TWI773478B - Antenna structure - Google Patents

Antenna structure Download PDF

Info

Publication number
TWI773478B
TWI773478B TW110129365A TW110129365A TWI773478B TW I773478 B TWI773478 B TW I773478B TW 110129365 A TW110129365 A TW 110129365A TW 110129365 A TW110129365 A TW 110129365A TW I773478 B TWI773478 B TW I773478B
Authority
TW
Taiwan
Prior art keywords
electrode layer
strip electrodes
antenna structure
substrate
frequency
Prior art date
Application number
TW110129365A
Other languages
Chinese (zh)
Other versions
TW202240976A (en
Inventor
洪敬榔
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202210031674.2A priority Critical patent/CN114204259B/en
Application granted granted Critical
Publication of TWI773478B publication Critical patent/TWI773478B/en
Publication of TW202240976A publication Critical patent/TW202240976A/en

Links

Images

Abstract

An antenna structure including a first substrate, a second substrate, a first electrode layer, a second electrode layer, a liquid crystal layer and a reflective layer is provided. The first substrate and the second substrate are disposed opposite to each other. The first electrode layer and the second electrode layer are respectively disposed on the first substrate and the second substrate. The second electrode layer overlaps the first electrode layer. The ratio of area occupied by the first electrode layer to the area occupied by the second electrode layer is greater than or equal to 0.7 and less than 1. The liquid crystal layer is disposed between the first substrate and the second substrate and is located between the first electrode layer and the second electrode layer. The reflective layer is disposed on a side of the second substrate away from the second electrode layer.

Description

天線結構Antenna structure

本發明是有關於一種行動通訊技術,且特別是有關於一種天線結構。The present invention relates to a mobile communication technology, and more particularly, to an antenna structure.

隨著第五代行動通訊技術(5G)的商業化,遠距醫療、VR直播、4K畫質直播、智慧家庭等等應用都有了新的發展契機。由於5G具有高資料速率、減少延遲、節省能源、降低成本、提高系統容量和大規模裝置連接等效能,不同領域的業者還可進行跨界結盟,共同打造新一代的5G生態鏈。為了增加5G毫米波的覆蓋率,一種反射式天線被廣泛應用。With the commercialization of the fifth-generation mobile communication technology (5G), applications such as telemedicine, VR live broadcast, 4K quality live broadcast, and smart home have new opportunities for development. Due to the high data rate, reduced delay, energy saving, cost reduction, system capacity improvement and large-scale device connection of 5G, players in different fields can also form alliances across borders to jointly build a new generation of 5G ecological chain. To increase the coverage of 5G mmWave, a reflective antenna is widely used.

常見的反射式天線又可區分為被動式陣列天線和主動式陣列天線。被動式陣列天線因具有固定的天線尺寸而具有固定的電磁波接收角度和出射角度。相反地,由於主動式陣列天線具有電磁波的相位調變能力,因此能調整電磁波的接收角度和出射角度。然而,這類主動式陣列天線一般是搭配移相器的使用來調變電磁波的相位。對於尺寸越大的陣列天線來說,其移相器的使用成本會越高。Common reflective antennas can be divided into passive array antennas and active array antennas. The passive array antenna has a fixed electromagnetic wave receiving angle and emission angle due to its fixed antenna size. On the contrary, since the active array antenna has the ability to modulate the phase of the electromagnetic wave, it can adjust the receiving angle and the outgoing angle of the electromagnetic wave. However, such active array antennas are generally used with phase shifters to modulate the phase of electromagnetic waves. The larger the size of the array antenna, the higher the cost of using the phase shifter.

本發明提供一種天線結構,可用於調變電磁波的反射頻率和相位,並且具有較低的生產成本。The present invention provides an antenna structure which can be used to modulate the reflected frequency and phase of electromagnetic waves, and has lower production cost.

本發明的天線結構,包括第一基板、第二基板、第一電極層、第二電極層、液晶層以及反射層。第一基板與第二基板相對設置。第一電極層和第二電極層分別設置在第一基板和第二基板上。第二電極層重疊於第一電極層。第一電極層所佔區域面積與第二電極層所佔區域面積的比值大於等於0.7且小於1。液晶層設置在第一基板與第二基板之間,且位於第一電極層與第二電極層之間。反射層設置在第二基板背離第二電極層的一側。The antenna structure of the present invention includes a first substrate, a second substrate, a first electrode layer, a second electrode layer, a liquid crystal layer and a reflection layer. The first substrate is opposite to the second substrate. The first electrode layer and the second electrode layer are respectively disposed on the first substrate and the second substrate. The second electrode layer overlaps the first electrode layer. The ratio of the area occupied by the first electrode layer to the area occupied by the second electrode layer is greater than or equal to 0.7 and less than 1. The liquid crystal layer is disposed between the first substrate and the second substrate, and between the first electrode layer and the second electrode layer. The reflective layer is disposed on the side of the second substrate away from the second electrode layer.

基於上述,在本發明的一實施例的天線結構中,第一電極層和第二電極層所形成的感應迴路能讓具有特定共振頻率的感應電流傳遞其中,而夾設在這兩電極層之間的液晶層可用來調變感應電流的電流路徑長度,進而調變電磁波的反射頻率和相位。此外,透過第一電極層所佔區域面積與第二電極層所佔區域面積的比值大於等於0.7且小於1,可有效增加電磁波的反射頻率的頻寬。Based on the above, in the antenna structure of an embodiment of the present invention, the induction loop formed by the first electrode layer and the second electrode layer can transmit the induction current having a specific resonance frequency, and is sandwiched between the two electrode layers. The liquid crystal layer in between can be used to modulate the current path length of the induced current, thereby modulating the reflected frequency and phase of the electromagnetic wave. In addition, when the ratio of the area occupied by the first electrode layer to the area occupied by the second electrode layer is greater than or equal to 0.7 and less than 1, the bandwidth of the reflected frequency of the electromagnetic wave can be effectively increased.

本文使用的「約」、「近似」、「本質上」、或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或例如±30%、±20%、±15%、±10%、±5%內。再者,本文使用的「約」、「近似」、「本質上」、或「實質上」可依量測性質、切割性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。As used herein, "about", "approximately", "substantially", or "substantially" includes the stated value and the average value within an acceptable deviation of the particular value as determined by one of ordinary skill in the art, taking into account all The measurement in question and the specific amount of error associated with the measurement (ie, the limitations of the measurement system). For example, "about" can mean within one or more standard deviations of the stated value, or within ±30%, ±20%, ±15%, ±10%, ±5%, for example. Furthermore, the terms "about", "approximately", "substantially", or "substantially" as used herein may depend on measurement properties, cutting properties, or other properties to select a more acceptable range or standard deviation, and may Not one standard deviation applies to all properties.

在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」可為二元件間存在其它元件。In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. It will be understood that when an element such as a layer, film, region or substrate is referred to as being "on" or "connected to" another element, it can be directly on or connected to the other element, or Intermediate elements may also be present. In contrast, when an element is referred to as being "directly on" or "directly connected to" another element, there are no intervening elements present. As used herein, "connected" may refer to a physical and/or electrical connection. Furthermore, the "electrical connection" may refer to the existence of other elements between the two elements.

現將詳細地參考本發明的示範性實施方式,示範性實施方式的實例說明於所附圖式中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。Reference will now be made in detail to exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals are used in the drawings and description to refer to the same or like parts.

圖1A及圖1B是依照本發明的第一實施例的天線結構的剖視和正視示意圖。圖2是圖1A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖1B僅繪示出圖1A的第一電極層110、第二電極層120和反射層150。1A and 1B are schematic cross-sectional and front views of an antenna structure according to a first embodiment of the present invention. FIG. 2 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 1A in different modes of operation. For the sake of clarity, FIG. 1B only illustrates the first electrode layer 110 , the second electrode layer 120 and the reflection layer 150 of FIG. 1A .

請參照圖1A及圖1B,天線結構10A包括第一基板101、第二基板102、液晶層LC、第一電極層110以及第二電極層120。第一基板101與第二基板102相對設置。第一基板101和第二基板102的材料例如是玻璃,但不以此為限。液晶層LC設置在第一基板101與第二基板102之間,且位於第一電極層110與第二電極層120之間。第一電極層110設置在第一基板101上,且位於液晶層LC與第一基板101之間。第二電極層120設置在第二基板102上,且位於液晶層LC與第二基板102之間。第一電極層110重疊於第二電極層120。需說明的是,此處的重疊關係是指兩電極層沿著方向Z的投影相重疊。以下段落中若非特別提及,則兩構件的重疊關係也是以方向Z來界定,因此不再贅述。Referring to FIGS. 1A and 1B , the antenna structure 10A includes a first substrate 101 , a second substrate 102 , a liquid crystal layer LC, a first electrode layer 110 and a second electrode layer 120 . The first substrate 101 and the second substrate 102 are disposed opposite to each other. The material of the first substrate 101 and the second substrate 102 is, for example, glass, but not limited thereto. The liquid crystal layer LC is disposed between the first substrate 101 and the second substrate 102 and between the first electrode layer 110 and the second electrode layer 120 . The first electrode layer 110 is disposed on the first substrate 101 and located between the liquid crystal layer LC and the first substrate 101 . The second electrode layer 120 is disposed on the second substrate 102 and located between the liquid crystal layer LC and the second substrate 102 . The first electrode layer 110 overlaps the second electrode layer 120 . It should be noted that the overlapping relationship here means that the projections of the two electrode layers along the direction Z overlap. Unless otherwise mentioned in the following paragraphs, the overlapping relationship between the two components is also defined by the direction Z, and thus will not be repeated.

在本實施例中,天線結構10A適於在第一基板101的一側接收電磁波並且將具有特定頻率(或頻寬)的電磁波反射至第一基板101的該側。也就是說,天線結構10A的第一基板101的該側為電磁波(例如毫米波)的接收側和輻射側。相較於僅具有單一電極層的天線結構來說,多個尺寸略有差異的電極層所堆疊而成的天線結構可具有較寬的反射頻率的頻寬。In this embodiment, the antenna structure 10A is adapted to receive electromagnetic waves at one side of the first substrate 101 and reflect electromagnetic waves having a specific frequency (or bandwidth) to the side of the first substrate 101 . That is, the side of the first substrate 101 of the antenna structure 10A is the receiving side and the radiation side of electromagnetic waves (eg, millimeter waves). Compared with the antenna structure with only a single electrode layer, the antenna structure formed by stacking a plurality of electrode layers with slightly different sizes can have a wider bandwidth of reflection frequencies.

特別注意的是,較靠近所述電磁波接收側(或第一基板101)的第一電極層110於第一基板101上的正投影面積小於較遠離所述電磁波接收側的第二電極層120於第一基板101上的正投影面積。舉例來說,第一電極層110和第二電極層120於第一基板101上的正投影輪廓都為正方形,並且分別整面性地分布在區域Z1和區域Z2內,但不以此為限。將第一電極層110所佔區域Z1面積與第二電極層120所佔區域Z2面積的比值設計在大於等於0.7且小於1的範圍內,可有效增加電磁波的反射頻率的頻寬。It should be noted that the orthographic projection area of the first electrode layer 110 on the first substrate 101 that is closer to the electromagnetic wave receiving side (or the first substrate 101 ) is smaller than that of the second electrode layer 120 that is farther away from the electromagnetic wave receiving side. The orthographic projection area on the first substrate 101 . For example, the orthographic profiles of the first electrode layer 110 and the second electrode layer 120 on the first substrate 101 are both square, and are distributed in the area Z1 and the area Z2 respectively, but not limited to this . The ratio of the area of the area Z1 occupied by the first electrode layer 110 to the area of the area Z2 occupied by the second electrode layer 120 is designed to be greater than or equal to 0.7 and less than 1, which can effectively increase the reflected frequency bandwidth of electromagnetic waves.

當電磁波(例如毫米波)由第一基板101的一側照射天線結構10A時,會在第一電極層110和第二電極層120所構成的感應迴路中產生具有特定共振頻率的感應電流。由於設置在第一電極層110與第二電極層120間的液晶層LC可被電驅動而改變自身的有效介電常數,因此,感應電流的電流路徑長度可被電控改變,進而調變天線結構10A所輻射(或反射)出的電磁波的頻率與相位。因此,第一電極層110和第二電極層120除了構成天線結構10A的感應迴路外,還可作為液晶層LC的驅動電極。亦即,這兩電極間所產生的電場可用來驅使液晶層LC的多個液晶分子(未繪示)轉動。When electromagnetic waves (eg, millimeter waves) irradiate the antenna structure 10A from one side of the first substrate 101 , an induced current having a specific resonance frequency is generated in the induction loop formed by the first electrode layer 110 and the second electrode layer 120 . Since the liquid crystal layer LC disposed between the first electrode layer 110 and the second electrode layer 120 can be electrically driven to change its effective permittivity, the current path length of the induced current can be electrically controlled to change, thereby modulating the antenna The frequency and phase of the electromagnetic waves radiated (or reflected) by the structure 10A. Therefore, in addition to forming the induction loop of the antenna structure 10A, the first electrode layer 110 and the second electrode layer 120 can also be used as driving electrodes of the liquid crystal layer LC. That is, the electric field generated between the two electrodes can be used to drive a plurality of liquid crystal molecules (not shown) of the liquid crystal layer LC to rotate.

在本實施例中,由於第一電極層110和第二電極層120分別設置在液晶層LC沿著方向Z(即,垂直於第一基板101表面的方向)的相對兩側,因此天線結構10A適於調變電磁波在方向Z上的相位,但本發明不以此為限。In this embodiment, since the first electrode layer 110 and the second electrode layer 120 are respectively disposed on opposite sides of the liquid crystal layer LC along the direction Z (ie, the direction perpendicular to the surface of the first substrate 101 ), the antenna structure 10A It is suitable for modulating the phase of the electromagnetic wave in the direction Z, but the present invention is not limited to this.

請同時參照圖2,當液晶層LC不驅動(即第一電極層110與第二電極層120不被致能)時,天線結構10A的反射係數S11對頻率的曲線C1a以及電磁波相位對頻率的曲線C2a明顯不同於液晶層LC被驅動時,天線結構10A的反射係數S11對頻率的曲線C1b以及電磁波相位對頻率的曲線C2b。舉例來說,對於相位落在-160度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率11.2GHz與頻率11.3GHz之間切換。從另一觀點來說,對於頻率落在11.25GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P1約為70度。2, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110 and the second electrode layer 120 are not enabled), the reflection coefficient S11 versus frequency curve C1a of the antenna structure 10A and the electromagnetic wave phase versus frequency curve C1a The curve C2a is significantly different from the curve C1b of the reflection coefficient S11 versus frequency of the antenna structure 10A and the curve C2b of the electromagnetic wave phase versus frequency when the liquid crystal layer LC is driven. For example, for an electromagnetic wave whose phase falls around -160 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic wave, for example, switching between a frequency of 11.2GHz and a frequency of 11.3GHz. From another point of view, for electromagnetic waves with a frequency around 11.25 GHz, the maximum phase modulation variable ΔP1 that can be generated is about 70 degrees, whether the liquid crystal layer LC is driven or not.

特別一提的是,天線結構10A透過雙層電極層的設置,可相較於單一電極層所構成的天線結構增加0.3GHz至0.4GHz的反射頻率頻寬。另一方面,由於本實施例的天線結構10A無需搭配移相器即可具有相位調變的能力,因此,相較於傳統天線結構更具成本優勢,有助於天線結構的大尺寸化。It is particularly mentioned that the antenna structure 10A can increase the reflection frequency bandwidth of 0.3 GHz to 0.4 GHz compared with the antenna structure formed by a single electrode layer through the arrangement of the double electrode layers. On the other hand, since the antenna structure 10A of the present embodiment has the capability of phase modulation without matching a phase shifter, it has a cost advantage compared with the conventional antenna structure, which is helpful for the large size of the antenna structure.

進一步而言,為了增加天線結構10A對目標電磁波(例如毫米波)的反射率,天線結構10A更包括反射層150,設置在第二基板102背離第二電極層120的一側。在本實施例中,反射層150例如是具有接地電位(grounded)的金屬導電層,並且整面性地覆蓋第二基板102遠離第二電極層120的表面102s,但不以此為限。Further, in order to increase the reflectivity of the antenna structure 10A to target electromagnetic waves (eg, millimeter waves), the antenna structure 10A further includes a reflection layer 150 disposed on the side of the second substrate 102 away from the second electrode layer 120 . In this embodiment, the reflective layer 150 is, for example, a metal conductive layer with grounded potential, and covers the entire surface 102s of the second substrate 102 away from the second electrode layer 120 , but not limited thereto.

以下將列舉另一些實施例以詳細說明本揭露,其中相同的構件將標示相同的符號,並且省略相同技術內容的說明,省略部分請參考前述實施例,以下不再贅述。Hereinafter, other embodiments will be listed to describe the present disclosure in detail, wherein the same components will be marked with the same symbols, and the description of the same technical content will be omitted.

圖3A及圖3B是依照本發明的第二實施例的天線結構的剖視和正視示意圖。圖4是圖3A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖3B僅繪示出圖3A的第一電極層110A、第二電極層120和反射層150。3A and 3B are schematic cross-sectional and front views of an antenna structure according to a second embodiment of the present invention. FIG. 4 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 3A in different modes of operation. For the sake of clarity, FIG. 3B only illustrates the first electrode layer 110A, the second electrode layer 120 and the reflective layer 150 of FIG. 3A .

請參照圖3A及圖3B,本實施例的天線結構10B與圖1A的天線結構10A的差異在於:第一電極層的構型不同。在本實施例中,第一電極層110A可具有多個第一條狀電極111和多個第二條狀電極112。這些第一條狀電極111與這些第二條狀電極112可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極111電性獨立於這些第二條狀電極112。Referring to FIGS. 3A and 3B , the difference between the antenna structure 10B of this embodiment and the antenna structure 10A of FIG. 1A is that the configurations of the first electrode layers are different. In this embodiment, the first electrode layer 110A may have a plurality of first strip electrodes 111 and a plurality of second strip electrodes 112 . The first strip electrodes 111 and the second strip electrodes 112 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 111 are electrically independent of the second strip electrodes 112 .

也就是說,第一條狀電極111與第二條狀電極112可具有不同的電位,使第一條狀電極111與第二條狀電極112間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構10B適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第二電極層120可具有不同於第一條狀電極111和第二條狀電極112的電位。因此,第一條狀電極111(或第二條狀電極112)與第二電極層120間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 111 and the second strip electrodes 112 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 111 and the second strip electrodes 112 to drive the liquid crystal layer LC. Therefore, the antenna structure 10B of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the second electrode layer 120 may have a different potential than the first strip electrodes 111 and the second strip electrodes 112 . Therefore, a vertical electric field can also be generated between the first strip electrodes 111 (or the second strip electrodes 112 ) and the second electrode layer 120 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖4,在本實施例中,當液晶層LC不驅動(即第一條狀電極111與第二條狀電極112不被致能)時,天線結構10B的反射係數S11對頻率的曲線C3a以及電磁波相位對頻率的曲線C4a明顯不同於液晶層LC被驅動時,天線結構10B的反射係數S11對頻率的曲線C3b以及電磁波相位對頻率的曲線C4b。舉例來說,對於相位落在-200度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.75GHz與頻率12.85GHz之間切換。從另一觀點來說,對於頻率落在12.8GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P2約為60度。Please refer to FIG. 4 at the same time. In this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 111 and the second strip electrodes 112 are not enabled), the reflection coefficient S11 of the antenna structure 10B varies with frequency. The curve C3a and the electromagnetic wave phase vs. frequency curve C4a are significantly different from the reflection coefficient S11 vs. frequency curve C3b and the electromagnetic wave phase vs. frequency curve C4b of the antenna structure 10B when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls near -200 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 12.75GHz and a frequency of 12.85GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.8GHz, the maximum phase modulation variable ΔP2 that can be generated is about 60 degrees, whether the liquid crystal layer LC is driven or not.

圖5A及圖5B是依照本發明的第三實施例的天線結構的剖視和正視示意圖。圖6是圖5A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖5B僅繪示出圖5A的第一電極層110、第二電極層120A和反射層150。5A and 5B are schematic cross-sectional and front views of an antenna structure according to a third embodiment of the present invention. FIG. 6 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 5A in different modes of operation. For the sake of clarity, FIG. 5B only illustrates the first electrode layer 110 , the second electrode layer 120A and the reflection layer 150 of FIG. 5A .

請參照圖5A及圖5B,本實施例的天線結構10C與圖1A的天線結構10A的差異在於:第二電極層的構型不同。在本實施例中,第二電極層120A可具有多個第一條狀電極121和多個第二條狀電極122。這些第一條狀電極121與這些第二條狀電極122可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極121電性獨立於這些第二條狀電極122。Referring to FIGS. 5A and 5B , the difference between the antenna structure 10C of this embodiment and the antenna structure 10A of FIG. 1A is that the configuration of the second electrode layer is different. In this embodiment, the second electrode layer 120A may have a plurality of first strip electrodes 121 and a plurality of second strip electrodes 122 . The first strip electrodes 121 and the second strip electrodes 122 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 121 are electrically independent of the second strip electrodes 122 .

也就是說,第一條狀電極121與第二條狀電極122可具有不同的電位,使第一條狀電極121與第二條狀電極122間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構10C適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第一電極層110可具有不同於第一條狀電極121和第二條狀電極122的電位。因此,第一條狀電極121(或第二條狀電極122)與第一電極層110間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 121 and the second strip electrodes 122 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 121 and the second strip electrodes 122 to drive the liquid crystal layer LC. Therefore, the antenna structure 10C of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the first electrode layer 110 may have a different potential than the first strip electrodes 121 and the second strip electrodes 122 . Therefore, a vertical electric field can also be generated between the first strip electrodes 121 (or the second strip electrodes 122 ) and the first electrode layer 110 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖6,在本實施例中,當液晶層LC不驅動(即第一條狀電極121與第二條狀電極122不被致能)時,天線結構10C的反射係數S11對頻率的曲線C5a以及電磁波相位對頻率的曲線C6a明顯不同於液晶層LC被驅動時,天線結構10C的反射係數S11對頻率的曲線C5b以及電磁波相位對頻率的曲線C6b。舉例來說,對於相位落在-180度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率14GHz與頻率14.3GHz之間切換。從另一觀點來說,對於頻率落在14.15GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P3約為205度。Please refer to FIG. 6 at the same time, in this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 121 and the second strip electrodes 122 are not enabled), the reflection coefficient S11 of the antenna structure 10C varies with the frequency The curve C5a and the electromagnetic wave phase vs. frequency curve C6a are significantly different from the reflection coefficient S11 vs. frequency curve C5b and the electromagnetic wave phase vs. frequency curve C6b of the antenna structure 10C when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -180 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, for example, switching between a frequency of 14 GHz and a frequency of 14.3 GHz. From another point of view, for electromagnetic waves whose frequency falls around 14.15 GHz, the maximum phase modulation variable ΔP3 that can be generated is about 205 degrees, whether the liquid crystal layer LC is driven or not.

圖7A及圖7B是依照本發明的第四實施例的天線結構的剖視和正視示意圖。圖8是圖7A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖7B僅繪示出圖7A的第一電極層110、第二電極層120、第三電極層130和反射層150。7A and 7B are schematic cross-sectional and front views of an antenna structure according to a fourth embodiment of the present invention. FIG. 8 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 7A in different modes of operation. For the sake of clarity, FIG. 7B only illustrates the first electrode layer 110 , the second electrode layer 120 , the third electrode layer 130 and the reflection layer 150 of FIG. 7A .

請參照圖7A及圖7B,本實施例的天線結構11A與圖1A的天線結構10A的差異在於:天線結構11A還可選擇性地包括第三電極層130。在本實施例中,第三電極層130可設置在第一電極層110遠離第二電極層120的一側。更具體地說,第三電極層130是設置在第一基板101背離第一電極層110的一側表面上,並且完全重疊於第一電極層110和第二電極層120。Referring to FIGS. 7A and 7B , the difference between the antenna structure 11A of this embodiment and the antenna structure 10A of FIG. 1A is that the antenna structure 11A may optionally include a third electrode layer 130 . In this embodiment, the third electrode layer 130 may be disposed on the side of the first electrode layer 110 away from the second electrode layer 120 . More specifically, the third electrode layer 130 is disposed on a side surface of the first substrate 101 away from the first electrode layer 110 and completely overlaps the first electrode layer 110 and the second electrode layer 120 .

也就是說,第三電極層130相較於第一電極層110更靠近電磁波的接收側。為了進一步增加電磁波的反射頻率的頻寬,第三電極層130於第一基板101上的正投影面積可小於第一電極層110於第一基板101上的正投影面積。舉例來說,第一電極層110、第二電極層120和第三電極層130於第一基板101上的正投影輪廓都為正方形,並且分別整面性地分布在區域Z1、區域Z2和區域Z3內,但不以此為限。在其他實施例中,第一電極層和第二電極層的至少一者也可以多個條狀電極(如圖3B和圖5B所示)的形式分布在區域Z1和區域Z2。That is, the third electrode layer 130 is closer to the receiving side of the electromagnetic wave than the first electrode layer 110 . In order to further increase the bandwidth of the reflected frequency of the electromagnetic wave, the orthographic projection area of the third electrode layer 130 on the first substrate 101 may be smaller than the orthographic projection area of the first electrode layer 110 on the first substrate 101 . For example, the orthographic contours of the first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130 on the first substrate 101 are all square, and are distributed in the area Z1 , the area Z2 and the area respectively. Z3, but not limited to this. In other embodiments, at least one of the first electrode layer and the second electrode layer may also be distributed in the area Z1 and the area Z2 in the form of a plurality of strip electrodes (as shown in FIG. 3B and FIG. 5B ).

透過將第三電極層130所佔區域Z3面積與第一電極層110所佔區域Z1面積的比值設計在大於等於0.7且小於1的範圍內,可有效增加電磁波的反射頻率的頻寬。By designing the ratio of the area of the area Z3 occupied by the third electrode layer 130 to the area of the area Z1 occupied by the first electrode layer 110 to be greater than or equal to 0.7 and less than 1, the bandwidth of the reflected frequency of electromagnetic waves can be effectively increased.

請同時參照圖8,當液晶層LC不驅動(即第一電極層110與第二電極層120不被致能)時,天線結構11A的反射係數S11對頻率的曲線C7a以及電磁波相位對頻率的曲線C8a明顯不同於液晶層LC被驅動時,天線結構11A的反射係數S11對頻率的曲線C7b以及電磁波相位對頻率的曲線C8b。舉例來說,對於相位落在-220度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率13.7GHz與頻率13.8GHz之間切換。從另一觀點來說,對於頻率落在13.75GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P4約為57度。8, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110 and the second electrode layer 120 are not enabled), the reflection coefficient S11 versus frequency curve C7a of the antenna structure 11A and the electromagnetic wave phase versus frequency curve C7a The curve C8a is significantly different from the curve C7b of the reflection coefficient S11 versus frequency of the antenna structure 11A and the curve C8b of the electromagnetic wave phase versus frequency when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -220 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 13.7GHz and a frequency of 13.8GHz. From another point of view, for electromagnetic waves whose frequency falls around 13.75GHz, the maximum phase modulation variable ΔP4 that can be generated is about 57 degrees, whether the liquid crystal layer LC is driven or not.

特別一提的是,天線結構11A透過三層電極層的設置,可相較於單一電極層所構成的天線結構增加約0.6GHz的反射頻率頻寬。另一方面,由於本實施例的天線結構11A無需搭配移相器即可具有相位調變的能力,因此,相較於傳統天線結構更具成本優勢,有助於天線結構的大尺寸化。It is particularly mentioned that the antenna structure 11A can increase the reflected frequency bandwidth by about 0.6 GHz compared with the antenna structure formed by a single electrode layer through the arrangement of three electrode layers. On the other hand, since the antenna structure 11A of the present embodiment can have the capability of phase modulation without matching a phase shifter, it has a cost advantage compared with the conventional antenna structure, which is helpful for the large size of the antenna structure.

圖9A及圖9B是依照本發明的第五實施例的天線結構的剖視和正視示意圖。圖10是圖9A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖9B僅繪示出圖9A的第一電極層110A、第二電極層120、第三電極層130和反射層150。9A and 9B are schematic cross-sectional and front views of an antenna structure according to a fifth embodiment of the present invention. FIG. 10 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 9A in different modes of operation. For the sake of clarity, FIG. 9B only illustrates the first electrode layer 110A, the second electrode layer 120 , the third electrode layer 130 and the reflection layer 150 of FIG. 9A .

請參照圖9A及圖9B,本實施例的天線結構11B與圖7A的天線結構11A的差異在於:第一電極層的構型不同。在本實施例中,第一電極層110A可具有多個第一條狀電極111和多個第二條狀電極112。這些第一條狀電極111與這些第二條狀電極112可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極111電性獨立於這些第二條狀電極112。Referring to FIGS. 9A and 9B , the difference between the antenna structure 11B of this embodiment and the antenna structure 11A of FIG. 7A is that the configuration of the first electrode layer is different. In this embodiment, the first electrode layer 110A may have a plurality of first strip electrodes 111 and a plurality of second strip electrodes 112 . The first strip electrodes 111 and the second strip electrodes 112 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 111 are electrically independent of the second strip electrodes 112 .

也就是說,第一條狀電極111與第二條狀電極112可具有不同的電位,使第一條狀電極111與第二條狀電極112間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構11B適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第二電極層120可具有不同於第一條狀電極111和第二條狀電極112的電位。因此,第一條狀電極111(或第二條狀電極112)與第二電極層120間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 111 and the second strip electrodes 112 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 111 and the second strip electrodes 112 to drive the liquid crystal layer LC. Therefore, the antenna structure 11B of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the second electrode layer 120 may have a different potential than the first strip electrodes 111 and the second strip electrodes 112 . Therefore, a vertical electric field can also be generated between the first strip electrodes 111 (or the second strip electrodes 112 ) and the second electrode layer 120 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖10,在本實施例中,當液晶層LC不驅動(即第一條狀電極111與第二條狀電極112不被致能)時,天線結構11B的反射係數S11對頻率的曲線C9a以及電磁波相位對頻率的曲線C10a明顯不同於液晶層LC被驅動時,天線結構11B的反射係數S11對頻率的曲線C9b以及電磁波相位對頻率的曲線C10b。舉例來說,對於相位落在-180度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率11.7GHz與頻率11.8GHz之間切換。從另一觀點來說,對於頻率落在12.8GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P5約為60度。Please refer to FIG. 10 at the same time. In this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 111 and the second strip electrodes 112 are not enabled), the reflection coefficient S11 of the antenna structure 11B varies with frequency. The curve C9a and the electromagnetic wave phase vs. frequency curve C10a are significantly different from the reflection coefficient S11 vs. frequency curve C9b and the electromagnetic wave phase vs. frequency curve C10b of the antenna structure 11B when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -180 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 11.7GHz and a frequency of 11.8GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.8GHz, the maximum phase modulation variable ΔP5 that can be generated is about 60 degrees, whether the liquid crystal layer LC is driven or not.

圖11A及圖11B是依照本發明的第六實施例的天線結構的剖視和正視示意圖。圖12是圖11A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖11B僅繪示出圖11A的第一電極層110、第二電極層120A、第三電極層130和反射層150。11A and 11B are schematic cross-sectional and front views of an antenna structure according to a sixth embodiment of the present invention. FIG. 12 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 11A in different modes of operation. For the sake of clarity, FIG. 11B only illustrates the first electrode layer 110 , the second electrode layer 120A, the third electrode layer 130 and the reflection layer 150 of FIG. 11A .

請參照圖11A及圖11B,本實施例的天線結構11C與圖7A的天線結構11A的差異在於:第二電極層的構型不同。在本實施例中,第二電極層120A可具有多個第一條狀電極121和多個第二條狀電極122。這些第一條狀電極121與這些第二條狀電極122可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極121電性獨立於這些第二條狀電極122。Referring to FIGS. 11A and 11B , the difference between the antenna structure 11C of the present embodiment and the antenna structure 11A of FIG. 7A is that the configuration of the second electrode layer is different. In this embodiment, the second electrode layer 120A may have a plurality of first strip electrodes 121 and a plurality of second strip electrodes 122 . The first strip electrodes 121 and the second strip electrodes 122 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 121 are electrically independent of the second strip electrodes 122 .

也就是說,第一條狀電極121與第二條狀電極122可具有不同的電位,使第一條狀電極121與第二條狀電極122間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構11C適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第一電極層110可具有不同於第一條狀電極121和第二條狀電極122的電位。因此,第一條狀電極121(或第二條狀電極122)與第一電極層110間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 121 and the second strip electrodes 122 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 121 and the second strip electrodes 122 to drive the liquid crystal layer LC. Therefore, the antenna structure 11C of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the first electrode layer 110 may have a different potential than the first strip electrodes 121 and the second strip electrodes 122 . Therefore, a vertical electric field can also be generated between the first strip electrodes 121 (or the second strip electrodes 122 ) and the first electrode layer 110 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖12,在本實施例中,當液晶層LC不驅動(即第一條狀電極121與第二條狀電極122不被致能)時,天線結構11C的反射係數S11對頻率的曲線C11a以及電磁波相位對頻率的曲線C12a明顯不同於液晶層LC被驅動時,天線結構11C的反射係數S11對頻率的曲線C11b以及電磁波相位對頻率的曲線C12b。舉例來說,對於相位落在-190度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率11.9GHz與頻率12.1GHz之間切換。從另一觀點來說,對於頻率落在12GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P6約為180度。Please refer to FIG. 12 at the same time. In this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 121 and the second strip electrodes 122 are not enabled), the reflection coefficient S11 of the antenna structure 11C varies with frequency. The curve C11a and the electromagnetic wave phase vs. frequency curve C12a are significantly different from the reflection coefficient S11 vs. frequency curve C11b and the electromagnetic wave phase vs. frequency curve C12b of the antenna structure 11C when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -190 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, for example, switching between a frequency of 11.9 GHz and a frequency of 12.1 GHz. From another point of view, for electromagnetic waves whose frequency falls around 12 GHz, the maximum phase modulation variable ΔP6 that can be generated is about 180 degrees, whether the liquid crystal layer LC is driven or not.

圖13A及圖13B是依照本發明的第七實施例的天線結構的剖視和正視示意圖。圖14是圖13A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖13B僅繪示出圖13A的第一電極層110A、第二電極層120A、第三電極層130和反射層150。13A and 13B are schematic cross-sectional and front views of an antenna structure according to a seventh embodiment of the present invention. FIG. 14 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 13A in different modes of operation. For the sake of clarity, FIG. 13B only illustrates the first electrode layer 110A, the second electrode layer 120A, the third electrode layer 130 and the reflection layer 150 of FIG. 13A .

請參照圖13A及圖13B,本實施例的天線結構12A與圖11A的天線結構11C的差異在於:第一電極層的構型不同。具體而言,在本實施例中,第一電極層110A和第二電極層120A都各自具有多個條狀電極,例如:第一電極層110A具有多個第一條狀電極111和多個第二條狀電極112,第二電極層120A具有多個第一條狀電極121和多個第二條狀電極122。特別注意的是,第一條狀電極121、第一條狀電極111、第二條狀電極122和第二條狀電極112沿著方向X交替排列。也就是說,任兩相鄰的第一條狀電極121與第二條狀電極122之間設有一條第一條狀電極111或一條第二條狀電極112,任兩相鄰的第一條狀電極111與第二條狀電極112之間設有一條第一條狀電極121或一條第二條狀電極122。Referring to FIGS. 13A and 13B , the difference between the antenna structure 12A of this embodiment and the antenna structure 11C of FIG. 11A is that the configuration of the first electrode layer is different. Specifically, in this embodiment, the first electrode layer 110A and the second electrode layer 120A each have a plurality of strip electrodes, for example, the first electrode layer 110A has a plurality of first strip electrodes 111 and a plurality of For the two strip electrodes 112 , the second electrode layer 120A has a plurality of first strip electrodes 121 and a plurality of second strip electrodes 122 . It is particularly noted that the first strip electrodes 121 , the first strip electrodes 111 , the second strip electrodes 122 and the second strip electrodes 112 are alternately arranged along the direction X. That is to say, a first strip electrode 111 or a second strip electrode 112 is disposed between any two adjacent first strip electrodes 121 and second strip electrodes 122, and any two adjacent first strip electrodes 112 A first strip electrode 121 or a second strip electrode 122 is disposed between the electrode 111 and the second strip electrode 112 .

在本實施例中,第一電極層110A的多個第一條狀電極111和多個第二條狀電極112沿著方向Z不重疊於第二電極層120A的多個第一條狀電極121和多個第二條狀電極122,但本發明不以此為限。在其他未繪示的實施例中,第一電極層的多個條狀電極也可部分重疊於第二電極層的多個條狀電極。In this embodiment, the plurality of first strip electrodes 111 and the plurality of second strip electrodes 112 of the first electrode layer 110A do not overlap with the plurality of first strip electrodes 121 of the second electrode layer 120A along the direction Z and a plurality of second strip electrodes 122, but the invention is not limited thereto. In other not-shown embodiments, the plurality of strip electrodes of the first electrode layer may also partially overlap the plurality of strip electrodes of the second electrode layer.

由於本實施例的第一電極層110A相似於圖9A的第一電極層110A,而本實施例的第二電極層120A相似於圖11A的第二電極層120A,因此,詳細的說明請參見前述實施例的相關段落,於此便不再贅述。特別一提的是,由於第一電極層110A與第二電極層120A都具有多個條狀電極,因此,位於兩電極層的這些條狀電極之間的部分液晶層LC都可用於改變感應電流的電流路徑長度,有助於增加電磁波的反射頻率的可調變幅度。Since the first electrode layer 110A of this embodiment is similar to the first electrode layer 110A of FIG. 9A , and the second electrode layer 120A of this embodiment is similar to the second electrode layer 120A of FIG. 11A , please refer to the foregoing for detailed description The relevant paragraphs of the embodiment will not be repeated here. It is particularly mentioned that since both the first electrode layer 110A and the second electrode layer 120A have a plurality of strip electrodes, part of the liquid crystal layer LC located between the strip electrodes of the two electrode layers can be used to change the induced current The length of the current path helps to increase the adjustable amplitude of the reflected frequency of the electromagnetic wave.

請同時參照圖14,當液晶層LC不驅動(即第一電極層110A與第二電極層120A不被致能)時,天線結構12A的反射係數S11對頻率的曲線C13a以及電磁波相位對頻率的曲線C14a明顯不同於液晶層LC被驅動時,天線結構12A的反射係數S11對頻率的曲線C13b以及電磁波相位對頻率的曲線C14b。舉例來說,對於相位落在-230度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率15.1GHz與頻率15.3GHz之間切換。從另一觀點來說,對於頻率落在15.2GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P7約為70度。14, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110A and the second electrode layer 120A are not enabled), the reflection coefficient S11 versus frequency curve C13a of the antenna structure 12A and the electromagnetic wave phase versus frequency curve C13a The curve C14a is significantly different from the curve C13b of the reflection coefficient S11 versus frequency and the curve C14b of the electromagnetic wave phase versus frequency of the antenna structure 12A when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -230 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, for example, switching between a frequency of 15.1 GHz and a frequency of 15.3 GHz. From another point of view, for electromagnetic waves whose frequency falls around 15.2 GHz, whether the liquid crystal layer LC is driven or not, the maximum phase modulation variable ΔP7 that can be generated is about 70 degrees.

圖15A及圖15B是依照本發明的第八實施例的天線結構的剖視和正視示意圖。圖16是圖15A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖15B僅繪示出圖15A的第一電極層110B、第二電極層120A、第三電極層130和反射層150。15A and 15B are schematic cross-sectional and front views of an antenna structure according to an eighth embodiment of the present invention. FIG. 16 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 15A for different modes of operation. For the sake of clarity, FIG. 15B only illustrates the first electrode layer 110B, the second electrode layer 120A, the third electrode layer 130 and the reflection layer 150 of FIG. 15A .

請參照圖15A及圖15B,本實施例的天線結構12B與圖13A的天線結構12A的差異在於:第一電極層的多個條狀電極的配置方式不同。具體而言,天線結構12B的第一電極層110B的第一條狀電極111A和第二條狀電極112A的延伸方向(例如方向X)相交於第二電極層120A的第一條狀電極121和第二條狀電極122的延伸方向(例如方向Y)。Referring to FIGS. 15A and 15B , the difference between the antenna structure 12B of the present embodiment and the antenna structure 12A of FIG. 13A is that the arrangement of the plurality of strip electrodes of the first electrode layer is different. Specifically, the extension directions (eg, direction X) of the first strip electrodes 111A and the second strip electrodes 112A of the first electrode layer 110B of the antenna structure 12B intersect with the first strip electrodes 121 and 112A of the second electrode layer 120A. The extending direction (eg, the direction Y) of the second strip electrodes 122 .

因此,相較於圖13A的天線結構12A,本實施例的天線結構12B對於電磁波的反射主頻率和相位都具有更大的調變範圍。請同時參照圖16,當液晶層LC不驅動(即第一電極層110B與第二電極層120A不被致能)時,天線結構12B的反射係數S11對頻率的曲線C15a以及電磁波相位對頻率的曲線C16a明顯不同於液晶層LC被驅動時,天線結構12B的反射係數S11對頻率的曲線C15b以及電磁波相位對頻率的曲線C16b。舉例來說,對於相位落在-200度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率11.85GHz與頻率12.1GHz之間切換。從另一觀點來說,對於頻率落在12GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P8約為180度。Therefore, compared with the antenna structure 12A of FIG. 13A , the antenna structure 12B of this embodiment has a larger modulation range for both the reflected dominant frequency and the phase of the electromagnetic wave. 16 , when the liquid crystal layer LC is not driven (ie, the first electrode layer 110B and the second electrode layer 120A are not enabled), the reflection coefficient S11 versus frequency curve C15a of the antenna structure 12B and the electromagnetic wave phase versus frequency curve C15a The curve C16a is significantly different from the curve C15b of the reflection coefficient S11 versus frequency and the curve C16b of the electromagnetic wave phase versus frequency of the antenna structure 12B when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -200 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 11.85 GHz and a frequency of 12.1 GHz. From another point of view, for electromagnetic waves whose frequency falls around 12 GHz, the maximum phase modulation amount ΔP8 that can be generated is about 180 degrees, whether the liquid crystal layer LC is driven or not.

圖17A及圖17B是依照本發明的第九實施例的天線結構的剖視和正視示意圖。圖18是圖17A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖17B僅繪示出圖17A的第一電極層110、第二電極層120、第三電極層130A和反射層150。17A and 17B are schematic cross-sectional and front views of an antenna structure according to a ninth embodiment of the present invention. FIG. 18 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 17A for different modes of operation. For the sake of clarity, FIG. 17B only illustrates the first electrode layer 110 , the second electrode layer 120 , the third electrode layer 130A and the reflective layer 150 of FIG. 17A .

請參照圖17A及圖17B,本實施例的天線結構13A與圖7A的天線結構11A的主要差異在於:第三電極層的配置方式不同。具體而言,天線結構13A的第三電極層130A是設置在第二電極層120遠離第一電極層110的一側。在本實施例中,天線結構13A更包括第三基板103,且第三電極層130A設置在第二基板102與第三基板103之間。反射層150是設置在第三基板103背離第三電極層130A的一側表面上。舉例來說,第三基板103可以是低介電損耗基板(例如Rogers基板),但不以此為限。Referring to FIGS. 17A and 17B , the main difference between the antenna structure 13A of this embodiment and the antenna structure 11A of FIG. 7A is that the configuration of the third electrode layer is different. Specifically, the third electrode layer 130A of the antenna structure 13A is disposed on the side of the second electrode layer 120 away from the first electrode layer 110 . In this embodiment, the antenna structure 13A further includes a third substrate 103 , and the third electrode layer 130A is disposed between the second substrate 102 and the third substrate 103 . The reflective layer 150 is disposed on a surface of the third substrate 103 on one side away from the third electrode layer 130A. For example, the third substrate 103 may be a low dielectric loss substrate (eg, a Rogers substrate), but not limited thereto.

由於第三電極層130A較第一電極層110和第二電極層120遠離電磁波的接收側(或輻射側),第三電極層130A於第一基板101上的正投影面積大於第二電極層120於第一基板101上的正投影面積。舉例來說,第一電極層110、第二電極層120和第三電極層130A於第一基板101上的正投影輪廓都為正方形,並且分別整面性地分布在區域Z1、區域Z2和區域Z3”內,但不以此為限。透過將第二電極層120所佔區域Z2面積與第三電極層130A所佔區域Z3”面積的比值設計在大於等於0.7且小於1的範圍內,可有效增加電磁波的反射頻率的頻寬。Since the third electrode layer 130A is farther from the receiving side (or radiation side) of electromagnetic waves than the first electrode layer 110 and the second electrode layer 120 , the orthographic projection area of the third electrode layer 130A on the first substrate 101 is larger than that of the second electrode layer 120 The orthographic projection area on the first substrate 101 . For example, the orthographic profiles of the first electrode layer 110 , the second electrode layer 120 and the third electrode layer 130A on the first substrate 101 are all square, and are distributed in the area Z1 , the area Z2 and the area respectively. By setting the ratio of the area of the area Z2 occupied by the second electrode layer 120 to the area of the area Z3 ″ occupied by the third electrode layer 130A within the range of greater than or equal to 0.7 and less than 1, the Effectively increase the bandwidth of the reflected frequency of electromagnetic waves.

請同時參照圖18,當液晶層LC不驅動(即第一電極層110與第二電極層120不被致能)時,天線結構13A的反射係數S11對頻率的曲線C17a以及電磁波相位對頻率的曲線C18a明顯不同於液晶層LC被驅動時,天線結構13A的反射係數S11對頻率的曲線C17b以及電磁波相位對頻率的曲線C18b。舉例來說,對於相位落在-200度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.3GHz與頻率12.4GHz之間切換。從另一觀點來說,對於頻率落在12.35GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P9約為50度。18, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110 and the second electrode layer 120 are not enabled), the reflection coefficient S11 versus frequency curve C17a of the antenna structure 13A and the electromagnetic wave phase versus frequency curve C17a The curve C18a is significantly different from the curve C17b of the reflection coefficient S11 versus frequency and the curve C18b of the electromagnetic wave phase versus frequency of the antenna structure 13A when the liquid crystal layer LC is driven. For example, for an electromagnetic wave whose phase falls around -200 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic wave, for example, switching between a frequency of 12.3 GHz and a frequency of 12.4 GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.35GHz, the maximum phase modulation variable ΔP9 that can be generated is about 50 degrees, whether the liquid crystal layer LC is driven or not.

特別一提的是,透過三層電極層的設置,能讓天線結構13A相較於單一電極層所構成的天線結構增加約0.6GHz的反射頻率頻寬。另一方面,由於本實施例的天線結構13A無需搭配移相器即可具有相位調變的能力,因此,相較於傳統天線結構更具成本優勢,有助於天線結構的大尺寸化。It is particularly mentioned that, through the arrangement of three electrode layers, the antenna structure 13A can increase the reflected frequency bandwidth by about 0.6 GHz compared with the antenna structure formed by a single electrode layer. On the other hand, since the antenna structure 13A of the present embodiment has the capability of phase modulation without matching a phase shifter, it has a cost advantage compared with the conventional antenna structure, which is helpful for the large size of the antenna structure.

圖19A及圖19B是依照本發明的第十實施例的天線結構的剖視和正視示意圖。圖20是圖19A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖19B僅繪示出圖19A的第一電極層110A、第二電極層120、第三電極層130A和反射層150。19A and 19B are schematic cross-sectional and front views of an antenna structure according to a tenth embodiment of the present invention. 20 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 19A for different modes of operation. For the sake of clarity, FIG. 19B only illustrates the first electrode layer 110A, the second electrode layer 120 , the third electrode layer 130A and the reflection layer 150 of FIG. 19A .

請參照圖19A及圖19B,本實施例的天線結構13B與圖17A的天線結構13A的差異在於:第一電極層的構型不同。在本實施例中,第一電極層110A可具有多個第一條狀電極111和多個第二條狀電極112。這些第一條狀電極111與這些第二條狀電極112可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極111電性獨立於這些第二條狀電極112。Referring to FIGS. 19A and 19B , the difference between the antenna structure 13B of the present embodiment and the antenna structure 13A of FIG. 17A is that the configuration of the first electrode layer is different. In this embodiment, the first electrode layer 110A may have a plurality of first strip electrodes 111 and a plurality of second strip electrodes 112 . The first strip electrodes 111 and the second strip electrodes 112 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 111 are electrically independent of the second strip electrodes 112 .

也就是說,第一條狀電極111與第二條狀電極112可具有不同的電位,使第一條狀電極111與第二條狀電極112間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構13B適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第二電極層120可具有不同於第一條狀電極111和第二條狀電極112的電位。因此,第一條狀電極111(或第二條狀電極112)與第二電極層120間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 111 and the second strip electrodes 112 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 111 and the second strip electrodes 112 to drive the liquid crystal layer LC. Therefore, the antenna structure 13B of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the second electrode layer 120 may have a different potential than the first strip electrodes 111 and the second strip electrodes 112 . Therefore, a vertical electric field can also be generated between the first strip electrodes 111 (or the second strip electrodes 112 ) and the second electrode layer 120 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖20,在本實施例中,當液晶層LC不驅動(即第一條狀電極111與第二條狀電極112不被致能)時,天線結構13B的反射係數S11對頻率的曲線C19a以及電磁波相位對頻率的曲線C20a明顯不同於液晶層LC被驅動時,天線結構13B的反射係數S11對頻率的曲線C19b以及電磁波相位對頻率的曲線C20b。舉例來說,對於相位落在-210度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.84GHz與頻率13.05GHz之間切換。從另一觀點來說,對於頻率落在12.96GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P10約為100度。Please refer to FIG. 20 at the same time. In this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 111 and the second strip electrodes 112 are not enabled), the reflection coefficient S11 of the antenna structure 13B varies with frequency. The curve C19a and the electromagnetic wave phase vs. frequency curve C20a are significantly different from the reflection coefficient S11 vs. frequency curve C19b and the electromagnetic wave phase vs. frequency curve C20b of the antenna structure 13B when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -210 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 12.84GHz and a frequency of 13.05GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.96 GHz, whether the liquid crystal layer LC is driven or not, the maximum phase modulation ΔP10 that can be generated is about 100 degrees.

圖21A及圖21B是依照本發明的第十一實施例的天線結構的剖視和正視示意圖。圖22是圖21A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖21B僅繪示出圖21A的第一電極層110、第二電極層120A、第三電極層130A和反射層150。21A and 21B are schematic cross-sectional and front views of an antenna structure according to an eleventh embodiment of the present invention. FIG. 22 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 21A in different modes of operation. For the sake of clarity, FIG. 21B only illustrates the first electrode layer 110 , the second electrode layer 120A, the third electrode layer 130A and the reflection layer 150 of FIG. 21A .

請參照圖21A及圖21B,本實施例的天線結構13C與圖17A的天線結構13A的差異在於:第二電極層的構型不同。在本實施例中,第二電極層120A可具有多個第一條狀電極121和多個第二條狀電極122。這些第一條狀電極121與這些第二條狀電極122可沿著方向X交替排列,並且在方向Y上延伸。特別注意的是,液晶層LC還填入這些條狀電極間的空隙,且這些第一條狀電極121電性獨立於這些第二條狀電極122。Referring to FIGS. 21A and 21B , the difference between the antenna structure 13C of the present embodiment and the antenna structure 13A of FIG. 17A is that the configuration of the second electrode layer is different. In this embodiment, the second electrode layer 120A may have a plurality of first strip electrodes 121 and a plurality of second strip electrodes 122 . The first strip electrodes 121 and the second strip electrodes 122 may be alternately arranged along the direction X and extend in the direction Y. It is particularly noted that the liquid crystal layer LC also fills the gaps between the strip electrodes, and the first strip electrodes 121 are electrically independent of the second strip electrodes 122 .

也就是說,第一條狀電極121與第二條狀電極122可具有不同的電位,使第一條狀電極121與第二條狀電極122間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構13C適於調變電磁波在方向X上的相位。然而,本發明不限於此。在其他實施方式中,第一電極層110可具有不同於第一條狀電極121和第二條狀電極122的電位。因此,第一條狀電極121(或第二條狀電極122)與第一電極層110間還能產生垂直電場來驅動液晶層LC。換句話說,這種驅動方式能同時調變電磁波在方向Z和方向X上的相位,有助於增加天線結構的操作彈性。That is, the first strip electrodes 121 and the second strip electrodes 122 may have different potentials, so that a lateral electric field can be generated between the first strip electrodes 121 and the second strip electrodes 122 to drive the liquid crystal layer LC. Therefore, the antenna structure 13C of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction X. As shown in FIG. However, the present invention is not limited to this. In other embodiments, the first electrode layer 110 may have a different potential than the first strip electrodes 121 and the second strip electrodes 122 . Therefore, a vertical electric field can also be generated between the first strip electrodes 121 (or the second strip electrodes 122 ) and the first electrode layer 110 to drive the liquid crystal layer LC. In other words, this driving method can simultaneously modulate the phase of the electromagnetic wave in the direction Z and the direction X, which helps to increase the operational flexibility of the antenna structure.

請同時參照圖22,在本實施例中,當液晶層LC不驅動(即第一條狀電極121與第二條狀電極122不被致能)時,天線結構13C的反射係數S11對頻率的曲線C21a以及電磁波相位對頻率的曲線C22a明顯不同於液晶層LC被驅動時,天線結構13C的反射係數S11對頻率的曲線C21b以及電磁波相位對頻率的曲線C22b。舉例來說,對於相位落在-200度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.39GHz與頻率12.43GHz之間切換。從另一觀點來說,對於頻率落在12.37GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P11約為30度。Please refer to FIG. 22 at the same time. In this embodiment, when the liquid crystal layer LC is not driven (ie, the first strip electrodes 121 and the second strip electrodes 122 are not enabled), the reflection coefficient S11 of the antenna structure 13C varies with frequency. The curve C21a and the electromagnetic wave phase vs. frequency curve C22a are significantly different from the reflection coefficient S11 vs. frequency curve C21b and the electromagnetic wave phase vs. frequency curve C22b of the antenna structure 13C when the liquid crystal layer LC is driven. For example, for an electromagnetic wave whose phase falls around -200 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic wave, for example, switching between a frequency of 12.39 GHz and a frequency of 12.43 GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.37 GHz, whether the liquid crystal layer LC is driven or not, the maximum phase modulation variable ΔP11 that can be generated is about 30 degrees.

圖23A及圖23B是依照本發明的第十二實施例的天線結構的剖視和正視示意圖。圖24是圖23A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖23B僅繪示出圖23A的第一電極層110A、第二電極層120A、第三電極層130A和反射層150。23A and 23B are schematic cross-sectional and front views of an antenna structure according to a twelfth embodiment of the present invention. 24 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 23A for different modes of operation. For the sake of clarity, FIG. 23B only illustrates the first electrode layer 110A, the second electrode layer 120A, the third electrode layer 130A and the reflection layer 150 of FIG. 23A .

請參照圖23A及圖23B,本實施例的天線結構14A與圖21A的天線結構11C的主要差異在於:第一電極層的構型不同。具體而言,在本實施例中,第一電極層110A和第二電極層120A都各自具有多個條狀電極,例如:第一電極層110A具有多個第一條狀電極111和多個第二條狀電極112,第二電極層120A具有多個第一條狀電極121和多個第二條狀電極122。特別注意的是,第一條狀電極121、第一條狀電極111、第二條狀電極122和第二條狀電極112沿著方向X交替排列。也就是說,任兩相鄰的第一條狀電極121與第二條狀電極122之間設有一條第一條狀電極111或一條第二條狀電極112,任兩相鄰的第一條狀電極111與第二條狀電極112之間設有一條第一條狀電極121或一條第二條狀電極122。Referring to FIGS. 23A and 23B , the main difference between the antenna structure 14A of the present embodiment and the antenna structure 11C of FIG. 21A is that the configuration of the first electrode layer is different. Specifically, in this embodiment, the first electrode layer 110A and the second electrode layer 120A each have a plurality of strip electrodes, for example, the first electrode layer 110A has a plurality of first strip electrodes 111 and a plurality of For the two strip electrodes 112 , the second electrode layer 120A has a plurality of first strip electrodes 121 and a plurality of second strip electrodes 122 . It is particularly noted that the first strip electrodes 121 , the first strip electrodes 111 , the second strip electrodes 122 and the second strip electrodes 112 are alternately arranged along the direction X. That is to say, a first strip electrode 111 or a second strip electrode 112 is disposed between any two adjacent first strip electrodes 121 and second strip electrodes 122, and any two adjacent first strip electrodes 112 A first strip electrode 121 or a second strip electrode 122 is disposed between the electrode 111 and the second strip electrode 112 .

在本實施例中,第一電極層110A的多個第一條狀電極111和多個第二條狀電極112沿著方向Z不重疊於第二電極層120A的多個第一條狀電極121和多個第二條狀電極122,但本發明不以此為限。在其他未繪示的實施例中,第一電極層的多個條狀電極也可部分重疊於第二電極層的多個條狀電極。In this embodiment, the plurality of first strip electrodes 111 and the plurality of second strip electrodes 112 of the first electrode layer 110A do not overlap with the plurality of first strip electrodes 121 of the second electrode layer 120A along the direction Z and a plurality of second strip electrodes 122, but the invention is not limited thereto. In other not-shown embodiments, the plurality of strip electrodes of the first electrode layer may also partially overlap the plurality of strip electrodes of the second electrode layer.

由於本實施例的第一電極層110A相似於圖19A的第一電極層110A,而本實施例的第二電極層120A相似於圖21A的第二電極層120A,因此,詳細的說明請參見前述實施例的相關段落,於此便不再贅述。特別一提的是,由於第一電極層110A與第二電極層120A都具有多個條狀電極,因此,位於兩電極層的這些條狀電極之間的部分液晶層LC都可用於改變感應電流的電流路徑長度,有助於增加電磁波的反射頻率的可調變幅度。Since the first electrode layer 110A of this embodiment is similar to the first electrode layer 110A of FIG. 19A , and the second electrode layer 120A of this embodiment is similar to the second electrode layer 120A of FIG. 21A , please refer to the foregoing for detailed description. The relevant paragraphs of the embodiment will not be repeated here. It is particularly mentioned that since both the first electrode layer 110A and the second electrode layer 120A have a plurality of strip electrodes, part of the liquid crystal layer LC located between the strip electrodes of the two electrode layers can be used to change the induced current The length of the current path helps to increase the adjustable amplitude of the reflected frequency of the electromagnetic wave.

請同時參照圖24,當液晶層LC不驅動(即第一電極層110A與第二電極層120A不被致能)時,天線結構14A的反射係數S11對頻率的曲線C23a以及電磁波相位對頻率的曲線C24a明顯不同於液晶層LC被驅動時,天線結構14A的反射係數S11對頻率的曲線C23b以及電磁波相位對頻率的曲線C24b。舉例來說,對於相位落在-210度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.66GHz與頻率12.72GHz之間切換。從另一觀點來說,對於頻率落在12.7GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P12約為30度。24, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110A and the second electrode layer 120A are not enabled), the reflection coefficient S11 versus frequency curve C23a of the antenna structure 14A and the electromagnetic wave phase versus frequency curve C23a The curve C24a is significantly different from the curve C23b of the reflection coefficient S11 versus frequency and the curve C24b of the electromagnetic wave phase versus frequency of the antenna structure 14A when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls near -210 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between the frequency of 12.66GHz and the frequency of 12.72GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.7GHz, the maximum phase modulation variable ΔP12 that can be generated is about 30 degrees, whether the liquid crystal layer LC is driven or not.

圖25A及圖25B是依照本發明的第十三實施例的天線結構的剖視和正視示意圖。圖26是圖25A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖25B僅繪示出圖25A的第一電極層110B、第二電極層120A、第三電極層130A和反射層150。25A and 25B are schematic cross-sectional and front views of an antenna structure according to a thirteenth embodiment of the present invention. 26 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 25A for different modes of operation. For the sake of clarity, FIG. 25B only illustrates the first electrode layer 110B, the second electrode layer 120A, the third electrode layer 130A and the reflection layer 150 of FIG. 25A .

請參照圖25A及圖25B,本實施例的天線結構14B與圖23A的天線結構14A的差異在於:第一電極層的多個條狀電極的配置方式不同。具體而言,天線結構14B的第一電極層110B的第一條狀電極111A和第二條狀電極112A的延伸方向(例如方向X)相交於第二電極層120A的第一條狀電極121和第二條狀電極122的延伸方向(例如方向Y)。Referring to FIGS. 25A and 25B , the difference between the antenna structure 14B of this embodiment and the antenna structure 14A of FIG. 23A is that the arrangement of the plurality of strip electrodes of the first electrode layer is different. Specifically, the extension directions (eg, direction X) of the first strip electrodes 111A and the second strip electrodes 112A of the first electrode layer 110B of the antenna structure 14B intersect with the first strip electrodes 121 and 112A of the second electrode layer 120A. The extending direction (eg, the direction Y) of the second strip electrodes 122 .

因此,相較於圖23A的天線結構14A,本實施例的天線結構14B對於電磁波的反射主頻率和相位都具有更大的調變範圍。請同時參照圖26,當液晶層LC不驅動(即第一電極層110B與第二電極層120A不被致能)時,天線結構14B的反射係數S11對頻率的曲線C25a以及電磁波相位對頻率的曲線C26a明顯不同於液晶層LC被驅動時,天線結構14B的反射係數S11對頻率的曲線C25b以及電磁波相位對頻率的曲線C26b。舉例來說,對於相位落在-210度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率12.8GHz與頻率13.0GHz之間切換。從另一觀點來說,對於頻率落在12.9GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P13約為130度。Therefore, compared with the antenna structure 14A of FIG. 23A , the antenna structure 14B of this embodiment has a larger modulation range for both the reflected dominant frequency and the phase of the electromagnetic wave. 26, when the liquid crystal layer LC is not driven (ie, the first electrode layer 110B and the second electrode layer 120A are not enabled), the reflection coefficient S11 versus frequency curve C25a of the antenna structure 14B and the electromagnetic wave phase versus frequency curve C25a The curve C26a is significantly different from the curve C25b of the reflection coefficient S11 versus frequency and the curve C26b of the electromagnetic wave phase versus frequency of the antenna structure 14B when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -210 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 12.8 GHz and a frequency of 13.0 GHz. From another point of view, for electromagnetic waves whose frequency falls around 12.9 GHz, the maximum phase modulation variable ΔP13 that can be generated is about 130 degrees, whether the liquid crystal layer LC is driven or not.

圖27A及圖27B是依照本發明的第十四實施例的天線結構的剖視和正視示意圖。圖27A對應圖27B的剖線A-A’。圖28是圖27A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。圖29是圖27A的另一種變形實施例的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖27B僅繪示出圖27A的第一電極層110D、第二電極層120D和反射層150。27A and 27B are schematic cross-sectional and front views of an antenna structure according to a fourteenth embodiment of the present invention. Fig. 27A corresponds to the line A-A' of Fig. 27B. 28 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 27A for different modes of operation. FIG. 29 is a graph of reflection coefficient S11 and phase versus frequency of the antenna structure of another variant embodiment of FIG. 27A under different operation modes. For the sake of clarity, FIG. 27B only illustrates the first electrode layer 110D, the second electrode layer 120D and the reflective layer 150 of FIG. 27A .

請參照圖27A及圖27B,不同於圖1B的天線結構10A,在本實施例中,天線結構15的第一電極層110D所佔區域Z1”和第二電極層120D所佔區域Z2”於第一基板101上的投影外輪廓都是長方形,這兩電極層都是以多個條狀電極的形式設置在這些區域內。舉例來說,第一電極層110D具有多個條狀電極115D,第二電極層120D具有多個條狀電極125D。這些條狀電極115D與這些條狀電極125D沿著方向Y交替排列,且這些條狀電極115D沿著排列方向(例如方向Y)重疊於這些條狀電極125D。更具體地說,這些條狀電極與液晶層LC的膜厚相當。Please refer to FIGS. 27A and 27B , unlike the antenna structure 10A of FIG. 1B , in this embodiment, the area Z1 ″ occupied by the first electrode layer 110D and the area Z2 ″ occupied by the second electrode layer 120D of the antenna structure 15 are in the first The projected outer contours on a substrate 101 are all rectangles, and the two electrode layers are arranged in these regions in the form of a plurality of strip electrodes. For example, the first electrode layer 110D has a plurality of strip electrodes 115D, and the second electrode layer 120D has a plurality of strip electrodes 125D. The strip electrodes 115D and the strip electrodes 125D are alternately arranged along the direction Y, and the strip electrodes 115D overlap the strip electrodes 125D along the arrangement direction (eg, the direction Y). More specifically, these strip electrodes correspond to the film thickness of the liquid crystal layer LC.

條狀電極115D與條狀電極125D可具有不同的電位,使條狀電極115D與條狀電極125D間能產生橫向電場來驅動液晶層LC。因此,本實施例的天線結構15適於調變電磁波在方向Y上的相位。特別注意的是,上述區域Z2”和區域Z1”各自沿著這些條狀電極的排列方向的長度較長,而在這些條狀電極的延伸方向上的長度較短。更具體地說,區域Z2”沿著方向Y和方向X分別具有長度L和寬度W,且長度L大於寬度W。另一方面,任兩相鄰的條狀電極115D與條狀電極125D沿著方向Y具有間距G,且間距G與長度L的比值大於0且小於0.1。據此,可確保電磁波的反射頻率和相位能被有效地調變。The strip electrodes 115D and 125D may have different potentials, so that a lateral electric field can be generated between the strip electrodes 115D and 125D to drive the liquid crystal layer LC. Therefore, the antenna structure 15 of this embodiment is suitable for modulating the phase of the electromagnetic wave in the direction Y. As shown in FIG. It is particularly noted that the above-mentioned regions Z2 ″ and Z1 ″ each have longer lengths along the arrangement direction of the strip electrodes, and shorter lengths in the extending direction of the strip electrodes. More specifically, the region Z2 ″ has a length L and a width W along the direction Y and the direction X, respectively, and the length L is greater than the width W. On the other hand, any two adjacent strip electrodes 115D and 125D are located along the The direction Y has a distance G, and the ratio of the distance G to the length L is greater than 0 and less than 0.1. Accordingly, it can be ensured that the reflected frequency and phase of the electromagnetic wave can be effectively modulated.

需說明的是,雖然用來標示第一電極層110D所佔區域Z1”和第二電極層120D所佔區域Z2”的虛線框都略大於第一電極層110D和第二電極層120D的實際佔區以清楚呈現,但應可理解的是,這些虛線框實際上應重疊於各電極層於第一基板101上的投影外輪廓。It should be noted that although the dotted frame used to indicate the area Z1" occupied by the first electrode layer 110D and the area Z2" occupied by the second electrode layer 120D is slightly larger than the actual area occupied by the first electrode layer 110D and the second electrode layer 120D The regions are clearly presented, but it should be understood that these dashed boxes should actually overlap the projected outlines of the electrode layers on the first substrate 101 .

舉例來說,在本實施例中,第二基板102可以是低介電損耗基板(例如Rogers基板),但不以此為限。請同時參照圖28,當液晶層LC不驅動(即條狀電極115D與條狀電極125D不被致能)時,天線結構15的反射係數S11對頻率的曲線C27a以及電磁波相位對頻率的曲線C28a明顯不同於液晶層LC被驅動時,天線結構15的反射係數S11對頻率的曲線C27b以及電磁波相位對頻率的曲線C28b。舉例來說,對於相位落在-210度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率15.8GHz與頻率16GHz之間切換。從另一觀點來說,對於頻率落在15.9GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P14約為182度。For example, in this embodiment, the second substrate 102 may be a low dielectric loss substrate (eg, a Rogers substrate), but not limited thereto. Please refer to FIG. 28 at the same time, when the liquid crystal layer LC is not driven (ie, the strip electrodes 115D and 125D are not enabled), the reflection coefficient S11 versus frequency curve C27a of the antenna structure 15 and the electromagnetic wave phase versus frequency curve C28a Significantly different from the curve C27b of the reflection coefficient S11 versus frequency and the curve C28b of the electromagnetic wave phase versus frequency of the antenna structure 15 when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -210 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, for example, switching between a frequency of 15.8 GHz and a frequency of 16 GHz. From another point of view, for electromagnetic waves whose frequency falls around 15.9 GHz, the maximum phase modulation variable ΔP14 that can be generated is about 182 degrees, whether the liquid crystal layer LC is driven or not.

然而,本發明不限於此。在圖27A的另一變形實施例中,天線結構的第二基板102也可以是玻璃基板。請同時參照圖29,當當液晶層LC不驅動(即條狀電極115D與條狀電極125D不被致能)時,天線結構的反射係數S11對頻率的曲線C29a以及電磁波相位對頻率的曲線C30a明顯不同於液晶層LC被驅動時,天線結構的反射係數S11對頻率的曲線C29b以及電磁波相位對頻率的曲線C30b。舉例來說,對於相位落在-55度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率18.6GHz與頻率18.7GHz之間切換。從另一觀點來說,對於頻率落在18.6GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P15約為26度。However, the present invention is not limited to this. In another modified embodiment of FIG. 27A , the second substrate 102 of the antenna structure may also be a glass substrate. Please refer to FIG. 29 at the same time, when the liquid crystal layer LC is not driven (ie the strip electrodes 115D and 125D are not enabled), the reflection coefficient S11 versus frequency curve C29a of the antenna structure and the electromagnetic wave phase versus frequency curve C30a are obvious Different from the curve C29b of the reflection coefficient S11 versus frequency and the curve C30b of the electromagnetic wave phase versus frequency of the antenna structure when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -55 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 18.6GHz and a frequency of 18.7GHz. From another point of view, for electromagnetic waves whose frequency falls around 18.6GHz, the maximum phase modulation variable ΔP15 that can be generated is about 26 degrees, whether the liquid crystal layer LC is driven or not.

圖30A及圖30B是依照本發明的第十五實施例的天線結構的剖視和正視示意圖。圖30A對應圖30B的剖線B-B’。圖31是圖30A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。圖32是圖30A的另一種變形實施例的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖30B僅繪示出圖30A的第一電極層110E、第二電極層120E和反射層150。30A and 30B are schematic cross-sectional and front views of an antenna structure according to a fifteenth embodiment of the present invention. Fig. 30A corresponds to line B-B' in Fig. 30B. 31 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 30A in different modes of operation. FIG. 32 is a graph of reflection coefficient S11 and phase versus frequency of the antenna structure of another variant embodiment of FIG. 30A under different operation modes. For the sake of clarity, FIG. 30B only illustrates the first electrode layer 110E, the second electrode layer 120E and the reflective layer 150 of FIG. 30A .

請參照圖30A及圖30B,本實施例的天線結構16與圖27B的天線結構15的主要差異在於:條狀電極的排列方向和延伸方向都不同。具體而言,天線結構16的第一電極層110E的多個條狀電極115E和第二電極層120E的多個條狀電極125E是沿著方向X交替排列,並且都在方向Y上延伸。Referring to FIGS. 30A and 30B , the main difference between the antenna structure 16 of this embodiment and the antenna structure 15 of FIG. 27B is that the arrangement direction and extension direction of the strip electrodes are different. Specifically, the plurality of strip electrodes 115E of the first electrode layer 110E and the plurality of strip electrodes 125E of the second electrode layer 120E of the antenna structure 16 are alternately arranged along the direction X and both extend in the direction Y.

請同時參照圖31,當當液晶層LC不驅動(即條狀電極115E與條狀電極125E不被致能)時,天線結構16的反射係數S11對頻率的曲線C31a以及電磁波相位對頻率的曲線C32a明顯不同於液晶層LC被驅動時,天線結構16的反射係數S11對頻率的曲線C31b以及電磁波相位對頻率的曲線C32b。舉例來說,對於相位落在-180度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率8.95GHz與頻率9.0GHz之間切換。從另一觀點來說,對於頻率落在8.98GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P16約為204度。Please also refer to FIG. 31 , when the liquid crystal layer LC is not driven (ie, the strip electrodes 115E and 125E are not enabled), the reflection coefficient S11 versus frequency curve C31a of the antenna structure 16 and the electromagnetic wave phase versus frequency curve C32a Significantly different from the curve C31b of the reflection coefficient S11 versus frequency and the curve C32b of the electromagnetic wave phase versus frequency of the antenna structure 16 when the liquid crystal layer LC is driven. For example, for an electromagnetic wave whose phase falls around -180 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic wave, for example, switching between a frequency of 8.95GHz and a frequency of 9.0GHz. From another point of view, for electromagnetic waves whose frequency falls around 8.98GHz, whether the liquid crystal layer LC is driven or not, the maximum phase modulation ΔP16 that can be generated is about 204 degrees.

因此,對於沿著方向Y流動的感應電流來說,本實施例的天線結構16對於電磁波的反射頻率調變量較圖27B的天線結構15來得小,但對於電磁波的相位調變量則是較天線結構15來得大。Therefore, for the induced current flowing along the direction Y, the reflection frequency modulation amount of the antenna structure 16 for electromagnetic waves in this embodiment is smaller than that of the antenna structure 15 in FIG. 27B , but the phase modulation amount for electromagnetic waves is higher than that of the antenna structure. 15 is a big deal.

在本實施例中,天線結構16的第二基板102可以是低介電損耗基板(例如Rogers基板)。然而,本發明不限於此。在圖30A的另一變形實施例中,天線結構的第二基板102也可以是玻璃基板。請同時參照圖32,當當液晶層LC不驅動(即條狀電極115E與條狀電極125E不被致能)時,天線結構的反射係數S11對頻率的曲線C33a以及電磁波相位對頻率的曲線C34a明顯不同於液晶層LC被驅動時,天線結構的反射係數S11對頻率的曲線C33b以及電磁波相位對頻率的曲線C34b。舉例來說,對於相位落在-55度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率17.2GHz與頻率17.36GHz之間切換。從另一觀點來說,對於頻率落在17.27GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P17約為66度。In this embodiment, the second substrate 102 of the antenna structure 16 may be a low dielectric loss substrate (eg, a Rogers substrate). However, the present invention is not limited to this. In another variant embodiment of FIG. 30A , the second substrate 102 of the antenna structure may also be a glass substrate. 32, when the liquid crystal layer LC is not driven (ie, the strip electrodes 115E and 125E are not enabled), the reflection coefficient S11 versus frequency curve C33a of the antenna structure and the electromagnetic wave phase versus frequency curve C34a are obvious Different from the curve C33b of the reflection coefficient S11 versus frequency and the curve C34b of the electromagnetic wave phase versus frequency of the antenna structure when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -55 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 17.2GHz and a frequency of 17.36GHz. From another point of view, for electromagnetic waves whose frequency falls around 17.27GHz, the maximum phase modulation variable ΔP17 that can be generated is about 66 degrees, whether the liquid crystal layer LC is driven or not.

也就是說,當圖30A的第二基板102的材質由低介電損耗材料替換為玻璃時,天線結構對於電磁波的反射頻率調變量會增加,而對於電磁波的相位調變量會減少。That is to say, when the material of the second substrate 102 in FIG. 30A is replaced by glass with a low dielectric loss material, the reflection frequency modulation of the antenna structure for electromagnetic waves increases, while the phase modulation for electromagnetic waves decreases.

圖33A及圖33B是依照本發明的第十六實施例的天線結構的剖視和正視示意圖。圖33A對應圖33B的剖線C-C’。圖34是圖33A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。為清楚呈現起見,圖33B僅繪示出圖33A的第一電極層110F、第二電極層120F和反射層150。33A and 33B are schematic cross-sectional and front views of an antenna structure according to a sixteenth embodiment of the present invention. Fig. 33A corresponds to the line C-C' of Fig. 33B. 34 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 33A for different modes of operation. For the sake of clarity, FIG. 33B only illustrates the first electrode layer 110F, the second electrode layer 120F and the reflective layer 150 of FIG. 33A .

請參照圖33A及圖33B,本實施例的天線結構17與圖27A的天線結構15的差異在於:天線結構17的第一電極層110F不重疊於第二電極層120F。在本實施例中,第一電極層110F的多個條狀電極115F沿著排列方向(例如方向Y)不重疊於第二電極層120F的多個條狀電極125F。也就是說,當條狀電極115F具有不同於條狀電極125F的電位時,條狀電極115F與條狀電極125F之間所產生的電場可同時具有垂直分量和水平分量。因此,天線結構17適於調變感應電流在方向Z和方向Y上的相位。Referring to FIGS. 33A and 33B , the difference between the antenna structure 17 of this embodiment and the antenna structure 15 of FIG. 27A is that the first electrode layer 110F of the antenna structure 17 does not overlap the second electrode layer 120F. In this embodiment, the plurality of strip electrodes 115F of the first electrode layer 110F do not overlap with the plurality of strip electrodes 125F of the second electrode layer 120F along the arrangement direction (eg, direction Y). That is, when the strip electrodes 115F have a different potential than the strip electrodes 125F, the electric field generated between the strip electrodes 115F and the strip electrodes 125F may have both vertical and horizontal components. Therefore, the antenna structure 17 is suitable for modulating the phase of the induced current in the directions Z and Y.

請同時參照圖34,當當液晶層LC不驅動(即條狀電極115F與條狀電極125F不被致能)時,天線結構17的反射係數S11對頻率的曲線C35a以及電磁波相位對頻率的曲線C36a明顯不同於液晶層LC被驅動時,天線結構17的反射係數S11對頻率的曲線C35b以及電磁波相位對頻率的曲線C36b。舉例來說,對於相位落在-180度附近的電磁波來說,液晶層LC的驅動與否,可改變電磁波的反射主頻率,例如在頻率20.9GHz與頻率21GHz之間切換。從另一觀點來說,對於頻率落在20.97GHz附近的電磁波來說,液晶層LC的驅動與否,能產生的最大相位調變量∆P18約為166度。34, when the liquid crystal layer LC is not driven (ie, the strip electrodes 115F and 125F are not enabled), the reflection coefficient S11 versus frequency curve C35a of the antenna structure 17 and the electromagnetic wave phase versus frequency curve C36a Significantly different from the curve C35b of the reflection coefficient S11 versus frequency of the antenna structure 17 and the curve C36b of the electromagnetic wave phase versus frequency when the liquid crystal layer LC is driven. For example, for electromagnetic waves whose phase falls around -180 degrees, whether the liquid crystal layer LC is driven or not can change the main reflected frequency of the electromagnetic waves, such as switching between a frequency of 20.9 GHz and a frequency of 21 GHz. From another point of view, for electromagnetic waves whose frequency falls around 20.97 GHz, whether the liquid crystal layer LC is driven or not, the maximum phase modulation ΔP18 that can be generated is about 166 degrees.

綜上所述,在本發明的一實施例的天線結構中,第一電極層和第二電極層所形成的感應迴路能讓具有特定共振頻率的感應電流傳遞其中,而夾設在這兩電極層之間的液晶層可用來調變感應電流的電流路徑長度,進而調變電磁波的反射頻率和相位。此外,透過第一電極層所佔區域面積與第二電極層所佔區域面積的比值大於等於0.7且小於1,可有效增加電磁波的反射頻率的頻寬。To sum up, in the antenna structure of an embodiment of the present invention, the induction loop formed by the first electrode layer and the second electrode layer enables the induction current with a specific resonant frequency to pass therethrough, and is sandwiched between the two electrodes. The liquid crystal layer between the layers can be used to modulate the current path length of the induced current, thereby modulating the reflected frequency and phase of the electromagnetic wave. In addition, when the ratio of the area occupied by the first electrode layer to the area occupied by the second electrode layer is greater than or equal to 0.7 and less than 1, the bandwidth of the reflected frequency of the electromagnetic wave can be effectively increased.

10A、10B、10C、11A、11B、11C、12A、12B、13A、13B、13C、14A、14B、15、16、17:天線結構 101:第一基板 102:第二基板 102s:表面 103:第三基板 110、110A、110B、110D、110E、110F:第一電極層 111、112、111A、112A、121、122、115D、125D、115E、125E、115F、125F:條狀電極 120、120A、120D、120E、120F:第二電極層 130、130A:第三電極層 150:反射層 L:長度 LC:液晶層 W:寬度 X、Y、Z:方向 Z1、Z2、Z3、Z1”、Z2”、Z3”:區域 A-A’、B-B’、C-C’:剖線 10A, 10B, 10C, 11A, 11B, 11C, 12A, 12B, 13A, 13B, 13C, 14A, 14B, 15, 16, 17: Antenna structure 101: The first substrate 102: Second substrate 102s: Surface 103: Third substrate 110, 110A, 110B, 110D, 110E, 110F: first electrode layer 111, 112, 111A, 112A, 121, 122, 115D, 125D, 115E, 125E, 115F, 125F: strip electrodes 120, 120A, 120D, 120E, 120F: the second electrode layer 130, 130A: the third electrode layer 150: Reflective layer L: length LC: liquid crystal layer W: width X, Y, Z: direction Z1, Z2, Z3, Z1", Z2", Z3": Zone A-A', B-B', C-C': section lines

圖1A及圖1B是依照本發明的第一實施例的天線結構的剖視和正視示意圖。 圖2是圖1A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖3A及圖3B是依照本發明的第二實施例的天線結構的剖視和正視示意圖。 圖4是圖3A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖5A及圖5B是依照本發明的第三實施例的天線結構的剖視和正視示意圖。 圖6是圖5A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖7A及圖7B是依照本發明的第四實施例的天線結構的剖視和正視示意圖。 圖8是圖7A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖9A及圖9B是依照本發明的第五實施例的天線結構的剖視和正視示意圖。 圖10是圖9A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖11A及圖11B是依照本發明的第六實施例的天線結構的剖視和正視示意圖。 圖12是圖11A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖13A及圖13B是依照本發明的第七實施例的天線結構的剖視和正視示意圖。 圖14是圖13A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖15A及圖15B是依照本發明的第八實施例的天線結構的剖視和正視示意圖。 圖16是圖15A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖17A及圖17B是依照本發明的第九實施例的天線結構的剖視和正視示意圖。 圖18是圖17A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖19A及圖19B是依照本發明的第十實施例的天線結構的剖視和正視示意圖。 圖20是圖19A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖21A及圖21B是依照本發明的第十一實施例的天線結構的剖視和正視示意圖。 圖22是圖21A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖23A及圖23B是依照本發明的第十二實施例的天線結構的剖視和正視示意圖。 圖24是圖23A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖25A及圖25B是依照本發明的第十三實施例的天線結構的剖視和正視示意圖。 圖26是圖25A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖27A及圖27B是依照本發明的第十四實施例的天線結構的剖視和正視示意圖。 圖28是圖27A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖29是圖27A的另一種變形實施例的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖30A及圖30B是依照本發明的第十五實施例的天線結構的剖視和正視示意圖。 圖31是圖30A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖32是圖30A的另一種變形實施例的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 圖33A及圖33B是依照本發明的第十六實施例的天線結構的剖視和正視示意圖。 圖34是圖33A的天線結構在不同操作模式下的反射係數S11和相位對頻率的曲線圖。 1A and 1B are schematic cross-sectional and front views of an antenna structure according to a first embodiment of the present invention. FIG. 2 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 1A in different modes of operation. 3A and 3B are schematic cross-sectional and front views of an antenna structure according to a second embodiment of the present invention. FIG. 4 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 3A in different modes of operation. 5A and 5B are schematic cross-sectional and front views of an antenna structure according to a third embodiment of the present invention. FIG. 6 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 5A in different modes of operation. 7A and 7B are schematic cross-sectional and front views of an antenna structure according to a fourth embodiment of the present invention. FIG. 8 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 7A in different modes of operation. 9A and 9B are schematic cross-sectional and front views of an antenna structure according to a fifth embodiment of the present invention. FIG. 10 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 9A in different modes of operation. 11A and 11B are schematic cross-sectional and front views of an antenna structure according to a sixth embodiment of the present invention. FIG. 12 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 11A in different modes of operation. 13A and 13B are schematic cross-sectional and front views of an antenna structure according to a seventh embodiment of the present invention. FIG. 14 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 13A in different modes of operation. 15A and 15B are schematic cross-sectional and front views of an antenna structure according to an eighth embodiment of the present invention. FIG. 16 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 15A for different modes of operation. 17A and 17B are schematic cross-sectional and front views of an antenna structure according to a ninth embodiment of the present invention. FIG. 18 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 17A for different modes of operation. 19A and 19B are schematic cross-sectional and front views of an antenna structure according to a tenth embodiment of the present invention. 20 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 19A for different modes of operation. 21A and 21B are schematic cross-sectional and front views of an antenna structure according to an eleventh embodiment of the present invention. FIG. 22 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 21A in different modes of operation. 23A and 23B are schematic cross-sectional and front views of an antenna structure according to a twelfth embodiment of the present invention. 24 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 23A for different modes of operation. 25A and 25B are schematic cross-sectional and front views of an antenna structure according to a thirteenth embodiment of the present invention. 26 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 25A for different modes of operation. 27A and 27B are schematic cross-sectional and front views of an antenna structure according to a fourteenth embodiment of the present invention. 28 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 27A for different modes of operation. FIG. 29 is a graph of reflection coefficient S11 and phase versus frequency of the antenna structure of another variant embodiment of FIG. 27A under different operation modes. 30A and 30B are schematic cross-sectional and front views of an antenna structure according to a fifteenth embodiment of the present invention. 31 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 30A in different modes of operation. FIG. 32 is a graph of reflection coefficient S11 and phase versus frequency of the antenna structure of another variant embodiment of FIG. 30A under different operation modes. 33A and 33B are schematic cross-sectional and front views of an antenna structure according to a sixteenth embodiment of the present invention. 34 is a graph of reflection coefficient S11 and phase versus frequency for the antenna structure of FIG. 33A for different modes of operation.

10A:天線結構 10A: Antenna structure

101:第一基板 101: The first substrate

102:第二基板 102: Second substrate

102s:表面 102s: Surface

110:第一電極層 110: the first electrode layer

120:第二電極層 120: the second electrode layer

150:反射層 150: Reflective layer

LC:液晶層 LC: liquid crystal layer

X、Y、Z:方向 X, Y, Z: direction

Claims (19)

一種天線結構,包括:一第一基板;一第二基板,與該第一基板相對設置;一第一電極層,設置在該第一基板上;一第二電極層,設置在該第二基板上,且重疊於該第一電極層,其中該第一電極層所佔區域面積與該第二電極層所佔區域面積的比值大於等於0.7且小於1;一液晶層,設置在該第一基板與該第二基板之間,且位於該第一電極層與該第二電極層之間;一反射層,設置在該第二基板背離該第二電極層的一側;以及一第三電極層,設置在該第一電極層遠離該第二電極層的一側或該第二電極層遠離該第一電極層的一側。 An antenna structure, comprising: a first substrate; a second substrate disposed opposite to the first substrate; a first electrode layer disposed on the first substrate; a second electrode layer disposed on the second substrate on the first electrode layer and overlapped with the first electrode layer, wherein the ratio of the area occupied by the first electrode layer to the area occupied by the second electrode layer is greater than or equal to 0.7 and less than 1; a liquid crystal layer is disposed on the first substrate between the second substrate and between the first electrode layer and the second electrode layer; a reflective layer disposed on the side of the second substrate away from the second electrode layer; and a third electrode layer , which is arranged on the side of the first electrode layer away from the second electrode layer or the side of the second electrode layer away from the first electrode layer. 如請求項1所述的天線結構,其中該第一電極層或該第二電極層具有多個條狀電極,且該液晶層位於該些條狀電極之間。 The antenna structure of claim 1, wherein the first electrode layer or the second electrode layer has a plurality of strip electrodes, and the liquid crystal layer is located between the strip electrodes. 如請求項2所述的天線結構,其中該第二電極層具有該些條狀電極,該些條狀電極包括多個第一條狀電極和多個第二條狀電極,該些第一條狀電極與該些第二條狀電極沿著一方向交替排列,且該些第一條狀電極電性獨立於該些第二條狀電極。 The antenna structure of claim 2, wherein the second electrode layer has the strip electrodes, the strip electrodes include a plurality of first strip electrodes and a plurality of second strip electrodes, the first strip electrodes The electrodes and the second strip electrodes are alternately arranged along a direction, and the first strip electrodes are electrically independent of the second strip electrodes. 如請求項1所述的天線結構,其中該第一電極層或該第二電極層具有多個條狀電極,且該液晶層位於該些條狀電極之間。 The antenna structure of claim 1, wherein the first electrode layer or the second electrode layer has a plurality of strip electrodes, and the liquid crystal layer is located between the strip electrodes. 如請求項4所述的天線結構,其中該第二電極層具有該些條狀電極,該些條狀電極包括沿著一方向交替排列的多個第一條狀電極和多個第二條狀電極,且該些第一條狀電極電性獨立於該些第二條狀電極。 The antenna structure of claim 4, wherein the second electrode layer has the strip electrodes, and the strip electrodes include a plurality of first strip electrodes and a plurality of second strip electrodes alternately arranged along a direction electrodes, and the first strip electrodes are electrically independent of the second strip electrodes. 如請求項1所述的天線結構,其中該第一電極層與該第二電極層各自具有多個條狀電極。 The antenna structure of claim 1, wherein each of the first electrode layer and the second electrode layer has a plurality of strip electrodes. 如請求項6所述的天線結構,其中該第一電極層的該些條狀電極的延伸方向相交於該第二電極層的該些條狀電極的延伸方向。 The antenna structure of claim 6, wherein the extending direction of the strip electrodes of the first electrode layer intersects with the extending direction of the strip electrodes of the second electrode layer. 如請求項6所述的天線結構,其中該第一電極層的該些條狀電極的延伸方向平行於該第二電極層的該些條狀電極的延伸方向,且該第一電極層的該些條狀電極與該第二電極層的該些條狀電極沿著一方向交替排列。 The antenna structure of claim 6, wherein the extending direction of the strip electrodes of the first electrode layer is parallel to the extending direction of the strip electrodes of the second electrode layer, and the extending direction of the strip electrodes of the first electrode layer The strip electrodes and the strip electrodes of the second electrode layer are alternately arranged along one direction. 如請求項8所述的天線結構,其中該第一電極層的該些條狀電極部分重疊於該第二電極層的該些條狀電極。 The antenna structure of claim 8, wherein the strip electrodes of the first electrode layer partially overlap the strip electrodes of the second electrode layer. 如請求項1所述的天線結構,其中該第三電極層所佔區域面積與該第一電極層所佔區域面積的比值大於等於0.7且小於1。 The antenna structure of claim 1, wherein a ratio of the area occupied by the third electrode layer to the area occupied by the first electrode layer is greater than or equal to 0.7 and less than 1. 如請求項1所述的天線結構,其中該第一電極層或該第二電極層具有多個條狀電極。 The antenna structure of claim 1, wherein the first electrode layer or the second electrode layer has a plurality of strip electrodes. 如請求項11所述的天線結構,其中該第一電極層具有該些條狀電極,該些條狀電極包括沿著一方向交替排列的多個第一條狀電極和多個第二條狀電極,且該些第一條狀電極電性獨立於該些第二條狀電極。 The antenna structure of claim 11, wherein the first electrode layer has the strip electrodes, and the strip electrodes include a plurality of first strip electrodes and a plurality of second strip electrodes alternately arranged along a direction electrodes, and the first strip electrodes are electrically independent of the second strip electrodes. 如請求項1所述的天線結構,其中該第二電極層所佔區域面積與該第三電極層所佔區域面積的比值大於等於0.7且小於1。 The antenna structure according to claim 1, wherein a ratio of the area occupied by the second electrode layer to the area occupied by the third electrode layer is greater than or equal to 0.7 and less than 1. 如請求項1所述的天線結構,其中該第一電極層與該第二電極層各自具有多個條狀電極。 The antenna structure of claim 1, wherein each of the first electrode layer and the second electrode layer has a plurality of strip electrodes. 如請求項14所述的天線結構,其中該第一電極層的該些條狀電極的延伸方向相交於該第二電極層的該些條狀電極的延伸方向。 The antenna structure of claim 14, wherein the extending directions of the strip electrodes of the first electrode layer intersect with the extending directions of the strip electrodes of the second electrode layer. 如請求項14所述的天線結構,其中該第一電極層的該些條狀電極的延伸方向平行於該第二電極層的該些條狀電極的延伸方向,該第一電極層的該些條狀電極與該第二電極層的該些條狀電極沿著一方向交替排列,且該第一電極層的該些條狀電極部分重疊於該第二電極層的該些條狀電極。 The antenna structure of claim 14, wherein the extending direction of the strip electrodes of the first electrode layer is parallel to the extending direction of the strip electrodes of the second electrode layer, and the strip electrodes of the first electrode layer The strip electrodes and the strip electrodes of the second electrode layer are alternately arranged along one direction, and the strip electrodes of the first electrode layer are partially overlapped with the strip electrodes of the second electrode layer. 一種天線結構,包括:一第一基板;一第二基板,與該第一基板相對設置; 一第一電極層,設置在該第一基板上;一第二電極層,設置在該第二基板上,且重疊於該第一電極層,其中該第一電極層所佔區域面積與該第二電極層所佔區域面積的比值大於等於0.7且小於1;一液晶層,設置在該第一基板與該第二基板之間,且位於該第一電極層與該第二電極層之間;以及一反射層,設置在該第二基板背離該第二電極層的一側,其中該第一電極層具有多個第一條狀電極,該第二電極層具有多個第二條狀電極,該些第一條狀電極與該些第二條狀電極沿著一方向交替排列,該些第一條狀電極沿著該方向重疊於該些第二條狀電極。 An antenna structure, comprising: a first substrate; a second substrate disposed opposite to the first substrate; A first electrode layer is disposed on the first substrate; a second electrode layer is disposed on the second substrate and overlaps the first electrode layer, wherein the area occupied by the first electrode layer is the same as the area of the first electrode layer. The ratio of the area occupied by the two electrode layers is greater than or equal to 0.7 and less than 1; a liquid crystal layer is disposed between the first substrate and the second substrate, and between the first electrode layer and the second electrode layer; and a reflective layer disposed on the side of the second substrate away from the second electrode layer, wherein the first electrode layer has a plurality of first strip electrodes, the second electrode layer has a plurality of second strip electrodes, The first strip electrodes and the second strip electrodes are alternately arranged along a direction, and the first strip electrodes overlap the second strip electrodes along the direction. 如請求項17所述的天線結構,其中該些第一條狀電極和該些第二條狀電極的任兩相鄰者沿著該方向具有一間距,該第二電極層所佔區域沿著該方向具有一長度,且該間距與該長度的比值大於0且小於0.1。 The antenna structure of claim 17, wherein any two adjacent ones of the first strip electrodes and the second strip electrodes have a distance along the direction, and the area occupied by the second electrode layer is along the The direction has a length, and the ratio of the distance to the length is greater than 0 and less than 0.1. 如請求項1所述的天線結構,其中該第二基板為一低介電損耗基板。 The antenna structure of claim 1, wherein the second substrate is a low dielectric loss substrate.
TW110129365A 2021-04-01 2021-08-10 Antenna structure TWI773478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210031674.2A CN114204259B (en) 2021-04-01 2022-01-12 Antenna structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163169431P 2021-04-01 2021-04-01
US63/169,431 2021-04-01

Publications (2)

Publication Number Publication Date
TWI773478B true TWI773478B (en) 2022-08-01
TW202240976A TW202240976A (en) 2022-10-16

Family

ID=83103775

Family Applications (8)

Application Number Title Priority Date Filing Date
TW111119940A TWI786022B (en) 2021-04-01 2021-06-16 Display device
TW110121829A TWI769863B (en) 2021-04-01 2021-06-16 Display device
TW110128676A TWI779757B (en) 2021-04-01 2021-08-04 Antenna structure
TW110128697A TWI766790B (en) 2021-04-01 2021-08-04 Display device
TW110129365A TWI773478B (en) 2021-04-01 2021-08-10 Antenna structure
TW111138091A TWI828353B (en) 2021-04-01 2021-08-13 Display device
TW110129930A TWI781725B (en) 2021-04-01 2021-08-13 Display device
TW110130291A TWI782666B (en) 2021-04-01 2021-08-17 Solar panel

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW111119940A TWI786022B (en) 2021-04-01 2021-06-16 Display device
TW110121829A TWI769863B (en) 2021-04-01 2021-06-16 Display device
TW110128676A TWI779757B (en) 2021-04-01 2021-08-04 Antenna structure
TW110128697A TWI766790B (en) 2021-04-01 2021-08-04 Display device

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW111138091A TWI828353B (en) 2021-04-01 2021-08-13 Display device
TW110129930A TWI781725B (en) 2021-04-01 2021-08-13 Display device
TW110130291A TWI782666B (en) 2021-04-01 2021-08-17 Solar panel

Country Status (1)

Country Link
TW (8) TWI786022B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528121A (en) * 2017-08-29 2017-12-29 京东方科技集团股份有限公司 Antenna structure and its operating method, antenna equipment
CN208818972U (en) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 Phase shifter and liquid crystal antenna
TWI699929B (en) * 2019-01-30 2020-07-21 友達光電股份有限公司 Antenna unit and antenna device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962613B2 (en) * 2000-03-24 2005-11-08 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
EP3056978A1 (en) * 2009-02-26 2016-08-17 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
KR101036213B1 (en) * 2010-01-26 2011-05-20 광주과학기술원 Electronic device with a dual function of light emitting device and solar cell
TW201128967A (en) * 2010-02-09 2011-08-16 Univ Nat Changhua Education High frequency signal emitter
JP2013528963A (en) * 2010-03-24 2013-07-11 ダネッシュ ミナ Integrated photocell / radio frequency antenna
TW201210043A (en) * 2010-08-27 2012-03-01 Univ Shu Te Solar panel with base station antenna
TWI525897B (en) * 2013-10-29 2016-03-11 國立高雄師範大學 Circularly-polarized green antenna integrated with solar cell panel and antenna
TWI650595B (en) * 2013-11-15 2019-02-11 禾瑞亞科技股份有限公司 Touch display, control unit, and method for driving a plurality of touch driving electrodes of touch display
TWI528571B (en) * 2013-12-30 2016-04-01 茂迪股份有限公司 Solar cell, solar cell set, solar cell module, and method of assembling the solar cell set
TWI543084B (en) * 2013-12-31 2016-07-21 國立彰化師範大學 Wireless sensor tags based on solar cell
TWI526939B (en) * 2014-01-03 2016-03-21 國立彰化師範大學 Rfid tag and solar cell integration device and integration method thereof
NZ738352A (en) * 2015-06-15 2019-07-26 Magic Leap Inc Method of manufacturing a liquid crystal device
US11231544B2 (en) * 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
CN105846048A (en) * 2016-04-11 2016-08-10 南京邮电大学 Solar energy cell antenna
US10854952B2 (en) * 2016-05-03 2020-12-01 Kymeta Corporation Antenna integrated with photovoltaic cells
CN107394318B (en) * 2017-07-14 2019-11-05 合肥工业大学 A kind of liquid crystal phase-shifting unit for reflective Adjustable Phase-shifter
US10705391B2 (en) * 2017-08-30 2020-07-07 Wafer Llc Multi-state control of liquid crystals
US10989840B2 (en) * 2017-11-01 2021-04-27 Applied Materials, Inc. Non-absorptive trans-reflective nanostructured RGB filters
CN209249695U (en) * 2018-09-12 2019-08-13 北京超材信息科技有限公司 A kind of restructural beam scanning antennas of liquid crystal
US20200135703A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Light field display for head mounted apparatus using metapixels
US11616305B2 (en) * 2018-12-12 2023-03-28 Sharp Kabushiki Kaisha Scanning antenna and method for manufacturing scanning antenna
US11067884B2 (en) * 2018-12-26 2021-07-20 Apple Inc. Through-display optical transmission, reception, or sensing through micro-optic elements
TWI696315B (en) * 2019-01-30 2020-06-11 友達光電股份有限公司 Antenna device and antenna system
CN111614801A (en) * 2019-02-25 2020-09-01 Oppo广东移动通信有限公司 Display screen assembly and electronic equipment
KR20210007627A (en) * 2019-07-12 2021-01-20 엘지디스플레이 주식회사 Conductive polarizing color filter and display device having thereof
CN111326864B (en) * 2020-03-13 2021-06-18 天津大学 Coupling differential feed double compression mode patch antenna and solar cell integration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528121A (en) * 2017-08-29 2017-12-29 京东方科技集团股份有限公司 Antenna structure and its operating method, antenna equipment
CN208818972U (en) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 Phase shifter and liquid crystal antenna
TWI699929B (en) * 2019-01-30 2020-07-21 友達光電股份有限公司 Antenna unit and antenna device

Also Published As

Publication number Publication date
TW202240976A (en) 2022-10-16
TW202240925A (en) 2022-10-16
TW202240252A (en) 2022-10-16
TWI828353B (en) 2024-01-01
TWI786022B (en) 2022-12-01
TW202240254A (en) 2022-10-16
TWI779757B (en) 2022-10-01
TW202240251A (en) 2022-10-16
TWI781725B (en) 2022-10-21
TWI769863B (en) 2022-07-01
TWI782666B (en) 2022-11-01
TW202240975A (en) 2022-10-16
TW202303233A (en) 2023-01-16
TWI766790B (en) 2022-06-01
TW202305465A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
US10008783B2 (en) Patch antenna
US10014572B2 (en) Antenna device, wireless communication apparatus, and radar apparatus
US10566678B2 (en) Antenna structure and electronic device
US7038631B2 (en) Multi-frequency wire-plate antenna
TWI390796B (en) Solid dual band antenna device
US10116059B2 (en) Reradiation repeater
JP2020150496A (en) Antenna device and phased array antenna device
TWI502810B (en) Communication device
CN109921190B (en) Signal conditioner, antenna device and manufacturing method
JP5450481B2 (en) antenna
CN109004344B (en) Broadband antenna applied to 5G mobile terminal
CN107078380A (en) The strip line coupling antenna with periodicity groove for wireless electron device
US20220102855A1 (en) Antenna assembly and electronic device
CN114204259B (en) Antenna structure
CN111834755A (en) Antenna device and display panel
TWI773478B (en) Antenna structure
CN107248613B (en) High-gain dual-frequency antenna unit
JPWO2020071316A1 (en) Flat antenna and window glass
KR101756816B1 (en) Scalable frequency selective surface with miniaturized unit cell
US8836583B2 (en) Reflectarray
TWI633705B (en) Mobile device
Raj et al. High gain antenna with DGS for wireless applications
CN207868400U (en) Aerial mounting structure part and its director
Anjali et al. A highly miniaturized patch antenna
CN107768828A (en) Aerial mounting structure part and its director