丙烯; C.  使用特殊催化劑聚合丙烯及寡聚物。
途徑B具有源自添加過氧化物作為自由基源或偶合劑之缺點。途徑C之缺點源自所需之特殊催化劑及特殊聚合條件,以及與商業聚合反應器之典型大小相比生產量小。
就產物純度而言,途徑A為最佳途徑,但在照射過程中確保產物品質具有挑戰性,因為活性大分子自由基傾向於開始減黏裂煉反應。
EP 0 190 889揭示一種藉由在低水準抗氧化劑且無偶合劑存在下在低氧下照射PP薄片來生產分支鏈聚丙烯的方法。劑量範圍揭示為0.1至1000 kGy/min,且揭示電離輻射應具有足以穿透所輻射之線性丙烯聚合物材料之質量所需程度的能量。亦揭示使用500至4000 kV之加速電位(對於電子產生器)及10至90 kGy之劑量。在照射步驟之後,在擠壓機中加熱經照射材料以使大分子自由基去活化。
EP 0 519 386及EP 0 634 441揭示一種類似於EP 0 190 889之方法,其用於藉由高能輻射含有抗氧化劑之聚丙烯薄片製備高熔融強度丙烯聚合物及共聚物。US 5 047 446及US 4 916 198揭示一種類似於EP 0 190 889之生產方法,其強調照射之後的兩個熱去活化步驟。
EP 0 678 527(Chisso 1995)揭示一種用於生產改質聚丙烯之方法,其中用電離輻射照射聚丙烯及交聯劑混合物以便得到1至20 kGy之吸收劑量,隨後熱處理所得材料。
WO 97/08216揭示一種用於生產經照射之二烯改質丙烯聚合物的方法。據揭示,照射較佳使用電子束或γ輻射以約1至約20 Mrad之劑量進行數秒。據揭示,聚丙烯可使用茂金屬催化劑與二烯共聚且隨後照射以引起擴鏈。
EP 0 799 839及EP 0 351 866亦具有與EP 0 634 441類似之揭示內容,且揭示具有500至4000 kV之加速電位之電子產生器的使用。
EP 0 451 804揭示一種藉由在無氧情況下照射增加間規聚丙烯之分子量的方法。此說明書未揭示照射之任何能量範圍。照射之劑量可為0.1至50 Mrad。在照射之後,聚丙烯可加熱。
EP 0 787 750揭示一種藉由在分支劑(諸如丁二烯或二丙烯酸酯)存在下以2與8 Mrd之間的劑量照射生產分支鏈聚丙烯的方法。
US 5 554 668揭示一種用於照射聚丙烯以提高其熔融強度之方法。熔融強度之提高係藉由降低熔體流動速率(另外稱為熔融指數)來達成。據揭示,線性丙烯聚合物材料用高能電離輻射,較佳電子束,以在約1至1×10 4Mrad/分鐘範圍內之劑量率照射一段時間,該時間足以使線性丙烯聚合物分子發生大量斷鏈但不足以引起材料膠凝。其後,材料維持一段足以形成大量長鏈分支的時間。最後,處理材料以使經照射材料中存在之實質上所有自由基去活化。據揭示,對於電子束,電子自具有500至4000 kV之加速電位(亦即能量)的電子產生器射出。典型地,待照射之聚丙烯材料呈微粒形式且在電子束產生器下方之傳送帶上傳送,電子束產生器在聚丙烯粒子藉由傳送帶在其下平移時連續照射該等聚丙烯粒子。所得聚丙烯具有改良之熔融強度,如由熔體流動速率降低表示。US 5 554 668中所揭示之方法的缺點為經照射聚丙烯之生產率相對低,因為傳送帶之速度低且僅處理少量材料。此導致該方法之商業實施的困難。另外,說明書揭示使用極寬範圍之劑量率,亦即1至1×10 4Mrad/分鐘。大於約40 Mrad之高劑量率可引起聚丙烯之實質上完全交聯的結構。然而,此類高交聯結構難以處理。
進行若干嘗試以尋找一種藉由照射球粒生產分支鏈聚丙烯之方法,因為處置聚丙烯粉末在物流及粉塵***之安全風險方面具有若干缺點。
EP 0 520 773揭示包括視情況與聚乙烯摻合之聚丙烯的可膨脹聚烯烴樹脂組成物。為了製備交聯泡沫,用電離輻射照射可膨脹樹脂組成物之片以使樹脂交聯。電離輻射可包括1至20 Mrad之劑量的電子射線。據揭示,可採用輔助交聯劑,其包括雙官能單體,在EP 1 297 031中由1,9-壬二醇二甲基丙烯酸酯例示。
EP 0 519 341揭示藉由照射聚合物及用接枝單體處理而將乙烯基單體接枝於微粒烯烴聚合物上。在一實例中,聚丙烯用具有2 MeV之能量的電子束照射,且隨後用順丁烯二酸酐作為接枝單體處理。
US 4 916 198揭示聚丙烯粉末之輻射及在照射之後添加添加劑。未揭示聚丙烯顆粒及亞麻子油之使用。
US 5 414 027亦揭示丙烯聚合物之電子束照射,但未揭示使用亞麻子油作為穩定劑。
US 2 948 666及US 5 605 936揭示用於生產經照射聚丙烯之方法。後一說明書揭示藉由高能量照射高分子量線性丙烯聚合物生產特徵為高熔融強度之高分子量非線性丙烯聚合物材料。據揭示,用於照射步驟之電離輻射可包含自具有500至4000 kV之加速電位之電子產生器射出的電子。對於無聚合二烯含量之丙烯聚合物材料,電離輻射之劑量為0.5至7 Mrad。對於具有聚合二烯含量之丙烯聚合物材料,劑量為0.2至2 Mrad。
EP 0 821 018揭示已經受電離輻射之可交聯烯烴聚合物之製備。說明書舉例說明相對低能量及低劑量之電子束***聚合鏈以便將矽烷衍生物接枝於聚合鏈上。該說明書未解決達成聚合物之高熔融強度的問題。
US 5 411 994揭示聚烯烴之接枝共聚物的生產,其中大量烯烴聚合物粒子經照射且其後該大量用呈液體形式之乙烯基單體處理。電離輻射劑量為約1至12 Mrad,且電離輻射較佳包含自具有500至4000 kV之加速電位之電子產生器射出的電子。聚合物首先經照射,且隨後用接枝劑處理。
進一步已知,當照射使用習知戚格勒-納他催化劑(Ziegler-Natta catalyst)生產之同排聚丙烯時,用電子束照射聚丙烯產生大分子自由基,且斷鏈與分支之間存在競爭,其有利於斷鏈。
已知使用分支劑,例如多乙烯系化合物,使平衡朝向達成分支移動。舉例而言,CA 2 198 651揭示可在照射之前及/或期間添加之雙官能不飽和單體。此類化合物可包括二乙烯基化合物、烷基化合物、二烯或其混合物。此等雙官能不飽和單體可在照射期間藉助於自由基聚合。丁二烯尤其較佳。CA 2 198 651亦揭示一種用於生產應力破裂抗性及熔融強度提高的聚丙烯混合物之連續方法,其中採用能量為150至300 keV,在0.05至12 Mrad輻射劑量下之低能電子束加速器。此方法亦具有缺點,亦即經照射粉末之生產率對於商業接受而言可能略低。此外,待照射之聚丙烯粉末必須呈極細粒子形式。亦已知輻射丙烯與二烯,例如1,5-己二烯之共聚物。歸因於二烯之不完全轉化及相應氣味,使用此類共聚物實質上使聚合程序變複雜。
WO 01/88001揭示一種藉由在如丁二烯及乙炔之交聯促進氣體存在下照射來製備分支鏈聚丙烯的方法。
US 7 019 044及EP 1 297 031揭示一種藉由照射具有> 0.1/10000個碳原子之雙鍵的丙烯共聚物製備分支鏈聚丙烯的方法。
EP 1 187 860及EP 1 170 306揭示與EP 0 787 750類似之方法,其藉由在諸如丙烯酸酯、二丙烯酸酯、丁二烯及四乙烯基矽烷之分支劑存在下用具有> 5 MeV之加速電壓的電子束照射。
US 7 935 740及US 8 399 536揭示一種藉由照射含有至少一種非酚類抗氧化劑(諸如亞磷酸酯、HALS、苯并呋喃酮、受阻胺、羥胺及其他)之聚丙烯球粒來生產具有高熔融強度之聚丙烯的方法。
WO 2018/028922(Sabic)揭示藉由照射僅含有維生素E之聚丙烯球粒生產具有高熔融強度之聚丙烯的方法。
已揭示以低劑量使聚丙烯達到所需分支水準而不形成凝膠的多種不飽和分支劑。此等物質用於穩定藉由高能照射自聚丙烯鏈摘取氫形成之大分子自由基,從而藉由組合形成分支鏈結構。典型敏化劑為極具反應性之不飽和化合物,諸如丙烯酸酯、二丙烯酸酯及三丙烯酸酯,共軛二烯,諸如丁二烯,乙炔或乙烯基化合物,諸如四乙烯基矽烷或二乙烯基苯。
使用此類分支劑(或接枝劑或敏化劑)通常導致令人不愉快的氣味、成本增加及環境問題可能性增加,尤其毒性的缺點,此係由於經改質聚丙烯中存在未反應之分支或接枝劑。所有此等所提出之物質的另一常見問題為未反應之分支劑可能自聚合物或由聚合物製成之泡沫中遷移至環境中。
與長鏈分支鏈聚丙烯之擠壓發泡相關的一般問題為在擠壓期間由剪切引起之黏度及熔融強度變化。此黏度變化對於在發泡方法中使用再粒化PP泡沫生產廢料作為第二組分產生問題。高熔融強度聚丙烯再利用材料之熔融強度及黏度不同於原生高熔融強度聚丙烯樹脂,對於生產極低密度泡沫而言將最大添加量限制為20至30 wt%。
較佳地,該聚丙烯組成物中所用之所有物質(分支劑及抗氧化劑)應來源於可再生來源且應公認安全(generally be recognized as safe;GRAS)或批准用於聚丙烯組成物中之食品,因為食品包裝為分支鏈聚丙烯之主要應用之一。
本發明旨在提供聚丙烯樹脂,其具有改良之特性,尤其改良之熔融強度,其可使用來自可再生來源之分支劑以高生產率製造。
因此,本發明係關於一種高熔融強度聚丙烯(HMS-PP),其具有根據GPC測定之低於0.9之分支指數g',且包含衍生自以下之單元: i)丙烯,及 ii)至少一種多不飽和脂肪酸。
本發明進一步關於一種用於製備高熔融強度聚丙烯(HMS-PP)之方法,其包含以下步驟: a)提供線性丙烯聚合物(linear propylene polymer;L-PP), b)將該丙烯聚合物(L-PP)與包含多不飽和脂肪酸之偶合劑(coupling agent;CA)摻合,及 c)藉助於電子束照射來照射在步驟b)中獲得之混合物。
此外,本發明係關於自該方法獲得之高熔融強度聚丙烯(HMS-PP)。
本發明亦關於一種泡沫,其包含如上文所描述之高熔融強度聚丙烯(HMS-PP)。
本發明進一步關於一種組成物(composition;C),其包含以組成物(C)之總重量計至少10.0 wt%之再循環高熔融強度聚丙烯(recycled high melt strength polypropylene;r-HMS-PP),r-HMS-PP為如上文所描述之高熔融強度聚丙烯(HMS-PP),其自衍生自消費後及/或工業廢料之廢塑膠材料回收。
最後,本發明係關於一種製品,其包含如上文所描述之高熔融強度聚丙烯(HMS-PP)。
本發明之較佳具體實例描述於附屬申請專利範圍中。
在下文中,更詳細地描述本發明。
如上文已指示,本發明係關於一種高熔融強度聚丙烯(HMS-PP),其具有根據GPC測定之低於0.9之分支指數g',且包含衍生自以下之單元: i)丙烯,及 ii)至少一種多不飽和脂肪酸。
分支指數g'定義分支度,且與聚合物分支之量相關。較佳地,根據本發明之高熔融強度聚丙烯具有根據GPC測定之等於或低於0.85、更佳等於或低於0.80之分支指數g'。
根據本發明之高熔融強度聚丙烯的分支指數g'通常將為至少0.10。
本發明係關於一種高熔融強度聚丙烯(HMS-PP),其包含衍生自多不飽和脂肪酸之單元。該高熔融強度聚丙烯(HMS-PP)藉由在多不飽和脂肪酸存在下照射線性聚丙烯前驅物來製備。後者較佳獲自天然來源。因此,本發明之特徵在於高熔融強度聚丙烯(HMS-PP)可藉由使用諸如包含大量多不飽和脂肪酸之植物油的可再生物質且藉由電子束輻射照射來獲得。
諸位發明人出乎意料地發現,包含衍生自多不飽和脂肪酸之單元的高熔融強度聚丙烯(HMS-PP)非常適合於: -    在具有很小MFR之線性聚丙烯(絨毛及球粒)之擠壓期間限制MFR變化; -    藉由電子束照射產生聚丙烯之長鏈分支及高額外高熔融強度; -    限制在擠壓期間由剪切引起之長鏈分支鏈聚丙烯之黏度及熔融強度變化。
如本文所用,術語「多不飽和脂肪酸(polyunsaturated fatty acid)」係指包含至少兩個碳-碳雙鍵之脂肪酸。較佳地,本發明高熔融強度聚丙烯(HMS-PP)包含衍生自雙官能不飽和脂肪酸,亦即包含兩個碳-碳雙鍵之多不飽和脂肪酸的單元。
較佳地,以高熔融強度聚丙烯(HMS-PP)之總重量計,高熔融強度聚丙烯(HMS-PP)包含至少0.05 wt%,更佳0.05至2.0 wt%,再更佳0.1至1.0 wt%,如0.25至0.5 wt%衍生自至少一種多不飽和脂肪酸之單元。
尤其較佳地,至少一種多不飽和脂肪酸,如雙官能不飽和脂肪酸,為亞麻油酸及/或α-次亞麻油酸。
高熔融強度聚丙烯(HMS-PP)內衍生自α-次亞麻油酸及/或其他多不飽和植物油之單元的存在可藉助於 1H NMR光譜法偵測。特定言之,較佳地,比率x/(z-w)在0.25至2.0範圍內,其中x為 1H NMR訊號(400 MHz, 1,2-四氯乙烷- d 2)在5.55至5.27 ppm處之強度,z為 1H NMR訊號(400 MHz, 1,2-四氯乙烷- d 2)在4.85至4.73 ppm處之強度,且w為 1H NMR訊號(400 MHz 1,2-四氯乙烷- d 2)在4.73至4.66 ppm處之強度。圖1顯示本發明高熔融強度聚丙烯(HMS-PP)之 1H NMR光譜(400 MHz, 1,2-四氯乙烷- d 2)。如可自表3收集,5.55至5.27 ppm處之訊號可指派給衍生自不飽和酸如α-次亞麻油酸(LSO)之單元,且在不飽和酸存在下照射線性聚丙烯之後,該訊號之強度x隨著添加至線性聚丙烯中之該不飽和酸之量而增加。
根據本發明之高熔融強度聚丙烯(HMS-PP)可包含選自硬脂酸鎂、硬脂酸鋁、硬脂酸鈉及硬脂酸鈣之有機金屬硬脂酸鹽及/或至少一種無機水滑石,諸如DHT4A。較佳地,高熔融強度聚丙烯(HMS-PP)包含硬脂酸鈣。以高熔融強度聚丙烯(HMS-PP)之總重量計,有機金屬硬脂酸鹽及/或無機水滑石,較佳硬脂酸鈣之量可在100 pp與1000 ppm重量之間,更佳200 ppm與800 ppm重量之間,再更佳較佳400 ppm與600 ppm重量之間。
根據本發明之高熔融強度聚丙烯(HMS-PP)可含有其他添加劑(AD),例如成核劑及澄清劑、穩定劑、脫模劑、填充劑、過氧化物、塑化劑、抗氧化劑、潤滑劑、抗靜電劑、維生素E、抗刮擦劑、高效能填充劑、顏料及/或著色劑、抗衝擊改質劑、阻燃劑、發泡劑、除酸劑、再循環添加劑、偶合劑、抗微生物劑、防霧添加劑、助滑劑、防黏添加劑、聚合物加工助劑及其類似物。此類添加劑為可商購的且例如描述於Hans Zweifel之「Plastic Additives Handbook」,第6版2009 (第1141至1190頁)中。較佳地,添加劑(AD)選自由以下組成之群:阻燃劑、填充劑、顏料、抗衝擊改質劑、抗氧化劑(諸如維生素E(α-生育酚))、成核劑、加工穩定劑、助滑劑或其混合物。
此外,根據本發明之術語「添加劑(additive;AD)」亦包括載體材料,尤其聚合物載體材料。
較佳地,本發明之高熔融強度聚丙烯(HMS-PP)不包含(a)以高熔融強度聚丙烯(HMS-PP)之重量計,呈超過5.0 wt%之量,較佳超過3.0 wt%之量,更佳超過2.0 wt%之量的不同於高熔融強度聚丙烯(HMS-PP)之其他聚合物。作為添加劑(AD)之載體材料的任何聚合物不相對於如本發明中所指示之聚合化合物之量計算,而是相對於各別添加劑之量計算。
添加劑(AD)之聚合物載體材料為確保本發明之高熔融強度聚丙烯(HMS-PP)中之均勻分佈的載體聚合物。聚合物載體材料不限於特定聚合物。聚合物載體材料可為乙烯均聚物、獲自乙烯及α-烯烴共聚單體(諸如C3至C8 α-烯烴共聚單體)之乙烯共聚物、丙烯均聚物及/或獲自丙烯及α-烯烴共聚單體(諸如乙烯及/或C4至C8 α-烯烴共聚單體)之丙烯共聚物。較佳地,聚合物載體材料不含衍生自苯乙烯或其衍生物之單體單元。
高熔融強度聚丙烯為分支鏈的,且因此與線性聚丙烯之不同之處在於聚丙烯主鏈涵蓋側鏈,而非分支鏈聚丙烯,亦即線性聚丙烯,不涵蓋側鏈。側鏈對聚丙烯之流變學具有顯著影響。因此,線性聚丙烯及高熔融強度聚丙烯可藉由其在應力下之流動行為清楚地區別。
穩定熔融強度可定義為根據ISO 16790:2005藉由Rheotens量測,在200℃,120 mm/s加速度下,在標準剪切(模頭壓力30巴)與增強剪切(模頭壓力200巴)下測定,熔融強度比率小於1.3。因此,較佳地,藉由Rheotens量測在200℃,120 mm/s巴加速度下,在標準剪切(模頭壓力30巴)下測定之F 30熔融強度與在200巴模頭壓力下之增強剪切熔融強度F 200的比率小於1.3。
除前一段之外或替代前一段,較佳地,根據本發明之高熔融強度聚丙烯(HMS-PP)滿足不等式(I),更佳不等式(Ib),再更佳不等式(Ic), 其中[F 30(HMSPP)]為根據ISO 16790:2005在30巴模頭壓力下測定之高熔融強度聚丙烯(HMS-PP)的F 30熔融強度,且[F 200(HMSPP)]為根據ISO 16790:2005在200巴模頭壓力下測定之高熔融強度聚丙烯(HMS-PP)的F 200熔融強度。
線性聚丙烯之熔融強度對熔體流動速率具有指數依賴性,此使得比較具有不同熔體流動速率之分支鏈聚丙烯極困難。高熔融強度聚丙烯之額外F 30熔融強度(AMS)可根據方程式(II)計算 AMS = MS(HMS-PP) - LMS             (II), 其中AMS為相比於與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)之線性聚丙烯的F 30熔融強度(LMS),根據ISO 16790:2005測定之額外F 30熔融強度(AMS),以[cN]為單位;MS(HMS-PP)為根據ISO 16790:2005測定之該高熔融強度聚丙烯(HMS-PP)的F 30熔融強度,以[cN]為單位;LMS為與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)之線性聚丙烯的F 30熔融強度(LMS),以[cN]為單位;且與該高熔融強度聚丙烯(HMS-PP)具有相同熔體流動速率且多分散性在3至5範圍內之對應線性聚丙烯的F 30熔融強度(LMS)根據方程式(III)確定 (III) 其中MFR為該高熔融強度聚丙烯(HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)。
較佳地,本發明高熔融強度聚丙烯(HMS-PP)具有大於2.0 cN(對於塗層級)、更佳大於20 cN(對於發泡級)之如上文所定義之額外F 30熔融強度(AMS),及大於240 mm之v 30延展性。使用額外F 30熔融強度(AMS)作為熔體流動速率標準化熔融強度使得可在具有不同熔體流動速率之分支鏈聚丙烯(HMS-PP)產品之間進行比較。
如藉由DSC所測定之高熔融強度聚丙烯(HMS-PP)的結晶溫度Tc通常小於在照射之前線性聚丙烯前驅物樹脂之結晶溫度Tc。特定言之,高熔融強度聚丙烯(HMS-PP)根據DSC測定之結晶溫度Tc低於120℃,更佳低於115℃。
此外,較佳地,高熔融強度聚丙烯(HMS-PP)為熱機械穩定的。因此,較佳地,高熔融強度聚丙烯(HMS-PP)根據DSC測定之熔融溫度Tm為至少155℃,更佳在155℃至167℃範圍內,再更佳在157℃至163℃範圍內,如在158℃至160℃範圍內。
高熔融強度聚丙烯(HMS-PP)在0.1 rad/s之頻率下測試的剪切儲存模數G´較佳在200至500 Pa範圍內,更佳在250至450 Pa範圍內,再更佳在300至400 Pa範圍內。此外,較佳地,本發明高熔融強度聚丙烯(HMS-PP)藉由DMS在200℃下測定之剪切儲存模數G'等於剪切損耗模數G''之交叉點低於22000 Pas,更佳低於12000 Pas,再更佳低於10000 Pas,及/或交叉點Gc低於100 rad/s,更佳低於70 rad/s,再更佳低於50 rad/s。
藉由DMS在200℃下以0.1 rad/s之頻率測定的剪切儲存模數G'與剪切損耗模數G''之比率較佳低於2.5,更佳低於2.0,再更佳低於1.5。
高熔融強度聚丙烯(HMS-PP)之定義為在0.05 rad/s之頻率下的複數黏度η*與在285 rad/s之頻率下的複數黏度η*之間比率的剪切稀化度較佳大於30,更佳大於40,其中複數黏度經由DMS測定,其中為了測定DMS光譜,ARES G2流變儀在200℃下使用,以0.01 rad/s至300 rad/s之頻率,5%之線性黏彈應變,使用根據ISO 1872-2 (2007)生產之0.5 mm厚度盤量測。
高熔融強度聚丙烯(HMS-PP)如藉由5小時索氏萃取(soxhlet extraction)所測定的二甲苯熱不溶性部分(hot insoluble part;XHU)較佳低於0.25 wt%。
此外,較佳地高熔融強度聚丙烯(HMS-PP)如經由拉伸黏度量測在170℃之溫度下以1.0 s之應變伸長率以2.75 s量測所測定的應變硬化係數高於8.0,更佳等於或高於10.0。應變硬化係數為熔融強度之指標。
本發明進一步關於一種用於製備高熔融強度聚丙烯(HMS-PP)之方法,其包含以下步驟: a)提供線性丙烯聚合物(L-PP), b)將該丙烯聚合物(L-PP)與包含分支鏈不飽和脂肪酸酯之偶合劑(CA)摻合,及 c)藉助於電子束照射來照射在步驟b)中獲得之混合物。
根據本發明方法之步驟a),提供線性丙烯聚合物(L-PP)作為高熔融強度聚丙烯(HMS-PP)之前驅物。
本發明中應用之線性丙烯聚合物(L-PP)可為丙烯之均聚物或共聚物。由線性丙烯均聚物或線性丙烯共聚物組成之聚丙烯組成物為已知的。線性丙烯均聚物藉由在適合聚合條件下使丙烯聚合獲得。線性丙烯共聚物藉由在適合聚合條件下使丙烯與一或多種其他烯烴(較佳乙烯)共聚獲得。丙烯均聚物及共聚物之製備例如描述於Moore, E. P. (996) Polypropylene Handbook. Polymerization, Characterization, Properties, Processing, Applications, Hanser Publishers; New York。
如本文所用之聚丙烯意謂丙烯均聚物或丙烯與α-烯烴之共聚物,α-烯烴例如選自具有2或4至10個C原子之α-烯烴之群的α-烯烴,例如其中以總丙烯共聚物計α-烯烴之量小於10 wt%。
聚丙烯及丙烯與α-烯烴之共聚物可藉由任何已知聚合技術以及利用任何已知聚合催化劑系統製備。關於該等技術,可參考漿液、溶液或氣相聚合;關於催化劑系統,可參考戚格勒-納他、茂金屬或單點催化劑系統。
根據本發明之一較佳具體實例,線性丙烯聚合物(L-PP)為線性丙烯均聚物(propylene homopolymer;H-PP)。
線性丙烯聚合物(L-PP)之分支度較佳低,分支指數g'較佳為至少0.95,更佳至少0.96,再更佳至少0.98,如至少0.99。尤其較佳地,線性丙烯聚合物(L-PP)之分支指數g'為1.00。
除前一段之外或替代前一段,較佳地,線性丙烯聚合物(L-PP)中之分支量低。特定言之,較佳地,線性丙烯聚合物(L-PP)中之分支量低在0至10個分支/1000個碳原子範圍內,更佳在0至5個分支/1000個碳原子範圍內,再更佳在1至5個分支/1000個碳原子範圍內。
較佳地,線性丙烯聚合物(L-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)在0.1至100 g/10 min範圍內,更佳在1.0至100 g/10 min範圍內,再更佳在1.0至25.0 g/10 min範圍內,如在1.0至8.0 g/10 min範圍內。
線性丙烯聚合物(L-PP)可為丙烯之共聚物或均聚物,後者較佳。此外,線性丙烯聚合物(L-PP)可包含一或多種不同的線性丙烯聚合物(L-PP)組分。
在線性丙烯聚合物(L-PP)為丙烯共聚物之情況下,較佳地,線性丙烯聚合物(L-PP)之共聚單體含量在0.2至25.0 mol%範圍內,更佳在0.5至20.0 mol%範圍內,再更佳在2.0至15.0 mol%範圍內,如在6.0至12.0 mol%範圍內。
較佳地,共聚單體選自乙烯及/或C 4至C 8α-烯烴。尤其較佳地,共聚單體為乙烯。對於包含多於一種,如兩種不同丙烯聚合物組分之線性丙烯聚合物(L-PP)(其為丙烯共聚物),較佳地,所有丙烯聚合物組分含有相同共聚單體,如乙烯。
根據本發明之一個具體實例,線性丙烯聚合物(L-PP)為異相丙烯共聚物(heterophasic propylene copolymer;HECO),其包含: i)基質(matrix;M),其為丙烯之聚合物 ii)彈性體(elastomer;E),其為包含衍生自丙烯及乙烯及/或C 4至C 8α-烯烴之單元的共聚物。
一般而言,在本發明中,表述「異相(heterophasic)」指示彈性體(精細地)分散於基質中。換言之,彈性體在基質中形成夾雜物。因此基質含有(精細地)分散之夾雜物,其不為基質的一部分,且該等夾雜物含有彈性體。根據本發明之術語「夾雜物(inclusion)」應較佳指示基質及夾雜物在異相聚丙烯內形成不同相,該等夾雜物例如藉由高解析度顯微術,如電子顯微術或掃描力顯微術可見。
應瞭解,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)較佳具有相當低的總共聚單體含量,較佳乙烯含量。因此,較佳地,異相丙烯共聚物(HECO)之共聚單體含量在4.0至17.0 mol%範圍內,較佳在5.0至14.0 mol%範圍內,更佳在6.0至10.0 mol%範圍內。
異相丙烯共聚物(HECO)一般特徵為二甲苯冷可溶性(xylene cold soluble;XCS)部分及二甲苯冷不溶性(xylene cold insoluble;XCI)部分。出於本申請案之目的,異相丙烯共聚物(HECO)之二甲苯冷可溶性(XCS)部分與該等異相丙烯共聚物(HECO)之彈性體基本上相同。
因此,在討論異相丙烯共聚物(HECO)之彈性體之固有黏度及乙烯含量時,意謂該等異相丙烯共聚物(HECO)之二甲苯冷可溶性(XCS)部分之固有黏度及乙烯含量。
因此,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)中之基質(M)含量,亦即二甲苯冷不溶性(XCI)含量較佳在75.0至93.0 wt%範圍內,更佳在77.0至91.0 wt%範圍內,如78.0至89.0 wt%。
另一方面,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)中之彈性體(E),亦即二甲苯冷可溶性(XCS)含量較佳在7.0至25.0 wt%範圍內,更佳在9.0至23.0 wt%範圍內,如在11.0至22.0 wt%範圍內。
作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)的第一組分為基質(M)。
適用作基質(M)之聚丙烯可包括此項技術中已知之任何類型之同排或主要同排聚丙烯均聚物或隨機共聚物。因此,聚丙烯可為丙烯均聚物或丙烯與乙烯及/或C 4至C 8α-烯烴(諸如1-丁烯、1-己烯或1-辛烯)之同排隨機共聚物,其中總共聚單體含量在0.05至10 wt%範圍內。
另外且較佳地,聚丙烯基質(M)具有相當高的熔體流動速率。因此,較佳地,在本發明中,聚丙烯基質(M),亦即線性丙烯聚合物(L-PP)之二甲苯冷不溶性(XCI)部分根據ISO1133測定之熔體流動速率MFR 2(230℃,2.16 kg)在100至1500 g/10 min、更佳120至800 g/10 min、再更佳140至600 g/10 min範圍內,如在150至500 g/10 min範圍內。
此外,鑒於分子量,聚丙烯基質(M)可為多峰或雙峰。
本發明通篇所用之表述「多峰(multimodal)」或「雙峰(bimodal)」係指聚合物之峰性,亦即 •    其分子量分佈曲線之形式,該曲線為分子量分率隨其分子量而變之圖, 及/或 •    其共聚單體含量分佈曲線之形式,該曲線為共聚單體含量隨聚合物部分之分子量為而變的圖。
作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)的第二組分為彈性體(E)
彈性體(E)包含以下,較佳由以下組成:衍生自(i)丙烯及(ii)乙烯及/或至少另一C4至C20 α-烯烴,如C4至C10 α-烯烴之單元,更佳衍生自(i)丙烯及(ii)乙烯及/或至少另一種選自由以下組成之群的α-烯烴的單元:1-丁烯、1-戊烯、1-己烯、1-庚烯及1-辛烯。彈性共聚物(E1)可另外含有衍生自共軛二烯(如丁二烯)或非共軛二烯之單元,然而,較佳地,彈性共聚物僅由衍生自(i)丙烯及(ii)乙烯及/或C4至C20 α-烯烴之單元組成。若使用,則適合非共軛二烯包括直鏈及分支鏈非環狀二烯,諸如1,4-己二烯、1,5-己二烯、1,6-辛二烯、5-甲基-1,4-己二烯、3,7-二甲基-1,6-辛二烯、3,7-二甲基-1,7-辛二烯,及二氫月桂烯及二氫-羅勒烯之混合異構體,及單環脂環族二烯,諸如1,4-環己二烯、1,5-環辛二烯、1,5-環十二碳二烯、4-乙烯基環己烯、1-烯丙基-4-亞異丙基環己烷、3-烯丙基環戊烯、4-環己烯及1-異丙烯基-4-(4-丁烯基)環己烷。多環脂環族稠合及橋聯環二烯亦適合,包括四氫茚、甲基四氫茚、二環戊二烯、二環(2,2,1)庚-2,5-二烯、2-甲基二環庚二烯,及烯基、亞烷基、環烯基及亞環烷基降 烯,諸如5-亞甲基-2-降 烯、5-亞異丙基降 烯、5-(4-環戊烯基)-2-降 烯;及5-亞環己基-2-降 烯。較佳非共軛二烯為5-亞乙基-2-降 烯、1,4-己二烯及二環戊二烯。
因此,彈性體(E)包含至少衍生自丙烯及乙烯之單元且可包含衍生自如前一段中所定義之另一α-烯烴的其他單元。然而,尤其較佳地,彈性體(E)包含僅衍生自丙烯及乙烯及視情況存在之共軛二烯(如丁二烯)或如前一段中所定義之非共軛二烯(如1,4-己二烯)之單元。因此,作為彈性體(E)之乙烯丙烯非共軛二烯單體聚合物(ethylene propylene non-conjugated diene monomer polymer;EPDM)及/或乙烯丙烯橡膠(ethylene propylene rubber;EPR)尤其較佳,後者最佳。
如同基質(M),彈性體(E)可為單峰或多峰,如雙峰。關於單峰及多峰(如雙峰)之定義,參考以上定義。
在本發明中,彈性體(E)中衍生自丙烯之單元的含量等於二甲苯冷可溶性(XCS)部分中可偵測之丙烯的含量。因此,二甲苯冷可溶性(XCS)部分中可偵測之丙烯在45.0至75.0 wt%、更佳40.0至70.0 wt%範圍內。因此,在一特定具體實例中,彈性體(E),亦即二甲苯冷可溶性(XCS)部分,包含25.0至65.0 wt%、更佳30.0至60.0 wt%衍生自乙烯之單元。較佳地,彈性體(E)為乙烯丙烯非共軛二烯單體聚合物(EPDM)或乙烯丙烯橡膠(EPR),後者尤其較佳,其具有如此段中所定義之丙烯及/或乙烯含量。
另外,較佳地,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)之二甲苯冷可溶性(XCS)部分的共聚單體含量,較佳乙烯含量等於或高於35.0 mol%,較佳在35.0至65.0 mol%範圍內,更佳在45.0至60.0 mol%範圍內,又更佳在50.0至56.0 mol%範圍內。二甲苯冷可溶性(XCS)部分中存在之共聚單體為如上文關於彈性體(E)定義之共聚單體。在一個較佳具體實例中,共聚單體僅為乙烯。
本發明之另一較佳要求為作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)之二甲苯冷可溶性(XCS)部分的固有黏度(intrinsic viscosity;IV)相當低。因此,應瞭解,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)之二甲苯冷可溶性(XCS)部分的固有黏度低於3.5 dl/g,更佳不超過3.4 dl/g。甚至更佳地,作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)之二甲苯冷可溶性(XCS)部分的固有黏度在1.8至3.5 dl/g範圍內,更佳在1.9至3.4 dl/g範圍內,如2.0至3.4 dl/g。固有黏度根據ISO 1628在135℃下在十氫萘中量測。
較佳地,以線性丙烯聚合物(L-PP)之總重量計,更佳以基質(M)與彈性共聚物(E)之共同量計(在線性丙烯聚合物(L-PP)為如上文所定義之異相丙烯共聚物(HECO)之情況下),線性丙烯聚合物(L-PP)之丙烯含量為85.0至96.0 wt%,更佳88.0至94.0 wt%。
作為異相丙烯共聚物(HECO)之線性丙烯聚合物(L-PP)可藉由摻合基質(M)及彈性體(E)生產。然而,較佳地,異相丙烯共聚物(HECO)使用呈串聯組態且在不同反應條件下操作之反應器,以依序步驟方法生產。因此,特定反應器中製備之各部分可具有其自身的分子量分佈及/或共聚單體含量分佈。
較佳地,線性丙烯聚合物(L-PP)在以下存在下製備: (a)包含IUPAC之第4族至第6族過渡金屬之化合物(TC)、第2族金屬化合物(metal compound;MC)及內部供體(internal donor;ID)之戚格勒-納他催化劑; (b)視情況存在之共催化劑(co-catalyst;Co),及 (c)視情況存在之外部供體(ED)。
此戚格勒-納他催化劑可為任何用於丙烯聚合的立體特異性戚格勒-納他催化劑,其較佳能夠催化丙烯與視情況存在之共聚單體在500 kPa至10000 kPa,尤其2500 kPa至8000 kPa之壓力下及在40℃至110℃,尤其60℃至110℃之溫度下的聚合及共聚。
尤其較佳地,線性丙烯聚合物(L-PP)為丙烯之均聚物。
根據本發明,表述「丙烯均聚物(propylene homopolymer)」係關於實質上,亦即由至少99.0 wt%,更佳至少99.5 wt%,再更佳至少99.8 wt%,如至少99.9 wt%之丙烯單元組成的聚丙烯。在另一具體實例中,僅丙烯單元可偵測,亦即僅丙烯已經聚合。
較佳地,丙烯聚合物(propylene polymer;PP),如丙烯均聚物(H-PP)為同排的。因此,較佳地,丙烯聚合物(PP),如丙烯均聚物(H-PP),具有相當高的五單元組濃度(mmmm%),亦即大於94.1%,更佳大於94.4%,如大於94.4%至98.5%,再更佳至少94.7%,如在94.7%至97.5%範圍內。
根據本發明方法之步驟b),將線性丙烯聚合物(L-PP)與包含分支鏈不飽和脂肪酸酯之偶合劑(CA)摻合。線性丙烯聚合物(L-PP)較佳與偶合劑(CA)熔融摻合,例如藉由乾摻合或藉由擠壓。
以在步驟b)中獲得之混合物的總重量計,在本發明方法之步驟b)中獲得之混合物較佳包含0.01至5.0 wt%、更佳0.1至2.0 wt%、再更佳0.2至2.0 wt%、又更佳0.2至1.5 wt%,如0.3至0.8wt%之包含分支鏈不飽和脂肪酸酯的偶合劑(CA)。
較佳地,偶合劑(CA)為多不飽和不飽和脂肪酸之天然來源。特定言之,較佳地,偶合劑(CA)為亞麻子油。較佳地,亞麻子油為天然亞麻子油。
亞麻子油之獨特之處在於其不尋常地大量α-次亞麻油酸,其與空氣中之氧氣具有獨特反應且因此充當聚丙烯之穩定劑/自由基清除劑,且提供作為商業植物油可獲得之最高含量多不飽和脂肪酸與最低水準飽和脂肪酸的組合。USFDA授予高α-次亞麻油酸亞麻仁油公認安全(GRAS)狀態。因此,根據本發明之高熔融強度聚丙烯(HMS-PP)適合於生產食品容器及食品相關產品。
較佳地,在步驟b)中獲得之混合物不含過氧化物及二烯。
根據本發明方法之步驟c),在步驟b)中獲得之包含線性丙烯聚合物(L-PP)及偶合劑(CA)之混合物藉助於電子束照射來照射。
較佳地,電子束輻射之劑量在50至150 kGy範圍內,更佳在60至140 kGy範圍內,再更佳在70至120 kGy範圍內,又更佳在90至120 kGy範圍內。
在步驟b)中獲得之混合物可在惰性或非惰性環境中照射。
舉例而言,有可能使用如例如US 8 399 536中描述之低氧環境,其中相對於低氧環境的總體積,活性氧呈小於約15體積%之經建立且維持的濃度。在此方法中,中間照射聚丙烯樹脂維持於低氧環境中持續一段足以使中間照射聚丙烯樹脂內形成大量長鏈分支的時間,且在中間照射聚丙烯樹脂處於低氧環境中的同時對中間照射聚丙烯樹脂進行處理以實質上使中間照射聚丙烯樹脂中存在之所有自由基去活化。
在步驟b)中獲得之混合物的照射較佳在惰性氛圍中進行。特定言之,較佳地,照射在氮氣下進行。
在照射步驟c)之後,可加熱混合物以便使其餘自由基去活化。特定言之,較佳地,步驟c)之後獲得之混合物加熱至60℃至120℃、更佳80℃至110℃、再更佳90℃至100℃之溫度。
視情況,高熔融強度聚丙烯(HMS-PP)隨後與有機金屬硬脂酸鹽及/或無機水滑石及如上文所定義之添加劑(AD)混配。
本發明亦關於一種包含如上文所描述之高熔融強度聚丙烯(HMS-PP)及一或多種其他聚合物成分之摻合物。較佳地,該一或多種其他聚合物成分為一或多種其他聚烯烴。更佳地,該一或多種其他聚合物成分選自由以下組成之群:丙烯均聚物、丙烯共聚物、聚乙烯均聚物及共聚物及如上文所描述之異相丙烯共聚物。
本發明進一步關於根據上文所描述之方法獲得之高熔融強度聚丙烯(HMS-PP)。關於高熔融強度聚丙烯(HMS-PP)之特性,參考上文提供之定義。
本發明亦關於一種組成物(C),其包含至少10.0 wt%之再循環高熔融強度聚丙烯(r-HMS-PP),r-HMS-PP為如上文所描述之高熔融強度聚丙烯(HMS-PP),其衍生自消費後及/或工業廢料之廢塑膠材料回收。
出於本說明書及後續申請專利範圍之目的,術語「再循環高熔融強度聚丙烯(r-HMS-PP)」用於指示相較於原生聚合物,自消費後廢料及工業廢料兩者回收之材料。消費後廢料係指物件已完成至少第一使用週期(或生命週期),亦即已服務其第一目的;而工業廢料係指製造廢品,其通常不會被消費者接觸。
另一方面,術語「原生(virgin)」表示在首次使用之前新生產之高熔融強度聚丙烯(HMS-PP)材料及/或物件,其未經再循環。原生高熔融強度聚丙烯(HMS-PP)可包含在製備方法期間或之後添加以提高儲存穩定性之添加劑,諸如抗氧化劑及UV穩定劑。
較佳地,再循環高熔融強度聚丙烯(r-HMS-PP)包含其他添加劑,其典型地在原生高熔融強度聚丙烯(r-HMS-PP)進一步加工成最終製品之前添加。因此,較佳地,再循環高熔融強度聚丙烯(r-HMS-PP)包含阻燃劑、填充劑、顏料、抗衝擊改質劑、抗氧化劑(諸如α-生育酚)、成核劑、加工穩定劑、助滑劑或其混合物。
典型地,原生高熔融強度聚丙烯(HMS-PP)進一步加工成製品,其涉及使高熔融強度聚丙烯(HMS-PP)經歷擠壓法。在不受理論束縛情況下,擠壓法期間起作用之剪切力引起經擠壓聚合物之熔體流動速率提高。因此,與對應原生高熔融強度聚丙烯(HMS-PP)相比,已藉由擠壓法加工成製品之再循環高熔融強度聚丙烯(r-HMS-PP)具有較高熔體流動速率。
因此,較佳地,再循環高熔融強度聚丙烯(r-HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)高於原始高熔融強度聚丙烯(originating high melt strength polypropylene;o-HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)。
術語「原始(originating)」表示特定新生產之高熔融強度聚丙烯(o-HMS-PP),其用於生產消費後廢料及工業廢料中所含有之材料,再循環高熔融強度聚丙烯(r-HMS-PP)自其中獲得。
特定言之,較佳地,再循環高熔融強度聚丙烯(r-HMS-PP)及原始高熔融強度聚丙烯(o-HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)滿足不等式IV,更佳不等式IVa,再更佳不等式IVb: 其中MFR 2(oHMSPP)為原始高熔融強度聚丙烯(o-HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg),且MFR 2(rHMSPP)為再循環高熔融強度聚丙烯(r-HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)。
本發明亦關於使用根據本發明之高熔融強度聚丙烯(HMS-PP)生產之發泡物件或製品。
本發明進一步關於一種製品,其包含如上文所描述之高熔融強度聚丙烯(HMS-PP)或組成物(C)。較佳地,以製品之總重量計,製品包含至少80 wt%、更佳至少90重量%、再更佳至少95 wt%,如至少99 wt%之高熔融強度聚丙烯(HMS-PP)或組成物(C)。尤其較佳地,製品由高熔融強度聚丙烯(HMS-PP)或組成物(C)組成。
製品較佳為發泡製品,更佳擠壓泡沫製品、泡沫射出模製製品或珍珠泡沫製品、射出吹塑模製製品或吹塑膜。
較佳地,製品為發泡製品、射出吹塑模製製品或吹塑膜。尤其較佳地,製品為發泡製品,諸如擠壓泡沫製品、泡沫射出模製製品或顆粒泡沫製品。
根據本發明之高熔融強度聚丙烯(HMS-PP)可藉由熔融加工步驟形成為泡沫結構。此類熔融加工步驟可在熔融擠壓機中進行。可將發泡劑添加至熔融加工中以誘導泡沫孔之形成。此類發泡劑可為化學發泡劑或物理發泡劑。化學發泡劑可例如選自碳酸氫鈉、檸檬酸衍生物、偶氮二甲醯胺、伸肼基二甲醯胺、4,4'-氧基雙(苯磺醯肼)、N,N-二亞硝基五亞甲基四胺、5-苯基四唑、對甲苯磺醯肼及/或對甲苯磺醯胺脲。物理發泡劑可例如選自氮氣、二氧化碳、異丁烷、戊烷及環戊烷。較佳地,發泡劑為異丁烷。
發泡劑可在根據本發明之高熔融強度聚丙烯(HMS-PP)呈熔融狀態之位置處引入擠壓機中。舉例而言,較佳地,以高熔融強度聚丙烯(HMS-PP)之總重量計,發泡劑以1.0至20.0 wt%範圍內、更佳1.5至低於10.0 wt%範圍內、再更佳2.0至5.0 wt%範圍內之量引入。引入此類量之發泡劑可有助於形成具有所需低密度與所需高分率閉孔之組合的發泡結構。較佳地,以高熔融強度聚丙烯(HMS-PP)之總重量計,2.0至低於10.0 wt%、更佳大於2.0至5.0 wt%異丁烯用作發泡劑。
另外,可使用適合於由丙烯類聚合物組成物生產泡沫結構之其他通常已知添加劑。舉例而言,可添加一定量的成核劑,諸如滑石及/或脂肪酸(雙)醯胺。較佳地,滑石用作成核劑。舉例而言,較佳地,以高熔融強度聚丙烯(HMS-PP)之總重量計,成核劑以0.1至2.0 wt%、更佳0.5至1.5 wt%之量添加。
此外,可添加一定量的孔穩定劑,諸如單硬脂酸甘油酯(glycerol monostearate;GMS)、單棕櫚酸甘油酯(glycerol monopalmitate;GMP)、乙二醇二硬脂酸酯(glycol di-stearate;GDS)、棕櫚酸酯及/或醯胺,例如硬脂醯基硬脂醯胺、棕櫚醯胺及/或硬脂醯胺。較佳地,單硬脂酸甘油酯用作孔穩定劑。舉例而言,較佳地,以高熔融強度聚丙烯(HMS-PP)之總重量計,孔穩定劑以0.1至2.0 wt%、更佳0.5至1.5 wt%之量添加。
隨後可自熔融擠壓機之模頭出口擠壓高熔融強度聚丙烯(HMS-PP)。由此可形成泡沫結構。根據本發明之丙烯類聚合物組成物及使用此組成物生產之泡沫結構的不同材料特性已經由此處所描述之方法測定。
本發明亦關於用根據本發明之照射方法獲得之高熔融強度聚丙烯(HMS-PP)生產的泡沫。
泡沫結構之密度在20與800 kg/m 3之間的範圍內。泡沫結構之密度根據ISO 845 (2006)測定為表觀總密度。閉孔之分率較佳等於或高於90%,更佳等於或高於98%,再更佳高於98%。藉由將具有已知質量及已知密度(如根據ISO 845 (2008)測定為表觀總密度)之泡沫樣品置於乾燥器中來測定閉孔分率。樣品各自具有5 cm之長度及3 cm之寬度。乾燥器填充有水及聚乙二醇作為界面活性劑。乾燥器中之壓力降低至500毫巴。將樣品保持在此等條件下0分鐘,之後使用根據本發明方法生產之丙烯類組成物經由熔融擠壓發泡方法得到物件,其中發泡窗等於或高於5℃,發泡窗被定義為可生產如根據ISO 845 (2006)所測定表觀總密度等於或低於175 kg/m 3且在使用2.3 wt%異丁烷作為發泡劑時閉孔含量等於或高於90%之泡沫的溫度範圍。
本發明亦關於一種使用根據本發明方法生產之丙烯類組成物生產之發泡物件,其中該發泡物件具有如根據ISO 845 (2006)所測定之等於或低於300 kg/m 3之表觀總密度及等於或高於90%之閉孔含量。
現將藉由以下非限制性實施例說明本發明。
實施例 A. 量測方法除非另外定義,否則以下術語及測定方法之定義適用於本發明之以上一般描述以及以下實施例。
MFR 2 230 根據ISO 1133(230℃,2.16 kg負載)量測。
藉由 NMR 光譜 法定量微結構使用定量核磁共振(nuclear-magnetic resonance;NMR)光譜法定量聚合物之共聚單體含量及共聚單體序列分佈。使用Bruker Advance III 400 NMR光譜儀, 1H及 13C分別在400.15及100.62 MHz下操作,以溶液狀態記錄定量 13C{ 1H} NMR光譜。所有光譜均在125℃下使用氮氣(對於所有氣動裝置)使用 13C最佳化之10 mm寬溫探頭記錄。大約200 mg材料連同乙醯基丙酮酸鉻-(III)(Cr(acac) 3)一起溶解於3 ml之 1,2-四氯乙烷- d 2(TCE- d 2 )中,產生鬆弛劑於溶劑中之65 mM溶液(Singh, G., Kothari, A., Gupta, V., Polymer Testing 28 5 (2009), 475)。為確保均質溶液,在於加熱塊中製備初始樣品後,進一步在旋轉烘箱中加熱NMR管至少1小時。***磁體中後,管在10 Hz下旋轉。此設置主要為了高解析度而選擇且定量地為精確乙烯含量定量所需。使用標準單脈衝激勵,無NOE,使用最佳化頂錐角、1 s再循環延遲及雙水準WALTZ16去耦流程(Zhou, Z., Kuemmerle, R., Qiu, X., Redwine, D., Cong, R., Taha, A., Baugh, D. Winniford, B., J. Mag. Reson. 187 (2007) 225;Busico, V., Carbonniere, P., Cipullo, R., Pellecchia, R., Severn, J., Talarico, G., Macromol. Rapid Commun. 2007, 28, 1128)。每個光譜獲得總共6144(6k)個瞬態。
對定量 13C{ 1H} NMR光譜進行處理、積分,且使用專用電腦程式自積分測定相關定量特性。所有化學位移均使用溶劑之化學位移在30.00 ppm下間接參照乙烯嵌段(EEE)之中心亞甲基。即使在不存在此結構單元時,此方法亦可進行類似的參照。觀測到對應於乙烯併入的特徵訊號(Cheng, H. N., Macromolecules 17 (1984), 1950)。
對於丙烯均聚物,所有化學位移均內部參考21.85 ppm下之甲基同排五單元組(mmmm)。
觀測到對應於區位缺損(Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253;Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157;Cheng, H. N., Macromolecules 17 (1984), 1950)或共聚單體之特徵訊號。
經由將23.6-19.7 ppm之間的甲基區域積分,針對與相關立體序列無關的任何位點校正來定量立體規正性分佈(Busico, V., Cipullo, R., Prog. Polym. Sci. 26 (2001) 443;Busico, V., Cipullo, R., Monaco, G., Vacatello, M., Segre, A.L., Macromoleucles 30 (1997) 6251)。
特定言之,區位缺損及共聚單體對立體規正性分佈定量之影響藉由自立體序列之特定積分區域扣除代表性區位缺損及共聚單體積分來校正。
同排性在五單元組水準下測定且作為同排五單元組(mmmm)序列相對於所有五單元組序列之百分比報告: [mmmm] % = 100 * (mmmm/所有五單元組總和)
2,1赤區位缺損之存在藉由17.7及17.2 ppm處兩個甲基位點的存在指示且藉由其他特徵位點確定。
未觀測到對應於其他類型區位缺損之特徵訊號(Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253)。
2,1赤區位缺損之量使用17.7及17.2 ppm處兩個特徵甲基位點之平均積分定量: P 21e= ( I e6+ I e8) / 2
1,2第一***之丙烯之量基於甲基區域定量,其中對此區域中與第一***無關之位點及此區域不包括之第一***位點進行校正: P 12= I CH3+ P 12e
丙烯之總量定量為第一***丙烯及所有其他存在之區位缺損的總和: P = P 12+ P 21e
2,1赤區位缺損之莫耳百分比相對於所有丙烯定量: [21e] mol% = 100 * (P 21e/ P )
對於共聚物,觀測到對應於乙烯併入的特徵訊號(Cheng, H. N., Macromolecules 17 (1984), 1950)。
亦觀測到區位缺損(Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253;Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157;Cheng, H. N., Macromolecules 17 (1984), 1950),需要對此類缺損對共聚單體含量之影響進行校正。
共聚單體部分使用Wang等人(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)之方法經由對 13C{ 1H}光譜之整個光譜區域之多個訊號進行積分而定量。選擇此方法係因為其穩固性質及在需要時考慮區位缺損之存在的能力。略微調整積分區域以增加在遇到之共聚單體含量之整個範圍內的適用性。
對於僅在PPEPP序列中觀測到經分離乙烯的系統,修改Wang等人之方法以降低已知不存在之位點之非零積分的影響。此方法降低了對此類系統之乙烯含量之過高估計且藉由將用於測定絕對乙烯含量之位點數目減少至以下而達成: E = 0.5(Sββ + Sβγ+ Sβδ+ 0.5(Sαβ + Sαγ))
經由使用此組位點,相應積分方程式變成: E = 0.5(I H+I G+ 0.5(I C+ I D)) 使用與Wang等人(Wang, W-J., Zhu, S., Macromolecules 33 (2000), 1157)之文章中所用相同的註解。不修改用於絕對丙烯含量之方程式。
自莫耳分率計算共聚單體併入莫耳百分比: E [mol%] = 100 * fE
自莫耳分率計算共聚單體併入重量百分比: E [wt%] = 100 * (fE * 28.06) / ((fE * 28.06) + ((1-fE) * 42.08))
使用Kakugo等人(Kakugo, M., Naito, Y., Mizunuma, K., Miyatake, T. Macromolecules 15 (1982) 1150)之分析方法測定在三單元組水準下之共聚單體序列分佈。此方法出於其穩定性質經選擇且略微調整積分區域以增加對於較寬共聚單體含量範圍之適用性。
藉由 1 H-NMR 測定照射後接枝偶合劑濃度 α - 次亞麻油酸 1. 索氏萃取以移除非接枝偶合劑將2.5 g研磨樣品稱量至索氏套管中。在圓底燒瓶(250 ml)中置放200 ml正己烷,且將套管***至索氏萃取器中。非接枝偶合劑之萃取在回流冷卻下經24小時之時段進行。殘餘物在真空乾燥烘箱中在90℃下乾燥隔夜,冷卻至室溫且用於 1 H NMR 光譜
2. 1 H NMR 光譜 使用在400.15 MHz下操作的Bruker AVNEO 400 NMR光譜儀記錄溶液狀態之定量 1H NMR光譜。所有光譜均在125℃下使用氮氣(對於所有氣動裝置)使用 13C最佳化之10 mm選擇性激發探頭記錄。使用大約3 mg Hostanox 03(CAS 32509-66-3)作為穩定劑,將大約200 mg材料溶解於大約3 ml 1,2-四氯乙烷- d 2(TCE- d 2 )中。採用標準單脈衝激發,其利用30度脈衝,3 s馳緩延遲及10 Hz樣品旋轉。每FID收集總計64k資料點,停留時間61 μs,對應於大約20 ppm之光譜窗。使用4次虛擬掃描獲得每個光譜總計512個瞬態。出於就不飽和物種而言具有高靈敏度、解析度及穩定性選擇此設置。
定量 1H光譜應用指數窗函數以0.3 Hz線加寬進行處理、積分,且自積分強度確定相關比率。所有化學位移均使用由5.95 ppm下之殘餘質子化溶劑產生之訊號間接參照0.00 ppm下之TMS { Resconi L., Cavallo L., Fait A., Piemontesi F., Chem. Rev. 2000, 100, 1253},且脂族主體訊號之強度(I 主體)設定為100000。觀測到在特定 1H NMR化學位移下對應於所列結構基團之存在的特徵訊號,其概述於表1中{ Resconi L., Piemontesi F., Camurati I., Sudmeijer O., Nifantèf I. E., Ivschenko P. V., Kuzmina L. G., J. Am. Soc. 1998, 120, 2308-2321}: 1 特徵 1H NMR訊號
結構基團 化學位移 1 H NMR [ppm] 強度
脂族主體 2.80 - (-0.5) y
末端亞乙烯基 4.73 - 4.66 w
內部亞乙烯基 4.85 - 4.73 z
伸乙烯基 5.55 - 5.27 x
烯丙基異丁烯基 5.08 - 4.85 v
hostanox 7.00 - 6.81 h
計算特定基團之強度之間的比率,補償其他基團之影響: 比率x/z = x / (z-w) 比率x/y = x / (y-(h/4*42))
熔融溫度 Tm 、結晶溫度 Tc 及熔融焓 Hm藉由微差掃描熱量法(differential scanning calorimetry;DSC)根據ISO 11357-3用具有RSC製冷設備及資料站之TA-Instruments 2920 Dual-Cell測定熔融溫度Tm。在+23℃與+210℃之間的加熱/冷卻/加熱循環中應用10℃/min之加熱及冷卻速率。結晶溫度(Tc)自冷卻步驟測定,而熔融溫度(Tm)及熔融焓(Hm)在第二加熱步驟中測定。
F 30 F 200 熔融強度 v 30 v 200 熔融延展性本文所描述之測試遵循ISO 16790:2005。應變硬化行為藉由文章「Rheotens-Mastercurves and Drawability of Polymer Melts」, M. H. Wagner, Polymer Engineering and Science,第36卷,第925頁至第935頁中所描述之方法測定。聚合物之應變硬化行係藉由Rheotens設備(Göttfert, Siemensstr.2, 74711 Buchen, Germany之產品)來分析,其中藉由在所界定加速度之情況下下拉熔融股線而使其伸長。
Rheotens實驗模擬工業紡絲及擠壓方法。原則上,將熔體壓製或擠出通過圓模且牽離所得股線。記錄擠出物上之應力,其隨熔融特性及量測參數(尤其輸出及牽引速度之間的比,其實際上為伸長率之量度)而變。針對下文呈現之結果,藉由實驗室擠壓機HAAKE Polylab系統及具有圓柱形模具(L/D = 6.0/2.0 mm)之齒輪泵擠壓材料。為了量測F 30熔融強度及v 30熔融延展性,藉由使擠壓聚合物之一部分旁通將擠壓機出口(=齒輪泵入口)處的壓力設定成30巴。為了量測F 200熔融強度及v 200熔融延展性,藉由使擠壓聚合物之一部分旁通將擠壓機出口(=齒輪泵入口)處的壓力設定成200巴。
將齒輪泵預調整至5 mm/s之股線擠出速率,且熔融溫度設定成200℃。模具與Rheotens輪之間的絲條長度為80 mm。實驗開始時,將Rheotens輪之起始速度調整至經擠壓聚合物股線(張力為零)之速度:隨後藉由使Rheotens輪之起始速度緩慢增加而開始實驗直至聚合物長絲斷裂。輪之加速度足夠小,以使得在凖穩定條件下量測張力。經下拉之熔融股線之加速度為120 mm/sec 2。Rheotens與PC程式EXTENS組合操作。此為即時資料獲取程式,其顯示且儲存張力及下拉速度之量測資料。其中聚合物股線斷裂之Rheotens曲線(力與滑輪旋轉速度)之端點分別視為F 30熔融強度及v 30熔融延展性值或F 200熔融強度及v 200熔融延展性值。
額外熔融強度 additional melt strength AMS 根據方程式(II)計算 AMS = MS(HMS-PP) - LMS             (II), 其中AMS為相比於與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)之線性聚丙烯的F 30熔融強度(LMS),根據ISO 16790:2005測定之額外F 30熔融強度(AMS),以[cN]為單位;MS(HMS-PP)為根據ISO 16790:2005測定之該高熔融強度聚丙烯(HMS-PP)的F 30熔融強度,以[cN]為單位;LMS為與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)之線性聚丙烯的F 30熔融強度(LMS),以[cN]為單位;且與該高熔融強度聚丙烯(HMS-PP)具有相同熔體流動速率且多分散性在3至5範圍內之對應線性聚丙烯的F 30熔融強度(LMS)根據方程式(III)確定 LMS = 17.35MFR - 0.994(III), 其中MFR為該高熔融強度聚丙烯(HMS-PP)根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)。
方程式(III)為藉由Rheotens測試之商業線性丙烯均聚物根據ISO 1133測定之熔體流動速率MFR 2(230℃,2.16 kg)及如上文所定義之F 30熔融強度的擬合函數。來自Borealis之該等商業線性丙烯均聚物之熔體流動速率及F 30熔融強度概述於表2中。 2 隨熔體流動速率而變之F 30熔融強度
商業線性 PP MFR [g/10min] F 30熔融強度[cN]
BA390 0.2 87
BE50 0.3 60
HA001 0.5 35
HA507 0.9 17
HB600TF 2.0 9
HC205TF 5.0 3.5
HD120MO 10.0 1.8
分支指數 g'使用分支鏈聚合物樣品之g'指數確定分支之相對量。長鏈分支(long chain branching;LCB)指數定義為g'= [η] br/[η] lin 熟知若g'值增加,則分支含量減少。[η]為在一定分子量下聚合物樣品之TCB中160℃下固有黏度且藉由線上黏度及濃度偵測器量測。如Cirrus Multi-Offline SEC-Software第3.2版手冊中所述,使用Solomon-Gatesman方程式量測固有黏度。
各沖提切片之需要濃度藉由RI偵測器測定。
[η] lin為線性樣品之固有黏度且[η] br為相同分子量及化學組成之分支鏈樣品的黏度。G' n之數目平均值及重量平均值g' w定義為: 其中a i為部分i之dW/dlogM且A i為聚合物至部分i之累積dW/dlogM。分子量上線性參考(線性同排PP)之[η] lin用線上黏度偵測器量測。自線性參考獲得logM=4.5-6.1之分子量範圍中之以下K及α值(K = 30.68*10 -3且α = 0.681)。藉由以下關係計算g'計算值之每切片分子量之[η] lin:[η] lin,i= K*M i α。藉由線上黏度及濃度偵測器量測各特定樣品之[η] br,i
gpcBR指數: gpcBR指數藉由使用下式計算: 其中藉由使用Cirrus Multi-Offline SEC-Software第3.2版,Mw (LS15)自15°角之光散射沖提面積計算且[η] (塊體)自相應黏度偵測器沖提面積計算。 其中K LS為15°角之光散射常數,dn/dc為折射率增量,如自RI偵測器之偵測器常數計算,K IV為黏度計之偵測器常數,Sp i為各層析切片之比黏度且C為對應濃度,單位為g/dl。
剪切稀化指數 SHI聚合物熔體藉由動態剪切量測之特徵界定符合ISO標準6721-1及6721-10。在裝備有25 mm平行板幾何結構之Anton Paar MCR501應力控制旋轉流變儀上進行量測。在壓縮模製板上,使用氮氣氛圍且將應變設定於線性黏彈性方案內來進行量測。在200℃下,施加0.01與300 rad/s之間的頻率範圍且設定0.5 mm間隙,進行振盪剪切測試。
在動態剪切實驗中,在正弦變化剪切應變或剪應力(分別為應變及應力控制模式)下使探針經受均勻形變。在控制應變實驗時,探針經受可藉由以下表示之正弦應變: γ(t) = γ 0sin(ωt)                                   (1)
若施加之應變在線性黏彈性方案內,則可藉由以下給出所得正弦應力反應: σ(t) = σ 0sin(ωt +δ)                              (2) 其中σ 0及γ 0分別為應力及應變振幅;ω為角頻率;δ為相移(施加之應變與應力反應之間的損失角);t為時間。
動態測試結果典型地藉助於若干不同流變函數來表示,亦即剪切儲存模數G'、剪切損耗模數G"、複數剪切模數G*、複數剪切黏度η*、動態剪切黏度η'、複數剪切黏度之異相位分量η"及損耗正切tan η,其可如下表示: G' = cosδ [Pa]                               (3) G" = sinδ [Pa]                               (4) G* = G' + iG'' [Pa]                              (5) η *= η '- iη" [Pa·s]                              (6) η' = [Pa·s]                                    (7) η'' = [Pa·s]                                   (8)
與MWD相關且與Mw無關之所謂的剪切稀化指數之測定如方程式9中所述地進行。 (9)
舉例而言,SHI (0.05/2285)由在0.05 rad/s頻率下測定之以Pa s為單位的複數黏度值除以在285 rad/s頻率下測定之以Pa s為單位的複數黏度值定義。
儲存模數(G')、損耗模數(G")、複數模數(G*)及複數黏度(η*)係作為頻率(ω)之函數獲得。
藉此,例如η* 300rad/s(eta* 300rad/s)用作在285 rad/s頻率下之複數黏度之縮寫,且η* 0.05rad/s(eta* 0.05rad/s)用作在0.05 rad/s頻率下之複數黏度之縮寫。
損耗正切tan (δ)定義為給定頻率下之損耗模數(G")與儲存模數(G')之比。藉此,例如,tan 0.05用作0.05 rad/s下之損耗模數(G")與儲存模數(G')之比的縮寫,且tan 300用作300 rad/s下之損耗模數(G")與儲存模數(G')之比的縮寫。
彈性平衡tan 0.05/tan 300定義為損耗正切tan 0.05與損耗正切tan 300之比。
多分散性指數 PI由方程式10定義。 PI= ,          ω COP= (G'= G")時之ω           (10) 其中ω COP為交叉角頻率,測定為儲存模數G'等於損耗模數G"之角頻率。
該等值係藉助於如Rheoplus軟體所定義之單點內插程序來測定。在給定G*值無法以實驗方式獲得之情況下,該值係藉助於外推法使用與先前相同的程序測定。在兩種情況(內插或外推)下,均應用來自Rheoplus「 自參數內插 y 值至 x Interpolate y-values to x-values from parameter 「對數內插類型 logarithmic interpolation type 之選項。
參考文獻: [1] 「Rheological characterization of polyethylene fractions」, Heino, E.L., Lehtinen, A., Tanner J., Seppälä, J., Neste Oy, Porvoo, Finland, Theor. Appl. Rheol., Proc. Int. Congr. Rheol,第11(1992), 1, 360-362. [2] 「The influence of molecular structure on some rheological properties of polyethylene」, Heino, E.L., Borealis Polymers Oy, Porvoo, Finland, Annual Transactions of the Nordic Rheology Society, 1995. [3] 「Definition of terms relating to the non-ultimate mechanical properties of polymers」, Pure & Appl. Chem.,第70卷,第3期,第701-754頁, 1998.
根據EN 579測定 二甲苯熱不溶性 XHU 部分。將約2.0 g聚合物(m p)稱重且置於經稱重之金屬網中,總重量由(m p+m)表示。將網中之聚合物在索氏設備(soxhlet apparatus)中用沸騰二甲苯萃取5小時。沖提劑隨後經新制二甲苯替換且沸騰再持續一小時。隨後,乾燥網且再次稱重(mxHu+m)。將藉由式mxHu+m-m m=mxHu獲得之二甲苯熱不可溶物之質量(mxHu)與聚合物之重量(m p)相關聯以獲得二甲苯不可溶物之分數mxHu/m p
B. 實施例本發明實施例IE1至IE7及比較實施例CE1、CE2及CE2a如下製備: 作為線性前驅物,使用Borealis之線性聚丙烯均聚物HA001,其MFR為0.6 g/10 min(230℃,2.16 kg/cm 2;ISO 1133),熔點為161℃,結晶溫度為116℃,同排性為97.3%(藉由 13C NMR得到的五單元組濃度),使用戚格勒-納他催化劑藉由漿液法產生。穩定粉末之F30熔融強度為35 cN。
亞麻子油係購自Lausitzer Ölmühle Hoyerswerda有限公司且為冷壓亞麻子油,每100 mL包含99 g脂肪、23 g單不飽和脂肪酸、60 g多不飽和脂肪酸、15 g飽和脂肪酸及0.22g蛋白質。
在Prism TSE 24MC上在氮氣下將Borealis之丙烯均聚物絨毛HA001與亞麻子油以表4中所指示之量混配成球粒(實施例P0至P4)。產量為10 kg/h。添加劑經由預摻合或直接投配而投配至擠壓機。擠壓機之溫度設定在20℃與240℃之間。如下照射由此獲得之球粒: 以三個步驟進行電子束照射過程: 輻射顆粒,劑量為80-110 kGy,10 MeV,在20℃下在惰性氛圍中,帶速度50 mm/s,帶寬度800 mm,照射樣品之床高度50 mm。 在60℃下在惰性氛圍中加熱經輻射顆粒30分鐘。 藉由在100℃下在惰性氛圍中加熱30分鐘使自由基去活化。
接枝偶合劑之濃度如上文所描述藉由 1H NMR光譜法測定。結果概述於表3中。
所獲得本發明及比較聚丙烯之特性概述於表4中。
此外,以下商業聚合物用作比較實施例: CE3為LyondellBasell之商業HMS-PP PF814 CE4為Borealis之商業HMS-PP WB140HMS
如可自表4收集,根據本發明之高熔融強度聚丙烯(HMS-PP)之流變特性與比較實施例CE3及CE4之特性相當,該等比較實施例為用過氧化物作為自由基源及丁二烯作為偶合劑製備之高熔融強度聚丙烯。表4亦顯示對於本發明實施例,F 30熔融強度與F 200熔融強度之間的比率穩定,此表明本發明高熔融強度聚丙烯可在流變特性不劣化之情況下再擠出。此外,未發生成核效應,因為結晶溫度Tc與線性前驅物(HA001)相比保持在相同水準。
實施例IE2、IE5、IE6及IE7均基於相同線性聚丙烯均聚物HA001,向其中添加0.5 wt%相同偶合劑且用相同劑量照射。儘管如此,該等特性略微不同。此偏差為正常行為。
高熔融強度聚丙烯(HMS-PP)之F 30熔融強度之極期望值接近30 cN或更佳至少30 cN。重要事實為即使儘管在與上文所提及之條件部分相同的條件下存在特性之某一變化,但所有本發明實施例達成此目標。
如上文已指示,特性之變化為正常的。在照射步驟之後,高熔融強度聚丙烯仍含有一些自由基。當高熔融強度聚丙烯之樣品運輸至特定特性(例如MFR或熔融強度)量測之步驟時,此等自由基進一步反應。在本文所揭示之實施例中,已注意將樣品相當快速地帶入各別量測步驟。儘管如此,若條件涉及時間間隔、溫度及偶合劑濃度,則無法保證始終達成相同條件。條件之微小偏差可導致特性之可量測差異。
除了所用偶合劑以外,本發明實施例IE8至IE13以本發明實施例IE1至IE7相同之方式製備。表5指示所添加偶合劑之類型及量以及對應結果。
胡桃油為來自Aromatika BV, Netherlands之Walnußöl,含有9.8 wt%飽和脂肪。
桐油為來自Bindulin Werk, CAS編號8001-20-5之Allendo®。
葵花子油為來自Spar之Osolio,含有10 wt%飽和脂肪。
所有此三種油均購自Linz, Austria之正規超市。 3 藉由 1H-NMR測定接枝偶合劑濃度(α-次亞麻油酸)
結構基團 脂族主體 末端亞乙烯基 內部亞乙烯基 伸乙烯基 烯丙基異丁烯基 hostanox 比率x/z = x / (z-w) 比率x/y = x / (y-(h/4*42))
化學位移 1H NMR [ppm] 2.80 - (-0.5) 4.73 - 4.66 4.85 - 4.73 5.55 - 5.27 5.08 - 4.85 7.00 - 6.81
強度 y w z x v h
                          
材料                        
HA001 100000 0.61 0.67 0.00 0.00 49.88 0.00 0.00E+00
LSO 100000 0.00 0.00 16100.00 0.00       1.61E-01
P1 100000 0.61 0.67 35.36 0.00 51.49 589.33 3.56E-04
P2 100000 0.76 0.79 18.09 0.00 51.4 603.00 1.82E-04
P3 100000 1.04 1.06 5.96 0.00 44.33 298.00 5.99E-05
                          
HA001經照射 100000 1.83 17.43 3.72 13.83 53.29 0.24 3.74E-05
CE3 100000 2.79 15.95 2.98 13.75 48.16 0.23 3.00E-05
                          
P1經照射 100000 0.48 13.53 8.33 10.38 42.16 0.64 8.37E-05
P1經照射不溶性 100000 0.70 14.22 8.03 10.72 47.18 0.59 8.07E-05
P2經照射 100000 1.10 16.32 5.76 12.49 47.56 0.38 5.79E-05
P2經照射不溶性 100000 1.00 16.39 5.48 12.22 50.49 0.36 5.51E-05
P3經照射 100000 1.34 17.92 4.65 13.30 55.45 0.28 4.68E-05
P3經照射不溶性 100000 1.16 17.40 4.16 12.89 44.79 0.26 4.18E-05
4 本發明及比較實施例之特性
實施例 劑量[kGy] 偶合劑 [wt%] MFR [g/10min] SHI ETA 0.05/285 [-] 交叉點 [rad/s] 交叉點Gc [kPa] PI [Pa-1] Eta .0.05 [Pa s] Eta 285 [Pa s] 0.1 rad/s下tand F 30熔融強度 [cN] F 30AMS [cN] F 200熔融強度 [cN] (F 30-F 200)/F 30  [%] Tm [℃] Tc [℃]
HA001 0 0 0.6 163 113
P0 0 0 2.4 161 116
P1 0 0.5 1.1 163 113
P2 0 0.25 1.1 163 115
P3 0 0.1 1.2 161 115
P4 0 0.05 1.2 161 116
IE1 80 0.5 11.3 27.5 126 20675 4.8 4257 154.9 3.3 19.0 17.4 157 113
IE2 110 0.5 2.3 53.1 37 8624 11.6 6262.4 118.0 1.6 37.4 37.1 157 112
IE3 110 0.25 3.8 40.0 92.9 11991 8.3 4223 105.5 2.1 35.1 34.7 155 114
IE4 110 0.1 7.0 33.0 163 16582 6.0 3610.4 109.5 2.7 28.0 27.5 154 114
IE5 110 0.5 3.1 46.9 74.2 11056 9.0 5043.7 107.6 1.7 36.1 30.5 34.7 4% 157 113
IE6 110 0.5 3.4 44.9 65.7 11633 8.6 5400.3 120.4 1.8 37.7 32.5 34.9 8% 157 113
IE7 110 0.5 3.6 44.4 113 12686 7.9 4467.5 100.6 1.8 35.2 30.4 34.6 2% 157 113
CE1 60 0 5.0 38.7 40 16503 6.1 7890.2 203.9 2.1
CE2 80 0 11.2 26.5 80 19916 5.0 4159.4 150.0 2.7
CE2a 110 0 5.3 36.8 90.9 13749 7.3 4469.9 121.6 2.1
CE3 nd nd 2.5 40.0 14 8500 11.8 8000 200.0 1.8 35.0 28.0 28 25% 159 125
CE4 0 nd 2.0 62.5 2 8000 12.5 10000 160.0 1.4 36.0 27.3 30 20% 160 129
5 本發明及比較實施例之特性
實施例 劑量[kGy] 偶合劑 偶合劑 [wt%] MFR [g/10min] SHI ETA 0.05/285 [-] 交叉點 [rad/s] 交叉點Gc [kPa] PI [Pa-1] Eta .0.05 [Pa s] Eta 285 [Pa s] 0.1 rad/s下tand F 30熔融強度 [cN] F 30AMS [cN] F 200熔融強度 [cN] (F 30-F 200)/F 30  [%] Tm [℃] Tc [℃]
HA001 0 - 0 0.6                       163 113
P0 0 - 0 2.4                       161 116
P1 0 亞麻子油 0.5 1.1                       163 113
P2 0 亞麻子油 0.25 1.1                       163 115
P3 0 亞麻子油 0.1 1.2                       161 115
P4 0 亞麻子油 0.05 1.2                       161 116
IE3 110 亞麻子油 0.25 3.8 40.0 92.9 11991 8.3 4223 105.5 2.1 35.1 34.7     155 114
IE8 110 胡桃油 0.25 4.3 58.7 11.1 6996.3 14.3 9313.4 158.8 1.6 30.7 26.6 26.5 14% 158 123
IE9 110 桐油 0.25 1.4 75.7 3.0 3847.9 26.0 11987.0 158.4 1.3 35.5 23.3 31.6 11% 158 125
IE10 110 葵花子油 0.25 7.1 83.2 2.2 3472.5 28.8 13281.0 159.6 1.2 27.5 25.0 23.4 15% 158 123
IE11 90 胡桃油 0.25 2.9 55.2 13.1 8277.8 12.1 9374.7 169.8 1.8 28.0 22.0 25.5 9% nd nd
IE12 90 桐油 0.25 0.8 88.9 1.3 3632.5 27.5 18421.0 207.2 1.2 35.2 14.6 34.6 2% nd nd
IE13 90 葵花子油 0.25 4.5 59.2 10.7 8194.8 12.2 11046.0 186.5 1.6 25.5 21.6 22.5 12% nd nd
CE1 60 - 0 5.0 38.7 40 16503 6.1 7890.2 203.9 2.1            
CE2 80 - 0 11.2 26.5 80 19916 5.0 4159.4 150.0 2.7            
CE2a 110 - 0 5.3 36.8 90.9 13749 7.3 4469.9 121.6 2.1            
CE3 nd    nd 2.5 40.0 14 8500 11.8 8000 200.0 1.8 35.0 28.0 28 25% 159 125
CE4 0    nd 2.0 62.5 2 8000 12.5 10000 160.0 1.4 36.0 27.3 30 20% 160 129
[圖1]顯示本發明高熔融強度聚丙烯(HMS-PP)之典型 1H NMR光譜。

Claims (13)

  1. 一種高熔融強度聚丙烯(HMS-PP),其具有藉由GPC測定之低於0.9的分支指數且包含衍生自以下之單元:i)丙烯,及ii)至少一種多不飽和脂肪酸,其中以該高熔融強度聚丙烯(HMS-PP)之總重量計,該高熔融強度聚丙烯(HMS-PP)包含0.05至2.0wt%之衍生自至少一種多不飽和脂肪酸之單元。
  2. 如請求項1之高熔融強度聚丙烯(HMS-PP),其中該至少一種多不飽和脂肪酸為亞麻油酸及/或α-次亞麻油酸。
  3. 如請求項1或2之高熔融強度聚丙烯(HMS-PP),其中比率x/(z-w)在0.25至2.0範圍內,其中x為1H NMR訊號(400MHz,1,2-四氯乙烷-d 2)在5.55至5.27ppm處之強度,z為該1H NMR訊號(400MHz,1,2-四氯乙烷-d 2)在4.85至4.73ppm處之強度,且w為該1H NMR訊號(400MHz,1,2-四氯乙烷-d 2)在4.73至4.66ppm處之強度。
  4. 如請求項1或2之高熔融強度聚丙烯(HMS-PP),其滿足不等式(I)
    Figure 111117817-A0305-02-0046-3
    其中[F30(HMSPP)]為根據ISO 16790:2005在30巴下測定之該高熔融強度聚丙烯(HMS-PP)的F30熔融強度,且[F200(HMSPP)]為根據ISO 16790:2005在200巴下測定之該高熔融強度聚丙烯(HMS-PP)的F200熔融強度。
  5. 如請求項1或2之高熔融強度聚丙烯(HMS-PP),其中相比於與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133在230℃及2.16kg負載下測定之熔體流動速率MFR2之線性聚丙烯的F30熔融強度(LMS),該高熔融強度聚丙烯(HMS-PP)具有高於2.0cN之根據ISO 16790:2005測定的額外F30熔融 強度(AMS),其中該額外F30熔融強度(AMS)係根據方程式(II)確定AMS=MS(HMS-PP)-LMS (II),其中AMS為相比於與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133在230℃下2.16kg負載下測定之熔體流動速率MFR2之線性聚丙烯的該F30熔融強度(LMS),根據ISO 16790:2005測定之該額外F30熔融強度(AMS),以[cN]為單位;MS(HMS-PP)為根據ISO 16790:2005測定之該高熔融強度聚丙烯(HMS-PP)的該F30熔融強度,以[cN]為單位;LMS為與該高熔融強度聚丙烯(HMS-PP)具有相同的根據ISO 1133在230℃下2.16kg負載下測定之熔體流動速率MFR2之線性聚丙烯的該F30熔融強度(LMS),以[cN]為單位,且其中該F30熔融強度(LMS)係根據方程式(III)確定LMS=17.35MFR-0994 (III),其中MFR為該高熔融強度聚丙烯(HMS-PP)根據ISO 1133在230℃下2.16kg負載下測定之該熔體流動速率MFR2
  6. 如請求項1或2之高熔融強度聚丙烯(HMS-PP),其根據DSC測定之結晶溫度Tc低於120℃。
  7. 一種用於製備高熔融強度聚丙烯(HMS-PP)之方法,其包含以下步驟:a)提供線性丙烯聚合物(L-PP),b)將該丙烯聚合物(L-PP)與包含多不飽和脂肪酸之偶合劑(CA)摻合,及c)藉助於電子束照射來照射在步驟b)中獲得之混合物,其中以在步驟b)中獲得之混合物的總重量計,在步驟b)中獲得之混合物包含0.1至2.0wt%的包含多不飽和脂肪酸之偶合劑(CA)。
  8. 如請求項7之方法,其中根據步驟c)之電子束輻射的劑量在50 至150kGy範圍內。
  9. 如請求項7之方法,其中包含多不飽和脂肪酸之該偶合劑(CA)為天然亞麻子油。
  10. 一種聚丙烯組成物(C),其包含以該組成物(C)之總重量計至少10.0wt%之再循環高熔融強度聚丙烯(r-HMS-PP),該r-HMS-PP為如請求項1至6中任一項之高熔融強度聚丙烯(HMS-PP),其自衍生自消費後及/或工業廢料之廢塑膠材料回收。
  11. 如請求項10之聚丙烯組成物(C),其中該再循環高熔融強度聚丙烯(r-HMS-PP)及原始高熔融強度聚丙烯(o-HMS-PP)根據ISO 1133在230℃下2.16kg負載下測定之熔體流動速率MFR2滿足以下不等式IV,該o-HMS-PP為該高熔融強度聚丙烯(r-HMS-PP),該再循環高熔融強度聚丙烯(r-HMS-PP)係自其中獲得:
    Figure 111117817-A0305-02-0048-2
    其中MFR2(oHMSPP)為該原始高熔融強度聚丙烯(o-HMS-PP)根據ISO 1133在230℃下2.16kg負載下測定之該熔體流動速率MFR2,且MFR2(rHMSPP)為該再循環高熔融強度聚丙烯(r-HMS-PP)根據ISO 1133在230℃下2.16kg負載下測定之該熔體流動速率MFR2
  12. 如請求項10或11之聚丙烯組成物(C),其包含選自由以下組成之群的添加劑(AD):阻燃劑、填充劑、顏料、抗衝擊改質劑、抗氧化劑、成核劑、加工穩定劑、助滑劑或其混合物。
  13. 一種聚丙烯製品,其包含如請求項1至6中任一項之高熔融強度聚丙烯(HMS-PP)或如請求項10至12中任一項之聚丙烯組成物(C)。
TW111117817A 2021-05-12 2022-05-12 高熔融強度聚丙烯 TWI816395B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21173666.5 2021-05-12
EP21173666 2021-05-12

Publications (2)

Publication Number Publication Date
TW202244074A TW202244074A (zh) 2022-11-16
TWI816395B true TWI816395B (zh) 2023-09-21

Family

ID=75914463

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111117817A TWI816395B (zh) 2021-05-12 2022-05-12 高熔融強度聚丙烯

Country Status (7)

Country Link
EP (1) EP4337705A1 (zh)
JP (1) JP2024516870A (zh)
KR (1) KR102660596B1 (zh)
CN (1) CN117321104A (zh)
CA (1) CA3219389A1 (zh)
TW (1) TWI816395B (zh)
WO (1) WO2022238520A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477202A (zh) * 2010-11-23 2012-05-30 黎明 废旧聚丙烯改性薄壁波纹管及其制造方法
CN110804135A (zh) * 2019-11-22 2020-02-18 陕西煤业化工技术研究院有限责任公司 一种高熔体强度聚丙烯及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948666A (en) 1956-11-21 1960-08-09 Gen Electric Irradiation process
ZA86528B (en) 1985-01-31 1986-09-24 Himont Inc Polypropylene with free-end long chain branching,process for making it,and use thereof
CA1280543C (en) 1985-01-31 1991-02-19 B. Joseph Scheve Polypropylene with free-end long chain branching, process for making it, and use thereof
US5047446A (en) 1988-07-22 1991-09-10 Himont Incorporated Thermal treatment of irradiated propylene polymer material
CA2031406C (en) 1989-12-21 2002-05-28 Paolo Galli Graft copolymers of polyolefins and a method of producing same
US5200439A (en) 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
IL102166A0 (en) 1991-06-21 1993-01-14 Himont Inc Grafting vinyl monomers on particulate olefin polymers
TW275636B (zh) 1991-06-21 1996-05-11 Himont Inc
JP3025057B2 (ja) 1991-06-27 2000-03-27 積水化学工業株式会社 発泡性ポリオレフィン系樹脂組成物
US5414027A (en) 1993-07-15 1995-05-09 Himont Incorporated High melt strength, propylene polymer, process for making it, and use thereof
JP3171422B2 (ja) 1994-04-20 2001-05-28 日本原子力研究所 改質ポリプロピレンを製造する方法および成形品
JP3429901B2 (ja) * 1995-05-12 2003-07-28 昭和電工株式会社 変性ポリプロピレン
US5670595A (en) 1995-08-28 1997-09-23 Exxon Chemical Patents Inc. Diene modified polymers
ATE240354T1 (de) 1996-02-01 2003-05-15 Borealis Gmbh Strukturisomere poly(alkylethylene)
DE19607480A1 (de) 1996-02-28 1997-09-04 Danubia Petrochem Polymere Kontinuierliches Verfahren zur Herstellung von Polypropylengemischen erhöhter Spannungsrißbeständigkeit und Schmelzefestigkeit
US5820981A (en) 1996-04-02 1998-10-13 Montell North America Inc. Radiation visbroken polypropylene and fibers made therefrom
EP0821018A3 (de) 1996-07-22 1998-09-30 PCD-Polymere Gesellschaft m.b.H. Vernetzbare olefinische Polymere und Verfahren zu ihrer Herstellung
EP1038893A1 (en) 1999-03-19 2000-09-27 Fina Research S.A. Production of polypropylene having improved properties
EP1268587A1 (en) 1999-12-30 2003-01-02 OPP Petroquimica S.A. Process for preparing high melt strength polypropylene and crosslinked polypropylene prepared therewith
EP1170306A1 (en) 2000-07-05 2002-01-09 ATOFINA Research Production of polypropylene having improved properties
EP1170305A1 (en) 2000-07-05 2002-01-09 ATOFINA Research Production of polyolefins having improved properties
US7906586B2 (en) * 2003-12-09 2011-03-15 Dow Global Technologies Llc Thermoplastic olefinic compositions
WO2009003930A1 (en) 2007-06-29 2009-01-08 Basell Poliolefine Italia S.R.L. An irradiated polyolefin composition comprising a non - phenolic stabilizer
US7935740B2 (en) 2008-12-30 2011-05-03 Basell Poliolefine Italia S.R.L. Process for producing high melt strength polypropylene
KR102112981B1 (ko) * 2015-10-21 2020-05-21 보레알리스 아게 용융 강도 안정성이 증가한 장쇄 분지형 폴리프로필렌 조성물
EP3497152B1 (en) 2016-08-11 2023-06-07 SABIC Global Technologies B.V. Polypropylene composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477202A (zh) * 2010-11-23 2012-05-30 黎明 废旧聚丙烯改性薄壁波纹管及其制造方法
CN110804135A (zh) * 2019-11-22 2020-02-18 陕西煤业化工技术研究院有限责任公司 一种高熔体强度聚丙烯及其制备方法

Also Published As

Publication number Publication date
KR20230172607A (ko) 2023-12-22
KR102660596B1 (ko) 2024-04-25
JP2024516870A (ja) 2024-04-17
TW202244074A (zh) 2022-11-16
CA3219389A1 (en) 2022-11-17
EP4337705A1 (en) 2024-03-20
WO2022238520A1 (en) 2022-11-17
CN117321104A (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
JP6826109B2 (ja) 増加した溶融強度安定性を有する長鎖分岐ポリプロピレン組成物
JP6013601B2 (ja) 低ゲル含量ポリプロピレンから製造される発泡体
KR101424367B1 (ko) 우수한 강성, 투명성 및 프로세싱 거동을 보이는 블로운 등급
KR102037561B1 (ko) 에틸렌-기재 중합체 및 그의 제조 방법
JP6170038B2 (ja) 発泡体用ポリプロピレン及び発泡ポリプロピレン
KR101426182B1 (ko) 우수한 강성, 투명성 및 프로세싱 거동을 보이는 블로운필름 등급
CN108602997B (zh) 基于乙烯的聚合物和其制备方法
US7019044B2 (en) Production of polyolefins having improved properties
WO2020112873A1 (en) Ethylene-based polymer composition with branching and process for producing the same
US20200109223A1 (en) Ethylene-based polymers with improved optics
TWI816395B (zh) 高熔融強度聚丙烯
CN113950491B (zh) 可加工性得到改善的低密度聚乙烯
CN110300661B (zh) 用于多层膜中的具有良好可加工性的基于乙烯的聚合物
US20040113323A1 (en) Moulding polyolefins
EP3912793B1 (en) Blown films with improved property profile
EP4036130A1 (en) Modification of polyethylene copolymer
JP2015036387A (ja) プロピレン樹脂組成物およびその成形体