TWI769863B - Display device - Google Patents

Display device Download PDF

Info

Publication number
TWI769863B
TWI769863B TW110121829A TW110121829A TWI769863B TW I769863 B TWI769863 B TW I769863B TW 110121829 A TW110121829 A TW 110121829A TW 110121829 A TW110121829 A TW 110121829A TW I769863 B TWI769863 B TW I769863B
Authority
TW
Taiwan
Prior art keywords
metasurface
structures
display device
substrate
metasurface structure
Prior art date
Application number
TW110121829A
Other languages
Chinese (zh)
Other versions
TW202240251A (en
Inventor
郭家瑋
洪敬榔
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to CN202111338562.3A priority Critical patent/CN114142237A/en
Application granted granted Critical
Publication of TWI769863B publication Critical patent/TWI769863B/en
Publication of TW202240251A publication Critical patent/TW202240251A/en

Links

Images

Abstract

A display device includes a substrate, a plurality of meta-surface structure sets, a plurality of display elements and a visible light absorbing layer. The meta-surface structure sets are disposed on the substrate and have a plurality of openings, in which each meta-surface structure set includes a plurality of meta-surface structures. The display elements are disposed in the openings respectively. The visible light absorbing layer covers the meta-surface structures.

Description

顯示裝置display device

本發明是有關於一種顯示裝置,且特別是有關於一種能夠提高5G毫米波覆蓋率的顯示裝置。The present invention relates to a display device, and in particular, to a display device capable of improving 5G millimeter wave coverage.

隨著第五代行動通訊技術(5G)的商業化,遠距醫療、VR直播、4K畫質直播、智慧家庭等等應用都有了新的發展契機。由於5G具有高資料速率、減少延遲、節省能源、降低成本、提高系統容量和大規模裝置連接等效能,不同領域的業者還可進行跨界結盟,共同打造新一代的5G生態鏈。然而,值此5G開台初期,如何以減少的5G設備建置成本來提高5G毫米波的覆蓋率是業界亟待解決的問題。With the commercialization of the fifth-generation mobile communication technology (5G), applications such as telemedicine, VR live broadcast, 4K quality live broadcast, and smart home have new opportunities for development. Due to the high data rate, reduced delay, energy saving, cost reduction, system capacity improvement and large-scale device connection of 5G, players in different fields can also form alliances across borders to jointly build a new generation of 5G ecological chain. However, at the initial stage of 5G launch, how to improve the coverage of 5G mmWave by reducing the construction cost of 5G equipment is an urgent problem for the industry to solve.

本發明提供一種顯示裝置,能夠提高5G毫米波的覆蓋率。The present invention provides a display device capable of improving the coverage of 5G millimeter waves.

本發明的一個實施例提出一種顯示裝置,包括:基板;多組超表面結構組,位於基板上,且具有多個開口,其中各超表面結構組包括多個超表面結構;多個第一顯示元件,分別位於開口中;以及可見光吸收層,覆蓋超表面結構。An embodiment of the present invention provides a display device, including: a substrate; a plurality of metasurface structure groups located on the substrate and having a plurality of openings, wherein each metasurface structure group includes a plurality of metasurface structures; a plurality of first display elements, respectively located in the openings; and a visible light absorbing layer covering the metasurface structure.

在本發明的一實施例中,上述的可見光吸收層填入超表面結構與第一顯示元件之間。In an embodiment of the present invention, the above-mentioned visible light absorbing layer is filled between the metasurface structure and the first display element.

在本發明的一實施例中,上述的顯示裝置還包括多個第二顯示元件,位於超表面結構之間。In an embodiment of the present invention, the above-mentioned display device further includes a plurality of second display elements located between the metasurface structures.

在本發明的一實施例中,上述的第一顯示元件及第二顯示元件呈陣列排列。In an embodiment of the present invention, the above-mentioned first display elements and second display elements are arranged in an array.

在本發明的一實施例中,上述的超表面結構組呈陣列排列。In an embodiment of the present invention, the above-mentioned metasurface structure groups are arranged in an array.

在本發明的一實施例中,上述的各超表面結構組彼此相同或彼此不同。In an embodiment of the present invention, the above-mentioned groups of metasurface structures are the same or different from each other.

在本發明的一實施例中,上述的各超表面結構組中的各超表面結構具有彼此相同的形狀及彼此不同的尺寸。In an embodiment of the present invention, each metasurface structure in each of the above-mentioned metasurface structure groups has the same shape and different size from each other.

在本發明的一實施例中,上述的各超表面結構組中的各超表面結構具有彼此相同的形狀及彼此不同的方位。In an embodiment of the present invention, each metasurface structure in each of the above-mentioned metasurface structure groups has the same shape and different orientations from each other.

在本發明的一實施例中,上述的超表面結構的材質包括金屬、導電氧化物、導電高分子、金屬奈米線或其組合。In an embodiment of the present invention, the material of the above-mentioned metasurface structure includes metal, conductive oxide, conductive polymer, metal nanowire or a combination thereof.

本發明的一個實施例提出一種顯示裝置,包括:基板;多組超表面結構組,位於基板上,且各超表面結構組包括多個超表面結構;以及多個顯示元件,位於基板上,其中顯示元件與超表面結構組不共平面。An embodiment of the present invention provides a display device, comprising: a substrate; a plurality of metasurface structure groups located on the substrate, and each metasurface structure group includes a plurality of metasurface structures; and a plurality of display elements located on the substrate, wherein The display elements are not coplanar with the set of metasurface structures.

在本發明的一實施例中,上述的顯示元件位於基板與超表面結構組之間。In an embodiment of the present invention, the above-mentioned display element is located between the substrate and the metasurface structure group.

在本發明的一實施例中,上述的顯示裝置還包括可見光吸收層,覆蓋超表面結構。In an embodiment of the present invention, the above-mentioned display device further includes a visible light absorbing layer covering the metasurface structure.

在本發明的一實施例中,上述的顯示裝置還包括平坦層,覆蓋顯示元件,且位於超表面結構組與顯示元件之間。In an embodiment of the present invention, the above-mentioned display device further includes a flat layer covering the display element and located between the metasurface structure group and the display element.

在本發明的一實施例中,上述的顯示元件至少部分不重疊可見光吸收層。In an embodiment of the present invention, the above-mentioned display element at least partially does not overlap the visible light absorbing layer.

在本發明的一實施例中,上述的超表面結構組位於基板與顯示元件之間。In an embodiment of the present invention, the above-mentioned metasurface structure group is located between the substrate and the display element.

在本發明的一實施例中,上述的顯示裝置還包括可見光吸收層,覆蓋超表面結構,且可見光吸收層位於顯示元件與超表面結構組之間。In an embodiment of the present invention, the above-mentioned display device further includes a visible light absorption layer covering the metasurface structure, and the visible light absorption layer is located between the display element and the metasurface structure group.

在本發明的一實施例中,上述的基板位於超表面結構組與顯示元件之間。In an embodiment of the present invention, the above-mentioned substrate is located between the metasurface structure group and the display element.

在本發明的一實施例中,上述的各超表面結構組彼此相同或彼此不同。In an embodiment of the present invention, the above-mentioned groups of metasurface structures are the same or different from each other.

在本發明的一實施例中,上述的各超表面結構組中的各超表面結構具有彼此相同的形狀及彼此不同的尺寸。In an embodiment of the present invention, each metasurface structure in each of the above-mentioned metasurface structure groups has the same shape and different size from each other.

在本發明的一實施例中,上述的各超表面結構組中的各超表面結構具有彼此相同的形狀及彼此不同的方位。In an embodiment of the present invention, each metasurface structure in each of the above-mentioned metasurface structure groups has the same shape and different orientations from each other.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

圖1A是依照本發明一實施例的顯示裝置10的平面示意圖。圖1B是沿圖1A的剖面線A-A’所作的剖面示意圖。圖1C是顯示裝置10的超表面結構組120所產生的電磁波相位延遲曲線圖。FIG. 1A is a schematic plan view of a display device 10 according to an embodiment of the present invention. Fig. 1B is a schematic cross-sectional view taken along the section line A-A' of Fig. 1A. FIG. 1C is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 120 of the display device 10 .

請同時參照圖1A及圖1B,顯示裝置10包括:基板110、多組超表面結構組120、多個顯示元件131以及可見光吸收層140。超表面結構組120位於基板110上,且具有多個開口OP,其中各超表面結構組120包括超表面結構121、122、123。顯示元件131分別位於開口OP中。可見光吸收層140覆蓋超表面結構121、122、123。Please refer to FIG. 1A and FIG. 1B at the same time, the display device 10 includes: a substrate 110 , a plurality of metasurface structure groups 120 , a plurality of display elements 131 and a visible light absorbing layer 140 . The metasurface structure group 120 is located on the substrate 110 and has a plurality of openings OP, wherein each metasurface structure group 120 includes metasurface structures 121 , 122 and 123 . The display elements 131 are located in the openings OP, respectively. The visible light absorbing layer 140 covers the metasurface structures 121 , 122 and 123 .

承上述,在本發明的一實施例的顯示裝置10中,藉由設置超表面結構組120來控制電磁波的相位延遲,可實現電磁波的波束轉向(beam steering),使得顯示裝置10有助於延伸電磁波的可傳輸距離,且能夠在不需增設5G設備之下提高5G毫米波的覆蓋率。Based on the above, in the display device 10 according to an embodiment of the present invention, by setting the metasurface structure group 120 to control the phase delay of the electromagnetic wave, beam steering of the electromagnetic wave can be realized, so that the display device 10 is helpful for extending The transmission distance of electromagnetic waves can improve the coverage of 5G millimeter waves without adding 5G equipment.

以下,配合圖式,繼續說明顯示裝置10的各個元件的實施方式。請參照圖1A,顯示裝置10的基板110可用以承載超表面結構組120及顯示元件131。基板110的材質可以是可撓的或不可撓的,例如玻璃、陶瓷、石英、金屬、聚醯亞胺(polyimide, PI)、聚碳酸酯(polycarbonate, PC)、複合材料或其他適當的材質,本發明不以此為限。Hereinafter, the embodiments of each element of the display device 10 will be continuously described with reference to the drawings. Referring to FIG. 1A , the substrate 110 of the display device 10 can be used to carry the metasurface structure group 120 and the display element 131 . The material of the substrate 110 may be flexible or inflexible, such as glass, ceramic, quartz, metal, polyimide (PI), polycarbonate (PC), composite material or other suitable materials, The present invention is not limited to this.

超表面結構組120可以包括基板110上構成最小重複單元的多個超表面結構。舉例而言,在本實施例中,超表面結構121、122、123在基板110上構成了最小重複單元,因此,超表面結構組120可以包括超表面結構121、122、123。The metasurface structure group 120 may include a plurality of metasurface structures on the substrate 110 that constitute the smallest repeating unit. For example, in the present embodiment, the metasurface structures 121 , 122 , and 123 constitute the smallest repeating unit on the substrate 110 . Therefore, the metasurface structure group 120 may include the metasurface structures 121 , 122 , and 123 .

由於尺寸不同的超表面結構121、122、123具有不同共振頻率,當特定頻率電磁波入射於此超表面結構121、122、123時,此超表面結構121、122、123將產生相位延遲量不同的感應電流,進而改變反射電磁波的相位。如此一來,藉由控制超表面結構121、122、123的尺寸即可控制感應電流的相位延遲量,進而調整電磁波的發射角度來使電磁波轉向。Since the metasurface structures 121 , 122 , and 123 with different sizes have different resonance frequencies, when electromagnetic waves of a specific frequency are incident on the metasurface structures 121 , 122 , and 123 , the metasurface structures 121 , 122 , and 123 will produce different phase retardations. Induces current, which in turn changes the phase of the reflected electromagnetic wave. In this way, by controlling the size of the metasurface structures 121 , 122 , and 123 , the phase delay of the induced current can be controlled, and the emission angle of the electromagnetic wave can be adjusted to turn the electromagnetic wave.

設置於基板110上的多組超表面結構組120可以彼此相同或彼此不同。舉例而言,在本實施例中,顯示裝置10可以包括多組彼此相同的超表面結構組120,也就是說,超表面結構組120可以具有彼此相同的形狀、尺寸、方位等,但本發明不以此為限。然而,在某些實施例中,顯示裝置10可以包括多組彼此不同的超表面結構組。The plurality of metasurface structure groups 120 disposed on the substrate 110 may be the same as each other or different from each other. For example, in this embodiment, the display device 10 may include multiple sets of metasurface structure groups 120 that are identical to each other, that is, the metasurface structure groups 120 may have the same shape, size, orientation, etc. Not limited to this. However, in some embodiments, the display device 10 may include a plurality of sets of metasurface structures that are different from each other.

超表面結構組120可大致以陣列的方式排列於基板110上。舉例而言,在如圖1A所示的實施例中,四組超表面結構組120可大致以2x2的矩陣排列於基板110上,但不以此為限。在一些實施例中,四組超表面結構組120還可以1x4或4x1的矩陣排列於基板110上。The metasurface structure groups 120 may be arranged on the substrate 110 substantially in an array manner. For example, in the embodiment shown in FIG. 1A , four sets of metasurface structure groups 120 may be arranged on the substrate 110 in a substantially 2×2 matrix, but not limited thereto. In some embodiments, the four metasurface structure groups 120 may also be arranged on the substrate 110 in a 1×4 or 4×1 matrix.

超表面結構組120中的超表面結構121、122、123可以具有彼此相同的形狀、但彼此不同的尺寸。舉例而言,在本實施例中,超表面結構組120的超表面結構121可以包括方環結構121a及方塊結構121b;超表面結構122可以包括方環結構122a及方塊結構122b;且超表面結構123可以包括方環結構123a及方塊結構123b。方環結構121a、122a、123a的形狀相同,且方環結構121a的尺寸大於方環結構122a的尺寸,方環結構122a的尺寸大於方環結構123a的尺寸,也就是說,方環結構121a、122a、123a的尺寸呈現遞減的關係。另外,方塊結構121b、122b、123b的形狀相同,且方塊結構121b、122b、123b的尺寸也呈現遞減的關係。應注意的是,超表面結構121、122、123的形狀並不限於如圖1A所示的方環結構121a、122a、123a與方塊結構121b、122b、123b的組合,且超表面結構121、122、123的尺寸變化還可就其三維尺寸進行個別變化或組合變化。The metasurface structures 121, 122, 123 in the metasurface structure group 120 may have the same shape as each other, but different sizes from each other. For example, in this embodiment, the metasurface structure 121 of the metasurface structure group 120 may include a square ring structure 121a and a block structure 121b; the metasurface structure 122 may include a square ring structure 122a and a block structure 122b; and the metasurface structure 123 may include a square ring structure 123a and a square structure 123b. The square ring structures 121a, 122a, and 123a have the same shape, and the size of the square ring structure 121a is larger than that of the square ring structure 122a, and the size of the square ring structure 122a is larger than that of the square ring structure 123a. That is to say, the square ring structure 121a, The sizes of 122a and 123a are in a decreasing relationship. In addition, the shapes of the block structures 121b, 122b, and 123b are the same, and the sizes of the block structures 121b, 122b, and 123b also show a decreasing relationship. It should be noted that the shapes of the metasurface structures 121, 122, 123 are not limited to the combination of the square ring structures 121a, 122a, 123a and the square structures 121b, 122b, 123b as shown in FIG. 1A, and the metasurface structures 121, 122 The dimensional changes of , 123 can also be individually or combined with respect to their three-dimensional dimensions.

超表面結構121、122、123的尺寸可以取決於入射電磁波的波長。舉例而言,在本實施例中,對於毫米波的電磁波而言,超表面結構121、122、123的尺寸可以介於0.01 x 0.01 mm 2至10 x 10 mm 2之間,但不以此為限。此外,超表面結構121、122、123的材質可以包括金屬(例如鋁、銅、鉻、銀、鈦、鉬等)、導電氧化物(例如銦錫氧化物、鋅鋁氧化物、鋅鎵氧化物、鋅銦氧化物等)、導電高分子(例如聚(3,4-乙烯基二氧噻吩):聚(苯乙烯磺酸鹽)(PEDOT:PSS))、金屬奈米線(例如銀奈米線)或其組合。 The dimensions of the metasurface structures 121, 122, 123 may depend on the wavelength of the incident electromagnetic waves. For example, in this embodiment, for millimeter-wave electromagnetic waves, the dimensions of the metasurface structures 121 , 122 , and 123 may be between 0.01×0.01 mm 2 to 10×10 mm 2 , but not limit. In addition, the materials of the metasurface structures 121 , 122 , and 123 may include metals (eg, aluminum, copper, chromium, silver, titanium, molybdenum, etc.), conductive oxides (eg, indium tin oxide, zinc aluminum oxide, zinc gallium oxide, etc.) , zinc indium oxide, etc.), conductive polymers (such as poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)), metal nanowires (such as silver nanowires) line) or a combination thereof.

請參照圖1C,由於尺寸不同的超表面結構121、122、123具有不同的電磁波共振頻率,電磁波經尺寸不同的超表面結構121、122、123作用後會得到不同的相位延遲。如此一來,可藉由超表面結構121、122、123的尺寸來控制電磁波的相位延遲,同時藉由超表面結構121、122、123的尺寸變化來控制電磁波的發射角度,從而實現波束轉向(beam steering)的功效。Referring to FIG. 1C , since the metasurface structures 121 , 122 , and 123 with different sizes have different resonance frequencies of electromagnetic waves, the electromagnetic waves will have different phase delays after being acted on by the metasurface structures 121 , 122 , and 123 with different sizes. In this way, the phase delay of the electromagnetic wave can be controlled by the size of the metasurface structures 121, 122, 123, and the emission angle of the electromagnetic wave can be controlled by the size change of the metasurface structures 121, 122, 123, thereby realizing beam steering ( beam steering).

為了提供畫面顯示的功能,顯示裝置10的基板110上可以設置呈陣列排列的顯示元件131、132,其中,顯示元件131位於超表面結構組120的開口OP中,而顯示元件132則位於超表面結構121、122、123之間。也就是說,超表面結構組120的開口OP的位置可以視顯示元件131、132的排列方式所決定的顯示元件131的位置而進行調整。In order to provide a picture display function, the substrate 110 of the display device 10 may be provided with display elements 131 and 132 arranged in an array, wherein the display element 131 is located in the opening OP of the metasurface structure group 120, and the display element 132 is located in the metasurface between structures 121 , 122 and 123 . That is, the position of the opening OP of the metasurface structure group 120 can be adjusted according to the position of the display element 131 determined by the arrangement of the display elements 131 and 132 .

在本實施例中,顯示元件131、132較佳是微型發光二極體(Micro-LED),但不以此為限。顯示元件131、132的尺寸可以介於1 x 1 μm 2至50 x 50 μm 2之間,但不以此為限。在一些實施例中,顯示元件131、132的尺寸可以視入射電磁波的波長而定。 In this embodiment, the display elements 131 and 132 are preferably micro light-emitting diodes (Micro-LEDs), but not limited thereto. The size of the display elements 131 and 132 may be between 1×1 μm 2 to 50×50 μm 2 , but not limited thereto. In some embodiments, the dimensions of the display elements 131, 132 may depend on the wavelength of the incident electromagnetic waves.

在本實施例中,超表面結構組120的超表面結構121、122、123中可以分別嵌入多個顯示元件131,但不以此為限。在一些實施例中,超表面結構組120還可以包括僅嵌入一個顯示元件131或未嵌入任何顯示元件131的超表面結構,取決於超表面結構組120中的超表面結構與顯示元件131的尺寸關係。In this embodiment, a plurality of display elements 131 may be respectively embedded in the meta-surface structures 121 , 122 , and 123 of the meta-surface structure group 120 , but not limited thereto. In some embodiments, the metasurface structure group 120 may also include metasurface structures embedded with only one display element 131 or no display element 131 embedded, depending on the metasurface structures in the metasurface structure group 120 and the size of the display elements 131 . relation.

請參照圖1B,在本實施例中,顯示裝置10還包括驅動元件DC,驅動元件DC電性連接顯示元件131、132,用於驅動顯示元件131、132進行影像顯示。驅動元件DC可以位於基板110的背側102,且透過設置於基板110中的導線CW電性連接顯示元件131、132,但不以此為限。在一些實施例中,驅動元件DC可以與顯示元件131、132同樣位於基板110的前側101,且透過設置於前側101的導線電性連接顯示元件131、132。Referring to FIG. 1B , in this embodiment, the display device 10 further includes a driving element DC, which is electrically connected to the display elements 131 and 132 for driving the display elements 131 and 132 to display images. The driving element DC may be located on the backside 102 of the substrate 110 , and is electrically connected to the display elements 131 and 132 through the wires CW disposed in the substrate 110 , but not limited thereto. In some embodiments, the driving element DC and the display elements 131 and 132 may be located on the front side 101 of the substrate 110 , and are electrically connected to the display elements 131 and 132 through wires disposed on the front side 101 .

為了避免超表面結構121、122、123反射可見光而影響顯示裝置10顯示的畫面品質,使用可見光吸收層140來覆蓋超表面結構121、122、123。另外,可見光吸收層140並不覆蓋顯示元件131、132,因此,可見光吸收層140可以具有多個開口OR,顯示元件131、132可分別設置於開口OR中,且開口OR的位置可以視顯示元件131、132的位置而進行調整。在超表面結構組120的開口OP中,可見光吸收層140可以填入超表面結構121、122、123與顯示元件131之間。可見光吸收層140的材質並無特殊限制,只要對於波長在380nm至780nm的可見光而言具有高吸收率及/或低穿透率即可。例如,波長在380nm至780nm的可見光對於可見光吸收層140的穿透率可以小於10%。此外,對於波長在1 mm至10 mm的毫米波而言,可見光吸收層140還可具有低吸收率及/或高穿透率。例如,波長在1 mm至10 mm的毫米波對於可見光吸收層140的穿透率可以大於50%。在一些實施例中,可見光吸收層140可以包括聚醯亞胺系光阻材料或丙烯酸系光阻材料。In order to prevent the metasurface structures 121 , 122 , 123 from reflecting visible light and affecting the picture quality displayed by the display device 10 , a visible light absorbing layer 140 is used to cover the metasurface structures 121 , 122 , 123 . In addition, the visible light absorbing layer 140 does not cover the display elements 131 and 132. Therefore, the visible light absorbing layer 140 may have a plurality of openings OR, the display elements 131 and 132 may be respectively disposed in the openings OR, and the positions of the openings OR can be determined according to the display elements. 131 and 132 to adjust the position. In the opening OP of the metasurface structure group 120 , the visible light absorbing layer 140 may be filled between the metasurface structures 121 , 122 , and 123 and the display element 131 . The material of the visible light absorbing layer 140 is not particularly limited, as long as it has high absorptivity and/or low transmittance for visible light with a wavelength of 380 nm to 780 nm. For example, the transmittance of visible light with a wavelength of 380 nm to 780 nm to the visible light absorbing layer 140 may be less than 10%. In addition, for millimeter waves with a wavelength of 1 mm to 10 mm, the visible light absorbing layer 140 may also have a low absorption rate and/or a high transmittance. For example, the transmittance of a millimeter wave with a wavelength of 1 mm to 10 mm to the visible light absorbing layer 140 may be greater than 50%. In some embodiments, the visible light absorbing layer 140 may include a polyimide-based photoresist material or an acrylic-based photoresist material.

以下,配合圖2至圖10繼續說明本發明的其他實施例或實施態樣,其中,採用與圖1A至圖1C的實施例相同或近似的元件標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明,可參考圖1A至圖1C的實施例,在以下的說明中將不再贅述。Hereinafter, other embodiments or implementations of the present invention will be described with reference to FIGS. 2 to 10 , wherein the same or similar element numbers are used to denote the same or similar elements as in the embodiment of FIGS. 1A to 1C , and the same or similar elements are omitted. Description of the same technical content. For the description of the omitted part, reference may be made to the embodiments of FIG. 1A to FIG. 1C , which will not be repeated in the following description.

圖2是依照本發明一實施例的顯示裝置20的剖面示意圖。顯示裝置20包括:基板110、多組超表面結構組120以及多個顯示元件130。超表面結構組120及顯示元件130位於基板110上,且各超表面結構組120可包括超表面結構121、122。超表面結構121可以包括方環結構121a及方塊結構121b,而超表面結構122可以包括方環結構122a及方塊結構122b。此外,超表面結構組120還可以包括如圖1A所示的超表面結構123。FIG. 2 is a schematic cross-sectional view of a display device 20 according to an embodiment of the present invention. The display device 20 includes: a substrate 110 , a plurality of metasurface structure groups 120 and a plurality of display elements 130 . The metasurface structure group 120 and the display element 130 are located on the substrate 110 , and each metasurface structure group 120 may include metasurface structures 121 and 122 . The metasurface structure 121 may include a square ring structure 121a and a block structure 121b, and the metasurface structure 122 may include a square ring structure 122a and a block structure 122b. In addition, the metasurface structure group 120 may further include a metasurface structure 123 as shown in FIG. 1A .

與圖1A至圖1B所示的顯示裝置10相比,如圖2所示的顯示裝置20的不同之處在於:顯示元件130與超表面結構組120不共平面。舉例而言,在本實施例中,顯示元件130位於基板110與超表面結構組120之間。顯示裝置20還可以包括可見光吸收層140,可見光吸收層140可以覆蓋超表面結構121、122,以避免超表面結構121、122反射可見光而影響顯示裝置20的畫面品質。Compared with the display device 10 shown in FIGS. 1A to 1B , the display device 20 shown in FIG. 2 is different in that the display element 130 and the metasurface structure group 120 are not coplanar. For example, in this embodiment, the display element 130 is located between the substrate 110 and the metasurface structure group 120 . The display device 20 may further include a visible light absorption layer 140 , and the visible light absorption layer 140 may cover the metasurface structures 121 and 122 to prevent the metasurface structures 121 and 122 from reflecting visible light and affecting the picture quality of the display device 20 .

在一些實施例中,顯示裝置20還可以包括平坦層250,平坦層250可以覆蓋顯示元件130,且位於顯示元件130與超表面結構組120之間,以在顯示元件130上方提供平坦的表面來便利超表面結構組120的設置。In some embodiments, the display device 20 may further include a flat layer 250 , which may cover the display elements 130 and be located between the display elements 130 and the metasurface structure group 120 to provide a flat surface above the display elements 130 to The setting of the metasurface structure group 120 is facilitated.

值得注意的是,在本實施例中,顯示元件130較佳為至少部分不重疊可見光吸收層140,也就是說,可見光吸收層140於基板110的正投影至少部分不重疊顯示元件130於基板110的正投影,或者,可見光吸收層140的開口OR於基板110的正投影可至少部分重疊顯示元件130於基板110的正投影,以免可見光吸收層140遮蔽顯示元件130發出的光線而影響顯示裝置20的畫面品質。同時,藉由設置超表面結構組120來控制電磁波的相位延遲,可實現電磁波的波束轉向(beam steering),使得顯示裝置20有助於延伸電磁波的可傳輸距離。It should be noted that, in this embodiment, the display element 130 preferably does not overlap the visible light absorbing layer 140 at least partially, that is, the orthographic projection of the visible light absorbing layer 140 on the substrate 110 at least partially does not overlap the display element 130 on the substrate 110 Alternatively, the orthographic projection of the opening OR of the visible light absorbing layer 140 on the substrate 110 may at least partially overlap the orthographic projection of the display element 130 on the substrate 110, so as to prevent the visible light absorbing layer 140 from shielding the light emitted by the display element 130 and affecting the display device 20 picture quality. Meanwhile, by setting the metasurface structure group 120 to control the phase delay of the electromagnetic wave, beam steering of the electromagnetic wave can be realized, so that the display device 20 helps to extend the transmission distance of the electromagnetic wave.

圖3是依照本發明一實施例的顯示裝置30的剖面示意圖。顯示裝置30包括:基板110、超表面結構組120、顯示元件130以及可見光吸收層140。超表面結構組120及顯示元件130位於基板110上,且不共平面。超表面結構組120可包括超表面結構121、122。超表面結構121可以包括方環結構121a及方塊結構121b,而超表面結構122可以包括方環結構122a及方塊結構122b。此外,超表面結構組120還可以包括如圖1A所示的超表面結構123。可見光吸收層140可覆蓋超表面結構121、122以及基板110。FIG. 3 is a schematic cross-sectional view of a display device 30 according to an embodiment of the present invention. The display device 30 includes: a substrate 110 , a metasurface structure group 120 , a display element 130 and a visible light absorbing layer 140 . The metasurface structure group 120 and the display element 130 are located on the substrate 110 and are not coplanar. The set of metasurface structures 120 may include metasurface structures 121 , 122 . The metasurface structure 121 may include a square ring structure 121a and a block structure 121b, and the metasurface structure 122 may include a square ring structure 122a and a block structure 122b. In addition, the metasurface structure group 120 may further include a metasurface structure 123 as shown in FIG. 1A . The visible light absorption layer 140 may cover the metasurface structures 121 and 122 and the substrate 110 .

與圖2所示的顯示裝置20相比,如圖3所示的顯示裝置30的不同之處在於:超表面結構組120位於基板110與顯示元件130之間,且可見光吸收層140位於顯示元件130與超表面結構組120之間,可見光吸收層140可整層覆蓋超表面結構組120而不具有任何開口。此外,驅動元件DC可透過設置於基板110及可見光吸收層140中的導線CW’電性連接顯示元件130。可見光吸收層140覆蓋超表面結構121、122可避免超表面結構121、122反射可見光而影響顯示裝置30的畫面品質。同時,藉由設置超表面結構組120來控制電磁波的相位延遲,可實現電磁波的波束轉向(beam steering),使得顯示裝置30有助於延伸電磁波的可傳輸距離。Compared with the display device 20 shown in FIG. 2 , the display device 30 shown in FIG. 3 is different in that: the metasurface structure group 120 is located between the substrate 110 and the display element 130 , and the visible light absorbing layer 140 is located in the display element Between 130 and the metasurface structure group 120, the visible light absorbing layer 140 can cover the metasurface structure group 120 as a whole without any openings. In addition, the driving element DC can be electrically connected to the display element 130 through the wires CW' disposed in the substrate 110 and the visible light absorbing layer 140. The visible light absorbing layer 140 covers the metasurface structures 121 and 122 to prevent the metasurface structures 121 and 122 from reflecting visible light and affecting the picture quality of the display device 30 . At the same time, by setting the metasurface structure group 120 to control the phase delay of the electromagnetic wave, beam steering of the electromagnetic wave can be realized, so that the display device 30 helps to extend the transmission distance of the electromagnetic wave.

圖4是依照本發明一實施例的顯示裝置40的剖面示意圖。顯示裝置40包括:基板110、超表面結構組120以及顯示元件130。與圖2所示的顯示裝置20相比,如圖4所示的顯示裝置40的不同之處在於:基板110位於超表面結構組120與顯示元件130之間,且基板110可吸收或反射可見光。也就是說,超表面結構組120與顯示元件130位於基板110的相對側的表面上,例如,顯示元件130位於基板110的前側101,且超表面結構組120位於基板110的背側102。如此一來,超表面結構組120反射的可見光不會影響顯示裝置40的前側101顯示的畫面品質,因此超表面結構組120的表面可不需覆蓋可見光吸收層。同時,藉由設置超表面結構組120來控制電磁波的相位延遲,可實現電磁波的波束轉向(beam steering),使得顯示裝置40有助於延伸電磁波的可傳輸距離。FIG. 4 is a schematic cross-sectional view of a display device 40 according to an embodiment of the present invention. The display device 40 includes: a substrate 110 , a metasurface structure group 120 and a display element 130 . Compared with the display device 20 shown in FIG. 2 , the display device 40 shown in FIG. 4 is different in that the substrate 110 is located between the metasurface structure group 120 and the display element 130 , and the substrate 110 can absorb or reflect visible light . That is, the metasurface structure group 120 and the display element 130 are located on surfaces on opposite sides of the substrate 110 , eg, the display element 130 is located on the front side 101 of the substrate 110 , and the metasurface structure group 120 is located on the backside 102 of the substrate 110 . In this way, the visible light reflected by the metasurface structure group 120 does not affect the picture quality displayed on the front side 101 of the display device 40 , so the surface of the metasurface structure group 120 does not need to be covered with a visible light absorbing layer. Meanwhile, by setting the metasurface structure group 120 to control the phase delay of the electromagnetic wave, beam steering of the electromagnetic wave can be realized, so that the display device 40 helps to extend the transmission distance of the electromagnetic wave.

圖5A是依照本發明一實施例的超表面結構組520的平面示意圖。圖5B是圖5A的超表面結構組520所產生的電磁波相位延遲曲線圖。與圖1A至圖1B所示的超表面結構組120相比,如圖5A所示的超表面結構組520的不同之處在於:超表面結構組520可包括超表面結構521、522,且超表面結構521、522可以具有彼此相同的形狀、但彼此不同的尺寸。舉例而言,在本實施例中,超表面結構521可以包括方環結構521a及方塊結構521b,且超表面結構522可以包括方環結構522a及方塊結構522b。方環結構521a、522a的形狀相同,且方環結構521a的尺寸大於方環結構522a的尺寸。方塊結構521b、522b的形狀相同,且方塊結構521b的尺寸大於方塊結構522b的尺寸。FIG. 5A is a schematic plan view of a metasurface structure group 520 according to an embodiment of the present invention. FIG. 5B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 520 in FIG. 5A . Compared with the metasurface structure group 120 shown in FIGS. 1A to 1B , the metasurface structure group 520 shown in FIG. 5A is different in that the metasurface structure group 520 may include metasurface structures 521 and 522 , and the metasurface structure group 520 The surface structures 521, 522 may have the same shape as each other, but different sizes from each other. For example, in this embodiment, the metasurface structure 521 may include a square ring structure 521a and a block structure 521b, and the metasurface structure 522 may include a square ring structure 522a and a block structure 522b. The square ring structures 521a and 522a have the same shape, and the size of the square ring structure 521a is larger than that of the square ring structure 522a. The block structures 521b and 522b have the same shape, and the size of the block structure 521b is larger than that of the block structure 522b.

請參照圖5B,由於尺寸不同的超表面結構521、522具有不同的電磁波共振頻率,電磁波經尺寸不同的超表面結構521、522作用後會得到不同的相位延遲。如此一來,可藉由超表面結構521、522的尺寸來控制電磁波的相位延遲,同時藉由超表面結構521、522的尺寸變化來控制電磁波的發射角度,從而實現波束轉向(beam steering)的功效。另外,圖5A所示的超表面結構組520亦可應用於前述實施例的顯示裝置10、20、30、40。Referring to FIG. 5B , since the metasurface structures 521 and 522 with different sizes have different resonance frequencies of electromagnetic waves, the electromagnetic waves will obtain different phase delays after being acted on by the metasurface structures 521 and 522 with different sizes. In this way, the phase delay of the electromagnetic wave can be controlled by the size of the metasurface structures 521, 522, and the emission angle of the electromagnetic wave can be controlled by the size change of the metasurface structures 521, 522, so as to realize beam steering. effect. In addition, the metasurface structure group 520 shown in FIG. 5A can also be applied to the display devices 10 , 20 , 30 , and 40 of the foregoing embodiments.

圖6A是依照本發明一實施例的超表面結構組620的平面示意圖。圖6B是圖6A的超表面結構組620所產生的電磁波相位延遲曲線圖。與圖1A至圖1B所示的超表面結構組120相比,如圖6A所示的超表面結構組620的不同之處在於:超表面結構組620可包括超表面結構621、622、623、624,且超表面結構621、622、623、624可以具有彼此相同的形狀、但彼此不同的方位。舉例而言,在本實施例中,超表面結構621可以包括方環結構621a及方塊結構621b,超表面結構622可以包括方環結構622a及方塊結構622b,超表面結構623可以包括方環結構623a及方塊結構623b,且超表面結構624可以包括方環結構624a及方塊結構624b。方環結構621a、622a、623a、624a的形狀與尺寸相同、但方位不同,且方塊結構621b、622b、623b、624b的形狀與尺寸相同、但方位不同。舉例而言,超表面結構622的方位可以是超表面結構621順時針轉動45度,超表面結構623的方位可以是超表面結構621順時針轉動90度,且超表面結構624的方位可以是超表面結構621順時針轉動135度。FIG. 6A is a schematic plan view of a metasurface structure group 620 according to an embodiment of the present invention. FIG. 6B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 620 in FIG. 6A . Compared with the metasurface structure group 120 shown in FIGS. 1A to 1B , the metasurface structure group 620 shown in FIG. 6A is different in that the metasurface structure group 620 may include metasurface structures 621 , 622 , 623 , 624, and the metasurface structures 621, 622, 623, 624 may have the same shape as each other, but different orientations from each other. For example, in this embodiment, the metasurface structure 621 may include a square ring structure 621a and a square structure 621b, the metasurface structure 622 may include a square ring structure 622a and a square structure 622b, and the metasurface structure 623 may include a square ring structure 623a and block structure 623b, and the metasurface structure 624 may include a square ring structure 624a and a block structure 624b. The square ring structures 621a, 622a, 623a, 624a have the same shape and size, but different orientations, and the square structures 621b, 622b, 623b, 624b have the same shape and size, but different orientations. For example, the orientation of the metasurface structure 622 may be that the metasurface structure 621 is rotated 45 degrees clockwise, the orientation of the metasurface structure 623 may be that the metasurface structure 621 is rotated 90 degrees clockwise, and the orientation of the metasurface structure 624 may be Surface structure 621 is rotated 135 degrees clockwise.

請參照圖6B,由於方位不同的超表面結構621、622、623、624具有不同的電磁波共振頻率,電磁波經方位不同的超表面結構621、622、623、624作用後會得到不同的相位延遲。如此一來,可藉由超表面結構621、622、623、624的方位來控制電磁波的相位延遲,同時藉由超表面結構621、622、623、624的方位變化來控制電磁波的發射角度,從而實現波束轉向(beam steering)的功效。另外,圖6A所示的超表面結構組620亦可應用於前述實施例的顯示裝置10、20、30、40。Referring to FIG. 6B , since the metasurface structures 621 , 622 , 623 , and 624 with different orientations have different resonance frequencies of electromagnetic waves, the electromagnetic waves will obtain different phase delays after being acted on by the metasurface structures 621 , 622 , 623 , and 624 with different orientations. In this way, the phase delay of the electromagnetic wave can be controlled by the azimuth of the metasurface structures 621, 622, 623, 624, and the emission angle of the electromagnetic wave can be controlled by the azimuth change of the metasurface structures 621, 622, 623, 624, thereby Achieve the effect of beam steering. In addition, the metasurface structure group 620 shown in FIG. 6A can also be applied to the display devices 10 , 20 , 30 , and 40 of the foregoing embodiments.

圖7A是依照本發明一實施例的超表面結構組720的平面示意圖。圖7B是圖7A的超表面結構組720所產生的電磁波相位延遲曲線圖。與圖1A至圖1B所示的超表面結構組120相比,如圖7A所示的超表面結構組720的不同之處在於:超表面結構組720可包括超表面結構721、722、723、724、725,且超表面結構721、722、723、724、725可以具有彼此相同的形狀、但彼此不同的尺寸。舉例而言,在本實施例中,超表面結構721可以包括方環結構721a及方塊結構721b,超表面結構722可以包括方環結構722a及方塊結構722b,超表面結構723可以包括方環結構723a及方塊結構723b,超表面結構724可以包括方環結構724a及方塊結構724b,且超表面結構725可以包括方環結構725a及方塊結構725b。方環結構721a、722a、723a、724a、725a的形狀相同,且方環結構721a、722a、723a、724a、725a的尺寸呈現遞減的關係。方塊結構721b、722b、723b、724b、725b的形狀相同,且方塊結構721b、722b、723b、724b、725b的尺寸也呈現遞減的關係。FIG. 7A is a schematic plan view of a metasurface structure group 720 according to an embodiment of the present invention. FIG. 7B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 720 in FIG. 7A . Compared with the metasurface structure group 120 shown in FIGS. 1A to 1B , the metasurface structure group 720 shown in FIG. 7A is different in that the metasurface structure group 720 may include metasurface structures 721 , 722 , 723 , 724, 725, and the metasurface structures 721, 722, 723, 724, 725 may have the same shape as each other, but different sizes from each other. For example, in this embodiment, the metasurface structure 721 may include a square ring structure 721a and a square structure 721b, the metasurface structure 722 may include a square ring structure 722a and a square structure 722b, and the metasurface structure 723 may include a square ring structure 723a And block structure 723b, metasurface structure 724 may include square ring structure 724a and block structure 724b, and metasurface structure 725 may include square ring structure 725a and block structure 725b. The square ring structures 721a, 722a, 723a, 724a, and 725a have the same shape, and the sizes of the square ring structures 721a, 722a, 723a, 724a, and 725a are in a decreasing relationship. The block structures 721b, 722b, 723b, 724b, and 725b have the same shape, and the sizes of the block structures 721b, 722b, 723b, 724b, and 725b also show a decreasing relationship.

請參照圖7B,由於尺寸不同的超表面結構721、722、723、724、725具有不同的電磁波共振頻率,電磁波經尺寸不同的超表面結構721、722、723、724、725作用後會得到不同的相位延遲。如此一來,可藉由超表面結構721、722、723、724、725的尺寸來控制電磁波的相位延遲,同時藉由超表面結構721、722、723、724、725的尺寸變化來控制電磁波的發射角度,從而實現波束轉向(beam steering)的功效。另外,圖7A所示的超表面結構組720亦可應用於前述實施例的顯示裝置10、20、30、40。Referring to FIG. 7B , since the metasurface structures 721 , 722 , 723 , 724 , and 725 with different sizes have different resonance frequencies of electromagnetic waves, the electromagnetic waves will be different after being acted on by the metasurface structures 721 , 722 , 723 , 724 , and 725 with different sizes. phase delay. In this way, the phase delay of the electromagnetic wave can be controlled by the size of the metasurface structures 721 , 722 , 723 , 724 , 725 , and the electromagnetic wave can be controlled by the size change of the metasurface structures 721 , 722 , 723 , 724 , 725 . The launch angle is used to achieve the effect of beam steering. In addition, the metasurface structure group 720 shown in FIG. 7A can also be applied to the display devices 10 , 20 , 30 , and 40 of the foregoing embodiments.

圖8是依照本發明一實施例的顯示裝置80的平面示意圖。顯示裝置80包括:基板110、陣列排列的顯示元件130以及多組超表面結構組821、822、823、824。與圖1A至圖1B所示的顯示裝置10相比,如圖8所示的顯示裝置80的不同之處在於:顯示裝置80包括彼此不同的超表面結構組821、822、823、824。舉例而言,雖然超表面結構組821、822、823、824皆包括形狀相同的超表面結構,即方環結構與方塊結構的組合;然而,超表面結構組821與超表面結構組822的超表面結構個數及尺寸變化不同;超表面結構組822與超表面結構組823的超表面結構的方位變化與尺寸變化皆不同;而超表面結構組821與超表面結構組824的排列方位不同。藉由在同一基板上同時具有多種不同型態的超表面結構組,能夠同時對多種波長或多種入射角度的電磁波實現波束轉向(beam steering)或多方向波束散射,以達成提升5G訊號覆蓋率的功效。FIG. 8 is a schematic plan view of a display device 80 according to an embodiment of the present invention. The display device 80 includes: a substrate 110 , a display element 130 arranged in an array, and a plurality of metasurface structure groups 821 , 822 , 823 , and 824 . Compared with the display device 10 shown in FIGS. 1A to 1B , the display device 80 shown in FIG. 8 is different in that the display device 80 includes different metasurface structure groups 821 , 822 , 823 , and 824 from each other. For example, although the metasurface structure groups 821 , 822 , 823 , and 824 all include metasurface structures with the same shape, that is, the combination of the square ring structure and the square structure; however, the metasurface structure group 821 and the metasurface structure group 822 are The number and size of surface structures are different; the metasurface structure group 822 and the metasurface structure group 823 have different orientation changes and size changes; and the metasurface structure group 821 and the metasurface structure group 824 have different arrangement orientations. By having a variety of different types of metasurface structures on the same substrate at the same time, beam steering or multi-directional beam scattering can be achieved for electromagnetic waves of various wavelengths or incident angles at the same time, so as to improve the coverage of 5G signals. effect.

圖9是可用於本發明實施例的超表面結構的圖樣示意圖。在上述實施例中,超表面結構組120、520、620、720、821、822、823、824的超表面結構還可以具有諸如圖9所示的(a)直條、(b)人字、(c)人字錨、(d)十字、(e)萬字、(f)十字環、(g)人字環、(h)圓環、(i)方環、(j)六角環、(k)方塊、(l)六角塊、(m)圓塊、(n)亞字、(o)端折十字環、(p)人字環-三腳架等形狀或上述形狀的組合。9 is a schematic diagram of a metasurface structure that may be used in embodiments of the present invention. In the above embodiment, the metasurface structures of the metasurface structure groups 120, 520, 620, 720, 821, 822, 823, and 824 may also have (a) straight bars, (b) chevrons, (c) Herringbone Anchor, (d) Cross, (e) Swastika, (f) Cross Ring, (g) Herringbone Ring, (h) Circle Ring, (i) Square Ring, (j) Hexagonal Ring, ( k) square, (l) hexagonal block, (m) round block, (n) sub-word, (o) end-fold cross ring, (p) herringbone ring-tripod and other shapes or a combination of the above shapes.

圖10A是比較例的模擬圖。圖10B是依照本發明一實施例的模擬圖。比較例與實施例的模擬皆在相同條件下使用12GHz的電磁波進行,比較例與實施例的不同之處在於:實施例的模擬採用圖3所示的顯示裝置30進行,而比較例的模擬是從圖3所示的顯示裝置30中移除超表面結構組120及可見光吸收層140後進行。從圖10A的模擬結果可以看出,垂直入射的電磁波會直接穿透顯示裝置,無法提供波束轉向的功能。然而,圖10B的模擬結果顯示,垂直入射的電磁波大部分可被反射且轉向至約30至40度。FIG. 10A is a simulation diagram of a comparative example. FIG. 10B is a simulation diagram according to an embodiment of the present invention. The simulations of the comparative example and the embodiment are all carried out using electromagnetic waves of 12 GHz under the same conditions. The difference between the comparative example and the embodiment is that the simulation of the embodiment is carried out using the display device 30 shown in FIG. 3 , while the simulation of the comparative example is This is performed after removing the metasurface structure group 120 and the visible light absorbing layer 140 from the display device 30 shown in FIG. 3 . It can be seen from the simulation result in FIG. 10A that the electromagnetic wave of vertical incidence will directly penetrate the display device and cannot provide the function of beam steering. However, the simulation results of FIG. 10B show that the electromagnetic waves of normal incidence can be mostly reflected and turned to about 30 to 40 degrees.

綜上所述,本發明的顯示裝置藉由設置可使電磁波轉向的超表面結構組,使得顯示裝置能夠任意改變電磁波反射或折射角度以延伸電磁波的可傳輸距離。如此一來,裝設於各處的顯示裝置(例如室內電視或室外電視牆)還可有助於改善訊號死角區域的訊號強度,從而提高5G毫米波的覆蓋率。To sum up, the display device of the present invention can change the reflection or refraction angle of the electromagnetic wave arbitrarily to extend the transmission distance of the electromagnetic wave by providing the metasurface structure group which can turn the electromagnetic wave. In this way, display devices installed in various places (such as indoor TVs or outdoor video walls) can also help to improve the signal strength in signal dead areas, thereby improving the coverage of 5G mmWave.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

10、20、30、40、80:顯示裝置 101:前側 102:背側 110:基板 120、520、620、720、821、822、823、824:超表面結構組 121、122、123:超表面結構 121a、122a、123a:方環結構 121b、122b、123b:方塊結構 130、131、132:顯示元件 140:可見光吸收層 250:平坦層 521、522:超表面結構 521a、522a:方環結構 521b、522b:方塊結構 621、622、623、624:超表面結構 621a、622a、623a、624a:方環結構 621b、622b、623b、624b:方塊結構 721、722、723、724、725:超表面結構 721a、722a、723a、724a、725a:方環結構 721b、722b、723b、724b、725b:方塊結構 A-A’:剖面線 CW、CW’:導線 DC:驅動元件 OP、OR:開口 10, 20, 30, 40, 80: Display device 101: Front side 102: back side 110: Substrate 120, 520, 620, 720, 821, 822, 823, 824: metasurface structure group 121, 122, 123: Metasurface Structures 121a, 122a, 123a: Square ring structure 121b, 122b, 123b: block structure 130, 131, 132: Display elements 140: visible light absorption layer 250: flat layer 521, 522: Metasurface Structure 521a, 522a: Square ring structure 521b, 522b: Block structure 621, 622, 623, 624: Metasurface Structures 621a, 622a, 623a, 624a: Square ring structure 621b, 622b, 623b, 624b: block structure 721, 722, 723, 724, 725: Metasurface Structures 721a, 722a, 723a, 724a, 725a: Square ring structure 721b, 722b, 723b, 724b, 725b: block structure A-A’: hatch line CW, CW': wire DC: drive element OP, OR: opening

圖1A是依照本發明一實施例的顯示裝置10的平面示意圖。 圖1B是沿圖1A的剖面線A-A’所作的剖面示意圖。 圖1C是顯示裝置10的超表面結構組120所產生的電磁波相位延遲曲線圖。 圖2是依照本發明一實施例的顯示裝置20的剖面示意圖。 圖3是依照本發明一實施例的顯示裝置30的剖面示意圖。 圖4是依照本發明一實施例的顯示裝置40的剖面示意圖。 圖5A是依照本發明一實施例的超表面結構組520的平面示意圖。 圖5B是圖5A的超表面結構組520所產生的電磁波相位延遲曲線圖。 圖6A是依照本發明一實施例的超表面結構組620的平面示意圖。 圖6B是圖6A的超表面結構組620所產生的電磁波相位延遲曲線圖。 圖7A是依照本發明一實施例的超表面結構組720的平面示意圖。 圖7B是圖7A的超表面結構組720所產生的電磁波相位延遲曲線圖。 圖8是依照本發明一實施例的顯示裝置80的平面示意圖。 圖9是可用於本發明實施例的超表面結構的圖樣示意圖。 圖10A是比較例的模擬圖。 圖10B是依照本發明一實施例的模擬圖。 FIG. 1A is a schematic plan view of a display device 10 according to an embodiment of the present invention. Fig. 1B is a schematic cross-sectional view taken along the section line A-A' of Fig. 1A. FIG. 1C is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 120 of the display device 10 . FIG. 2 is a schematic cross-sectional view of a display device 20 according to an embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of a display device 30 according to an embodiment of the present invention. FIG. 4 is a schematic cross-sectional view of a display device 40 according to an embodiment of the present invention. FIG. 5A is a schematic plan view of a metasurface structure group 520 according to an embodiment of the present invention. FIG. 5B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 520 in FIG. 5A . FIG. 6A is a schematic plan view of a metasurface structure group 620 according to an embodiment of the present invention. FIG. 6B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 620 in FIG. 6A . FIG. 7A is a schematic plan view of a metasurface structure group 720 according to an embodiment of the present invention. FIG. 7B is a graph showing the phase delay of electromagnetic waves generated by the metasurface structure group 720 in FIG. 7A . FIG. 8 is a schematic plan view of a display device 80 according to an embodiment of the present invention. 9 is a schematic diagram of a metasurface structure that may be used in embodiments of the present invention. FIG. 10A is a simulation diagram of a comparative example. FIG. 10B is a simulation diagram according to an embodiment of the present invention.

10:顯示裝置 10: Display device

110:基板 110: Substrate

120:超表面結構組 120: Metasurface Structure Group

121、122、123:超表面結構 121, 122, 123: Metasurface Structures

121a、122a、123a:方環結構 121a, 122a, 123a: Square ring structure

121b、122b、123b:方塊結構 121b, 122b, 123b: block structure

131、132:顯示元件 131, 132: Display components

140:可見光吸收層 140: visible light absorption layer

A-A’:剖面線 A-A’: hatch line

OP、OR:開口 OP, OR: opening

Claims (7)

一種顯示裝置,包括:基板;多組超表面結構組,位於所述基板上,且各所述超表面結構組包括多個超表面結構;多個顯示元件,位於所述基板上,其中所述顯示元件與所述超表面結構組不共平面,所述顯示元件位於所述基板與所述超表面結構組之間;以及可見光吸收層,覆蓋所述超表面結構。 A display device, comprising: a substrate; a plurality of metasurface structure groups located on the substrate, and each of the metasurface structure groups includes a plurality of metasurface structures; a plurality of display elements located on the substrate, wherein the A display element is not coplanar with the metasurface structure group, the display element is located between the substrate and the metasurface structure group; and a visible light absorbing layer covers the metasurface structure. 如請求項1所述的顯示裝置,還包括平坦層,覆蓋所述顯示元件,且位於所述超表面結構組與所述顯示元件之間。 The display device of claim 1, further comprising a flat layer covering the display element and located between the metasurface structure group and the display element. 如請求項1所述的顯示裝置,其中所述顯示元件至少部分不重疊所述可見光吸收層。 The display device of claim 1, wherein the display element at least partially does not overlap the visible light absorbing layer. 一種顯示裝置,包括:基板;多組超表面結構組,位於所述基板上,且各所述超表面結構組包括多個超表面結構;多個顯示元件,位於所述基板上,其中所述顯示元件與所述超表面結構組不共平面,所述超表面結構組位於所述基板與所述顯示元件之間;以及可見光吸收層,覆蓋所述超表面結構,且所述可見光吸收層位於所述顯示元件與所述超表面結構組之間。 A display device, comprising: a substrate; a plurality of metasurface structure groups located on the substrate, and each of the metasurface structure groups includes a plurality of metasurface structures; a plurality of display elements located on the substrate, wherein the A display element is not coplanar with the metasurface structure group, the metasurface structure group is located between the substrate and the display element; and a visible light absorbing layer covering the metasurface structure, and the visible light absorbing layer is located in the between the display element and the metasurface structure group. 如請求項1或4所述的顯示裝置,其中各所述超表面結構組彼此相同或彼此不同。 The display device of claim 1 or 4, wherein each of the metasurface structure groups is the same as or different from each other. 如請求項1或4所述的顯示裝置,其中各所述超表面結構組中的各所述超表面結構具有彼此相同的形狀及彼此不同的尺寸。 The display device of claim 1 or 4, wherein each of the metasurface structures in each of the metasurface structure groups has the same shape and different sizes from each other. 如請求項1或4所述的顯示裝置,其中各所述超表面結構組中的各所述超表面結構具有彼此相同的形狀及彼此不同的方位。 The display device of claim 1 or 4, wherein each of the metasurface structures in each of the metasurface structure groups has the same shape and different orientations from each other.
TW110121829A 2021-04-01 2021-06-16 Display device TWI769863B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111338562.3A CN114142237A (en) 2021-04-01 2021-11-12 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163169431P 2021-04-01 2021-04-01
US63/169,431 2021-04-01

Publications (2)

Publication Number Publication Date
TWI769863B true TWI769863B (en) 2022-07-01
TW202240251A TW202240251A (en) 2022-10-16

Family

ID=83103775

Family Applications (8)

Application Number Title Priority Date Filing Date
TW111119940A TWI786022B (en) 2021-04-01 2021-06-16 Display device
TW110121829A TWI769863B (en) 2021-04-01 2021-06-16 Display device
TW110128676A TWI779757B (en) 2021-04-01 2021-08-04 Antenna structure
TW110128697A TWI766790B (en) 2021-04-01 2021-08-04 Display device
TW110129365A TWI773478B (en) 2021-04-01 2021-08-10 Antenna structure
TW111138091A TWI828353B (en) 2021-04-01 2021-08-13 Display device
TW110129930A TWI781725B (en) 2021-04-01 2021-08-13 Display device
TW110130291A TWI782666B (en) 2021-04-01 2021-08-17 Solar panel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111119940A TWI786022B (en) 2021-04-01 2021-06-16 Display device

Family Applications After (6)

Application Number Title Priority Date Filing Date
TW110128676A TWI779757B (en) 2021-04-01 2021-08-04 Antenna structure
TW110128697A TWI766790B (en) 2021-04-01 2021-08-04 Display device
TW110129365A TWI773478B (en) 2021-04-01 2021-08-10 Antenna structure
TW111138091A TWI828353B (en) 2021-04-01 2021-08-13 Display device
TW110129930A TWI781725B (en) 2021-04-01 2021-08-13 Display device
TW110130291A TWI782666B (en) 2021-04-01 2021-08-17 Solar panel

Country Status (1)

Country Link
TW (8) TWI786022B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201917476A (en) * 2015-06-15 2019-05-01 美商麥吉克利普公司 Liquid crystal devices and methods for manufacturing the same
US20200135703A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Light field display for head mounted apparatus using metapixels

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962613B2 (en) * 2000-03-24 2005-11-08 Cymbet Corporation Low-temperature fabrication of thin-film energy-storage devices
EP3056978A1 (en) * 2009-02-26 2016-08-17 3M Innovative Properties Company Touch screen sensor and patterned substrate having overlaid micropatterns with low visibility
KR101036213B1 (en) * 2010-01-26 2011-05-20 광주과학기술원 Electronic device with a dual function of light emitting device and solar cell
TW201128967A (en) * 2010-02-09 2011-08-16 Univ Nat Changhua Education High frequency signal emitter
JP2013528963A (en) * 2010-03-24 2013-07-11 ダネッシュ ミナ Integrated photocell / radio frequency antenna
TW201210043A (en) * 2010-08-27 2012-03-01 Univ Shu Te Solar panel with base station antenna
TWI525897B (en) * 2013-10-29 2016-03-11 國立高雄師範大學 Circularly-polarized green antenna integrated with solar cell panel and antenna
TWI650595B (en) * 2013-11-15 2019-02-11 禾瑞亞科技股份有限公司 Touch display, control unit, and method for driving a plurality of touch driving electrodes of touch display
TWI528571B (en) * 2013-12-30 2016-04-01 茂迪股份有限公司 Solar cell, solar cell set, solar cell module, and method of assembling the solar cell set
TWI543084B (en) * 2013-12-31 2016-07-21 國立彰化師範大學 Wireless sensor tags based on solar cell
TWI526939B (en) * 2014-01-03 2016-03-21 國立彰化師範大學 Rfid tag and solar cell integration device and integration method thereof
US11231544B2 (en) * 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
CN105846048A (en) * 2016-04-11 2016-08-10 南京邮电大学 Solar energy cell antenna
US10854952B2 (en) * 2016-05-03 2020-12-01 Kymeta Corporation Antenna integrated with photovoltaic cells
CN107394318B (en) * 2017-07-14 2019-11-05 合肥工业大学 A kind of liquid crystal phase-shifting unit for reflective Adjustable Phase-shifter
CN107528121B (en) * 2017-08-29 2020-02-18 京东方科技集团股份有限公司 Antenna structure, operation method thereof and antenna device
US10705391B2 (en) * 2017-08-30 2020-07-07 Wafer Llc Multi-state control of liquid crystals
US10989840B2 (en) * 2017-11-01 2021-04-27 Applied Materials, Inc. Non-absorptive trans-reflective nanostructured RGB filters
CN208818972U (en) * 2018-08-10 2019-05-03 北京京东方传感技术有限公司 Phase shifter and liquid crystal antenna
CN209249695U (en) * 2018-09-12 2019-08-13 北京超材信息科技有限公司 A kind of restructural beam scanning antennas of liquid crystal
US11616305B2 (en) * 2018-12-12 2023-03-28 Sharp Kabushiki Kaisha Scanning antenna and method for manufacturing scanning antenna
US11067884B2 (en) * 2018-12-26 2021-07-20 Apple Inc. Through-display optical transmission, reception, or sensing through micro-optic elements
TWI696315B (en) * 2019-01-30 2020-06-11 友達光電股份有限公司 Antenna device and antenna system
TWI699929B (en) * 2019-01-30 2020-07-21 友達光電股份有限公司 Antenna unit and antenna device
CN111614801A (en) * 2019-02-25 2020-09-01 Oppo广东移动通信有限公司 Display screen assembly and electronic equipment
KR20210007627A (en) * 2019-07-12 2021-01-20 엘지디스플레이 주식회사 Conductive polarizing color filter and display device having thereof
CN111326864B (en) * 2020-03-13 2021-06-18 天津大学 Coupling differential feed double compression mode patch antenna and solar cell integration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201917476A (en) * 2015-06-15 2019-05-01 美商麥吉克利普公司 Liquid crystal devices and methods for manufacturing the same
US20200135703A1 (en) * 2018-10-31 2020-04-30 Intel Corporation Light field display for head mounted apparatus using metapixels

Also Published As

Publication number Publication date
TW202240976A (en) 2022-10-16
TW202240925A (en) 2022-10-16
TW202240252A (en) 2022-10-16
TWI828353B (en) 2024-01-01
TWI786022B (en) 2022-12-01
TW202240254A (en) 2022-10-16
TWI779757B (en) 2022-10-01
TW202240251A (en) 2022-10-16
TWI773478B (en) 2022-08-01
TWI781725B (en) 2022-10-21
TWI782666B (en) 2022-11-01
TW202240975A (en) 2022-10-16
TW202303233A (en) 2023-01-16
TWI766790B (en) 2022-06-01
TW202305465A (en) 2023-02-01

Similar Documents

Publication Publication Date Title
CN111983741B (en) RCS controllable luneberg lens reflector based on active frequency selective surface
CN105655723B (en) A kind of RCS reduction methods for phased array antenna
CN2870195Y (en) Frequency selection device
WO2018042830A1 (en) Optical imaging apparatus
CN107658571B (en) Encoding wave-absorbing metamaterial applied to reduction of reflection section of broadband radar
CN107565218A (en) UHF radar frequency spectrum shift method based on FSS reflection multilayer modulation panels
JP6267219B2 (en) A flat two-sided device with an equivalent radar cross-section that is adapted (maximized or minimized)
CN113036443B (en) Optically transparent electromagnetic super-surface for reducing broadband and wide-angle RCS
TWI664435B (en) Conductive structure body, electrode and display device comprising the same
CN105785362B (en) A kind of low graing lobe configuration method of three-dimensional imaging radar two dimension thinned array
TWI769863B (en) Display device
CN112103661A (en) Transparent flexible broadband microwave low-scattering structure and transparent flexible skin
CN111458923A (en) Peep-proof film and display device
US20210092834A1 (en) Flexible display panels and display devices
Mirzapour et al. A wideband low RCS and high gain phase gradient metalens antenna
CN111092300A (en) Indium tin oxide-based amplitude modulation coding reflective basic unit and metamaterial
WO2021169832A1 (en) Electronic device
KR100617032B1 (en) liquid crystal display device and method for manufacturing the same
CN109560389B (en) Broadband RCS (radar cross section) reduction super surface based on novel scattering cancellation method
CN114142237A (en) Display device
WO2023027195A1 (en) Frequency-selective reflecting plate and communication relay system
US11682833B2 (en) Antenna, preparation method thereof and electronic device
CN109254343B (en) Light guide assembly and display device
JP2016144164A (en) Radio wave reflection body
KR20220058483A (en) Dual-band electromagnetic wave absorber with metasurface