TWI798247B - Tft用玻璃基板 - Google Patents

Tft用玻璃基板 Download PDF

Info

Publication number
TWI798247B
TWI798247B TW107127953A TW107127953A TWI798247B TW I798247 B TWI798247 B TW I798247B TW 107127953 A TW107127953 A TW 107127953A TW 107127953 A TW107127953 A TW 107127953A TW I798247 B TWI798247 B TW I798247B
Authority
TW
Taiwan
Prior art keywords
glass
glass substrate
main surface
region
tft
Prior art date
Application number
TW107127953A
Other languages
English (en)
Other versions
TW201910277A (zh
Inventor
小野良貴
井川信彰
伊賀元一
欅田昌也
Original Assignee
日商Agc股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Agc股份有限公司 filed Critical 日商Agc股份有限公司
Publication of TW201910277A publication Critical patent/TW201910277A/zh
Application granted granted Critical
Publication of TWI798247B publication Critical patent/TWI798247B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)
  • Thin Film Transistor (AREA)

Abstract

本發明提供一種可更高精度地、及/或迅速地形成元件或構造體之TFT用玻璃基板。 TFT用玻璃基板1包括具備第1主面11、及與第1主面11對向之第2主面12之矩形之玻璃板10,於自玻璃板10之板厚方向之視野中,係具備第1主面11、與第1主面11對向之第2主面12、將第1主面11與第2主面12連接之第1邊13、及與第1邊13相鄰之第2邊14,且第1邊13及第2邊14之長度至少為1200 mm以上之大型之玻璃板10。第1剖面15中之玻璃板10之板厚W之最大值Wmax與板厚W之最小值Wmin之差即板厚公差未達6.26 μm。

Description

TFT用玻璃基板
本發明係關於一種TFT用玻璃基板。
先前,液晶顯示器等平面顯示器面板係使於表面形成有微細之電極或間隔壁等元件或構造體之二片玻璃基板對向而製作成。對於平面顯示器面板用玻璃基板,通常應用薄膜電晶體(TFT;Thin Film Transistor)之製造製程,即,於其表面均勻地塗佈各種膜之後,使用光製程方法進行曝光、顯影,藉此,於該玻璃基板上形成元件或構造體。作為平面顯示器面板用玻璃基板,例如,專利文獻1中揭示有300 mm×300 mm以上之玻璃板且基準點與以基準點為中心於X及/或Y方向分別離開20 mm之位置之板厚之差之絕對值為3 μm以下之玻璃基板。 [先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2009-155136號公報
[發明所欲解決之問題]
當前雖要求更高精度地、及/或迅速地於玻璃基板上形成元件或構造體,但尚未達到充分滿足此種要求之地步。
本發明提供一種可更高精度地、及/或迅速地形成元件或構造體之TFT用玻璃基板。 [解決問題之技術手段]
本發明之TFT用玻璃基板包括具備第1主面、及與上述第1主面對向之第2主面之矩形之玻璃板,於自上述玻璃板之板厚方向之視野中,具有互為相鄰之第1邊及第2邊,上述第1邊及上述第2邊之長度至少為1200 mm以上,於上述玻璃板之板厚方向之剖面中的沿著與上述第1邊平行之直線之第1剖面中,該玻璃板之板厚之最大值與板厚之最小值之差即板厚公差未達6.26 μm。 [發明之效果]
根據本發明,可提供一種例如於TFT生產線中之曝光步驟中容易使焦點對準且適於TFT製造之具有板厚公差較小且大型之玻璃板的TFT用玻璃基板。
以下,使用圖式對本發明之TFT用玻璃基板之具體之實施形態之一例進行詳細敍述。
如圖1所示,本實施形態之TFT用玻璃基板1包括具備第1主面11、及與第1主面11對向之第2主面12之矩形之玻璃板10,進而具備將第1主面11與第2主面12連接之第1邊13、及與第1邊13相鄰之第2邊14。於自玻璃板10之板厚方向之視野中,第1邊13與第2邊14互為相鄰。本實施形態之TFT用玻璃基板1包括第1邊13及第2邊14之長度至少為1200 mm以上之大型之玻璃板10。所謂自玻璃板10之板厚方向之視野係指俯視。於本說明書中,所謂矩形並不僅指嚴格之長方形,亦可為任意相鄰之2邊於10~170°之範圍交叉之形狀、或4角被倒角為曲線狀或多角狀之形狀。於矩形係嚴格之長方形之情形時,第1邊13與第2邊14相互垂直地交叉。
近年來,自高效率化之觀點考慮進行如下處理,即,將此種大型之玻璃板10在將來分割為小塊而獲得複數片玻璃基板。於該過程中,於大型之玻璃板10之狀態下,一面設定將來之分割預定線,一面於一片片玻璃基板形成所需之TFT。然而,於大型之玻璃板10中,即便玻璃表面略微傾斜,亦會於一端面側及對應之另一端面側,於板厚產生較大之差。又,玻璃板10越大則包含越多之由製造過程中之各種原因引起之玻璃板之起伏等,導致其板厚於玻璃板10之各處不均。又,即便研磨玻璃表面,該等板厚之差或不均亦極難消除。
另一方面,於TFT形成過程中,必須利用曝光機將焦點對準於玻璃表面等,但於存在如上所述之問題之大型之玻璃板10之情形時,存在如下問題。即,曝光機必須針對玻璃板10之表面之凹凸頻繁地且輕微地進行焦點之調整,而無法以高速度進行處理。又,於凹凸之變化過於急遽之情形時,於曝光機側無法充分地調整焦點而導致TFT形成之精度降低。
再者,於專利文獻1中,可能於20 mm以下之範圍中存在3 μm以上之凹凸,於此情形時,存在如上所述之速度降低或精度降低之問題。又,對於遍及玻璃板之主面之整個面進行曝光之TFT形成製程,若僅進行基準點及距離基準點20 mm之位置之板厚之局部性規定則有不充分之虞。
於本實施形態中,玻璃板10之第2主面12係TFT用玻璃基板1中之半導體元件形成面,第1主面11係半導體元件形成面之相反側之玻璃表面,於形成半導體元件時,藉由真空吸附而固定於吸附台上。
又,玻璃板10沿著與第1邊13平行之直線且相對於玻璃板10之板厚W之方向具有第1剖面15(參照圖1(b))。若將第1剖面15之第1主面11模式性地放大,則第1主面11係凹凸之連續面,具有玻璃板10之板厚W之最大值Wmax及板厚W之最小值Wmin(參照圖1(c))。板厚W係利用雷射移位計(KEYENCE製,SI-F80)測定。測定間距係短徑、長徑均設為20 mm。玻璃板10之板厚W例如為1.0 mm以下,TFT用玻璃基板1具有大型且薄型之玻璃板10。又,板厚W例如為0.01 mm以上。再者,第1剖面15並非特定之剖面,可沿著與第1邊13平行之直線任意地選擇。又,於圖1(c)中,為便利起見,將第2主面12側設為平滑,但亦可與第1主面11同樣地具有凹凸。於第1主面11及第2主面12具有凹凸之情形時,將作為位移計之分析直徑之20 μm之範圍之平均高度設為板厚。
本實施形態之TFT用玻璃基板1較佳為無鹼玻璃。以下述氧化物基準之質量百分率表示,無鹼玻璃較佳為含有50~73%之SiO2 、10.5~24%之Al2 O3 、0.1~12%之B2 O3 、0~8%之MgO、0~14.5%之CaO、0~24%之SrO、0~13.5%之BaO、0~5%之ZrO2 ,且MgO、CaO、SrO及BaO之總量(MgO+CaO+SrO+BaO)為8~29.5%。
又,以下述氧化物基準之質量百分率表示,無鹼玻璃較佳為含有58~66%之SiO2 、15~22%之Al2 O3 、5~12%之B2 O3 、0~8%之MgO、0~9%之CaO、3~12.5%之SrO、0~2%之BaO,且MgO、CaO、SrO及BaO之總量(MgO+CaO+SrO+BaO)為9~18%。
而且,以下述氧化物基準之質量百分率表示,無鹼玻璃較佳為含有54~73%之SiO2 、10.5~22.5%之Al2 O3 、0.1~5.5%之B2 O3 、0~8%之MgO、0~9%之CaO、0~16%之SrO、0~2.5%之BaO,且MgO、CaO、SrO及BaO之總量(MgO+CaO+SrO+BaO)為8~26%。 藉由為無鹼玻璃,不存在因玻璃板10中所包含之鹼性成分因經時變化而溶出,對形成於玻璃表面之TFT等造成不良影響之情況。再者,對於本說明書,所謂「無鹼」並非於嚴格意義上完全不包含鹼性成分,而係指容許作為雜質來包含之程度之概念。具體而言,例如容許0.01質量%左右。
圖2係表示本實施形態之TFT用玻璃基板1之製造方法之一例之模式圖。本實施形態之TFT用玻璃基板1係適量調製構成玻璃之各種原料,於加熱熔融之後藉由消泡或攪拌等而均質化,並藉由周知之浮式法、下拉法(例如熔融法等)或壓製法等成形為板狀,緩冷後切斷為所需之尺寸而製品化。於本實施形態中,以浮式法為一例說明TFT用玻璃基板1之製造方法。
圖2所示之浮法玻璃製造裝置100具備:熔解裝置110,其將玻璃原料2熔解並製成熔融玻璃3;成形裝置120,其將自熔解裝置110供給之熔融玻璃3成形為帶狀而製成玻璃帶4;及緩冷裝置130,其對利用成形裝置120成形之玻璃帶4進行緩冷。
熔解裝置110具備:熔解槽111,其收容熔融玻璃3;及燃燒器112,其於收容於熔解槽111內之熔融玻璃3之上方形成火焰。投入至熔解槽111內之玻璃原料2藉由來自燃燒器112所形成之火焰之輻射熱而慢慢熔入至熔融玻璃3中。熔融玻璃3自熔解槽111被連續地供給至成形裝置120。
成形裝置120具備收容熔融錫121之浴槽122。成形裝置120使連續地供給至熔融錫121上之熔融玻璃3於熔融錫121上向特定方向流動,藉此而成形帶狀之玻璃帶4。成形裝置120內之環境溫度越自成形裝置120之入口朝向出口越變為低溫。成形裝置120內之環境溫度係利用設置於成形裝置120內之未圖示之加熱器等進行調整。玻璃帶4一面沿特定方向流動一面被冷卻,並於浴槽122之下游區域被自熔融錫121提拉。自熔融錫121提拉之玻璃帶4由提昇輥140搬送至緩冷裝置130。
緩冷裝置130對利用成形裝置120成形之玻璃帶4進行緩冷。緩冷裝置130例如包括:隔熱構造之緩冷爐(退火爐)131;及複數個搬送輥132,其等配設於緩冷爐131內,於特定方向搬送玻璃帶4。緩冷爐131內之環境溫度係越自緩冷爐131之入口朝向出口則越成為低溫。緩冷爐131內之環境溫度係利用設置於緩冷爐131內之複數個加熱器133等進行調整。又,於緩冷裝置130內設置有將下述蝕刻氣體吹送至玻璃帶4上之噴射器200。
自緩冷爐131之出口搬出之玻璃帶4係由切斷機切斷為特定之尺寸,並作為包括玻璃板10之TFT用玻璃基板1出貨。亦可於出貨之前視需要對TFT玻璃基板1之兩表面之至少一者進行研磨、洗淨。
於包含列舉為一例之上述浮法玻璃製造裝置100之玻璃板10之製造步驟中,有因製造裝置固有之特徵等導致玻璃板10之表面產生凹凸之情形。尤其是,有如圖3所示般自成形裝置120至緩冷裝置130,於玻璃板10之寬度方向上之一至複數個部位觀察到產生線上之凸部16之現象之情形。又,如圖4所示般凸部16於與玻璃板10之第1邊13平行之方向上形成於線上之情況較多。再者,於圖3及圖4中,凸部16與第1邊13平行地例示,但並不限定於此。即,所謂線狀亦可不與第1邊13平行,又,亦可於中途具有斷開或一部分欠缺之部位,又,亦可於中途具有連續或不連續地偏移之部位。
為了對表面之凹凸或凸部16進行蝕刻使之平滑(參照圖4(b)),於浮法玻璃製造裝置100之緩冷裝置130中具備將蝕刻氣體吹送至形成於玻璃帶4上之凹凸部或凸部16等之噴射器200。
再者,於圖4中,示出了僅於第1主面11側形成有凸部16之例,但並不限定於此。即,亦有僅於第2主面12側形成有凸部之情形,亦有形成於第1主面11及第2主面12之兩者之情形。為了無論凸部如何形成均可應對,較佳為於第1主面11側存在凸部16之情形時,於第1主面11側具備噴射器200,於第2主面12側存在凸部16之情形時於第2主面12側具備噴射器200。
再者,若於第1主面11形成有凸部16,則於在TFT形成步驟中將第1主面11吸附固定時,源自凸部16之新的凸部可能會形成於第2主面12側。因此,較佳為無論半導體元件形成面如何,存在於玻璃板之表面之凹凸均極少,於將第1主面11側之凸部16去除之情形時,亦可更高精度地、及/或迅速地於第2主面12側形成元件或構造體。
基於圖5對噴射器200進行詳細敍述。圖5係噴射器200之實施例。
噴射器200具備:供給口201,其將氟化氫(HF)氣體等蝕刻氣體吹送至玻璃帶4上;及排氣口202,其使蝕刻氣體排出。實施例中,相對於一個供給口201於兩側分別具有排氣口202。
自噴射器200之供給口201吹送至玻璃帶4之表面之氣體(蝕刻氣體)於相對於玻璃帶4之移動方向(參照箭頭A)呈現順方向(箭頭A方向)或逆方向之氣體之流動之流路203移動,並向排氣口202流出而被排氣。即,於雙流類型中,自供給口201朝向排氣口202之流路203相對於玻璃帶4之移動方向均等地分為順方向及逆方向。
噴射器200之供給口201之底面與玻璃帶4之距離D較佳為50 mm以下。藉由設為50 mm以下,可抑制氣體擴散至大氣中,從而可相對於所需之氣體量而使充分量之氣體到達至玻璃帶4之表面。相反地,若供給口201之底面與玻璃帶4之距離過短,則於對例如利用浮式法生產之玻璃帶4於線上進行處理時,有因玻璃帶4之位置之變動導致玻璃帶4與噴射器200接觸之虞。
噴射器200能以雙流或單流等任一態樣使用,亦可於玻璃之流動方向串聯地排列2個以上而對玻璃帶4之表面進行處理。
於對在浮法玻璃製造裝置100內搬送之玻璃帶4供給氟化氫(HF)氣體等蝕刻氣體而進行表面處理時,例如,於如圖2般玻璃帶4於搬送輥132上流動之情形時,可自未與搬送輥132接觸之側供給,亦可於與搬送輥132接觸之側自相鄰之搬送輥132之間供給。
又,亦可藉由將2個以上之輸送機串聯排列,於相鄰之輸送機之間設置噴射器200,而自與輸送機接觸之側供給該氣體對玻璃帶4表面進行處理。又,於玻璃帶4在輸送機上流動之情形時,亦可自未與輸送機接觸之側供給。又,亦可藉由於輸送帶使用網帶等未覆蓋玻璃帶4之一部分之網材而自與輸送機接觸之側供給。
噴射器200之供給口201與玻璃帶4之距離D較佳為5~50 mm。距離D更佳為8 mm以上。又,距離D更佳為30 mm以下,進而較佳為20 mm以下。藉由將距離D設為5 mm以上,例如即便因地震等導致玻璃帶4振動,亦可避免玻璃帶4之表面與噴射器200之接觸。另一方面,藉由將距離D設為50 mm以下,可抑制氣體於裝置內部擴散,從而可相對於所需之氣體量而使充分量之氣體到達至玻璃帶4之上表面。
又,氣體之流速(線速度)較佳為20~300 cm/s。藉由將流速(線速度)設為20 cm/s以上,尤其是,含有HF之氣體之氣流穩定,從而可對玻璃表面同樣地進行處理。流速(線速度)更佳為50 cm/s以上,進而較佳為80 cm/s以上。
而且,於如圖2所示般將本實施形態之TFT用玻璃基板1之製造方法設為線上處理而實施之情形時,藉由將流速(線速度)設為300 cm/s以下,可於抑制氣體於緩冷裝置之內部擴散之狀態下使充分量之氣體到達至玻璃帶4之上表面。流速(線速度)更佳為250 cm/s以下,進而較佳為200 cm/s以下。
噴射器200較理想為相對於特定之被處理面(例如凹凸部或凸部16等)配置,例如,於如圖3所示般在3個部位產生凸部16之情形時,較理想為於凸部16上分別配置有噴射器200(合計3個部位)。
又,可將較長之噴射器設置於玻璃板之寬度方向,配合凸部16而適當調整吹送之部位。例如,將於玻璃帶4之寬度方向X上三分割為以I、II、III所示之各區域而調整HF氣體之量之射束302之剖視圖示於圖6(a)。射束302係於玻璃板之寬度方向較長之噴射器,係將圖5中之噴射器200於與紙面垂直之方向拉伸而構成。氣體系統311~313藉由間隔壁314、315分割,且分別使HF氣體自氣體吹送孔(供給口)316流出並吹送至玻璃。圖6(a)中之箭頭表示HF氣體之流動。圖6(b)中之箭頭表示氣體系統311中之HF氣體之流動。圖6(c)中之箭頭表示氣體系統312中之HF氣體之流動。圖6(d)中之箭頭表示氣體系統313中之HF氣體之流動。
再者,噴射器之構成並不限定於圖6(a)~(d)所示之實施形態。例如,亦可設為設置複數個間隔壁而隔開為3分割以上之構成。越是分割為複數個,則越可局部性地進行氣體之噴霧,從而越可進行向凸部16之精確吹送。
又,此時,可具備檢測凸部16之位置之凸部檢測感測器及間隔壁移動裝置。藉由具備其等,可根據來自凸部檢測感測器之凸部之位置資訊,以僅自凸部16之正上方吹送HF氣體之方式於寬度方向調整間隔壁。此處,氣體系統只要設置藉由間隔壁分割而設置之空間之數量即可。
又,作為另一實施形態,於一氣體吹送空間內,為了防止對凸部16以外之部位吹送HF氣體,亦可具備將不需要之氣體吹送孔316(位於凸部以外之部位之正上方之氣體吹送孔)堵塞之氣體吹送孔堵塞裝置。於此情形時,亦可根據來自凸部檢測感測器之凸部16之位置資訊判別哪一氣體吹送孔316不需要,而控制氣體吹送孔堵塞裝置。再者,於此情形時,亦可不設置複數個氣體系統及間隔壁。
又,作為另一實施形態,於一氣體吹送空間內,為了防止對凸部16以外之部位吹送HF氣體,亦可具備抽吸自不需要之氣體吹送孔316(位於凸部以外之部位之正上方之氣體吹送孔)噴出之HF氣體之抽吸裝置。於此情形時,可根據來自凸部檢測感測器之凸部16之位置資訊判別哪一氣體吹送孔316不需要,而控制抽吸裝置。再者,於此情形時,亦可不設置複數個氣體系統及間隔壁。
本實施形態之TFT用玻璃基板1之製造方法能以線上處理之方式實施,亦能以離線處理之方式實施。本說明書中之所謂「線上處理」係指於對利用浮式法或下拉法等成形之玻璃帶4進行緩冷之緩冷過程中應用本實施形態之方法之情形。另一方面,所謂「離線處理」係指對成形並切斷為所需之大小之玻璃板10應用本實施形態之方法之情形。因此,本說明書中之玻璃板10除成形並切割為所需之大小之玻璃板10以外,還包含利用浮式法或下拉法等成形之玻璃帶4。
本實施形態之TFT用玻璃基板1之製造方法以線上處理之方式實施自以下理由而言較佳。若為離線處理,則必須增加步驟,相對於此,若為線上處理,則無需增加步驟,因此能夠以低成本進行處理。又,若為離線處理,則含有HF之氣體轉入作為玻璃板10之第2主面12之半導體元件形成面,相對於此,若為玻璃帶4之線上處理,則可抑制含有HF之氣體之轉入。
圖2所示之浮法玻璃製造裝置100將本實施形態之TFT用玻璃基板1之製造方法以線上處理之方式實施,因此,於緩冷裝置130內之玻璃帶4之上方設置有噴射器200,使用該噴射器200對玻璃帶4之頂面供給含有氟化氫(HF)之氣體。又,於圖2中,噴射器200設置於緩冷裝置130內,但若供給含有HF之氣體之玻璃表面溫度為500~900℃,則亦可將噴射器200設置於成形裝置120內。
於本實施形態之TFT用玻璃基板1之製造方法中,對玻璃帶4之至少一面吹送含有氟化氫(HF)之氣體(氣體)而進行表面處理。亦可代替氟化氫氣體而使用含有其構造中存在氟原子之分子之氣體(氣體)或液體。
作為蝕刻氣體,可使用氟化氫(HF)、碳氟化物(例如氟氯碳化物(CFC)、氟碳(FC)、氫氟氯碳化物(HCFC)、氫氟碳(HFC))、鹵甲烷、氟化氫(HF)、氟單質(F2 )、三氟乙酸(CF3 COOH)、四氟化碳(CF4 )、四氟化矽(SiF4 )、五氟化磷(PF5 )、三氟化磷(PF3 )、三氟化硼(BF3 )、三氟化氮(NF3 )、三氟化氯(ClF3 )等,但並不限定於該等氣體或液體。又,該等之中,氟化氫(HF)氣體就成本方面、處理方法為周知等理由而言較佳。
圖7係將本實施形態之TFT用玻璃基板1作為實施例,於實施例及比較例(A~C)中實測第1剖面15之板厚公差(μm)所得之圖表。實施例係自寬度為3500 mm之玻璃帶獲得凸部之位置資訊並對該凸部之位置吹送HF氣體而將凸部去除者。此處,氣體之流速設為0.5 m/SEC,玻璃溫度設為625~575℃,氣體濃度設為20%之HF、80%之N2,處理時間設為約10 sec。除去量係相對於氣體中之HF濃度及處理時間為線形之關係,故而藉由調整上述2個參數,亦可調整去除量。其後,將玻璃帶切斷,獲得1200 mm×1200 mm之玻璃板,將其設為實施例。比較例A~C均為1200 mm×1200 mm以上之大型之TFT用玻璃板,可藉由普通之流通途徑獲得。
於圖7中,各曲線表示於第1剖面15中以20 mm間距測定板厚並基於其等之資料而求出之公差。再者,相同樣品中之複數個曲線之個數表示N數(測定之次數),係分別自不同之第1剖面15獲得之值。
根據該圖表可理解本實施形態之TFT用玻璃基板1於沿著與第1邊13平行之直線之第1剖面15中,玻璃板10之板厚W之最大值Wmax與板厚W之最小值Wmin之差即板厚公差未達6.26 μm。又,較佳為6.0 μm、5.8 μm、5.5 μm、5.3 μm、5.0 μm以下。下限並未限定,例如為1.0 μm以上。
如上所述,於TFT生產線中之曝光步驟中,為了使曝光機之焦點容易對準,要求板厚公差較小之玻璃板10,本實施形態之TFT用玻璃基板1之玻璃板10之第1邊13及第2邊14之長度至少為1200 mm以上,於如此般較大尺寸之玻璃板10中,板厚公差未達6.26 μm者不存在,可藉由本實施形態之TFT用玻璃基板1而更高精度地、及/或迅速地形成元件或構造體。
又,於第1剖面15中板厚公差極少係因玻璃板製造裝置固有之特徵等而產生之凸部16等被蝕刻氣體平滑化之效果,意味著板厚W之變化較小。
圖8係將本實施形態之TFT用玻璃基板1作為實施例,於實施例及比較例(A~C)中相對於玻璃板10之整個面實測所有剖面之板厚公差(μm)而繪製之圖表。
於圖8中,各曲線表示於任意地抽取之玻璃板之板厚方向之剖面中以20 mm間距測定複數個點之板厚並基於其等之資料而求出之公差。再者,相同樣品中之複數個曲線之個數表示N數,係分別自隨機選出之不同之剖面獲得之值。
根據該圖表可理解本實施形態之TFT用玻璃基板1於玻璃板之板厚方向之所有剖面中板厚公差均未達7.12 μm。而且,於所有剖面中觀察到板厚公差變小之效果。因此,於本實施形態中,可提供一種具有於所有剖面中板厚公差均較小且大型之玻璃板10,且於TFT製造時可更高精度地、及/或迅速地形成元件或構造體之TFT用玻璃基板1。
又,板厚公差較佳為7.0 μm以下,更佳為6.5 μm以下,進而較佳為6.0 μm以下。下限並不受限定,例如為1.0 μm以上。
圖9係將本實施形態之TFT用玻璃基板1作為實施例,於實施例及比較例(A~C)中,對玻璃板10之第1剖面15之板厚W之一次微分值之絕對值之平均值進行比較所得之圖表。
於圖9中,各曲線係於第1剖面15中以20 mm間距測定複數個點之板厚並基於其等之資料而求出者。即,一次微分值表示各間距間之板厚之變化之斜率。再者,相同樣品中之複數個曲線之個數表示N數,係分別自不同之第1剖面15獲得之值。
根據該圖表可理解本實施形態之TFT用玻璃基板1於第1剖面15中板厚W之一次微分值之絕對值的平均值未達1.72E-02。板厚W之一次微分值之絕對值表示沿著第1剖面15之板厚W之變化(斜率)之程度,遍及該第1剖面15之絕對值之平均值越小,則變化越小(斜率越小),即,存在於玻璃表面之凹凸較少而平滑。若板厚W之一次微分值之絕對值之平均值為1.72E-02以上,則玻璃板表面之凹凸之變化過於急遽,因此,將曝光機之焦點對準需要較多之時間,又,由於無法充分地調整焦點,故而TFT形成之精度容易降低。由此,根據本實施形態,可提供一種於TFT製造時可更高精度地、及/或迅速地形成元件或構造體之TFT用玻璃基板1。
又,板厚W之一次微分值之絕對值之平均值較佳為1.7E-02以下,更佳為1.65E-02以下,進而較佳為1.6E-02以下。下限並不受限定,例如為5.0E-03以上。
本實施形態之TFT用玻璃基板1於第1剖面15中,板厚W之一次微分值之絕對值之標準偏差為1.5E-03以下。板厚W之一次微分值之絕對值之標準偏差表示沿著第1剖面15之板厚W之變化(斜率)之程度。遍及該第1剖面15之絕對值之標準偏差越小,則變化越小(斜率越小),凹凸較少而較平滑。
又,板厚W之一次微分值之絕對值之標準偏差較佳為1.4E-03以下,更佳為1.3E-03以下。下限並無特別限定,例如為1.0E-04以上。
而且,本實施形態之TFT用玻璃基板1於第1剖面15中板厚W之二次微分值之絕對值之最大值為6.0E-03以下。較佳為5.8E-03以下,更佳為5.5E-03以下。下限並無特別限定,例如為1.0E-03以上。板厚W之二次微分值之絕對值之最大值較小表示板厚之反曲點鈍化。即,意味著形成有藉由蝕刻氣體之吹送效果而平滑化之面。因此,尤其是容易利用複數分割之曝光機將焦點對準。由此,根據本實施形態可提供一種於TFT製造時可更高精度地、及/或迅速地形成元件或構造體之TFT用玻璃基板1。
進而,本實施形態之TFT用玻璃基板1於第1剖面15中板厚W之二次微分值之絕對值之標準偏差為1.5E-04以下。較佳為1.4E-04以下,更佳為1.3E-04以下,進而較佳為1.2E-04以下。下限並不受特別限定,例如為5.0E-06以上。板厚W之二次微分值之絕對值之標準偏差極小意味著亦無特別大之突出,玻璃板10之板厚W之變化較少,且形成有藉由蝕刻氣體之吹送效果而平滑化之面。
於第1剖面15中,板厚W之一次微分值之絕對值之標準偏差、二次微分值之絕對值之最大值、二次微分值之絕對值之標準偏差極小意味著玻璃板10之整個面被平滑化。藉由將玻璃板10之整個面平滑化,例如於TFT生產線中之曝光步驟中容易將焦點對準,可提供一種生產性、品質性優異之大型之TFT用玻璃基板1。
圖10係表示本實施形態之TFT用玻璃基板1之第2實施形態之前視立體圖。基於圖10對第2實施形態進行說明。
於第2實施形態之TFT用玻璃基板1中,於玻璃板10之第1主面11形成有粗面化區域20及非粗面化區域21且使其等具有特定之寬度。粗面化區域20係與第2邊14平行之具有寬度L之吹送有蝕刻氣體之區域,例如,亦可為使凸部16平滑化所得之區域。又,非粗面化區域21係未吹送蝕刻氣體之區域。再者,粗面化區域20亦可不必伴隨著凸部16之去除。例如,藉由調整吹送之蝕刻氣體之量或玻璃溫度,可幾乎不伴隨著板厚之減少而使玻璃板之表面粗面化。玻璃板10亦可不必平滑化。
於TFT製造時,將玻璃板10之第1主面11吸附固定,但由於容易於第1主面11蓄積靜電,故而於解除吸附固定時,會引起玻璃板10之緊貼,存在玻璃板10破裂之問題。又,亦存在因蓄積於玻璃板10之靜電導致所形成之TFT元件產生缺陷之問題。對於該等問題,可使第1主面11形成粗面化區域20,局部地形成表面粗糙度較粗之區域,使靜電不易蓄積,從而防止帶電。
又,於吹送有蝕刻氣體之粗面化區域20中,例如於藉由蝕刻而使凸部16等平滑化之情形時,可使板厚W方向之板厚公差極少並且賦予特定之粗糙度Ra。藉此,可提供一種於TFT製造中可更高精度地、及/或迅速地形成元件或構造體且亦可防止帶電之具有大型之玻璃板10之TFT用玻璃基板1。粗糙度Ra係使用Atomic Force Microscope(Bruker公司製造、Dimension Icon)於Scan Asyst模式,scan size:5 μm×5 μm、scan rate:0.977 Hz之條件下進行測定。其後,進行2次之斜率修正之後,算出上述範圍內之算術平均粗糙度(Ra)。
於第2實施形態中,粗面化區域20於與玻璃板10之第1邊13平行之方向具有特定之寬度L而形成為線狀。又,粗面化區域20可任意地增加,亦可於與第1邊13平行之方向呈線狀形成有複數個。
圖11係表示各處理溫度(℃)下之粗面化區域20之粗糙度Ra1 、非粗面化區域21之粗糙度Ra2 、及粗糙度Ra之比(Ra1 與Ra2 之比)之表。處理溫度(℃)係於製造步驟中吹送蝕刻氣體時之玻璃周圍之環境溫度。粗糙度Ra1 及Ra2 係將粗面化區域及非粗面化區域分別測定10個點而求出之其平均值。
根據該表可理解於本實施形態之TFT用玻璃基板1中,粗面化區域20與非粗面化區域21之粗糙度Ra之比大於1。較佳為3以上,更佳為10以上,進而較佳為20以上。上限並不受特別限定,例如為100以下。若將粗糙度Ra之比設為上述範圍,則可使得粗面化區域甚至玻璃板整體不易蓄積靜電,從而可防止帶電。
又,可理解本實施形態之TFT用玻璃基板1之粗面化區域20之算術平均粗糙度Ra1 為Ra1 >0.5 nm,非粗面化區域21之算術平均粗糙度Ra2 為Ra2 ≦0.5 nm。Ra1 較佳為1.0 nm以上,更佳為3.0 nm以上,進而較佳為5.0 nm以上。上限並不受特別限定,例如為50 nm以下,較佳為30 nm以下,更佳為20 nm以下。又,Ra2 之下限並不受特別限定,例如為0.2 nm以上。若將粗面化區域20之算術平均粗糙度Ra1 及非粗面化區域21之算術平均粗糙度Ra2 設為上述範圍,則可使得粗面化區域甚至玻璃板整體不易蓄積靜電,從而可防止帶電,於TFT製造中可更高精度地、及/或迅速地形成元件或構造體。
又,於本實施形態之TFT用玻璃基板1中,粗面化區域20之面積小於非粗面化區域21之面積,粗面化區域20之面積與非粗面化區域21之面積之比為3以上且300以下。藉由僅對必要之部分吹送蝕刻氣體,能夠高效率地進行玻璃板10之表面處理,可防止帶電,且可於TFT製造中更高精度地、及/或迅速地形成元件或構造體。
例如,於對第1邊13為1200 mm之玻璃板10以400 mm寬度吹送氣體之情形時,粗面化區域20之面積與非粗面化區域21之面積之比較佳為5、10以上,更佳為20以上。又,例如,於對第1邊13為3000 mm之玻璃板10以10 mm寬度吹送氣體之情形時,該比較佳為280以下,更佳為250以下,進而較佳為230以下。藉由僅對必要之部位實施處理,能夠高效率地進行玻璃板10之表面處理。又,於伴隨著凸部16之去除之情形時,可使玻璃板平滑化。
而且,粗面化區域20之與第2邊14平行之方向之寬度L為10 mm以上且1000 mm以下。寬度L較佳為20 mm以上,更佳為30 mm以上,進而較佳為50 mm以上,又,較佳為900 mm以下,更佳為800 mm以下,進而較佳為700 mm以下。藉由僅對必要之部位實施處理,能夠高效率地進行玻璃板10之表面處理。又,於伴隨著凸部16之去除之情形時,可使玻璃板平滑化。再者,於存在複數個粗面化區域20之情形時,寬度L並非全部之合計,而係指一個粗面化區域20之寬度。
圖12係表示本實施形態之TFT用玻璃基板1之第3實施形態之前視立體圖。基於圖12對第3實施形態進行說明。
於第3實施形態之TFT用玻璃基板1中,於玻璃板10之第1主面11形成有第1區域30及第2區域31且其等具有特定之寬度。第1區域30係與第2邊14平行之具有寬度L之吹送有作為蝕刻氣體之含氟之氣體(HF等)的區域,例如亦為使凸部16平滑化、使板厚公差較小而具有特定之粗糙度Ra之區域。又,第2區域31係未吹送含氟之氣體之區域。再者,第1區域30亦可不必伴隨著凸部16之去除。例如,藉由調整吹送之HF氣體之量或玻璃溫度,可幾乎不伴隨著板厚之減少而對玻璃板之表面賦予氟。玻璃板10亦可不必平滑化。
於第3實施形態中,吹送有含氟氣體之第1區域30於與玻璃板10之第1邊13平行之方向形成為線狀。又,第1區域30可任意地增加,亦可於與第1邊13平行之方向呈線狀形成有複數個。
圖13係測定各處理溫度(℃)下之第1區域30及第2區域31之氟之含量(wt%)而繪製之曲線圖。橫軸表示樣品編號,No.1及No.12係第2區域31,其他(No.2~11)係第1區域30。各樣品之間隔為25 mm。處理溫度(℃)係於製造步驟中吹送含氟之氣體時之玻璃周圍之環境溫度。氟之含量係使用X-ray Fluorescence(Rigaku公司製造、ZSX PrimusⅡ)測定。分析直徑設為f20 mm,而測定玻璃表面之F-Kα線之強度。其後,基於利用F濃度為已知之相同組成之玻璃取得之檢量線算出樣品之F濃度。
圖14係表示基於圖13之測定值算出之值之表。第1區域30及第2區域31之氟含量F(wt%)係各處理溫度下之各樣品之平均值,F濃度比係第1區域30之F值除以第2區域31之F值所得之值,F斜率(wt%/mm)係算出樣品No.1與No.2之斜率(No.2之值/No.1之值)所得之值。
根據圖13之曲線圖及圖14之表,可理解第1區域30與第2區域31之氟之含量(wt%)之比大於1。又,比係較佳為3以上,更佳為5以上,進而較佳為8以上。上限並不受特別限定,例如為40以下,較佳為35以下,更佳為30以下,進而較佳為25以下。再者,於本來玻璃組成中不含氟之情形時,第2區域31之氟含量為0,比值變得無限大。
藉由對第1區域30吹送含氟之氣體,可對第1區域30之表面賦予撥水撥油性。即,可設為TFT用元件容易剝離之區域。例如,於在作為TFT形成面之第2主面12上將第1區域30形成為線狀使之與將來之分割預定線一致之情形時,即便於分割預定線之區域內錯誤地形成有元件,亦可容易地使之剝離。
於利用含氟之蝕刻氣體例如使凸部16等平滑化之情形時,可使板厚W方向之板厚公差極少,並且可對第1區域賦予氟,而可提供一種於TFT製造中可更高精度地、及/或迅速地形成元件或構造體,且可對第1區域賦予撥水撥油性之具有大型之玻璃板10之TFT用玻璃基板1。進而,由於可形成藉由氟而粗面化之區域,故而可提供一種使TFT製造時之靜電不易蓄積,從而防止帶電之TFT用玻璃基板1。
又,根據圖13之曲線圖及圖14之表可理解第1區域30之氟之含量F1為0.5 wt%≦F1≦5 wt%,第2區域之氟之含量F2為0≦F2≦0.15 wt%。又,F1之下限較佳為0.8 wt%以上,更佳為1.0 wt%以上,F1之上限較佳為4.0 wt%以下,更佳為3.0 wt%以下。
藉由將第1區域30及第2區域31之氟之含量F設定為上述範圍,可調整撥水撥油性。又,例如,於伴隨著凸部16等之平滑化或粗面化之情形時,能以使TFT生產線上之曝光步驟中之焦點容易對準之方式提供板厚公差較小之玻璃板10,且可提供使靜電不易蓄積從而防止帶電之TFT用玻璃基板1。
而且,於本實施形態之TFT用玻璃基板1中,第1區域30之面積小於第2區域31之面積,第1區域30之面積與第2區域31之面積之比為3以上且300以下。藉由僅對必要之部分吹送含氟之氣體,可高效率地進行玻璃板10之表面處理。又,於伴隨著凸部16之去除之情形時,可使玻璃板10平滑化。
又,根據圖14之表可理解於本實施形態之TFT用玻璃基板1之第1區域30中,與第2邊14平行之方向之氟之含量F之斜率為0.001 wt%/mm以上且0.15 wt%/mm以下。而且,較佳為0.13 wt%/mm以下,更佳為0.12 wt%/mm以下,進而較佳為0.10 wt%/mm以下。藉由僅對必要之部分吹送含氟之氣體,可高效率地進行玻璃板10之表面處理。又,於伴隨著凸部16之去除之情形時,可使玻璃板平滑化。
較理想為本實施形態之TFT用玻璃基板1之玻璃板10於第1主面11及第2主面12中之至少一者不具有研磨痕。更佳為期望均不具有研磨痕。研磨痕之有無可藉由利用AFM(Atomic Force Microscope:原子力顯微鏡)之表面觀察而判別。於本說明書中,於100 μm×5 μm區域內存在一根以上長度為5 μm以上之刮痕之情形時,稱為表面「具有研磨痕」之狀態,相反則稱為「不具有研磨痕」之狀態。藉由第1主面11及第2主面12不具有研磨痕,可於TFT製造中更高精度地、及/或迅速地形成元件或構造體。又,可提高玻璃板10之面強度。
圖15係測定本實施形態中之第1主面11及第2主面12之β-OH量所得之曲線圖。
根據圖15之曲線圖可理解本實施形態之TFT用玻璃基板1之玻璃板10於熔融錫未接觸之第1主面11及與熔融錫接觸之第2主面12之任一者均具有10 μm以上之相對於主體(板厚W方向之中央位置)之水分量為80%以下之水分量之層。
可理解若於第1主面11及第2主面12中之至少一者均具有10 μm以上之相對於主體之水分量為80%以下之水分量之層,則該玻璃板係利用浮式法製造之玻璃板10。浮式法係對獲得更大面積之玻璃板優異之方法,容易獲得1200 mm×1200 mm以上之玻璃板。玻璃板之大小較佳為1500 mm×1500 mm以上,更佳為2000 mm×2000 mm以上,進而較佳為2500 mm×2500 mm以上。至少1邊之長度為1200 mm~7000 mm。可自1片玻璃板取出更複數個形成有TFT之玻璃基板。再者,作為水分量之β-OH值係藉由利用紅外分光光度計之透過率或二次離子質量分析(SIMS)測定。
再者,本發明並不限定於上述實施形態,可適當地進行變化、改良等。除此以外,上述實施形態中之各構成要素之材質、形狀、尺寸、數值、形態、數量、配置部位等只要係可達成本發明者則係任意,並不受限定。
又,高平坦之玻璃基板並不限定於TFT用玻璃基板,於各種領域均需求。例如,於在玻璃之表面藉由壓印而形成樹脂圖案之情形時,存在如下情形,即,相當於玻璃之起伏之凹陷區域之部分係未適當地按壓模具而未獲得所需之圖案。於此情形時,若係更高平坦之玻璃,則模具之按壓力均勻地傳遞至玻璃表面,故而較理想。例如,壓印中活用之玻璃之大小於為矩形狀之情形時,至少1邊之長度為50 mm~7000 mm。
詳細地且參照特定之實施態樣對本發明進行了說明,但業者可知可不脫離本發明之精神及範圍而施加各種修正或變更。本申請案係基於在2017年8月10日提出申請之日本專利申請案2017-155468號及2018年7月24日提出申請之日本專利申請案2018-138799號者,並將其內容作為參照而引入本文中。 [產業上之可利用性]
本發明之TFT用玻璃基板較佳地用於謀求TFT生產線上之生產性之提昇、防止帶電等且要求大型且板厚公差較小之玻璃板之領域。
1‧‧‧TFT用玻璃基板2‧‧‧玻璃原料3‧‧‧熔融玻璃4‧‧‧玻璃帶10‧‧‧玻璃板11‧‧‧第1主面12‧‧‧第2主面13‧‧‧第1邊14‧‧‧第2邊15‧‧‧第1剖面16‧‧‧凸部20‧‧‧粗面化區域21‧‧‧非粗面化區域30‧‧‧第1區域31‧‧‧第2區域100‧‧‧浮法玻璃製造裝置110‧‧‧熔解裝置111‧‧‧熔解槽112‧‧‧燃燒器120‧‧‧成形裝置121‧‧‧熔融錫122‧‧‧浴槽130‧‧‧緩冷裝置131‧‧‧緩冷爐132‧‧‧搬送輥133‧‧‧加熱器140‧‧‧提昇輥200‧‧‧噴射器201‧‧‧供給口202‧‧‧排氣口203‧‧‧流路302‧‧‧射束311‧‧‧氣體系統312‧‧‧氣體系統313‧‧‧氣體系統314‧‧‧間隔壁315‧‧‧間隔壁316‧‧‧氣體吹送孔D‧‧‧距離L‧‧‧寬度W‧‧‧板厚Wmax‧‧‧最大值Wmin‧‧‧最小值X‧‧‧方向Y‧‧‧方向Z‧‧‧方向
圖1表示本發明之TFT用玻璃基板之第1實施形態之一例,圖1(a)表示前視立體圖,(b)表示(a)之A-A剖視圖,(c)表示(b)之B部放大模式圖。 圖2係表示本發明之TFT用玻璃基板之浮法玻璃製造裝置之一例之模式圖。 圖3係表示本發明之TFT用玻璃基板之製造中產生之凸部之模式圖。 圖4具體地表示圖3之凸部,圖4(a)係玻璃板之前視立體圖,(b)係表示凸部之蝕刻狀態之說明圖。 圖5係表示設置於本發明之TFT用玻璃基板之浮法玻璃製造裝置內之噴射器之模式圖。 圖6係作為於玻璃板之寬度方向較長之噴射器之射束之模式圖,圖6(a)係射束之整體構成圖,(b)~(d)之各者係表示三個氣體系統中之HF氣體之流動之模式圖。 圖7係實測本發明之TFT用玻璃基板與比較例之於第1剖面之板厚公差而繪製之圖表。 圖8係實測本發明之TFT用玻璃基板與比較例之於所有剖面之板厚公差而繪製之圖表。 圖9係對本發明之TFT用玻璃基板與比較例之第1剖面之板厚之一次微分值之絕對值之平均值進行比較之圖表。 圖10係表示本發明之TFT用玻璃基板之第2實施形態之一例的前視立體圖。 圖11係表示本發明之TFT用玻璃基板中各處理溫度下之粗糙度之比之表。 圖12係表示本發明之TFT用玻璃基板之第3實施形態之一例之前視立體圖。 圖13係於本發明之TFT用玻璃基板中測定各處理溫度下之第1區域及第2區域之氟之含量而繪製之曲線圖。 圖14係表示基於圖13之算出結果之表。 圖15係測定本發明之TFT用玻璃基板之第1主面及第2主面之β-OH量而繪製之曲線圖。
1‧‧‧TFT用玻璃基板
10‧‧‧玻璃板
11‧‧‧第1主面
12‧‧‧第2主面
13‧‧‧第1邊
14‧‧‧第2邊
15‧‧‧第1剖面
W‧‧‧板厚
Wmax‧‧‧最大值
Wmin‧‧‧最小值

Claims (23)

  1. 一種TFT用玻璃基板,其包括具備第1主面、及與上述第1主面對向之第2主面之矩形之玻璃板,於自上述玻璃板之板厚方向之視野中,具有互為相鄰之第1邊及第2邊,上述第1邊及上述第2邊之長度至少為1200mm以上,於上述玻璃板之板厚方向之剖面中的沿著與上述第1邊平行之直線之第1剖面中,該玻璃板之板厚之最大值與板厚之最小值之差即板厚公差未達6.26μm,上述第1主面具有粗面化區域及非粗面化區域,上述粗面化區域與上述非粗面化區域之粗糙度之比大於1。
  2. 如請求項1之TFT用玻璃基板,其中上述粗面化區域之算術平均粗糙度Ra1為Ra1>0.5nm,上述非粗面化區域之算術平均粗糙度Ra2為Ra2≦0.5nm。
  3. 如請求項1或2之TFT用玻璃基板,其中上述粗面化區域之面積小於上述非粗面化區域之面積,上述粗面化區域之面積與上述非粗面化區域之面積之比為3以上且300以下。
  4. 如請求項1或2之TFT用玻璃基板,其中上述粗面化區域於與上述第1 邊平行之方向形成為線狀。
  5. 如請求項1或2之TFT用玻璃基板,其中上述粗面化區域於與上述第1邊平行之方向呈線狀形成複數個。
  6. 如請求項4之TFT用玻璃基板,其中上述粗面化區域之與上述第2邊平行之方向之寬度為10mm以上且1000mm以下。
  7. 如請求項5之TFT用玻璃基板,其中上述粗面化區域之與上述第2邊平行之方向之寬度為10mm以上且1000mm以下。
  8. 一種TFT用玻璃基板,其包括具備第1主面、及與上述第1主面對向之第2主面之矩形之玻璃板,於自上述玻璃板之板厚方向之視野中,具有互為相鄰之第1邊及第2邊,上述第1邊及上述第2邊之長度至少為1200mm以上,於上述玻璃板之板厚方向之剖面中的沿著與上述第1邊平行之直線之第1剖面中,該玻璃板之板厚之最大值與板厚之最小值之差即板厚公差未達6.26μm,且上述第1主面具有第1區域及第2區域,上述第1區域與上述第2區域之氟之含量之比大於1。
  9. 如請求項8之TFT用玻璃基板,其中上述第1區域之氟之含量F1為0.5 wt%≦F1≦5wt%,上述第2區域之氟之含量F2為0≦F2≦0.15wt%。
  10. 如請求項8或9之TFT用玻璃基板,其中上述第1區域之面積小於上述第2區域之面積,上述第1區域之面積與上述第2區域之面積之比為3以上且300以下。
  11. 如請求項8或9之TFT用玻璃基板,其中上述第1區域於與上述第1邊平行之方向形成為線狀。
  12. 如請求項8或9之TFT用玻璃基板,其中上述第1區域於與上述第1邊平行之方向呈線狀形成複數個。
  13. 如請求項11之TFT用玻璃基板,其中於上述第1區域中,與上述第2邊平行之方向之氟之含量之斜率為0.001wt%/mm以上且0.15wt%/mm以下。
  14. 如請求項12之TFT用玻璃基板,其中於上述第1區域中,與上述第2邊平行之方向之氟之含量之斜率為0.001wt%/mm以上且0.15wt%/mm以下。
  15. 一種TFT用玻璃基板,其包括具備第1主面、及與上述第1主面對向之第2主面之矩形之玻璃板,於自上述玻璃板之板厚方向之視野中,具有互為相鄰之第1邊及第2 邊,上述第1邊及上述第2邊之長度至少為1200mm以上,於上述玻璃板之板厚方向之剖面中的沿著與上述第1邊平行之直線之第1剖面中,該玻璃板之板厚之最大值與板厚之最小值之差即板厚公差未達6.26μm,且上述玻璃板係於上述第1主面及上述第2主面中之至少一者具有10μm以上之相對於主體之水分量為80%以下之水分量之層。
  16. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中於上述玻璃板之板厚方向之所有剖面中,上述板厚公差未達7.12μm。
  17. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中於上述第1剖面中,上述板厚之一次微分值之絕對值之平均值未達1.72E-02。
  18. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中於上述第1剖面中,上述板厚之一次微分值之絕對值之標準偏差為1.5E-03以下。
  19. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中於上述第1剖面中,上述板厚之二次微分值之絕對值之最大值為6.0E-03以下。
  20. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中於上述第1剖面中,上述板厚之二次微分值之絕對值之標準偏差為1.5E-04以 下。
  21. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中上述玻璃板之玻璃組成為無鹼玻璃。
  22. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中上述玻璃板於上述第1主面及上述第2主面中之至少一者中不具有研磨痕。
  23. 如請求項1、2、8、9、15中任一項之TFT用玻璃基板,其中上述玻璃板之厚度為1.0mm以下。
TW107127953A 2017-08-10 2018-08-10 Tft用玻璃基板 TWI798247B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017155468 2017-08-10
JP2017-155468 2017-08-10
JP2018-138799 2018-07-24
JP2018138799A JP7070197B2 (ja) 2017-08-10 2018-07-24 Tft用ガラス基板

Publications (2)

Publication Number Publication Date
TW201910277A TW201910277A (zh) 2019-03-16
TWI798247B true TWI798247B (zh) 2023-04-11

Family

ID=65636869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127953A TWI798247B (zh) 2017-08-10 2018-08-10 Tft用玻璃基板

Country Status (2)

Country Link
JP (1) JP7070197B2 (zh)
TW (1) TWI798247B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387967A (zh) * 2017-08-10 2019-02-26 Agc株式会社 Tft用玻璃基板
JP7418849B2 (ja) 2019-02-27 2024-01-22 国立研究開発法人科学技術振興機構 酸窒素水素化物、酸窒素水素化物を含む金属担持物、及びアンモニア合成用触媒
JP2022082021A (ja) 2020-11-20 2022-06-01 日本電気硝子株式会社 ディスプレイ用ガラス基板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246345A (ja) * 2010-05-26 2011-12-08 Corning Inc 流れている溶融ガラスリボンの厚さを制御する方法および装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3922986B2 (ja) * 2002-08-28 2007-05-30 日本板硝子株式会社 ディスプレイ用ガラス基板
JP5435394B2 (ja) * 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
JP5623001B2 (ja) * 2007-12-25 2014-11-12 日本電気硝子株式会社 ガラス基板
JP5582446B2 (ja) * 2009-07-10 2014-09-03 日本電気硝子株式会社 フィルム状ガラスの製造方法及び製造装置
JPWO2012096303A1 (ja) * 2011-01-14 2014-06-09 日本電気硝子株式会社 表示装置用ガラス板、それを備える液晶表示装置、表示装置用ガラス板の製造方法及び製造装置並びに液晶表示装置の製造方法
JP6003978B2 (ja) * 2012-03-14 2016-10-05 旭硝子株式会社 フロートガラス板およびその製造方法
KR101522452B1 (ko) * 2012-04-17 2015-05-21 아반스트레이트 가부시키가이샤 디스플레이용 글래스 기판의 제조 방법, 글래스 기판 및 디스플레이용 패널
WO2014123089A1 (ja) * 2013-02-07 2014-08-14 旭硝子株式会社 ガラス製造方法
WO2015046118A1 (ja) * 2013-09-25 2015-04-02 旭硝子株式会社 ガラス板
JP2017218351A (ja) * 2016-06-09 2017-12-14 日本電気硝子株式会社 ガラス基板の製造方法、及びガラス基板
JP7503382B2 (ja) * 2017-02-28 2024-06-20 コーニング インコーポレイテッド 厚み変動を抑制したガラス物品、その製造方法、及びそのための装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246345A (ja) * 2010-05-26 2011-12-08 Corning Inc 流れている溶融ガラスリボンの厚さを制御する方法および装置

Also Published As

Publication number Publication date
JP7070197B2 (ja) 2022-05-18
TW201910277A (zh) 2019-03-16
JP2019034878A (ja) 2019-03-07

Similar Documents

Publication Publication Date Title
TWI798247B (zh) Tft用玻璃基板
TWI471272B (zh) 玻璃板的製造方法以及製造設備
JP5687088B2 (ja) ガラス基板の製造方法
TWI422539B (zh) 玻璃板製造方法以及玻璃板製造設備
KR20230143596A (ko) Tft용 유리 기판
CN106242251B (zh) 浮法玻璃制造方法和浮法玻璃制造装置
CN108349787B (zh) 显示器用玻璃基板、以及显示器用玻璃基板的制造方法
KR101543832B1 (ko) 글래스 기판 및 글래스 기판의 제조 방법
CN108455869B (zh) 显示器用玻璃基板、以及显示器用玻璃基板的制造方法
TW201518222A (zh) 玻璃板
JP2012229491A (ja) 障壁支持体上に配置されたパネルの吹付け処理
TW201518221A (zh) 玻璃板
TW201514107A (zh) 玻璃板
TWI778194B (zh) 顯示器用玻璃基板
KR20200019693A (ko) 유리 기판 표면 처리 방법
TW202220936A (zh) 顯示器用玻璃基板
TW201514104A (zh) 浮式玻璃之製造方法
JP2014065944A (ja) ガラス物品搬送装置
WO2009081741A1 (ja) ガラス板の製造方法及び製造設備
CN116368104A (zh) 玻璃基板以及电子设备的制造方法
TW201516006A (zh) 玻璃板
TW201518224A (zh) 玻璃板
TW201512128A (zh) 玻璃板