TWI766395B - 交流發電機及其整流裝置 - Google Patents

交流發電機及其整流裝置 Download PDF

Info

Publication number
TWI766395B
TWI766395B TW109136194A TW109136194A TWI766395B TW I766395 B TWI766395 B TW I766395B TW 109136194 A TW109136194 A TW 109136194A TW 109136194 A TW109136194 A TW 109136194A TW I766395 B TWI766395 B TW I766395B
Authority
TW
Taiwan
Prior art keywords
voltage
time interval
gate voltage
control circuit
gate
Prior art date
Application number
TW109136194A
Other languages
English (en)
Other versions
TW202218310A (zh
Inventor
陳維忠
鍾尚書
陳宴毅
王惠琪
Original Assignee
朋程科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朋程科技股份有限公司 filed Critical 朋程科技股份有限公司
Priority to TW109136194A priority Critical patent/TWI766395B/zh
Priority to US17/169,566 priority patent/US11496066B2/en
Priority to JP2021071570A priority patent/JP7127185B2/ja
Priority to DE102021116443.5A priority patent/DE102021116443A1/de
Priority to FR2108449A priority patent/FR3115421A1/fr
Publication of TW202218310A publication Critical patent/TW202218310A/zh
Application granted granted Critical
Publication of TWI766395B publication Critical patent/TWI766395B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • H02M7/2195Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration the switches being synchronously commutated at the same frequency of the AC input voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/30Modifications for providing a predetermined threshold before switching
    • H03K2017/307Modifications for providing a predetermined threshold before switching circuits simulating a diode, e.g. threshold zero
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0027Measuring means of, e.g. currents through or voltages across the switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Rectifiers (AREA)

Abstract

整流裝置包括電晶體以及閘極電壓控制電路。電晶體的控制端接收閘極電壓。閘極電壓控制電路依據輸入電壓以及整流電壓的電壓差以產生閘極電壓。其中,閘極電壓控制電路偵測電壓差小於第一預設臨界電壓的第一時間點,在第一時間點後的第一時間區間中提供閘極電壓以導通電晶體,並使電壓差等於第一參考電壓。閘極電壓控制電路在第一時間區間後的第二時間區間中,透過調整閘極電壓以使電壓差等於第二參考電壓,其中第一時間區間與輸入電壓的週期相互獨立。

Description

交流發電機及其整流裝置
本發明是有關於一種整流裝置,且特別是有關於一種可防止發生逆電流的整流裝置。
在交流發電機中,常利用整流器裝置針對交流輸入電壓進行整流,並產生可視為直流電壓的整流電壓。在習知技術領域中,常利用二極體或電晶體來進行輸入電壓的整流動作。在理想狀態下,整流電壓在負半週中,電壓值應維持在等於基準電壓(例如0伏特),但在實際的情況下,如圖1繪示的習知的整流電壓的波形圖所示,峰值為電壓VP的整流電壓,在其負半週TN中,整流電壓的電壓值會低於其基準電壓V0。也就是說,在整流電壓的負半週TN中,會產生功率耗損(power loss)的現象,降低系統的工作效率。
在習知技術領域中,整流器裝置可以應用電晶體來實施,並透過主動式的導通、截止電晶體,來達成整流的動作。然而,當電晶體的被導通及被截止的時間點設置不佳時,可能發生逆電流的現象,致使系統的表現度下降。
本發明提供一種交流發電機以及其整流裝置,可防止逆電流現象的產生。
本發明的整流裝置包括電晶體以及閘極電壓控制電路。電晶體具有第一端接收交流的輸入電壓,電晶體的第二端產生整流電壓,電晶體的控制端接收閘極電壓。閘極電壓控制電路耦接至電晶體,依據輸入電壓以及整流電壓的電壓差以產生閘極電壓。其中,閘極電壓控制電路偵測電壓差小於第一預設臨界電壓的第一時間點,在第一時間點後的第一時間區間中提供閘極電壓以導通電晶體,並使電壓差實質上等於第一參考電壓;閘極電壓控制電路在第一時間區間後的第二時間區間中,透過調整閘極電壓以使電壓差實質上等於第二參考電壓,其中第一時間區間與輸入電壓的週期相互獨立。
本發明的交流發電機包括轉子、定子以及多個如上所述的整流裝置。定子耦合轉子。各整流裝置接收對應的各該輸入電壓。整流裝置共同產生該整流電壓。
基於上述,本發明的閘極電壓控制電路在電晶體的兩端電壓差小於第一預設臨界電壓時,快速的使電晶體被導通,並在一固定的第一時間區間中維持導通的狀態。透過調整電晶體的導通機制,本發明的整流裝置可以防止在整流過程中所產生的逆電流現象。
請參照圖2,圖2繪示本發明一實施例的整流裝置的示意圖。整流裝置200包括電晶體TD1以及閘極電壓控制電路210。電晶體TD1具有第一端接收輸入電壓VS,電晶體TD1的第二端產生整流電壓VD,電晶體TD1的控制端接收閘極電壓VG。在本實施例中,透過閘極電壓VG,電晶體TD1的操作等效於一二極體,電晶體TD1的第一端可等效於二極體的陰極,電晶體TD1的第二端可等效於二極體的陽極。
閘極電壓控制電路210耦接至電晶體TD1,並用以提供閘極電壓VG。閘極電壓控制電路210接收輸入電壓VS與整流電壓VD間的電壓差VDS,並依據電壓差VDS來產生閘極電壓VG。關於閘極電壓VG的產生細節,請同步參照圖2以及圖3,其中圖3繪示本發明實施例的整流裝置的一實施方式的動作波形圖。在圖3中,電壓差VDS具有的峰值為電壓VP,並具有基準電壓V0。電壓差VDS的正半週介於時間點t0以及t1間,電壓差VDS的負半週介於時間點t1以及t2間。在時間點t1後,閘極驅動電路210偵測電壓差VDS是否低於第一預設臨界電壓VDS_ON,並在當電壓差VDS低於第一預設臨界電壓VDS_ON時,設定第一時間點TP1。
在第一時間點TP1被偵測出時,閘極電壓控制電路210可在以第一時間點TP1為起始點的第一時間區間TZ1間,持續提供可以使電晶體TD1導通的閘極電壓VG。通過電晶體TD1的導通狀態,電壓差VDS可以實質上等於第一參考電壓VDS_SW2。在此,第一參考電壓VDS_SW2可以為電晶體TD1之導通電阻與流過電晶體TD1的電流的乘積。
接著,在第一時間區間TZ1結束後的第二時間區間TZ2中,閘極電壓控制電路210可透過調整閘極電壓VG以使電壓差VDS維持等於第二參考電壓VDS_REG。在本實施方式中,第二參考電壓VDS_REG可以低於第一參考電壓VDS_SW2。在本發明其他實施方式中,第二參考電壓VDS_REG則可以等於或高於第一參考電壓VDS_SW2,沒有一定的限制。
在此請注意,第一時間區間TZ1的長度是固定的。進一步來說明,第一時間區間TZ1與輸入電壓VS的週期是相互獨立,沒有關聯的。第一時間區間TZ1的長度可以由設計者進行設定,並在當輸入電壓VS的週期發生變異時,第一時間區間TZ1並不會隨之產生變動。
附帶一提的,在本發明部分實施中,第一時間區間TZ1的時間長度可以等於0秒。
在第二時間區間TZ2後第三時間區間T3中,因為流過電晶體TD1的電流快速變小以及伴隨閘極電壓VG的調整動作,電壓差VDS開始上升。閘極電壓控制電路210並偵測電壓差VDS上升至等於第二預設臨界電壓VDS_OFF的第二時間點TP2。閘極電壓控制電路210並在第二時間點TP2之後,調整閘極電壓VG以使電晶體TD1被截止。
在本實施例中,第二預設臨界電壓VDS_OFF大於第一參考電壓VDS_SW2。並且,本實施方式中的第一參考電壓VDS_SW2以及第二參考電壓VDS_REG均可以小於0伏特,並達到負值的電流保護準位的功效。
關於閘極電壓控制電路210的硬體架構,可參照圖4,其中圖4繪示本發明實施例的閘極電壓控制電路的實施方式的電路示意圖。閘極電壓控制電路400包括運算放大器OP1、開關SW1以及SW2。運算放大器OP1接收電壓差VDS以及作為第二參考電壓VDS_REG的調整電壓,並依據控制信號EN_OPA以在輸出端OT產生閘極電壓VG。此外,運算放大器OP1接收電源VA以作為工作電源,並接收接地電壓VGND以作為參考接地電壓。開關SW2串接在第三參考電壓VH與輸出端OT間。開關SW2依據控制信號EN_SW2以被導通或斷開。開關SW1則串接在接地電壓VGND與輸出端OT間。開關SW1依據控制信號EN_SW1以被導通或斷開。運算放大器OP1的正、負輸入端並分別接收第二參考電壓(亦即調整電壓)VDS_REG以及電壓差VDS。
對應圖3的實施方式,閘極電壓控制電路400在偵測到電壓差VDS低於第一預設臨界電壓VDS_ON的第一時間點TP1時,通過產生控制信號EN_SW2以使開關SW2在第一時間區間TZ1中維持被導通。在此同時,開關SW1依據控制信號EN_SW1被斷開,且運算放大器OP1依據控制信號EN_OPA而停止工作(禁能)。閘極電壓控制電路400的輸出端OT上的閘極電壓VG依據被導通的開關SW2而等於第三參考電壓VH,第三參考電壓VH的電壓值大於電晶體TD1的導通電壓。此時,閘極電壓VG可使電晶體TD1被導通(例如被完全導通),並使電壓差VDS被限制等於第一參考電壓VDS_SW2。
閘極電壓控制電路400在第一時間區間TZ1維持一固定時間長度後的第二時間區間TZ2中,透過所產生的控制信號EN_SW1、EN_SW2以分別使開關SW1、SW2被斷開,並透過控制信號EN_OPA以使運算放大器OP1被啟動(致能)。此時,閘極電壓VG由運算放大器OP1所主導。運算放大器OP1並依據第二參考電壓VDS_REG以調整電壓差VDS,使電壓差VDS可以等於第二參考電壓VDS_REG。
在時間區間TZ3中,隨著通過電晶體TD1的電流下降以及運算放大器OP1所產生的閘極電壓VG的作用,電壓差VDS會逐漸上升。閘極電壓控制電路400並在當電壓差VDS上升至等於第二預設臨界電壓VDS_OFF的第二時間點TP2後,透過控制信號EN_SW2、EN_OPA以分別使開關SW2被斷開,運算放大器OP1停止工作;並透過控制信號EN_SW1以使開關SW1被導通。在此時,閘極電壓VG依據被導通的開關SW1而下拉至接地電壓VGND。電晶體TD1則依據等於接地電壓VGND的閘極電壓VG而被截止。
本實施例中的運算放大器OP1的電路可應用本領域具通常知識者所熟知的差動放大器來實施,本實施例中的開關SW1、SW2則可應用半導體領域中熟知的電子元件(例如電晶體)來建構,沒有特別的限制。
接著請同步參照圖3至圖5,圖5繪示本發明實施例的閘極電壓控制電路另一部分電路的示意圖。閘極電壓控制電路400另包括比較器510以及計數器520。比較器510接收電壓差VDS、第一預設臨界電壓VDS_ON以及第二預設臨界電壓VDS_OFF。第一預設臨界電壓VDS_ON以及第二預設臨界電壓VDS_OFF皆可以是預設的電壓值。比較器510可使電壓差VDS與第一預設臨界電壓VDS_ON比較以產生比較結果CM1,並使電壓差VDS與第二預設臨界電壓VDS_OFF比較以產生比較結果CM2。其中,比較結果CM1可用以決定第一時間點TP1,比較結果CM2則可用以決定第二時間點TP2。
在另一方面,計數器520可基於一時脈信號執行計數動作。計數器520可依據比較結果CM1來啟動計數動作,其中當比較結果CM1指示第一時間點TP1被偵測出時,計數器520可啟動計數動作。計數器520可具有一預設的計數目標值,當計數器520的計數結果等於計數目標值時停止計數動作。計數器520的計數動作執行的期間,可用以定義第一時間區間TZ1。
值得一提的,上述的計數目標值是固定的數值,並與輸入電壓VS的週期相互獨立。
附帶一提的,閘極電壓控制電路400可依據計數器520所計數出的第一時間區間TZ1來產生控制信號EN_SW2,並使開關SW2在第一時間區間TZ1中維持被導通的狀態。閘極電壓控制電路400並可依據比較結果CM2來產生控制信號EN_SW1以導通開關SW1。閘極電壓控制電路400並可依據比較結果CM1、CM2來產生控制信號EN_OPA,並在第二時間區間TZ2(第一時間區間TZ1結束的時間點以及第二時間點TP2間)中使運算放大器OP1維持被啟動的狀態。
請同步參照圖2以及圖6,其中圖6繪示本發明實施例的整流裝置的另一實施方式的動作波形圖。在圖6中,閘極電壓控制電路210可判斷出電壓差VDS下降至等於第一預設臨界電壓VDS_ON的第一時間點TP1,並在第一時間區間TZ1中,提供閘極電壓VG以使電晶體TD1被導通。在時間區間TZ1間,電壓差VDS可被調整至實質上等於第一參考電壓VDS_SW2。在本實施例中,第一時間區間TZ1可維持一固定時間長度,此固定時間長度與輸入電壓VS的週期相互獨立且不相關聯。
在第一時間區間TZ1結束後,在第二時間區間TZ2中,閘極電壓控制電路210使閘極電壓VG等於第二參考電壓VDS_REG,並控制電晶體TD1以使電壓差VDS在穩態時可等於第二參考電壓VDS_REG。在第三時間區間TZ3中,基於流通電晶體TD1的電流減小,且伴隨著閘極電壓VG的作用下,電壓差VDS可逐漸上升。閘極電壓控制電路210可偵測電壓差VDS上升至等於第一箝制電壓VDS_CLP的第二時間點TP2。閘極電壓控制電路210在第二時間點TP2後進入第四時間區間TZ4。
在第四時間區間TZ4中,閘極電壓控制電路210使閘極電壓VG等於第二箝制電壓VG_CLP。在此時,電晶體TD1可依據等於第二箝制電壓VG_CLP的閘極電壓VG,而具有相對高的阻抗並處於僅能提供小量電流流通的狀態。在此時,電晶體TD1可工作在次臨界區或飽和區。基於此時電晶體TD1僅提供小量的電流通過,此時的電壓差VDS接近並略低於第二參考電壓VDS_REG。在本發明其他實施例中,此時的電壓差VDS或也可略高於第二參考電壓VDS_REG,沒有特定的限制。
在此請注意,第四時間區間TZ4可維持一預設的固定時間。第四時間區間TZ4的時間長度可由設計者自行決定,沒有一定的限制。
在第四時間區間TZ4結束後的第五時間區間TZ5中,閘極電壓控制電路210可依據第二參考電壓VDS_REG以及電壓差VDS的差來提供閘極電壓VG,並使電壓差VDS在穩態下可以等於第二參考電壓VDS_REG。接著,在第六時間區間TZ6中,電壓差VDS可快速上升。閘極電壓控制電路210並偵測電壓差VDS上升至等於第二預設臨界電壓VDS_OFF的第三時間點TP3時,閘極電壓控制電路210可拉低閘極電壓VG的電壓值,並使電晶體TD1被截止。
以下請同步參照圖6以及圖7,其中圖7繪示本發明另一實施例的閘極電壓控制電路的實施方式的電路圖。閘極電壓控制電路700包括運算放大器OP1、開關SW1、SW2以及SW3。運算放大器OP1接收電壓差VDS以及作為第二參考電壓VDS_REG的調整電壓,並依據控制信號EN_OPA以在輸出端OT產生閘極電壓VG。此外,運算放大器OP1接收電源VA以作為工作電源,並接收接地電壓VGND以作為參考接地電壓。開關SW2串接在第三參考電壓VH與輸出端OT間。開關SW2依據控制信號EN_SW2以被導通或斷開。開關SW1則串接在接地電壓VGND與輸出端OT間。開關SW1依據控制信號EN_SW1以被導通或斷開。開關SW3耦接在輸出端OT以及第二箝制電壓VG_CLP間,依據控制信號EN_SW3以被導通或斷開。運算放大器OP1的正、負輸入端並分別接收第二參考電壓(亦即調整電壓)VDS_REG以及電壓差VDS。
對應圖6的波形圖,在第一時間點TP1被偵測出時,閘極電壓控制電路700在第一時間區間TZ1中,透過控制信號EN_SW2使開關SW2被導通,並透過控制信號EN_SW1使開關SW1被斷開;透過控制信號EN_OPA使運算放大器OP1被禁能。此時閘極電壓VG等於第三參考電壓VH並具有足夠高的電壓值以使電晶體TD1被導通。
在第一時間區間TZ1結束後的第二時間區間TZ2中,閘極電壓控制電路700透過控制信號EN_SW1、EN_SW2、EN_SW3分別使開關SW1、SW2、SW3被斷開,並透過控制信號EN_OPA使運算放大器OP1被啟動。在第二時間區間TZ2中,運算放大器OP1依據第二參考電壓VDS_REG以及電壓差VDS的差來產生閘極電壓VG,並控制電晶體TD1以使電壓差VDS在穩態下等於第二參考電壓VDS_REG。
在第三時間區間TZ3中,基於流通電晶體TD1的電流降低,電壓差VDS可逐漸上升。閘極電壓控制電路700並偵測出電壓差VDS等於第一箝制電壓VDS_CLP的第二時間點TP2。閘極電壓控制電路700另在第二時間點TP2後的第四時間區間TZ4中,透過控制信號EN_SW3以使開關SW3被導通(開關SW1、SW2被斷開、運算放大器OP1被禁能)。並透過被導通的開關SW3使閘極電壓VG等於第二箝制電壓VG_CLP。
在第四時間區間TZ4後的第五時間區間TZ5中,開關SW1~SW3均被斷開,運算放大器OP1則被啟動。第五時間區間TZ5中,透過閘極電壓VG,電晶體TD1的兩端電壓差VDS可以等於第二參考電壓VDS_REG。
在第六時間區間TZ6中,基於通過電晶體TD1的電流下降,電壓差VDS逐漸上升。閘極電壓控制電路700偵測出電壓差VDS上升至第二臨界電壓VDS_OFF的第三時間點TP3,並依據第三時間點TP3以產生控制信號EN_SW1以使開關SW1被導通。同時,開關SW2、SW3被斷開且運算放大器OP1被禁能。如此一來,電晶體TD1對應被截止。
接著請同步參照圖6、圖7以及圖8,圖8繪示本發明實施例的閘極電壓控制電路另一部分電路的示意圖。在圖8中,閘極電壓控制電路700另包括比較器810以及計數器820。比較器810接收第一預設臨界電壓VDS_ON、第二預設臨界電壓VDS_OFF、第一箝制電壓VDS_CLP以及電壓差VDS。比較器810使電壓差VDS與預先設定的第一預設臨界電壓VDS_ON、第二預設臨界電壓VDS_OFF、第一箝制電壓VDS_CLP進行比較,並分別產生比較結果CM1、CM3以及CM2。比較結果CM1、CM3以及CM2可分別用以決定第一時間點TP1、第三時間點TP3以及第二時間點TP2。
計數器820則接收比較結果CM1、CM2,並在第一時間點TP1後進行第一時間區間TZ1的計數動作,以及在第二時間點TP2後進行第四時間區間TZ4的計數動作。另外,閘極電壓控制電路700可依據第一時間區間TZ1、第四時間區間TZ4以及比較結果CM3來產生控制信號EN_SW1、EN_SW2、EN_SW3以及EN_OPA。
同樣的,本實施例中的運算放大器OP1的電路可應用本領域具通常知識者所熟知的差動放大器來實施,本實施例中的開關SW1、SW2、SW3則可應用半導體領域中熟知的電子元件(例如電晶體)來建構,沒有特別的限制。
請參照圖9繪示的本發明實施例的整流後的電壓差的波形示意圖。其中,在本實施例中,整流裝置可以使整流後的電壓差VDS,在負半週時維持在低於0伏特的電壓值。細節上來說明,以圖3的波形為範例,其中在第一時間區間TZ1以及第二時間區間TZ2中,電壓差VDS的電壓值可以為負電壓。如此一來,可以達成負的電流保護準位的功效。
請參照圖10,圖10繪示本發明一實施例的交流發電機的示意圖。交流發電機1000包括轉子RT、定子ST以及多個整流裝置1011~1032。在本實施例中,定子ST產生多個相電壓VU、VV以及VW。相電壓VU、VV以及VW分別提供至不同相位的多個整流電路1010、1020以及1030。整流電路1010中包括串聯耦接的整流裝置1011、1012,整流電路1020中包括串聯耦接的整流裝置1021、1022,整流電路1030中包括串聯耦接的整流裝置1031、1032。在本實施例中,交流發電機1000並包括並聯耦接的電阻R1(為等效負載或充電電池的等效電阻)以及為等效充電電容的電容C1,用以產生接近於直流的整流輸出電壓。本實施例中的整流裝置1011~1032可應用前述實施例的整流裝置200、400、700中的任一來實施。相關的實施細節在前述實施例及實施方式中已有詳細的說明,在此恕不多贅述。
綜上所述,本發明的整流裝置在當電壓差小於第一預設臨界電壓的第一時間點後的一固定的第一時間區間中,使電晶體快速被導通,並維持在導通的狀態,可避免電晶體因過慢被導通而產生效率不佳的狀態。另外,本發明另一實施例中,整流裝置另針對電壓差與第一箝制電壓進行比較,並經此減慢電晶體被截止的時間點,可有效防止電晶體因為過慢被截止而產生逆電流。基於上述,本發明可有效調整電晶體的導通、截止的時間點,並防止在整流過程中所產生的逆電流現象,維持系統的表現度。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1000:交流發電機 1010、1020、1030:整流電路 1011~1032:整流裝置 200:整流裝置 210、400、700:閘極電壓控制電路 810、510:比較器 820、520:計數器 C1:電容 CM1~CM3:比較結果 EN_OPA、EN_SW1、EN_SW2、EN_SW3:控制信號 OP1:運算放大器 OT:輸出端 RT:轉子 ST:定子 SW1、SW2、SW3:開關 t1、t2、t3、TP1~TP3:時間點 TD1:電晶體 TN:負半週 TZ1~TZ6:時間區間 V0:基準電壓 VA:電源 VD:整流電壓 VDS:電壓差 VDS_CLP、VG_CLP:箝制電壓 VDS_ON、VDS_OFF:預設臨界電壓 VDS_SW2、VDS_REG、VH:參考電壓 VG:閘極電壓 VGND、VP:電壓 VS:輸入電壓 VU、VV、VW:相電壓
圖1繪示的習知的整流電壓的波形圖。 圖2繪示本發明一實施例的整流裝置的示意圖。 圖3繪示本發明實施例的整流裝置的一實施方式的動作波形圖。 圖4繪示本發明實施例的閘極電壓控制電路的實施方式的電路示意圖。 圖5繪示本發明實施例的閘極電壓控制電路另一部分電路的示意圖。 圖6繪示本發明實施例的整流裝置的另一實施方式的動作波形圖。 圖7繪示本發明另一實施例的閘極電壓控制電路的實施方式的電路圖。 圖8繪示本發明實施例的閘極電壓控制電路另一部分電路的示意圖。 圖9繪示的本發明實施例的整流後的電壓差的波形示意圖。 圖10繪示本發明一實施例的交流發電機的示意圖。
200:整流裝置 210:閘極電壓控制電路 TD1:電晶體 VS:輸入電壓 VG:閘極電壓 VD:整流電壓 VDS:電壓差

Claims (11)

  1. 一種整流裝置,包括: 一電晶體,具有第一端接收交流的一輸入電壓,該電晶體的第二端產生一整流電壓,該電晶體的控制端接收一閘極電壓;以及 一閘極電壓控制電路,耦接至該電晶體,依據該輸入電壓以及該整流電壓的一電壓差以產生該閘極電壓, 其中,該閘極電壓控制電路偵測該電壓差小於一第一預設臨界電壓的一第一時間點,在該第一時間點後的一第一時間區間中提供該閘極電壓以導通該電晶體,並使該電壓差實質上等於一第一參考電壓;該閘極電壓控制電路在該第一時間區間後的一第二時間區間中,透過調整該閘極電壓以使該電壓差實質上等於一第二參考電壓,其中該第一時間區間與該輸入電壓的週期相互獨立。
  2. 如請求項1所述的整流裝置,其中該第一參考電壓小於0伏特。
  3. 如請求項1所述的整流裝置,其中該閘極電壓控制電路並在該第二時間區間後的一第三時間區間,偵測該電壓差由該第二參考電壓上升至一第二預設臨界電壓的一第二時間點,並該第二時間點之後,調整該閘極電壓以使該電晶體被截止。
  4. 如請求項3所述的整流裝置,其中該閘極電壓控制電路包括: 一運算放大器,接收該電壓差以及一調整電壓,在該第二時間區間中被啟動以依據該電壓差以及該調整電壓產生該閘極電壓; 一第一開關,串接在一接地電壓與該輸出端間,在該第三時間區間被導通;以及 一第二開關,串接在一第三參考電壓與該輸出端間,在該第一時間區間被導通, 其中該調整電壓等於該第二參考電壓。
  5. 如請求項4所述的整流裝置,更包括: 一電壓比較器,使該電壓差與該第一預設臨界電壓以及該第二預設臨界電壓進行比較,以產生該第一時間點以及該第二時間點;以及 一計數器,用以計數該第一時間區間。
  6. 如請求項1所述的整流裝置,其中該閘極電壓控制電路並在該第二時間區間後的一第三時間區間,偵測該電壓差由該第二參考電壓上升至一第一箝制電壓的一第二時間點,並該第二時間點後的一第四時間區間中,使該閘極電壓等於一第二箝制電壓。
  7. 如請求項6所述的整流裝置,其中該閘極電壓控制電路在該第四時間區間後的一第五時間區間中調整該閘極電壓以使該電壓差實質上等於該第二參考電壓。
  8. 如請求項7所述的整流裝置,其中該閘極電壓控制電路在該第五時間區間後的一第六時間區間中,偵測該電壓差由該第二參考電壓上升至該第二預設臨界電壓的一第三時間點,並在該第三時間點後調整該閘極電壓以使該電晶體被截止。
  9. 如請求項8所述的整流裝置,其中該閘極電壓控制電路包括: 一運算放大器,接收該電壓差以及一調整電壓,在該第二時間區間以及該第五時間區間中被啟動以依據該電壓差以及該調整電壓產生該閘極電壓; 一第一開關,串接在一接地電壓與該輸出端間,在該第三時間區間被導通;以及 一第二開關,串接在一第三參考電壓與該輸出端間,在該第一時間區間被導通, 一第三開關,串接在該第二箝制電壓以及該輸出端間,在該第四時間區間中被導通, 其中該調整電壓等於該第二參考電壓。
  10. 如請求項8所述的整流裝置,其中該閘極電壓控制電路更包括: 一電壓比較器,使該電壓差與該第一預設臨界電壓、該第一箝制電壓、以及該第二預設臨界電壓進行比較,以產生該第一時間點、該第二時間點以及該第三時間點;以及 一計數器,用以計數該第一時間區間以及該第四時間區間。
  11. 一種交流發電機,包括: 一轉子; 一定子,耦合該轉子;以及 多個如申請專利範圍第1-10項中的任一所述的整流裝置,各該整流裝置接收對應的交流輸入電壓以作為該輸入電壓,該些整流裝置共同產生該整流電壓。
TW109136194A 2020-10-20 2020-10-20 交流發電機及其整流裝置 TWI766395B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW109136194A TWI766395B (zh) 2020-10-20 2020-10-20 交流發電機及其整流裝置
US17/169,566 US11496066B2 (en) 2020-10-20 2021-02-08 Alternator and rectifier thereof
JP2021071570A JP7127185B2 (ja) 2020-10-20 2021-04-21 交流発電機及びその整流器
DE102021116443.5A DE102021116443A1 (de) 2020-10-20 2021-06-25 Wechselstromgenerator und gleichrichter davon
FR2108449A FR3115421A1 (fr) 2020-10-20 2021-08-03 Alternateur et son redresseur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109136194A TWI766395B (zh) 2020-10-20 2020-10-20 交流發電機及其整流裝置

Publications (2)

Publication Number Publication Date
TW202218310A TW202218310A (zh) 2022-05-01
TWI766395B true TWI766395B (zh) 2022-06-01

Family

ID=80929444

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109136194A TWI766395B (zh) 2020-10-20 2020-10-20 交流發電機及其整流裝置

Country Status (5)

Country Link
US (1) US11496066B2 (zh)
JP (1) JP7127185B2 (zh)
DE (1) DE102021116443A1 (zh)
FR (1) FR3115421A1 (zh)
TW (1) TWI766395B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200518435A (en) * 2003-08-06 2005-06-01 Sony Corp Switching power supply circuit
US6911848B2 (en) * 2002-01-31 2005-06-28 Vlt, Inc. Low-loss transformer-coupled gate driver
US20160315553A1 (en) * 2013-12-13 2016-10-27 Hitachi Power Semiconductor Device, Ltd. Rectifier, Alternator, and Power Converter
US20190393794A1 (en) * 2018-06-21 2019-12-26 Chengdu Monolithic Power Systems Co. Ltd. Driving circuit allowing efficient turning-off of synchronous rectifiers
TWI692194B (zh) * 2019-06-27 2020-04-21 朋程科技股份有限公司 交流發電機以及整流裝置
TW202027397A (zh) * 2019-01-08 2020-07-16 朋程科技股份有限公司 交流發電機以及整流裝置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228229B2 (ja) 2004-09-30 2009-02-25 サンケン電気株式会社 直流電源装置
DE102007060219A1 (de) 2007-12-14 2009-06-18 Robert Bosch Gmbh Gleichrichterschaltung
CN101662219B (zh) 2009-06-25 2011-08-31 成都芯源***有限公司 一种整流管实时控制电路及其轻载控制方法
US9356535B2 (en) * 2013-08-14 2016-05-31 Stmicroelectronics S.R.L. Control method for rectifier of switching converters
JP6617002B2 (ja) 2015-10-20 2019-12-04 株式会社 日立パワーデバイス 整流器、それを用いたオルタネータおよび電源
US20180167000A1 (en) 2016-12-14 2018-06-14 Infineon Technologies Ag Rectifier device
DE102018113146B4 (de) * 2018-06-01 2020-02-06 Infineon Technologies Ag Gleichrichtereinrichtung und Halbleitereinrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911848B2 (en) * 2002-01-31 2005-06-28 Vlt, Inc. Low-loss transformer-coupled gate driver
TW200518435A (en) * 2003-08-06 2005-06-01 Sony Corp Switching power supply circuit
US20160315553A1 (en) * 2013-12-13 2016-10-27 Hitachi Power Semiconductor Device, Ltd. Rectifier, Alternator, and Power Converter
US20190393794A1 (en) * 2018-06-21 2019-12-26 Chengdu Monolithic Power Systems Co. Ltd. Driving circuit allowing efficient turning-off of synchronous rectifiers
TW202027397A (zh) * 2019-01-08 2020-07-16 朋程科技股份有限公司 交流發電機以及整流裝置
TWI692194B (zh) * 2019-06-27 2020-04-21 朋程科技股份有限公司 交流發電機以及整流裝置

Also Published As

Publication number Publication date
DE102021116443A1 (de) 2022-04-21
JP2022067607A (ja) 2022-05-06
US11496066B2 (en) 2022-11-08
FR3115421A1 (fr) 2022-04-22
US20220123649A1 (en) 2022-04-21
JP7127185B2 (ja) 2022-08-29
TW202218310A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
TWI509971B (zh) System and method and controller for output detection and synchronous rectification mechanism for adjusting power supply conversion system
TWI475786B (zh) System controller and method for power conversion system
US10879810B2 (en) Synchronous rectifier off control module and synchronous rectifying control circuit
TWI483533B (zh) A system and method for adjusting a power conversion system
TWI385494B (zh) 軟啟動電路、電源供應控制器以及用於其之方法
TWI626824B (zh) System and method with timing control for synchronous rectification controller
US8149598B2 (en) Switching power supply apparatus
TWI673589B (zh) 用於控制功率轉換器之系統及方法
TWI678876B (zh) 交流發電機以及整流裝置
JP6866525B2 (ja) 交流発電機およびその整流器
US9748850B2 (en) Switching power-supply with switching frequency correction
TWI766395B (zh) 交流發電機及其整流裝置
TWI707533B (zh) 交流發電機以及整流裝置
TWI746215B (zh) 交流發電機及其整流裝置
CN114499112A (zh) 交流发电机及其整流装置
CN111435810B (zh) 交流发电机以及整流装置
JP5103399B2 (ja) 同期整流器
TWI832742B (zh) 抑制磁飽和之升壓轉換器
CN114499111A (zh) 交流发电机及其整流装置