TWI768864B - 圖案檢查裝置以及圖案的輪廓位置取得方法 - Google Patents

圖案檢查裝置以及圖案的輪廓位置取得方法 Download PDF

Info

Publication number
TWI768864B
TWI768864B TW110115920A TW110115920A TWI768864B TW I768864 B TWI768864 B TW I768864B TW 110115920 A TW110115920 A TW 110115920A TW 110115920 A TW110115920 A TW 110115920A TW I768864 B TWI768864 B TW I768864B
Authority
TW
Taiwan
Prior art keywords
contour
pixel
pattern
image
outline
Prior art date
Application number
TW110115920A
Other languages
English (en)
Other versions
TW202203157A (zh
Inventor
Original Assignee
日商紐富來科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商紐富來科技股份有限公司 filed Critical 日商紐富來科技股份有限公司
Publication of TW202203157A publication Critical patent/TW202203157A/zh
Application granted granted Critical
Publication of TWI768864B publication Critical patent/TWI768864B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • H01J2237/221Image processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2448Secondary particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24592Inspection and quality control of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本發明的一形態提供一種能夠進行高精度的輪廓位置提取的圖案檢查裝置以及圖案的輪廓位置取得方法。本發明的一形態的圖案檢查裝置的特徵在於包括:使用具有不同方向性的多個二維空間濾波函數,針對各方向進行圖像的濾波處理的電路;提取濾波處理後針對各方向的畫素值中規定值大於第一臨限值的多個畫素作為圖形圖案的輪廓線所經過的多個輪廓畫素候補的電路;以及提取多個輪廓畫素候補中除了微分值達到第二臨限值以上的輪廓畫素候補以外的多個輪廓畫素的電路,所述微分值為於與針對各輪廓畫素候補獲得規定值的第一方向正交的第二方向上對濾波處理前的畫素值進行微分而得的微分值。

Description

圖案檢查裝置以及圖案的輪廓位置取得方法
本發明的一形態是有關於一種圖案檢查裝置及圖案的輪廓位置取得方法。例如,是有關於一種使用藉由由電子束所產生的多射束照射基板後放出的圖案的二次電子圖像來進行檢查的檢查裝置、使用藉由紫外線照射基板後獲得的圖案的光學圖像來進行檢查的檢查裝置、或者取得該些檢查中所使用的圖像內的圖案的輪廓位置的方法。
近年來,伴隨大規模積體電路(Large Scale Integrated circuit,LSI)的高積體化及大容量化,半導體元件所要求的電路線寬變得越來越窄。而且,對於花費極大的製造成本的LSI的製造而言,良率的提昇不可或缺。但是,構成LSI的圖案正在接近10奈米以下的等級,必須作為圖案缺陷進行檢測的尺寸亦變得極小。因此,需要對已被轉印至半導體晶圓上的超微細圖案的缺陷進行檢查的圖案檢查裝置的高精度化。此外,作為使良率下降的大的因素之一,可列舉利用光微影技術將超微細圖案曝光、轉印至半導體晶圓上時所使用的遮罩的圖案缺陷。因此,需要對LSI製造中所使用的轉印用遮罩的缺陷進行檢查的圖案檢查裝置的高精度化。
作為缺陷檢查方法,已知有如下的方法:藉由將對形成於半導體晶圓或微影遮罩等基板上的圖案進行拍攝所得的測定圖像與設計資料、或拍攝基板上的同一圖案所得的測定圖像進行比較來進行檢查。例如,作為圖案檢查方法,有將拍攝同一基板上的不同地方的同一圖案所得的測定圖像資料彼此進行比較的「晶粒-晶粒(die to die)檢查」,或以進行了圖案設計的設計資料為基礎生成設計圖像資料(參照圖像),並將其與拍攝圖案所得的作為測定資料的測定圖像進行比較的「晶粒-資料庫(die to database)檢查」。所拍攝的圖像作為測定資料而被發送至比較電路。於比較電路中,於圖像彼此的對位後,按照適當的演算法將測定資料與參照資料進行比較,於不一致的情況下,判定為有圖案缺陷。
所述圖案檢查裝置中,除對檢查對象基板照射雷射光,並拍攝其透過像或反射像的裝置以外,亦正在開發如下的檢查裝置:利用一次電子束於檢查對象基板上進行掃描(scan),對伴隨一次電子束的照射而自檢查對象基板中放出的二次電子進行檢測,並取得圖案像。關於該些圖案檢查裝置,研究的不是畫素值彼此的比較,而是提取圖像內的圖案的輪廓線,將其與參照圖像輪廓線的距離用於判定指標。此處,由於取得檢查中使用的圖像需要時間,因此要求藉由增大畫素尺寸來實現檢查處理時間的縮短。但是,另一方面,若畫素尺寸變大,則解析度隨之劣化,因此存在難以自圖像中精度良好地提取圖案的輪廓位置的問題。所述問題並不限於圖案檢查。自圖像中提取圖案的輪廓位置的其他 情況下亦可能產生同樣的問題。特別是,於使用電子束獲得的圖像中經常會出現充電等引起的亮度不均,因此成為誤提取輪廓線的原因。
此處,使用索貝爾濾波器(sobel filter)等求出邊緣候補,對基於邊緣候補以及鄰接畫素群的檢查區域內的各畫素求出濃度值的二次微分值。進而,選擇與邊緣候補鄰接的2組鄰接畫素群中、二次微分值的符號不同的組合多的鄰接畫素群作為第二邊緣候補。並且,揭示有使用邊緣候補的二次微分值以及第二邊緣候補的二次微分值並以子畫素為單位求出檢測對象邊緣的邊緣座標的方法(例如,參照日本專利特開2011-48592號公報)。
本發明的一形態是有關於一種圖案檢查裝置及圖案的輪廓位置取得方法。
本發明的一形態的圖案檢查裝置的特徵在於,包括:圖像取得機構,具有放出射束的放出源、聚焦所述射束的透鏡以及檢測射束強度的檢測器,且取得形成有圖形圖案的基板的圖像;濾波處理電路,使用具有不同方向性的多個二維空間濾波函數,針對各方向進行圖像的濾波處理;輪廓畫素候補提取電路,提取濾波處理後針對各方向的畫素值中規定值大於第一臨限值的多個畫素作為圖形圖案的輪廓線所經過的多個輪廓畫素候補; 輪廓畫素提取電路,提取多個輪廓畫素候補中除了於與針對各輪廓畫素候補獲得規定值的第一方向正交的第二方向上對濾波處理前的畫素值進行微分後的微分值達到第二臨限值以上的輪廓畫素候補以外的多個輪廓畫素;輪廓位置算出電路,針對多個輪廓畫素的各輪廓畫素,使用獲得規定值的第一方向的一維分佈來算出子畫素為單位的輪廓位置;比較電路,使用輪廓位置的資料,將所述圖像的輪廓線與規定的參照輪廓線進行比較。
本發明的一形態的圖案的輪廓位置取得方法的特徵在於,使用具有不同方向性的多個二維空間濾波函數,針對各方向,對形成有圖形圖案的基板的圖像進行濾波處理,提取濾波處理後針對各方向的畫素值中規定值大於第一臨限值的多個畫素作為圖形圖案的輪廓線所經過的多個輪廓畫素候補,提取多個輪廓畫素候補中除了於與針對各輪廓畫素候補獲得規定值的第一方向正交的第二方向上對濾波處理前的畫素值進行微分後的微分值達到第二臨限值以上的輪廓畫素候補以外的多個輪廓畫素,針對多個輪廓畫素的各輪廓畫素,使用獲得規定值的第一方向的一維分佈,算出子畫素為單位的輪廓位置並予以輸出。
10:一次電子束
11:輪廓位置
13:參照輪廓位置
15:參照輪廓線
20:多一次電子束
22:孔(開口部)
29:子照射區域
30:圖框區域
31:圖框圖像(實際圖像)
32:條紋區域
33:矩形區域
34:照射區域
50、52、56、57:儲存裝置
54:圖框圖像製作部
60:雜訊濾波處理部
62:二維空間濾波處理部
64:輪廓畫素候補提取部
66:切線方向微分演算部
68:輪廓畫素提取部
70:法線方向分佈製作部
72:偽輪廓畫素去除部
74:輪廓位置算出部
76:孤立輪廓位置去除部
78:接近輪廓位置去除部
82:距離算出部
84:比較處理部
100:檢查裝置
101:基板(試樣)
102:電子束柱(電子鏡筒)
103:檢查室
105:平台
106:檢測電路
107:位置電路
108:比較電路
109:儲存裝置
110:控制計算機
112:參照輪廓位置提取電路
114:平台控制電路
117:監視器
118:記憶體
120:匯流排
122:雷射測長系統
123:晶片圖案記憶體
124:透鏡控制電路
126:消隱控制電路
128:偏轉控制電路
142:驅動機構
144、146、148:DAC放大器
150:圖像取得機構
160:控制系統電路
200:電子束
201:電子槍(放出源)
202:電磁透鏡
203:成形孔徑陣列基板
205、206、224、226:電磁透鏡
207:電磁透鏡(物鏡)
208:主偏轉器
209:副偏轉器
212:批量消隱偏轉器
213:限制孔徑基板
214:射束分離器(E×B分離器)
216:鏡子
218:偏轉器
222:多檢測器
300:多二次電子束
330:檢查區域
332:晶片(晶圓晶粒)
A(1)、A(2)、A(3)、A(4)、A(5):亮度值
S102、S104、S110、S112、S114、S116、S118、S120、S122、S124、S126、S132、S142、S144:步驟
x、y:方向
f1i、f2i:二維拉普拉斯濾波器
f11~f18、f21~f28:二維拉普拉斯濾波器
L1:一個畫素尺寸
圖1是表示實施方式1中的圖案檢查裝置的結構的一例的結構圖。
圖2是表示實施方式1中的成形孔徑陣列基板的結構的概念圖。
圖3是表示實施方式1中的形成於半導體基板的多個晶片區域的一例的圖。
圖4是用於說明實施方式1中的多射束的掃描動作的圖。
圖5是表示實施方式1中的檢查方法的主要步驟的流程圖。
圖6是表示實施方式1中的比較電路內的結構的一例的框圖。
圖7是表示實施方式1中的二維空間濾波器以及二維空間濾波器的方向性的一例的圖。
圖8是表示實施方式1中的小標度的各方向的二維拉普拉斯濾波器的一例的圖。
圖9是表示實施方式1中的大標度的各方向的二維拉普拉斯濾波器的一部分的一例的圖。
圖10是表示實施方式1中的大標度的各方向的二維拉普拉斯濾波器的剩餘部分的一例的圖。
圖11是用於說明實施方式1中的疑似輪廓畫素的存在的圖。
圖12是用於說明實施方式1中的切線方向微分的圖。
圖13是表示實施方式1中的法線方向的採樣位置的一例的 圖。
圖14是用於說明實施方式1中的判定一維分佈的極值是否存在於一維分佈的中央附近的方法的圖。
圖15是表示實施方式1中的一維分佈的一例以及一維空間濾波處理後的分佈的一例的圖。
圖16是表示實施方式1中的進行了樣條(spline)內插後的濾波處理後的分佈的一例的圖。
圖17是表示實施方式1中的孤立輪廓位置的一例的圖。
圖18是表示實施方式1中的接近輪廓位置的一例的圖。
圖19是用於說明實施方式1中的提取參照輪廓位置的方法的圖。
圖20是表示實施方式1中的輪廓線間的距離的一例的圖。
以下,於實施方式中,說明能夠進行高精度的輪廓位置的提取的裝置及方法。
以下,於實施方式中,對作為圖案檢查裝置的一例的電子束檢查裝置進行說明。但是,並不限定於此。例如,亦可為下述檢查裝置,即:將紫外線照射至被檢查基板,使用透過被檢查基板或由被檢查基板反射的光來取得被檢查圖像。又,於實施方式中,對使用由多條電子束產生的多射束來取得圖像的檢查裝置進行說明,但並不限定於此。亦可為使用由一條電子束產生的單射束來取得圖像的檢查裝置。
實施方式1.
圖1是表示實施方式1中的圖案檢查裝置的結構的一例的結構圖。於圖1中,對已形成於基板的圖案進行檢查的檢查裝置100是多電子束檢查裝置的一例。檢查裝置100包括圖像取得機構150(二次電子圖像取得機構)、及控制系統電路160。圖像取得機構150包括電子束柱102(電子鏡筒)及檢查室103。於電子束柱102內,配置有:電子槍201、電磁透鏡202、成形孔徑陣列基板203、電磁透鏡205、批量消隱偏轉器(blanking deflector)212、限制孔徑基板213、電磁透鏡206、電磁透鏡207(物鏡)、主偏轉器208、副偏轉器209、射束分離器(beam separator)214、偏轉器218、電磁透鏡224、電磁透鏡226、以及多檢測器222。於圖1的例子中,電子槍201、電磁透鏡202、成形孔徑陣列基板203、電磁透鏡205、批量消隱偏轉器212、限制孔徑基板213、電磁透鏡206、電磁透鏡207(物鏡)、主偏轉器208、以及副偏轉器209,構成將多一次電子束照射至基板101的一次電子光學系統。射束分離器214、偏轉器218、電磁透鏡224、及電磁透鏡226,構成將多二次電子束照射至多檢測器222的二次電子光學系統。
於檢查室103內,配置至少可於XY方向上移動的平台105。於平台105上配置成為檢查對象的基板101(試樣)。基板101包含曝光用遮罩基板、及矽晶圓等半導體基板。當基板101為半導體基板時,於半導體基板形成有多個晶片圖案(晶圓晶粒)。當基板101為曝光用遮罩基板時,於曝光用遮罩基板形成有 晶片圖案。晶片圖案包含多個圖形圖案。將已形成於所述曝光用遮罩基板的晶片圖案多次曝光轉印至半導體基板上,藉此於半導體基板形成多個晶片圖案(晶圓晶粒)。以下,主要對基板101為半導體基板的情況進行說明。基板101例如使圖案形成面朝向上側而配置於平台105。另外,於平台105上,配置有將自配置於檢查室103的外部的雷射測長系統122照射的雷射測長用的雷射光予以反射的鏡子216。多檢測器222於電子束柱102的外部與檢測電路106連接。
於控制系統電路160中,對檢查裝置100整體進行控制的控制計算機110經由匯流排120而與位置電路107、比較電路108、參照輪廓位置提取電路112、平台控制電路114、透鏡控制電路124、消隱控制電路126、偏轉控制電路128、磁碟裝置等儲存裝置109、監視器117、及記憶體118連接。另外,偏轉控制電路128與數位-類比轉換(Digital-to-Analog Conversion,DAC)放大器144、DAC放大器146、DAC放大器148連接。DAC放大器146與主偏轉器208連接,DAC放大器144與副偏轉器209連接。DAC放大器148與偏轉器218連接。
又,檢測電路106與晶片圖案記憶體123連接。晶片圖案記憶體123與比較電路108連接。另外,於平台控制電路114的控制下,藉由驅動機構142來驅動平台105。於驅動機構142中,例如構成如於平台座標系中的X方向、Y方向、θ方向上進行驅動的三軸(X-Y-θ)馬達般的驅動系統,平台105變得可於 X-Y-θ方向上移動。該些未圖示的X馬達、Y馬達、θ馬達例如可使用步進馬達。平台105藉由XYθ各軸的馬達而可於水平方向及旋轉方向上移動。而且,平台105的移動位置藉由雷射測長系統122來測定,並被供給至位置電路107。雷射測長系統122接收來自鏡子216的反射光,藉此以雷射干涉法的原理對平台105的位置進行測長。平台座標系例如相對於與多一次電子束的光軸(電子軌道中心軸)正交的面,設定X方向、Y方向、θ方向。
電磁透鏡202、電磁透鏡205、電磁透鏡206、電磁透鏡207(物鏡)、電磁透鏡224、電磁透鏡226、及射束分離器214由透鏡控制電路124來控制。又,批量消隱偏轉器212包括兩極以上的電極,針對各電極經由未圖示的DAC放大器而由消隱控制電路126來控制。副偏轉器209包括四極以上的電極,針對各電極經由DAC放大器144而由偏轉控制電路128來控制。主偏轉器208包括四極以上的電極,針對各電極經由DAC放大器146而由偏轉控制電路128來控制。偏轉器218包括四極以上的電極,針對各電極經由DAC放大器148而由偏轉控制電路128來控制。
於電子槍201,連接有未圖示的高壓電源電路,藉由對電子槍201內的未圖示的燈絲(陰極)與引出電極(陽極)間施加來自高壓電源電路的加速電壓,並且藉由另一引出電極(韋乃特)的電壓的施加與陰極的以規定溫度進行的加熱,使自陰極放出的電子群加速,成為電子束200而被放出。
此處,圖1中記載了於對實施方式1進行說明方面必要 的結構。對於檢查裝置100而言,通常亦可包括必要的其他結構。
圖2是表示實施方式1中的成形孔徑陣列基板的結構的概念圖。於圖2中,於成形孔陣列基板203,二維狀的橫(x方向)m1行×縱(y方向)n1段(m1、n1中的一者為2以上的整數,另一者為1以上的整數)的孔(開口部)22在x方向、y方向上以規定的排列間距形成。於圖2的例子中,示出形成有23×23的孔(開口部)22的情況。各孔22理想的是均由相同尺寸形狀的矩形形成。或者,理想的是亦可為相同外徑的圓形。藉由電子束200的一部分分別穿過該些多個孔22,而形成m1×n1條(=N條)多一次電子束20。
接著,對檢查裝置100中的圖像取得機構150的運作進行說明。
自電子槍201(放出源)放出的電子束200由電磁透鏡202折射,而對成形孔徑陣列基板203整體進行照明。如圖2所示,於成形孔徑陣列基板203上,形成有多個孔22(開口部),電子束200對包含多個孔22全體的區域進行照明。照射至多個孔22的位置的電子束200的各一部分分別穿過所述成形孔徑陣列基板203的多個孔22,藉此形成多一次電子束20。
所形成的多一次電子束20由電磁透鏡205、及電磁透鏡206分別折射,一面反覆形成中間像及交叉(cross over),一面穿過配置於多一次電子束20的各射束的交叉位置(各射束的中間像位置)的射束分離器214而前進至電磁透鏡207(物鏡)。然後, 電磁透鏡207將多一次電子束20聚焦(對焦)於基板101。藉由物鏡207而焦點對準(對焦)於基板101(試樣)面上的多一次電子束20由主偏轉器208及副偏轉器209批量偏轉,並照射至各射束在基板101上的各自的照射位置。再者,在多一次電子束20整體由批量消隱偏轉器212批量偏轉的情況下,各射束的位置偏離限制孔徑基板213的中心孔,而由限制孔徑基板213遮蔽。另一方面,未由批量消隱偏轉器212偏轉的多一次電子束20如圖1所示般穿過限制孔徑基板213的中心孔。藉由所述批量消隱偏轉器212的開/關(ON/OFF)來進行消隱控制,而對射束的開/關(ON/OFF)進行批量控制。如此般,限制孔徑基板213遮蔽藉由批量消隱偏轉器212而以射束變成關的狀態的方式進行了偏轉的多一次電子束20。而且,藉由自射束變成開至射束變成關為止所形成的穿過了限制孔徑基板213的射束群,形成檢查用(圖像取得用)的多一次電子束20。
當多一次電子束20被照射至基板101的所期望的位置上時,由於所述多一次電子束20的照射,自基板101放出與多一次電子束20的各射束對應的包含反射電子的二次電子的射束(多二次電子束300)。
自基板101放出的多二次電子束300穿過電磁透鏡207而前進至射束分離器214。
此處,作為射束分離器214,例如較佳使用E×B分離器。射束分離器(E×B分離器)214具有產生電場的兩極以上的多個電 極、以及產生磁場的分別具有線圈的兩極以上的多個磁極。多個電極包括相向的兩極電極。多個磁極包括相向的兩極磁極。射束分離器214在與多一次電子束20的中心射束前進的方向(電子軌道中心軸)正交的面上,沿正交的方向產生電場與磁場。電場不論電子的前進方向均朝相同的方向施力。相對於此,磁場依照弗萊明左手定則(Fleming's left hand rule)施力。因此,可藉由電子的侵入方向來使作用於電子的力的方向變化。對於自上側侵入射束分離器214的多一次電子束20而言,電場所形成的力與磁場所形成的力抵消,多一次電子束20向下方直線前進。相對於此,對於自下側侵入射束分離器214的多二次電子束300而言,電場所形成的力與磁場所形成的力均沿相同的方向發揮作用,使多二次電子束300向斜上方彎曲,而自多一次電子束20分離。
向斜上方彎曲而自多一次電子束20分離的多二次電子束300藉由偏轉器218而進一步彎曲,並一面由電磁透鏡224、電磁透鏡226折射一面投影至多檢測器222。多檢測器222對經投影的多二次電子束300進行檢測。於多檢測器222可投影反射電子及二次電子,亦可投影反射電子在中途發散而殘留的二次電子。多檢測器222具有二維感測器。而且,多二次電子束300的各二次電子碰撞二維感測器的各個對應區域以產生電子,並針對各畫素而生成二次電子圖像資料。換言之,於多檢測器222,針對多一次電子束20的各一次電子束,配置有檢測感測器。而且,檢測藉由各一次電子束的照射而放出的對應的二次電子束。因此,多檢 測器222的多個檢測感測器的各檢測感測器,檢測各自負責的由一次電子束的照射引起的圖像用的二次電子束的強度訊號。由多檢測器222檢測到的強度訊號被輸出至檢測電路106。
圖3是表示實施方式1中的形成於半導體基板的多個晶片區域的一例的圖。於圖3中,當基板101為半導體基板(晶圓)時,於半導體基板(晶圓)的檢查區域330,多個晶片(晶圓晶粒)332形成為二維的陣列狀。藉由未圖示的曝光裝置(步進機、掃描器等),將已形成於曝光用遮罩基板的一個晶片份額的遮罩圖案例如縮小成1/4而轉印至各晶片332。各晶片332的區域,例如向y方向以規定的寬度分割成多個條紋區域32。由圖像取得機構150執行的掃描動作,例如針對各條紋區域32而進行實施。例如,一面於-x方向上使平台105移動,一面相對地在x方向上進行條紋區域32的掃描動作。各條紋區域32向長度方向被分割成多個矩形區域33。射束朝成為對象的矩形區域33的移動,藉由由主偏轉器208執行的多一次電子束20整體的批量偏轉而進行。
圖4是用於說明實施方式1中的多射束的掃描動作的圖。於圖4的例子中,示出5×5行的多一次電子束20的情況。藉由多一次電子束20的一次照射而可照射的照射區域34由(基板101面上的多一次電子束20的x方向的射束間間距乘以x方向的射束數所得的x方向尺寸)×(基板101面上的多一次電子束20的y方向的射束間間距乘以y方向的射束數所得的y方向尺寸)來定義。較佳的是各條紋區域32的寬度設定為與照射區域34的y 方向尺寸相同、或者設定為經縮窄掃描餘裕份額的尺寸。於圖3及圖4的例子中,示出照射區域34與矩形區域33相同尺寸的情況。但是,並不限定於此。照射區域34亦可小於矩形區域33。或者亦可大於矩形區域33。然後,多一次電子束20的各射束照射至由自身的射束所在的x方向的射束間間距與y方向的射束間間距包圍的子照射區域29內,並在所述子照射區域29內進行掃描(掃描動作)。構成多一次電子束20的各一次電子束10負責互不相同的任一個子照射區域29。而且,於各發射時,各一次電子束10對負責子照射區域29內的相同位置進行照射。一次電子束10於子照射區域29內的移動,藉由由副偏轉器209執行的多一次電子束20整體的批量偏轉而進行。重覆所述運作,藉由一條一次電子束10在一個子照射區域29內依次進行照射。然後,若一個子照射區域29的掃描結束,則照射位置因由主偏轉器208執行的多一次電子束20整體的批量偏轉而朝相同條紋區域32內的鄰接的矩形區域33移動。重覆所述運作,而於條紋區域32內依次進行照射。若一個條紋區域32的掃描結束,則照射位置因平台105的移動或/及由主偏轉器208執行的多一次電子束20整體的批量偏轉而朝下一條紋區域32移動。如以上所述般藉由各一次電子束10的照射而取得各子照射區域29的二次電子圖像。藉由組合該些各子照射區域29的二次電子圖像,而構成矩形區域33的二次電子圖像、條紋區域32的二次電子圖像、或者晶片332的二次電子圖像。
再者,如圖4所示,各子照射區域29被分割成矩形的 多個圖框區域30,於檢查中使用圖框區域30單位的二次電子圖像(被檢查圖像)。於圖4的例子中,示出一個子照射區域29例如被分割成四個圖框區域30的情況。但是,所分割的數目並不限定於四個。亦可分割成其他數目。
再者,較佳的是例如將在x方向上排列的多個晶片332視為相同的群組,針對各群組例如向y方向以規定的寬度分割成多個條紋區域32。而且,較佳的是條紋區域32間的移動並不限定於各晶片332,而是針對各群組而進行。
此處,於一面將平台105連續移動一面將多一次電子束20照射至基板101的情況下,以多一次電子束20的照射位置追隨平台105的移動的方式進行由主偏轉器208進行批量偏轉而實施的追蹤動作。因此,多二次電子束300的放出位置相對於多一次電子束20的軌道中心軸而時刻變化。同樣地,於在子照射區域29內進行掃描的情況下,各二次電子束的放出位置在子照射區域29內時刻變化。如此般偏轉器218以使已變化放出位置的各二次電子束照射至多檢測器222的對應的檢測區域內的方式,將多二次電子束300進行批量偏轉。
此處,作為必須自成為被檢查圖像的各圖框區域30的圖框圖像31檢測的圖案缺陷之一,可列舉圖案的臨界尺寸(Critical Dimension,CD)(尺寸)錯誤。因此,要求精度良好地檢測圖案的輪廓線或輪廓線上的多個輪廓位置。因此,於實施方式1中,對自圖框圖像31精度良好地提取圖像內的圖形圖案的輪 廓位置的結構進行說明。
圖5是表示實施方式1中的檢查方法的主要步驟的流程圖。於圖5中,實施方式1中的檢查方法實施:掃描步驟(S102)、圖框圖像製作步驟(S104)、實際圖像輪廓位置提取步驟(S110)、參照輪廓位置提取步驟(S132)、距離算出步驟(S142)以及比較步驟(S144)等一系列步驟。於實際圖像輪廓位置提取步驟(S110)中,作為內部步驟,而實施:雜訊去除步驟(S112)、二維空間濾波處理步驟(S114)、輪廓畫素候補提取步驟(S116)、輪廓畫素提取步驟(S118)、法線方向分佈製作步驟(S120)、偽輪廓畫素去除步驟(S122)、輪廓位置算出步驟(S124)以及孤立/接近輪廓位置去除步驟(S126)等一系列步驟。
作為掃描步驟(S102),圖像取得機構150取得已形成圖形圖案的基板101的圖像。此處,對已形成多個圖形圖案的基板101照射多一次電子束20,並檢測因多一次電子束20的照射而自基板101放出的多二次電子束300,藉此取得基板101的二次電子圖像。如上文所述般,於多檢測器222可投影反射電子及二次電子,亦可投影反射電子在中途發散而殘留的二次電子(多二次電子束300)。
如上文所述般,因多一次電子束20的照射而自基板101放出的多二次電子束300是由多檢測器222檢測。由多檢測器222檢測到的各子照射區域29內的各畫素的二次電子的檢測資料(測定圖像資料:二次電子圖像資料:被檢查圖像資料),依照測定順 序被輸出至檢測電路106。於檢測電路106內,藉由未圖示的A/D轉換器,將類比檢測資料轉換成數位資料,並保存於晶片圖案記憶體123。換言之,藉由檢測因多一次電子束20照射基板101而放出的多二次電子束來生成二次電子圖像。然後,所獲得的測定圖像資料與來自位置電路107的表示各位置的資訊一起被傳送至比較電路108。
圖6是表示實施方式1中的比較電路內的結構的一例的框圖。於圖6中,於實施方式1中的比較電路108內,配置磁碟裝置等儲存裝置50、儲存裝置52、儲存裝置56、儲存裝置57、圖框圖像製作部54、雜訊濾波處理部60、二維空間濾波處理部62、輪廓畫素候補提取部64、切線方向微分演算部66、輪廓畫素提取部68、法線方向分佈製作部70、偽輪廓畫素去除部72、輪廓位置算出部74、孤立輪廓位置去除部76、接近輪廓位置去除部78、距離算出部82及比較處理部84。圖框圖像製作部54、雜訊濾波處理部60、二維空間濾波處理部62、輪廓畫素候補提取部64、切線方向微分演算部66、輪廓畫素提取部68、法線方向分佈製作部70、偽輪廓畫素去除部72、輪廓位置算出部74、孤立輪廓位置去除部76、接近輪廓位置去除部78、距離算出部82及比較處理部84等的各「~部」包含處理電路,於所述處理電路,包含電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。另外,各「~部」亦可使用共同的處理電路(同一個處理電路)。或者,亦可使用不同的處理電路(各別的處理電路)。圖框圖像製 作部54、雜訊濾波處理部60、二維空間濾波處理部62、輪廓畫素候補提取部64、切線方向微分演算部66、輪廓畫素提取部68、法線方向分佈製作部70、偽輪廓畫素去除部72、輪廓位置算出部74、孤立輪廓位置去除部76、接近輪廓位置去除部78、距離算出部82及比較處理部84內所需要的輸入資料或經演算的結果隨時被儲存於未圖示的記憶體、或記憶體118。
經傳送至比較電路108內的測定圖像資料(掃描圖像)保存於儲存裝置50。
作為圖框圖像製作步驟(S104),圖框圖像製作部54製作將藉由各一次電子束10的掃描動作而取得的子照射區域29的圖像資料進一步分割而成的多個圖框區域30的各圖框區域30的圖框圖像31。再者,較佳的是各圖框區域30以餘裕區域相互重合的方式構成,以使圖像無遺漏。經製作的圖框圖像31保存於儲存裝置56。
作為實際圖像輪廓位置提取步驟(S110),針對各圖框圖像31,提取該圖框圖像31內的各圖形圖案的多個輪廓位置。具體而言,以如下方式進行運作。
作為雜訊去除步驟(S112),雜訊濾波處理部60自儲存裝置56讀出圖框圖像31,對圖框圖像31內的圖形圖案,進行去除圖案端部的雜訊而使圖案端部變得平滑的雜訊濾波處理。藉由所述雜訊濾波處理,可降低包含被檢查圖像的散粒雜訊的雜訊。作為雜訊濾波器,例如較佳使用5列×5行的高斯(Gaussian)濾 波器。或者,例如使用7列×7行的高斯濾波器。特別是,高斯濾波器的行列的要素數越多,可使其效果越大。於實施方式1中,藉由使用高斯濾波器,可實質上消除雜訊。
作為二維空間濾波處理步驟(S114),二維空間濾波處理部62(濾波處理部的一例)使用具有不同方向性的多個二維空間濾波函數,針對各方向,進行圖框圖像31的濾波處理。此處,作為各二維空間濾波函數,使用兩個二維拉普拉斯濾波函數的線性和。特別較佳使用標度不同的兩個以上的二維拉普拉斯濾波器函數的線性和。
圖7是表示實施方式1中的二維拉普拉斯濾波器以及二維拉普拉斯濾波器的方向性(輪廓的法線方向)的一例的圖。於圖7的例子中,使用標度不同的兩個二維拉普拉斯濾波函數f1i、f2i。i表示二維拉普拉斯濾波器所具有的方向性的方向1~N。於圖7的例子中,設定相對於x軸自0°起逐次旋轉22.5°而得的8個方向。0°(i=1)、22.5°(i=2)、45°(i=3)、67.5°(i=4)、90°(i=5)、112.5°(i=6)、135°(i=7)、157.5°(i=8)。
於圖7的例子中,i方向的二維拉普拉斯濾波器Fi使用係數k1,由以下的線性和的式(1)來定義。係數k1可使用任意的值。例如使用k1=0.5。
(1)Fi=k1.f1i+(1-k1).f2i
圖8是表示實施方式1中的小標度的各方向的二維拉普拉斯濾波器的一例的圖。圖8中示出3列×3行的各方向的二維拉普拉斯濾波器f1i。換言之,示出方向性不同的3列×3行的8個二維拉普拉斯濾波器f11~f18。各二維拉普拉斯濾波器f11~f18是於自身所具有的方向性的方向上進行二次微分的濾波器。
圖9是表示實施方式1中的大標度的各方向的二維拉普拉斯濾波器的一部分的一例的圖。圖10是表示實施方式1中的大標度的各方向的二維拉普拉斯濾波器的剩餘部分的一例的圖。圖9及圖10中示出5列×5行的各方向的二維拉普拉斯濾波器f2i。換言之,示出方向性不同的5列×5行的8個二維拉普拉斯濾波器f21~f28。圖9中示出二維拉普拉斯濾波器f21~二維拉普拉斯濾波器f24。圖10中示出二維拉普拉斯濾波器f25~二維拉普拉斯濾波器f28。各二維拉普拉斯濾波器f21~f28是於自身所具有的方向性的方向上進行二次微分的濾波器。
於圖框圖像31內,於5×5畫素的區域一面二維狀地逐畫素偏移一面進行移動。然後,於各位移位置上,藉由卷積i方向的二維拉普拉斯濾波器Fi,對5×5畫素的中心畫素的濾波處理後的畫素值Li(i方向的二次微分值:濾波強度)進行演算。中心畫素的畫素值Li可由以下的式(2)來定義。
(2)Li=D*Fi
藉由所述演算,針對圖框圖像31內的各畫素,獲得方向1~方向8的8個濾波處理後的畫素值L1~畫素值L8。
作為輪廓畫素候補提取步驟(S116),輪廓畫素候補提取部64提取濾波處理後針對各方向i的畫素值Li中規定值、例如最大值Lmax大於臨限值th1(第一臨限值)的多個畫素作為圖形圖案的輪廓線所經過的多個輪廓畫素候補。另外,針對各輪廓畫素候補,畫素值Li的規定值、例如最大值Lmax的方向設為輪廓線的法線方向。
圖11是用於說明實施方式1中的疑似輪廓畫素的存在的圖。於圖框圖像31內,可能存在因由電子束引起的充電或雜訊而亮度變高的畫素。如圖11所示,有時會於與真正的輪廓線不同的位置以稜線(山脊)狀形成等高線(取得圖像的等高線圖)。於所述位置,二維空間濾波處理後的畫素值Li(強度)變大。因此,於未處於輪廓線上的位置會產生疑似輪廓畫素。此處,輪廓線的切線方向上,通常等高線的傾斜應該不存在或者很小。因此,於實施方式1中,利用所述現象,自多個輪廓畫素候補去除疑似輪廓畫素。
作為輪廓畫素提取步驟(S118),首先,切線方向微分演算部66對於與針對多個輪廓畫素候補中的各輪廓畫素候補獲得規定值、例如最大值Lmax的法線方向(第一方向)正交的切線方向(第二方向)上對濾波處理前的亮度值(畫素值)進行微分而得的微分值(一次微分值)進行演算。
圖12是用於說明實施方式1中的切線方向微分的圖(避免檢測由充電或雜訊所致的偽輪廓)。於圖12的例子中,示出以成為對象的輪廓畫素候補為中心的5×5的畫素群。此處,於各畫素的中心定義該畫素的亮度值,於切線方向上進行微分。例如,若將輪廓候補畫素的座標設為(2,2)、畫素群左上的畫素的座標設為(0,0),則可自座標(1,3)的畫素值減去座標(3,1)的畫素值,取得其絕對值。
然後,輪廓畫素提取部68提取多個輪廓畫素候補中除了於與針對各輪廓畫素候補獲得規定值、例如最大值Lmax的法線方向正交的切線方向上對濾波處理前的畫素值進行一次微分後的一次微分值達到臨限值th2(第二臨限值)以上的輪廓畫素候補以外的多個輪廓畫素。臨限值th2較佳使用將該畫素的二維空間濾波處理後的畫素值Li(濾波強度:空間濾波後的強度)乘以係數k2後的值。換言之,於大於濾波強度的一定比率(k2)的情況下不作為輪廓(輪廓畫素的條件的例子:切線方向的微分<拉普拉斯強度×係數)。係數k2可任意設定。例如,較佳設為k2=0.5。
藉由以上所述,可提取圖形圖案的輪廓線所經過的輪廓畫素。接著以子畫素為單位求出各輪廓畫素內輪廓線所經過的輪廓位置。
作為法線方向分佈製作步驟(S120),法線方向分佈製作部70首先針對各輪廓畫素,以該輪廓畫素的中心位置為起點(原點),於法線方向上以一個畫素尺寸L1的間隔對各採樣位置的亮 度值(灰度值)進行採樣。然後,法線方向分佈製作部70使用針對各輪廓畫素獲得的例如7點的各採樣位置的亮度值,生成以該輪廓畫素的中心位置為中心的法線方向的一維分佈。
圖13是表示實施方式1中的法線方向的採樣位置的一例的圖。於圖13的例子中,示出以成為對象的輪廓畫素為中心的5×5畫素。如圖13所示,隔著該輪廓畫素的中心位置於法線方向的前後設定多個採樣位置。於圖13的例子中,示出於該輪廓畫素的中心位置的前後各3點的共計7點的採樣位置。該輪廓畫素的中心位置的亮度值可直接使用該輪廓畫素的畫素值(灰度值)。對剩餘的6點,使用周圍畫素的亮度值進行內插。法線方向分佈製作部70(內插處理部)例如使用雙三次內插,對構成法線方向的一維分佈的各採樣位置的亮度值(灰度值)進行演算。於雙三次內插中,例如使用由所求得的採樣位置(x,y)所在的畫素與其周邊的多個畫素構成的4×4畫素(16畫素)的亮度值(畫素值:灰度值),藉由三次式內插求出所求得的採樣位置的亮度值(灰度值)。於所述時間點,於獲得法線方向的例如7處採樣位置的亮度值的階段,圖13所示的輪廓位置處於未定的狀態。
作為偽輪廓畫素去除步驟(S122),偽輪廓畫素去除部72針對各輪廓畫素,將獲得的法線方向的一維分佈的極值不存在於一維分佈的中央附近的輪廓畫素作為偽輪廓畫素去除。
圖14是用於說明實施方式1中的判定一維分佈的極值是否存在於一維分佈的中央附近的方法的圖(法線方向的(一維) 分佈的極值處於中央附近的簡易判定)。於圖14的例子中,示出使用了呈一維排列的5點採樣位置1~5的亮度值A(1)~A(5)的情況。將該輪廓畫素的中心位置作為採樣位置3,前後各使用兩個採樣位置。偽輪廓畫素去除部72針對各輪廓畫素算出以下的式(3-1)以及式(3-2),判定式(3-1)以及式(3-2)中的任一者是否成立。
(3-1)A(2)+A(3)-A(1)-A(4)>0
(3-2)A(3)+A(4)-A(2)-A(5)>0
偽輪廓畫素去除部72於式(3-1)以及式(3-2)均不成立的情況下,作為一維分佈的極值不存在於中央附近的偽輪廓畫素,自多個輪廓畫素將該輪廓畫素排除。
另外,於偽輪廓畫素去除部72中,為了嚴格輪廓提取的條件,亦可於(3-1)及(3-2)中的一方不成立的情況下將該輪廓畫素排除。
作為輪廓位置算出步驟(S124),輪廓位置算出部74針對多個輪廓畫素的各輪廓畫素,使用獲得規定值、例如最大值Lmax的法線方向的一維分佈,算出子畫素為單位的輪廓位置。輪廓位置算出部74對法線方向的一維分佈進行一維空間濾波處理,對一維分佈的波峰位置進行演算,作為輪廓位置。於對一維分佈進行的一維空間濾波處理中,較佳使用一維拉普拉斯濾波函數。
圖15是表示實施方式1中的一維分佈的一例、以及一維空間濾波處理後的分佈的一例的圖。輪廓位置算出部74對藉由採樣獲得的一維分佈卷積一維拉普拉斯濾波器。作為一維拉普拉斯濾波器,例如較佳使用-1、0、2、0、-1的1列5行的濾波器。藉由一維拉普拉斯濾波處理來強調邊緣位置。
然後,輪廓位置算出部74針對各輪廓畫素,相對於所獲得的多個採樣位置處的一維拉普拉斯強度,進行樣條內插,從而製作平緩曲線的濾波處理後的分佈。作為製作平緩曲線的分佈的方法,除了樣條內插之外,可使用拉格朗日(lagrange)內插、B樣條內插、二次內插等的內插方法。
圖16是表示實施方式1中的進行了樣條內插後的濾波處理後的分佈的一例的圖。輪廓位置算出部74以子畫素為單位算出平滑曲線的濾波處理後的分佈的波峰位置來作為輪廓位置。藉此,可獲得圖13所示的輪廓位置。子畫素為單位的輪廓位置針對輪廓所存在的各畫素,以正交座標系或極座標系等規定的座標系進行保存。另外,關於法線方向,亦針對各畫素進行保存。使用極座標系的情況下,藉由以原點為畫素的中心,將角度座標設為法線方向角度,可節約資訊量,故較佳。
作為孤立/接近輪廓位置去除步驟(S126),孤立輪廓位置去除部76對於所獲得的多個輪廓位置,去除孤立的輪廓位置。
圖17是表示實施方式1中的孤立輪廓位置的一例的圖。於圖17的例子中,以包含作為對象的輪廓位置的畫素為中心, 示出了5×5畫素的區域。為了抑制缺陷誤檢測,例如於由包含作為對象的輪廓位置的畫素與該畫素周圍的畫素構成的3×3畫素的區域內存在的輪廓位置的數量為臨限值(第三臨限值)以下的情況下,作為孤立輪廓位置去除。作為臨限值,例如較佳設定為1或2。
另外,接近輪廓位置去除部78對所獲得的多個輪廓位置,去除相互接近的輪廓位置中的一者。
圖18是表示實施方式1中的接近輪廓位置的一例的圖。於圖18的例子中,以包含作為對象的輪廓位置的畫素為中心,示出了5×5畫素的區域。為了降低比較處理的負荷、以及降低推定輪廓線的處理的誤差,將彼此的距離為臨限值(第四臨限值)以下的輪廓位置拉開間隔。於圖18的例子中,由於輪廓位置k與輪廓位置k+1的距離小,因此例如去除輪廓位置k。
藉由以上所述,可精度良好地提取圖框圖像31內的圖形圖案的輪廓位置。所獲得的各輪廓位置的資訊作為輪廓線資料被保存於儲存裝置57。
作為參照輪廓位置提取步驟(S132),參照輪廓位置提取電路112根據成為形成於基板101的圖形圖案的基礎的設計資料,針對各圖框區域30,提取圖框區域30內的圖形圖案的輪廓線(參照輪廓線)上的多個輪廓位置。
圖19是用於說明實施方式1中的提取參照輪廓位置的方法的圖。於圖19中,針對設計資料,設定畫素尺寸的網格。於 相當於畫素的四邊形中,將直線部的中點作為參照輪廓位置。於存在圖形圖案的角部(角)的情況下,將角頂點作為參照輪廓位置。於存在多個角的情況下,將角頂點的中間點作為參照輪廓位置。藉由以上所述,可精度良好地提取圖框區域30內的作為設計圖案的圖形圖案的輪廓位置。所獲得的各參照輪廓位置的資訊(參照輪廓線資料)被輸出至比較電路108。比較電路108中,參考輪廓線資料被保存於儲存裝置52。
再者,參照輪廓位置的提取並不限於此。提取的方法亦可首先自設計資料製作參照圖像,使用參照圖像並藉由與作為測量圖像的圖框圖像31的情況相同的方法提取參照輪廓位置。或者,亦可使用其他現有的方法提取多個輪廓位置。
於自參照圖像提取參照輪廓位置時,首先製作參照圖像。於所述情況下,未圖示的參照圖像製作電路根據成為形成於基板101的圖形圖案的基礎的設計資料,針對各圖框區域30,製作與圖框圖像31對應的參照圖像。具體而言,如以下方式運作。首先,經由控制計算機110而自儲存裝置109讀出設計圖案資料,將由所述經讀出的設計圖案資料所定義的各圖形圖案轉換成二值或多值的影像資料。
如上文所述般,由設計圖案資料所定義的圖形例如將長方形或三角形作為基本圖形,例如,保存有如下圖形資料:利用圖形的基準位置的座標(x,y)、邊的長度、作為對長方形或三角形等圖形種類進行區分的識別符的圖形碼等資訊,對各圖案圖形的 形狀、大小、位置等進行了定義。
若成為所述圖形資料的設計圖案資料被輸入參照圖像製作電路,則展開至各圖形的資料為止,並對所述圖形資料的表示圖形形狀的圖形碼、圖形尺寸等進行解釋。而且,作為配置於將規定的量子化尺寸的網格作為單位的柵格內的圖案,展開成二值或多值的設計圖案圖像資料,並輸出。換言之,讀入設計資料,演算設計圖案中的圖形於將檢查區域設為將規定的尺寸作為單位的柵格進行假想分割而成的各柵格中所佔的佔有率,並輸出n位元的佔有率資料。例如,較佳為將一個柵格設定為一個畫素。而且,若使一個畫素具有1/28(=1/256)的解析度,則與配置於畫素內的圖形的區域份額相應地分配1/256的小區域並演算畫素內的佔有率。然後,成為8位元的佔有率資料。所述柵格(檢查畫素)只要與測定資料的畫素一致即可
接著,參照圖像製作電路對作為圖形的影像資料的設計圖案的設計圖像資料,使用規定的濾波函數實施濾波處理。藉此,可使圖像強度(濃淡值)為數位值的設計側的影像資料的設計圖像資料符合藉由多一次電子束20的照射而獲得的圖像生成特性。經製作的參照圖像的各畫素的圖像資料被輸出至比較電路108。經傳送至比較電路108內的參照圖像資料例如保存於儲存裝置109。以下,只要與自圖框圖像31提取輪廓位置的方法同樣地提取參照輪廓位置即可。
作為距離算出步驟(S142),距離算出部82算出自圖框 圖像31(實際圖像)內的多個輪廓位置至穿過參照輪廓位置的參照輪廓線的距離。
圖20是表示實施方式1中的輪廓線間的距離的一例的圖。於圖20的例子中,示出算出自圖框圖像31(實際圖像)內的各輪廓位置11至參照輪廓線15為止的最短距離的情況。距離的定義並不限於此。亦可算出自圖框圖像31(實際圖像)內的各輪廓位置11至參照圖像內的多個參照輪廓位置13中最近的參照輪廓位置為止的距離。或者,亦可算出自各輪廓位置11至參照輪廓線15為止的x方向的距離(或者y方向的距離)。或者,亦可遵循其他距離的算出方法。
作為比較步驟(S144),比較處理部84(比較部)利用輪廓位置的資料對圖框圖像31的輪廓線以及參照輪廓線進行比較。具體而言,將使用輪廓位置的資料如所述般算出的距離大於判定臨限值的輪廓位置判斷為缺陷。比較結果被輸出至儲存裝置109、監視器117或記憶體118。
於所述例子中,對於基於設計資料製作的參照圖像或由設計資料獲得的參照輪廓位置(或參照輪廓線)與作為測定圖像的圖框圖像之間進行比較的情況(晶粒-資料庫檢查)進行了說明,但並不限於此。例如,亦可為於形成有相同圖案的多個晶粒中的其中一個的圖框圖像與另一個的圖框圖像之間進行比較的情況(晶粒-晶粒檢查)。於晶粒-晶粒檢查的情況下,參照輪廓位置只要藉由與提取晶粒1的圖框圖像31內的多個輪廓位置時相同的 方法提取晶粒2的圖框圖像31內的多個輪廓位置即可。然後,只要算出兩者之間的距離即可。
如上所述,根據實施方式1,可進行高精度的輪廓位置的提取。因此,可提高缺陷檢測精度。
於以上的說明中,一系列的「~電路」包含處理電路,於所述處理電路包含電路、電腦、處理器、電路基板、量子電路、或半導體裝置等。另外,各「~電路」亦可使用共同的處理電路(同一個處理電路)。或者,亦可使用不同的處理電路(各別的處理電路)。使處理器等執行的程式只要記錄於磁碟裝置、快閃記憶體(flash memory)等記錄介質即可。例如,位置電路107、比較電路108、參照輪廓位置提取電路112、平台控制電路114、透鏡控制電路124、消隱控制電路126、及偏轉控制電路128亦可包含所述至少一個處理電路。
以上,一面參照具體例一面對實施方式進行了說明。但是,本發明並不限定於所述具體例。於圖1的例子中,示出藉由成形孔徑陣列基板203根據自作為一個照射源的電子槍201照射的一條射束而形成多一次電子束20的情況,但並不限定於此。亦可為藉由自多個照射源分別照射一次電子束而形成多一次電子束20的形態。
另外,省略裝置結構或控制方法等在本發明的說明中不直接需要的部分等的記載,但可適宜選擇使用需要的裝置結構或控制方法。
此外,包括本發明的要素、且本領域從業人員可適宜進行設計變更的所有輪廓位置的取得方法、圖案檢查方法、及圖案檢查裝置均包含於本發明的範圍內。
50、52、56、57:儲存裝置
54:圖框圖像製作部
60:雜訊濾波處理部
62:二維空間濾波處理部
64:輪廓畫素候補提取部
66:切線方向微分演算部
68:輪廓畫素提取部
70:法線方向分佈製作部
72:偽輪廓畫素去除部
74:輪廓位置算出部
76:孤立輪廓位置去除部
78:接近輪廓位置去除部
82:距離算出部
84:比較處理部
108:比較電路

Claims (14)

  1. 一種圖案檢查裝置,其特徵在於包括:圖像取得機構,具有放出射束的放出源、聚焦所述射束的透鏡以及檢測射束強度的檢測器,且取得形成有圖形圖案的基板的圖像;濾波處理電路,使用具有不同方向性的多個二維空間濾波函數,針對各方向進行所述圖像的濾波處理;輪廓畫素候補提取電路,提取濾波處理後的針對所述各方向的畫素值中規定值大於第一臨限值的多個畫素作為所述圖形圖案的輪廓線所經過的多個輪廓畫素候補;輪廓畫素提取電路,提取所述多個輪廓畫素候補中除了於與針對各輪廓畫素候補獲得所述規定值的第一方向正交的第二方向上對濾波處理前的畫素值進行微分後的微分值達到第二臨限值以上的輪廓畫素候補以外的多個輪廓畫素;輪廓位置算出電路,針對所述多個輪廓畫素的各輪廓畫素,使用獲得所述規定值的所述第一方向的一維分佈來算出子畫素為單位的輪廓位置;比較電路,使用所述輪廓位置的資料,將所述圖像的所述輪廓線與規定的參照輪廓線進行比較。
  2. 如請求項1所述的圖案檢查裝置,其中作為所述多個二維空間濾波函數的各個,使用兩個以上的二維空間濾波函數的線性和。
  3. 如請求項1所述的圖案檢查裝置,更包括:內插處理電路,使用雙三次內插,演算構成所述第一方向的所述一維分佈的各位置的亮度值。
  4. 如請求項1所述的圖案檢查裝置,其中所述輪廓位置算出電路對所述第一方向的所述一維分佈進行一維空間濾波處理,對所述一維分佈的波峰位置進行演算,作為所述輪廓位置。
  5. 如請求項1所述的圖案檢查裝置,其中所述輪廓位置算出電路於對所述一維分佈進行的一維空間濾波處理中使用一維拉普拉斯濾波函數。
  6. 如請求項1所述的圖案檢查裝置,其中作為所述規定值,使用最大值。
  7. 如請求項1所述的圖案檢查裝置,其中所述圖像取得機構具有形成多一次電子束的成形孔徑陣列基板,作為所述圖像,使用藉由檢測因所述多一次電子束照射所述基板而放出的多二次電子束而生成的二次電子圖像。
  8. 一種圖案的輪廓位置取得方法,其特徵在於:濾波處理電路使用具有不同方向性的多個二維空間濾波函數,針對各方向進行形成有圖形圖案的基板的圖像的濾波處理,輪廓畫素候補提取電路提取濾波處理後針對所述各方向的畫素值中規定值大於第一臨限值的多個畫素作為所述圖形圖案的輪廓線所經過的多個輪廓畫素候補,輪廓畫素提取電路提取所述多個輪廓畫素候補中除了於與針 對各輪廓畫素候補獲得所述規定值的第一方向正交的第二方向上對濾波處理前的畫素值進行微分後的微分值達到第二臨限值以上的輪廓畫素候補以外的多個輪廓畫素,輪廓位置算出電路針對所述多個輪廓畫素的各輪廓畫素,使用獲得所述規定值的所述第一方向的一維分佈,算出子畫素為單位的輪廓位置並予以輸出。
  9. 如請求項8所述的圖案的輪廓位置取得方法,其中作為所述多個二維空間濾波函數的各個,使用兩個以上的二維空間濾波函數的線性和。
  10. 如請求項8所述的圖案的輪廓位置取得方法,其中使用雙三次內插,演算構成所述第一方向的所述一維分佈的各位置的亮度值。
  11. 如請求項8所述的圖案的輪廓位置取得方法,其中,對所述第一方向的所述一維分佈進行一維空間濾波處理,對所述一維分佈的波峰位置進行演算,作為所述輪廓位置。
  12. 如請求項8所述的圖案的輪廓位置取得方法,其中,於對所述一維分佈進行的一維空間濾波處理中使用一維拉普拉斯濾波函數。
  13. 如請求項8所述的圖案的輪廓位置取得方法,其中,作為所述規定值,使用最大值。
  14. 如請求項8所述的圖案的輪廓位置取得方法,其中,作為所述圖像,使用藉由檢測因多一次電子束照射所述基板而放 出的多二次電子束而生成的二次電子圖像。
TW110115920A 2020-07-13 2021-05-03 圖案檢查裝置以及圖案的輪廓位置取得方法 TWI768864B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-119714 2020-07-13
JP2020119714A JP2022016779A (ja) 2020-07-13 2020-07-13 パターン検査装置及びパターンの輪郭位置取得方法

Publications (2)

Publication Number Publication Date
TW202203157A TW202203157A (zh) 2022-01-16
TWI768864B true TWI768864B (zh) 2022-06-21

Family

ID=79172960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115920A TWI768864B (zh) 2020-07-13 2021-05-03 圖案檢查裝置以及圖案的輪廓位置取得方法

Country Status (4)

Country Link
US (1) US11569057B2 (zh)
JP (1) JP2022016779A (zh)
KR (1) KR102586444B1 (zh)
TW (1) TWI768864B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11615938B2 (en) * 2019-12-20 2023-03-28 Nuflare Technology, Inc. High-resolution multiple beam source
JP2024013523A (ja) * 2022-07-20 2024-02-01 株式会社ニューフレアテクノロジー 検査装置及び検査画像の生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292583A (zh) * 2016-04-13 2018-07-17 汉民微测科技股份有限公司 多个带电粒子束的装置
US20190369035A1 (en) * 2018-06-01 2019-12-05 Nuflare Technology, Inc. Electron Beam Inspection Apparatus and Electron Beam Inspection Method
TW202004816A (zh) * 2018-05-24 2020-01-16 日商紐富來科技股份有限公司 多電子束影像取得裝置以及多電子束光學系統的定位方法
TW202024619A (zh) * 2018-09-19 2020-07-01 美商科磊股份有限公司 在一晶圓上偵測一邏輯區域中之缺陷

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244932B2 (en) * 2000-11-02 2007-07-17 Ebara Corporation Electron beam apparatus and device fabrication method using the electron beam apparatus
JP5497980B2 (ja) * 2007-06-29 2014-05-21 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置、及び試料検査方法
JP2011007728A (ja) 2009-06-29 2011-01-13 Seiko Epson Corp 欠陥検出方法、欠陥検出装置、および欠陥検出プログラム
JP5320216B2 (ja) 2009-08-26 2013-10-23 パナソニック株式会社 画像処理装置、画像処理システムおよび画像処理方法
JP2019020292A (ja) * 2017-07-19 2019-02-07 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
EP3906578A1 (en) * 2018-12-31 2021-11-10 ASML Netherlands B.V. Multi-beam inspection apparatus
JP7241570B2 (ja) * 2019-03-06 2023-03-17 株式会社ニューフレアテクノロジー マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP7264751B2 (ja) * 2019-07-08 2023-04-25 株式会社ニューフレアテクノロジー 検査装置及び検査方法
JP7352447B2 (ja) 2019-11-12 2023-09-28 株式会社ニューフレアテクノロジー パターン検査装置及びパターン検査方法
JP7409946B2 (ja) * 2020-04-13 2024-01-09 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム照射装置及びマルチ荷電粒子ビーム検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108292583A (zh) * 2016-04-13 2018-07-17 汉民微测科技股份有限公司 多个带电粒子束的装置
TW202004816A (zh) * 2018-05-24 2020-01-16 日商紐富來科技股份有限公司 多電子束影像取得裝置以及多電子束光學系統的定位方法
US20190369035A1 (en) * 2018-06-01 2019-12-05 Nuflare Technology, Inc. Electron Beam Inspection Apparatus and Electron Beam Inspection Method
TW202024619A (zh) * 2018-09-19 2020-07-01 美商科磊股份有限公司 在一晶圓上偵測一邏輯區域中之缺陷

Also Published As

Publication number Publication date
KR102586444B1 (ko) 2023-10-11
KR20220008225A (ko) 2022-01-20
TW202203157A (zh) 2022-01-16
JP2022016779A (ja) 2022-01-25
US20220013327A1 (en) 2022-01-13
US11569057B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
JP7352447B2 (ja) パターン検査装置及びパターン検査方法
JP7241570B2 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2019200052A (ja) パターン検査装置及びパターン検査方法
JP6981811B2 (ja) パターン検査装置及びパターン検査方法
TWI768864B (zh) 圖案檢查裝置以及圖案的輪廓位置取得方法
US20230145411A1 (en) Pattern inspection apparatus, and method for acquiring alignment amount between outlines
JP7386619B2 (ja) 電子ビーム検査方法及び電子ビーム検査装置
TWI760110B (zh) 圖像內之洞圖案的搜尋方法、圖案檢查方法、圖案檢查裝置以及圖像內之洞圖案的搜尋裝置
TWI810545B (zh) 圖案檢查裝置以及圖案檢查方法
TWI773329B (zh) 圖案檢查裝置以及圖案檢查方法
JP2018151202A (ja) 電子ビーム検査装置および電子ビーム検査方法
JP2021044461A (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
JP7326480B2 (ja) パターン検査装置及びパターン検査方法
TWI796636B (zh) 多電子束檢查裝置以及多電子束檢查方法
JP2022077421A (ja) 電子ビーム検査装置及び電子ビーム検査方法
TW202138913A (zh) 多電子束檢查裝置以及多電子束檢查方法