TWI759589B - 成形體 - Google Patents

成形體 Download PDF

Info

Publication number
TWI759589B
TWI759589B TW108110981A TW108110981A TWI759589B TW I759589 B TWI759589 B TW I759589B TW 108110981 A TW108110981 A TW 108110981A TW 108110981 A TW108110981 A TW 108110981A TW I759589 B TWI759589 B TW I759589B
Authority
TW
Taiwan
Prior art keywords
vdf
tfe
based copolymer
crystals
sample
Prior art date
Application number
TW108110981A
Other languages
English (en)
Other versions
TW201942156A (zh
Inventor
彦坂正道
岡田聖香
福嶋俊行
澤木恭平
岡西謙
山口安行
Original Assignee
國立大學法人廣島大學
日商大金工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立大學法人廣島大學, 日商大金工業股份有限公司 filed Critical 國立大學法人廣島大學
Publication of TW201942156A publication Critical patent/TW201942156A/zh
Application granted granted Critical
Publication of TWI759589B publication Critical patent/TWI759589B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/58Measuring, controlling or regulating
    • B29C2043/5833Measuring, controlling or regulating movement of moulds or mould parts, e.g. opening or closing, actuating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/18Fillers oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0016Non-flammable or resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本發明提供一種機械強度、耐熱性、表面粗糙度及鐵電性優異之成形體。本發明係一種成形體,其係包含偏二氟乙烯/四氟乙烯系共聚物之結晶者,其特徵在於:上述結晶為β晶,上述結晶為尺寸100 nm以下之奈米配向結晶,且該成形體之算術平均粗糙度為3.0 μm以下。

Description

成形體
本發明係關於一種機械強度、耐熱性、表面粗糙度及鐵電性優異之成形體。
先前,關於作為鐵電性材料之壓電膜、或用於電潤濕法用途、薄膜電容器用途之膜,已知有各種有機介電膜或無機介電膜。該等中,偏二氟乙烯(VdF)/四氟乙烯(TFE)共聚物、偏二氟乙烯(VdF)聚合物之膜具有如下優點,即,具有透明性且與無機介電薄膜不同而具有可撓性,因此可應用於各種用途。
先前,作為製造作為高分子鐵電性膜之典型例的VdF聚合物之鐵電性膜的步驟,藉由熔融液結晶化而於膜成形後形成α晶,因此,為了製成表現鐵電性之β晶,需要對膜進行延伸、熱固定、極化處理(poling treatment)之複雜步驟。 先前,VdF/TFE系共聚物之鐵電性膜由於在含有7 mol%以上之TFE單位時形成藉由熔融液結晶化而直接結晶化成β晶之膜,故而可藉由對膜進行極化處理而製造,但為了表現較高之鐵電性,需要藉由進行延伸、熱固定之複雜步驟使分子鏈配向(非專利文獻1)。 先前,作為提高VdF/TFE系共聚物之鐵電性之方法,已知有藉由利用高溫高壓化進行熔融液結晶化之製造步驟來製造高結晶化膜之方法,但該膜存在白濁且脆之缺點(非專利文獻2)。
藉由延伸處理所製作之膜不僅有製造步驟複雜之問題,而且根據用途而於機械強度、耐熱性等方面不可謂足夠,故而有待進一步改善,以應對近年來之高要求。
此處,關於聚丙烯或聚酯之類的通用塑膠,亦已知有藉由包含奈米配向結晶(nano-oriented crystal,NOC)而改善了耐熱性等之膜(參照專利文獻1及2)。關於氟樹脂,亦已知藉由包含NOC而改善聚偏二氟乙烯(PVdF)及VdF/三氟乙烯(TrFE)共聚物之耐熱性(非專利文獻3)。 先前技術文獻 專利文獻
專利文獻1:日本專利第5487964號說明書 專利文獻2:國際公開第2016/035598號 非專利文獻
非專利文獻1:Hicks, J. C. et al. J. Appl. Phys., 49, 6092 (1978). 非專利文獻2:Tasaka. S. et al. J. Appl. Phys. 57(3), 906(1985) 非專利文獻3:Hikosaka, M. et al. Polymer Preprints, Japan 64(2), 1G11 (2015). 非專利文獻4:Lovinger, A. J. et al. Macromolecules 19, 1491 (1986). 非專利文獻5:Hikosaka, M. Polymer 28, 1257 (1987). 非專利文獻6:Okada, K. et al. Polymer Preprints, Japan 63(1), 1331 (2014). 非專利文獻7:Hikosaka, M. et al. J. Macromol. Sci. Phys. B31(1), 87 (1992). 非專利文獻8:Fukushima, T. et al. Polymer Preprints, Japan 66(1), 2C03 (2017). 非專利文獻9:Lovinger, A. J. et al. Macromolecules 21, 78 (1988).
[發明所欲解決之課題]
本發明之目的在於提供一種機械強度、耐熱性、表面粗糙度及鐵電性優異之成形體。 [解決課題之技術手段]
本發明人為解決上述課題進行了努力研究,結果藉由以《臨界伸長應變速度》以上之速度對VdF/TFE系共聚物之熔融液進行伸長結晶化,始成功獲取包含VdF/TFE系共聚物之極小結晶之成形體。並且,發現所獲得之成形體於彈性模數所表示之機械強度方面優異,且具有優異之耐熱性、表面粗糙度及鐵電性,從而完成了本發明。
即,本發明係一種成形體,其係包含偏二氟乙烯/四氟乙烯系共聚物之結晶者,其特徵在於:上述結晶為β晶,上述結晶為尺寸100 nm以下之奈米配向結晶(NOC),且該成形體之算術平均粗糙度為3.0 μm以下。
本發明之成形體較佳為上述偏二氟乙烯/四氟乙烯系共聚物為高結晶性。
上述偏二氟乙烯/四氟乙烯系共聚物較佳為相對於偏二氟乙烯單位與四氟乙烯單位之合計100莫耳%,偏二氟乙烯單位為50~95莫耳%,四氟乙烯單位為5~50莫耳%。
本發明之成形體較佳為鐵電體。
本發明之成形體較佳為熔點為130℃以上。
本發明之成形體較佳為耐熱溫度為90℃以上。
本發明之成形體較佳為彈性模數為1.0 GPa以上。
本發明之成形體較佳為剩餘極化為45 mC/m2 以上。
本發明之成形體較佳為矯頑電場為35 MV/m以下。 [發明之效果]
本發明之成形體藉由具有上述構成,而具有優異之機械強度、耐熱性、表面粗糙度及鐵電性。
以下,對本發明詳細地進行說明,但本發明之範圍並不限於該等說明,關於以下例示以外者,亦可於無損本發明之主旨之範圍內適宜變更並實施。又,將本說明書中所記載之公知文獻全部作為參考引用至本說明書中。
本發明之成形體包含結晶尺寸為100 nm以下之VdF/TFE系共聚物之結晶。
上述VdF/TFE系共聚物係包含來自VdF之聚合單位(以下亦稱為「VdF單位」)及來自TFE之聚合單位(以下亦稱為「TFE單位」)之共聚物。 就成形體之機械強度、耐熱性、表面粗糙度及鐵電性優異之方面而言,VdF/TFE系共聚物較佳為相對於VdF單位與TFE單位之合計100莫耳%,VdF單位為50~95莫耳%,TFE單位為5~50莫耳%。VdF/TFE系共聚物更佳為VdF單位為60~95莫耳%,TFE單位為5~40莫耳%;尤佳為VdF單位為70~90莫耳%,TFE單位為10~30莫耳%。 上述VdF/TFE系共聚物可僅由VdF單位及TFE單位構成,亦可包含來自能夠與VdF及TFE共聚合之單體(其中,VdF及TFE除外)之聚合單位。上述VdF/TFE系共聚物較佳為相對於總聚合單位,VdF單位及TFE單位之合計為90莫耳%以上,更佳為95莫耳%以上,進而較佳為98莫耳%以上。 作為能夠與上述VdF及TFE共聚合之單體,可列舉:六氟丙烯(HFP)、乙烯、丙烯、烷基乙烯基醚、乙酸乙烯酯、氯乙烯、偏二氯乙烯、CH2 =CHCF3 、CH2 =CFCF3 、CH2 =CF(CF2 )n H(n=3~7)、CH2 =CH(CF2 )n F(n=1~8)等。 其中,較佳為選自由HFP及CH2 =CFCF3 所組成之群中之至少一種,更佳為HFP。 作為來自能夠與上述VdF及TFE共聚合之單體之聚合單位的含量,就成形體之機械強度、耐熱性、表面粗糙度及鐵電性更優異之方面而言,較佳為0~10莫耳%,更佳為0.01~5莫耳%,進而較佳為0.1~2。
本發明中所使用之VdF/TFE系共聚物之重量平均分子量較佳為10,000以上,更佳為50,000以上。又,較佳為400,000以下,更佳為300,000以下。 上述重量平均分子量係藉由凝膠滲透層析法(GPC)而測定之值。
VdF/TFE系共聚物可結晶化成六方晶之結晶形態(Morphology)(非專利文獻4),因此推斷聚合物鏈容易滑動擴散(非專利文獻5),可使用以實現奈米配向結晶化之臨界伸長應變速度變小(非專利文獻6)。因此,容易如後所述般形成NOC,有利於產業化。
上述VdF/TFE系共聚物可藉由先前公知之溶液聚合法、懸濁聚合法(分散聚合法)、乳化聚合法等獲得。又,所使用之聚合起始劑亦可根據聚合法自習知慣用者中適宜選擇。
作為聚合起始劑,例如可列舉:雙(氟氯醯基)過氧化物、雙(全氟醯基)過氧化物、雙(ω-氫全氟醯基)過氧化物、過氧化異丁酸第三丁酯、過氧化二碳酸二異丙酯等有機過氧化物;偶氮二異丁腈等偶氮化合物等。聚合起始劑之使用量可根據種類、聚合反應條件等適宜變更,但通常相對於供聚合之單體整體採用0.005~5重量%、尤其0.05~0.5重量%左右。
作為聚合反應條件,可無特別限定地採用廣泛範圍之反應條件。例如,聚合反應溫度可根據聚合起始劑之種類等選定最佳值,但通常可採用0~100℃左右、尤其30~90℃左右。反應壓力亦可適宜選定,但通常採用0.1~5 MPa,尤其採用0.5~3 MPa左右。本發明中所使用之VdF系共聚物可於上述反應壓力下有利地進行聚合,但亦可於更高之壓力下進行,反之,亦可於減壓條件下進行。又,聚合形式亦可採用批次式、連續式等之任一者。
又,為了調整VdF/TFE系共聚物之分子量而亦可使用鏈轉移劑。作為鏈轉移劑,可使用通常者,例如可列舉:正己烷、環己烷等烴類;甲苯、二甲苯等芳香族類;丙酮等酮類;乙酸乙酯、乙酸丁酯等乙酸酯類;甲醇、乙醇等醇類;甲硫醇等硫醇類等。添加量可能會根據所使用之化合物之鏈轉移常數之大小而變化,但通常相對於聚合溶劑在0.01重量%至20重量%之範圍內使用。
聚合溶劑可根據聚合法而使用習知慣用之液狀溶劑。但是,就所獲得之成形體之耐熱性優異之方面而言,本發明中所使用之VdF/TFE系共聚物較佳為於氟系溶劑之存在下進行懸濁聚合(分散聚合)。
本發明之成形體中所含之VdF/TFE系共聚物之結晶尺寸為100 nm以下。就成形體之機械強度、耐熱性、表面粗糙度及鐵電性更優異之方面而言,上述結晶尺寸較佳為90 nm以下,更佳為80 nm以下,進而較佳為70 nm以下。 上述結晶尺寸之下限並無特別限制,但例如可為3 nm。就耐熱性進一步提高之方面而言,上述結晶尺寸較佳為5 nm以上,更佳為8 nm以上,進而較佳為10 nm以上。 上述結晶之尺寸可藉由公知之小角度X射線散射法(以下稱為「SAXS法」)而求出。 再者,由於為高結晶性,故而SAXS法中之散射向量(q)-小角度X射線散射強度(Ix )曲線之一次峰值相當於平均尺寸d之微晶無規地彼此擁擠之情形時之微晶間最接近距離(=結晶尺寸d)(參考文獻:A. Guinier著,「X射線結晶學之理論與實際」,理學電機(股),p513,1967),因此自下述Bragg公式求出結晶尺寸d。 Bragg公式: d=2π÷q 又,上述VdF/TFE系共聚物之結晶為β晶。
就成形體之機械強度、耐熱性及鐵電性更優異之方面而言,本發明之成形體較佳為包含高結晶性之VdF/TFE系共聚物。
上述VdF/TFE系共聚物之結晶構成奈米配向結晶(NOC)。此處,NOC包含結晶尺寸100 nm以下且高分子鏈於伸長方向(machine direction,MD)上配向之VdF/TFE系共聚物之結晶(亦稱為奈米結晶(nano crystal,NC))。
自偏光顯微鏡與X射線繞射之結果對上述NOC之結構進行解析,結果可知,NOC為如圖1所示般球狀之奈米結晶(NC)沿著伸長方向(MD)呈念珠狀相連之結構。
就可獲得更優異之機械強度、耐熱性及鐵電性之方面而言,本發明之成形體較佳為包含VdF/TFE系共聚物之NOC作為主體。 例如,本發明之成形體較佳為包含60%以上之VdF/TFE系共聚物之NOC,更佳為包含70%以上,進而較佳為包含80%以上,尤佳為包含90%以上,進而尤佳為包含95%以上。 成形體中所含之NOC之比率(NOC分率)可藉由X射線繞射法而算出。 由於NOC為高配向,且非NOC為等向性,故而可自廣角X射線散射之強度比算出NOC分率。
關於構成成形體之NOC中所含之NC之高分子鏈、或構成NOC之NC本身是否配向,可藉由偏光顯微鏡之觀察、或公知之X射線繞射(小角度X射線散射法(SAXS法)、廣角X射線散射法(WAXS法))進行確認。根據利用WAXS幾乎未觀察到非晶暈環,可得出成形體為高結晶性之結論。關於偏光顯微鏡觀察或X射線繞射(小角度X射線散射法、廣角X射線散射法)之具體方法,適宜參照下述實施例。
NOC中所含之NC與NC中所含之高分子鏈大致於成形體(例如片)之MD方向配向。 關於構成NOC之NC之結晶尺寸,只要測定MD之尺寸即可。例如,圖1所示之NOC之結晶尺寸可謂約為29 nm。
本發明之成形體之算術平均粗糙度為3.0 μm以下。算術平均粗糙度更佳為2.0 μm以下,進而較佳為1.5 μm以下,尤佳為1.0 μm以下。藉由使用下述輥壓延伸長結晶化裝置,可製造包含VdF/TFE系共聚物之NOC作為主體之成形體,並且可提高表面之算術平均粗糙度。 上述算術平均粗糙度係使用小型表面粗糙度測定機並依據ISO1997而測得之值。
本發明之成形體之熔點較佳為130℃以上,更佳為134℃以上,進而較佳為137℃以上。 上述成形體之熔點係與使用示差掃描熱量計[DSC]以5 K/min之速度升溫時之熔解熱曲線上之極大值對應之溫度。又,上述成形體之熔點係於使用附帶高溫載台之偏光顯微鏡以1 K/min之速度升溫時之熔解行為中與延遲變化之極大值對應之溫度。
又,本發明之成形體之熔點較佳為高於較VdF/TFE系共聚物之靜置場之β晶之平衡熔點低14℃之溫度之高溫。成形體之熔點更佳為高於較β晶之平衡熔點低10℃之溫度之高溫,進而較佳為高於較β晶之平衡熔點低7℃之溫度之高溫。 再者,所謂平衡熔點(Tm 0 )意指於高分子之分子鏈(以下,亦適宜稱為「高分子鏈」)完全伸長之狀態下結晶化而成之巨觀尺寸之完全結晶之熔點,並利用下述式算出。 Tm 0 =∆Hu ÷∆Su ,∆Hu :熔解焓,∆Su :熔解熵 具體而言,可藉由使用偏光顯微鏡觀察之彥坂等人之方法而確定上述平衡熔點(非專利文獻7)。例如,VdF/TFE系共聚物:VdF/TFE=80/20(mol比)之靜置場的六方晶結晶之平衡熔點被大致確定為134.3℃(非專利文獻8),本發明人等將靜置場之β晶之平衡熔點確定為143.9℃(未發表)。 再者,上述熔點係與單體組成比相同之VdF/TFE系共聚物之平衡熔點進行對比。
本發明之成形體之耐熱溫度較佳為90℃以上,更佳為110℃以上,進而較佳為130℃以上。又,本發明之成形體之耐熱溫度較佳為高於較上述VdF/TFE系共聚物之靜置場之β晶之平衡熔點低54℃之溫度之高溫,更佳為高於低34℃之溫度之高溫,進而較佳為高於低14℃之溫度之高溫。 此處,所謂「耐熱溫度」意指藉由使用光學顯微鏡之試片尺寸直讀法所測得之耐熱溫度。上述「試片尺寸直讀法」係使用附帶CCD攝影機之光學顯微鏡(Olympus股份有限公司製造之BX51)、高溫載台(Linkam公司製造,LK-600PM)、及可定量畫面上之尺寸之圖像解析軟體(Media Cybernetics公司製造,Image-Pro PLUS)而實施。試片之尺寸使用縱0.7 mm、橫0.5 mm之試片。將試片以升溫速度1 K/min進行加熱,此時,將試片於縱向(MD)或橫向(TD)上產生3%以上應變(收縮或膨脹)時之溫度設為耐熱溫度。
本發明之成形體較佳為拉伸斷裂強度為80 MPa以上。 拉伸斷裂強度更佳為110 MPa以上,進而較佳為150 MPa以上。上述拉伸斷裂強度係依據JIS-K7127並使用縱42 mm、橫2 mm、厚0.01~0.3 mm之試片而測定。拉伸速度為0.3 mm/s。
本發明之成形體較佳為彈性模數為1.0 GPa以上。彈性模數更佳為1.2 GPa以上,進而較佳為1.5 GPa以上,尤佳為2 GPa以上。彈性模數係藉由依據JIS-7127之方法而測得之值。
本發明之成形體較佳為鐵電體,又,較佳為剩餘極化(residual polarization)為45 mC/m2 以上。上述剩餘極化更佳為55 mC/m2 以上。上限並無特別限定,例如可為100 mC/m2 。 上述剩餘極化係以如下方式求出之值:於切成20 mm×20 mm之試樣膜之中央部5 mm×5 mm處,藉由真空加工蒸鍍將鋁電極(平面電極)圖案化,利用導電性雙面膠帶將貼附絕緣膠帶而補強之鋁箔製造之2根引線(30 mm×80 mm)之電極接著於平面電極,將該試樣膜、函數波產生器、高壓放大器、及示波器組裝至Sawyer Tower電路,對試樣膜施加(最大±10 kV)三角波,使用示波器測定試樣膜之應答並求出。
本發明之成形體較佳為矯頑電場(coercive electric field)為35 MV/m以下。矯頑電場更佳為34 MV/m以下,更佳為33 MV/m以下。 上述矯頑電場之下限值例如可為5 MV/m。 上述矯頑電場係以如下方式求出之值:於切成20 mm×20 mm之試樣膜之中央部5 mm×5 mm處,藉由真空加工蒸鍍將鋁電極(平面電極)圖案化,利用導電性雙面膠帶將貼附絕緣膠帶而補強之鋁箔製造之2根引線(30 mm×80 mm)之電極接著於平面電極,將該試樣膜、函數波產生器、高壓放大器、及示波器組裝至Sawyer Tower電路,對試樣膜施加(最大±10 kV)三角波,使用示波器測定試樣膜之應答並求出。
本發明之成形體可僅由VdF/TFE系共聚物構成,亦可於不妨礙本發明之效果之範圍內包含VdF/TFE系共聚物以外之成分。
本發明之成形體可為片、管體、纖維等,但就製造相對容易之方面而言,較佳為片。 片之厚度並無特別限制,只要根據使用目的以擠出量等進行適宜調整即可。具體之厚度可較佳地列舉80 μm~10 mm之範圍、進而為90 μm~5 mm、尤其為110 μm~1 mm之範圍。 片之厚度可藉由使用測微計而測定。
本發明之成形體藉由具有上述構成而具有優異之機械強度、耐熱性及鐵電性。又,於尺寸穩定性、電特性、阻氣性等方面亦優異,因此可應用於各種用途。例如,活用優異之電特性,而適於壓電膜、或電潤濕器件用膜、薄膜電容器用膜等。又,亦適於熱電膜等。
本發明之成形體之製造方法 本發明之成形體之製造方法例如可以下述方式製造。再者,下述製造方法係對熔融液狀態之VdF/TFE系共聚物進行壓延伸長而進行結晶化(固化)之方法,與對經暫時固化之成形體進行壓延伸長而延伸之方法完全不同。
於圖2示出用以製造本發明之成形體之裝置(輥壓延伸長結晶化裝置10)的概略圖。輥壓延伸長結晶化裝置10由過冷熔融液供給機(具備將VdF/TFE系共聚物熔解並供給VdF/TFE系共聚物之熔融液之擠出機2a、及將來自擠出機2a之熔融液冷卻成過冷狀態之冷卻轉接器2b)及夾持輥3所構成。於上述過冷熔融液供給機中,在擠出機2a之噴出口處設置有狹縫口模(未圖示),該狹縫口模之前端之形狀成為方形。自該狹縫口模噴出之VdF/TFE系共聚物熔融液於通過冷卻轉接器2b內時被冷卻至過冷狀態(將過冷狀態之熔融液稱為「過冷熔融液」),且過冷熔融液朝向夾持輥3噴出。若將靜置場之六方晶結晶之平衡熔點與結晶化溫度之差定義為「過冷度∆T」,則尤佳之過冷度根據高分子之種類與表徵而明顯不同,因此並無特別限定,例如較佳為∆T=-35~+35℃,更佳為-30~+30℃,進而較佳為-20~+20℃。此處,結晶化溫度係指過冷熔融液之溫度。
上述夾持輥3係以能夠旋轉之一對輥對向之方式具備,可夾住自過冷熔融液供給機供給之過冷熔融液1,於輥之旋轉方向進行伸長而成形為片狀。
於製造本發明之成形體之情形時,只要藉由自過冷熔融液供給機供給過冷熔融液1,並夾持於夾持輥3以臨界伸長應變速度以上之伸長應變速度進行壓延伸長而使之結晶化即可。藉此,過冷熔融液1成為配向熔融液,可於維持其狀態之情況下使之結晶化,配向熔融液中所含之分子鏈彼此聚集且無需借助異物之幫助而進行成核(稱為「均相成核」)及生長,藉此生成NOC,可製造本發明之成形體。
此處,使用圖2所示之輥壓延伸長結晶化裝置10進一步說明本發明之成形體之製造方法。圖2中,著眼於利用夾持輥3進行之壓延伸長開始(A)至壓延伸長結束(B)為止之期間之區域(以下稱為「區域AB」)。將輥壓延伸長結晶化裝置10之夾持輥3之半徑設為R,將夾持輥3之角速度設為w,將夾持輥3之旋轉角度設為θ,將區域AB之任意場所處之過冷熔融液之厚度設為L0 ,將壓延伸長結束後之B點處之VdF/TFE系共聚物片之厚度設為L,將夾持輥之片捲取速度設為V,將伸長應變速度設為ε。區域AB處之輥旋轉角θ非常小。 θ<<1(rad)···(1) 輥之半徑R遠大於片之厚度L0 或L。 R>>L0 、L···(2) 關於區域AB之任意場所處之微體積Φ,以微體積之中心作為原點進行考慮。取過冷熔融液及VdF/TFE系共聚物片進行移動之方向(MD)為x軸,取過冷熔融液片之寬度方向(TD)為y軸,取過冷熔融液片之厚度方向為z軸。將微體積Φ以長方體進行近似,而將長方體之各邊長度設為x、y、L0 。 於片成形中,過冷熔融液片之寬度即y充分大於x、L0 ,可視為不因壓延伸長而變化。 y=const>>x、L0 ···(3) 因此,於利用夾持輥進行之壓延伸長過程中,過冷熔融液片於z軸方向被壓縮,於x軸方向被伸長。即,利用夾持輥進行之壓延伸長僅與x軸及z軸有關。 此處,若將x軸方向之伸長應變速度張量設為εxx ,將z軸方向之伸長應變速度張量設為εzz ,則兩者之關係被賦予為 εxx =-εzz ···(5)。 於(5)式之導出中, 使用與壓延伸長中之微體積Φ相關之質量守恆定律, Φ≒xyL0 =const···(4)。 圖2之區域AB之於z軸方向之應變速度szz 根據定義式,被賦予為 εzz ≡(1/L0 )×(dL0 /dt)···(6)。 其中,t為時間。 此處,由於為 L0 =2R(1-cosθ)+L···(7) ,故而根據式(6)、式(7)、及式(1),可近似地得出 εzz ≡-2ω√{(R/L0 )×(1-L/L0 )}···(8)。 根據式(5)與式(8),可獲得應求出之伸長應變速度 εxx ≒2ω√{(R/L0 )×(1-L/L0 )}···(9)。 εxx 根據式(9),為L0 之函數。 εxx 係當L0 =2L···(10) 時具有極大值。其意指當L0 =2L時εxx 變得最大,對過冷熔融液施加最大之伸長應變速度。 當將極大值之伸長應變速度記作εmax 時, 將式(10)代入至式(9),成為 εmax ≒ω√(R/L)···(11)。 此處,為了於超臨界伸長應變速度下進行成形,條件為εmax 為臨界伸長應變速度ε*以上。 因此,將式(11)定義為伸長應變速度ε,
成為
Figure 02_image001
。 V=Rω···(13) ω(R、V)=V/R···(14) 根據上述式(12)及(14),
而為
Figure 02_image003
因此,只要使用上述式(15),以伸長應變速度ε(R、L、V)成為臨界伸長應變速度以上之方式設定夾持輥之半徑R、伸長後之高分子片之平均厚度L、及夾持輥之片捲取速度V,便製造所需之本發明之成形體。
此處,上述臨界伸長應變速度ε*(R、L、V)亦可為藉由任意方法所確定之速度,例如亦可為使用下述近似式(式i)而算出者。 (式i)
Figure 02_image005
此處,上述臨界點之片捲取速度V*係藉由供給過冷狀態之VdF/TFE系共聚物熔融液,夾於半徑為R之一對夾持輥間並以片捲取速度V對該VdF/TFE系共聚物熔融液進行壓延伸長,而結晶化成厚度L之VdF/TFE系共聚物片時生成NOC之臨界點之片捲取速度V。
又,於本發明之成形體之製造方法中,上述臨界伸長應變速度ε*(R、L、V)亦可為使用下述近似式(式ii)而算出者。 (式ii)
Figure 02_image007
此處,上述臨界點之VdF/TFE系共聚物片之厚度L*係藉由供給過冷狀態之VdF/TFE系共聚物熔融液,夾於半徑為R之一對夾持輥間並以片捲取速度V對該VdF/TFE系共聚物熔融液進行壓延伸長,而結晶化成厚度L之VdF/TFE系共聚物片時生成NOC之臨界點之VdF/TFE系共聚物片之厚度L。
再者,關於是否生成有NOC之判斷,並無特別限定,例如可藉由下述實施例中所說明之X射線繞射法進行判斷。
於VdF/TFE系共聚物熔融液之流動性較高之情形時,在使用輥進行圧延伸長結晶化之情形時,存在難以利用夾持輥進行伸長之情況,存在無法以臨界伸長應變速度以上進行伸長之情況。因此,於製作本發明之成形體(VdF/TFE系共聚物片)時,較佳為預先調整為可以臨界伸長應變速度以上進行伸長之程度之流動性(熔融流動速率:Melt flow rate,MFR)。即,可認為於製造本發明之成形體(VdF/TFE系共聚物片)之方法中,較佳為包含調整VdF/TFE系共聚物熔融液之流動性之步驟。
於製造本發明之成形體之方法中,VdF/TFE系共聚物熔融液之流動性只要預先調整至可以臨界伸長應變速度以上進行伸長之程度之流動性即可,例如於230℃之VdF/TFE系共聚物熔融液之MFR較佳為100(g/10分鐘)以下,進而較佳為80(g/10分鐘)以下,進而更佳為60(g/10分鐘)以下,最佳為50(g/10分鐘)以下。 再者,於230℃之VdF/TFE系共聚物熔融液之MFR之下限只要為可以臨界伸長應變速度以上進行伸長之程度,便無特別限定,通常較佳為3 g/10分鐘以上。 實施例
其次,列舉實施例對本發明進行說明,但本發明並不僅限於該實施例。
於實施例中,使用下述VdF/TFE系共聚物。 VdF/TFE系共聚物1:VdF/TFE=80/20(莫耳比),MFR16(g/10分鐘,測定溫度230℃,負載2.1 kgf),重量平均分子量=19×104 於比較例中,使用下述VdF/TFE系共聚物。 VdF/TFE系共聚物2:VdF/TFE=80/20(莫耳比),MFR6(g/10分鐘,測定溫度230℃,負載2.1 kgf),重量平均分子量=23×104
依據以下方法進行實施例及比較例之各評價。
(1)偏光顯微鏡觀察 對實施例及比較例中所獲得之各試樣進行偏光顯微鏡觀察。偏光顯微鏡係使用Olympus(股)製造之BX51並利用正交偏光鏡進行觀察。為了定量地測定延遲變化,而將靈敏色板***至偏光顯微鏡之偏光鏡與分析器(偏光板)之間(參考文獻:高分子素材之偏光顯微鏡入門 粟屋 裕,Agne Gijutsu Center,2001年,p.75-103)。利用偏光顯微鏡進行之觀察係於室溫25℃進行。自片厚度方向(ND、through方向)對試樣進行觀察。
(2)X射線繞射(小角度X射線散射法) 使用SAXS法觀察各種試樣。SAXS法係基於「高分子X射線繞射 角戶 正夫 笠井 暢民,丸善股份有限公司,1968年」或「高分子X射線繞射 第3.3版 增子 徹,山形大學生協會,1995年」記載而進行。更具體而言,於(財)高輝度光科學研究中心(JASRI)Spring-8、光束線 BL40B2中,於X射線之波長λ=0.15 nm、攝影機長度3 m之條件下,使用成像板(Imaging Plate)作為檢測器在室溫25℃進行。對與MD及TD垂直之方向(through)、與TD平行之方向(edge)及與MD平行之方向(end)3個方向進行觀察。關於through與edge之試樣,將MD設置為Z軸方向,關於end,將TD設置為Z軸方向,關於X射線之曝光時間,進行5 sec~180 sec。利用RIGAKU股份有限公司製造之讀取裝置與讀入軟體(RIGAKU股份有限公司,raxwish, control)讀取成像板,而獲得二維圖像。
(3)X射線繞射(廣角X射線散射法) 使用WAXS法觀察各種試樣。WAXS法係利用(財)高輝度光科學研究中心(JASRI)SPring-8、光束線BL03XU或BL40B2,於X射線之波長(λ)為λ=0.0709 nm、攝影機長度(R)為R=280 mm之條件下,使用成像板(Imaging Plate)作為檢測器在室溫25℃進行。關於through與edge之試樣,將MD設置為Z軸方向,關於end,將TD設置為Z軸方向,關於X射線之曝光時間,進行10 sec~180 sec。利用RIGAKU股份有限公司製造之讀取裝置與讀入軟體(RIGAKU股份有限公司,raxwish, control)讀取成像板,而獲得二維圖像。
(4)結晶尺寸及NOC之結構 自小角度X射線散射圖像之MD方向之2點圖像求出VdF/TFE系共聚物之結晶尺寸(d)。SAXS法中之散射向量(q)-小角度X射線散射強度(Ix)曲線之一次峰值相當於平均尺寸d之微晶無規地彼此擁擠之情形時之微晶間最接近距離(=結晶尺寸d)(參考文獻:A. Guinier著,「X射線結晶學之理論與實際」,理學電機(股),p513,1967),因此自Bragg公式求出結晶尺寸d。 Bragg公式: d=2π÷q
(5)耐熱溫度、熔點 藉由使用光學顯微鏡之試片尺寸直讀法而測定實施例及比較例之試樣之耐熱溫度。具體而言,於高溫載台(Linkam公司製造,L-600A)內放置試片(縱0.6 mm,橫0.8 mm),以升溫速度1 K/min使高溫載台內升溫。此時,利用附帶CCD攝影機之光學顯微鏡(Olympus(股)製造之BX51)進行觀察與記錄。使用圖像解析軟體(Media Cybernetics公司製造,Image-Pro PLUS)定量地測量試片之縱向(MD)、及橫向(TD),將於MD或TD上開始收縮(或膨脹)3%以上時之溫度設為耐熱溫度TH 。亦一併研究實施例及比較例之試樣之熔點。熔點係作為於使用附帶高溫載台之偏光顯微鏡以1 K/min之速度升溫時之熔解行為中與延遲變化之極大值對應之溫度而求出。
(6)熔點 成形體之熔點係作為與使用示差掃描熱量計[DSC]以5 K/min之速度升溫時之熔解熱曲線上之極大值對應之溫度而求出。
(7)拉伸破壞應力 依據JIS-7127進行測定。
(8)拉伸彈性模數 其係藉由依據JIS-7127之方法所測得之值。
(9)表面粗糙度 使用小型表面粗糙度測定機(Mitsutoyo公司製造之SJ-210)並依據ISO 1997而測定算術平均粗糙度(Rz)。
(10)剩餘極化及矯頑電場 於切成20 mm×20 mm之試樣膜之中央部5 mm×5 mm處,藉由真空加工蒸鍍將鋁電極(平面電極)圖案化。利用導電性雙面膠帶將貼附絕緣膠帶而補強之鋁箔製造之2根引線(30 mm×80 mm)之電極接著於平面電極。將該試樣膜、函數波產生器、高壓放大器、及示波器組裝至Sawyer Tower電路,對試樣膜施加(最大±10 kV)三角波。使用示波器測定試樣膜之應答,而求出剩餘極化、矯頑電場。
實施例1~20 使用圖2中示意性地表示之輥壓延伸長結晶化裝置進行VdF/TFE系共聚物之伸長結晶化。伸長結晶化之條件如表1所記載。
[表1]
Figure 108110981-A0304-0001
表1中之「擠出最高溫度(Tmax )/℃」表示利用擠出成形機之加熱器將VdF/TFE系共聚物熔解而製備VdF/TFE系共聚物熔融液時之擠出機之設定溫度。 表1中之「熔融液溫度(Tmelt )/℃」表示利用輥對VdF/TFE系共聚物熔融液進行壓延伸長時之VdF/TFE系共聚物熔融液之溫度。 表1中之「輥溫度(TR )/℃」表示利用輥對VdF/TFE系共聚物熔融液進行壓延伸長時之輥之表面溫度。於表1中示出有2種溫度之情形時,表示2個對向之各個輥之表面溫度。 表1中之「伸長應變速度(ε)/s-1 」表示利用輥對VdF/TFE系共聚物熔融液進行壓延伸長時之伸長應變速度。 表1中之「試樣厚度/mm」表示藉由伸長結晶化所獲得之試樣之厚度。 表1中之「結晶尺寸(d)/nm」表示藉由伸長結晶化所獲得之試樣之NOC之結晶尺寸。
比較例1及比較例2 使用擠出成形機製作VdF/TFE系共聚物片。擠出成形之條件係以設定溫度240℃將樹脂熔融並自模具呈片狀擠出,於設定為溫度60℃之流延輥上使片固化,而製備比較例2之試樣。試樣厚度0.057 mm。
使用延伸機(井元製作所公司製造 膜雙軸延伸機)對上述所獲得之片進行延伸,而製作單軸延伸片。延伸係以環境溫度60℃於MD方向以延伸倍率成為5倍之方式延伸。 將上述所獲得之單軸延伸片固定於框內,以環境溫度113℃進行10分鐘熱固定,而製備比較例1之試樣。試樣厚度0.021 μm。
偏光顯微鏡觀察 關於上述所獲得之各試樣,自片厚度方向(ND、through方向)對試樣進行偏光顯微鏡觀察。作為VdF/TFE系共聚物之實施例之試樣之代表例,對表1之實施例11進行偏光顯微鏡觀察,並將結果示於圖3。圖3(a)係將MD相對於靈敏色板平行地放置之情形時之偏光顯微鏡圖像,圖3(b)係消光角之情形時之偏光顯微鏡圖像。
藉由於***有靈敏色板之狀態下使試樣旋轉,伸長方向(MD)之顏色(即延遲)由紫紅變化成黃色(圖3(a))、然後又變化成紫紅,而示出明確之消光角(紫紅色)(圖3(b))。因此,自該延遲之變化可知,實施例之試樣(表1之實施例11)之高分子鏈配向於伸長方向(MD)。
X射線繞射(小角度X射線散射法) 使用SAXS法觀察VdF/TFE系共聚物之實施例之試樣。將表1之實施例11之SAXS圖像作為VdF/TFE系共聚物之實施例之試樣之代表例示於圖4。圖4之(a)表示自through方向之觀察結果,(b)表示自edge方向之觀察結果,(c)表示自end方向之觀察結果。於圖4(a)及(b)中,在MD上觀察到較強之2點圖像。其為VdF/TFE系共聚物之結晶(NC)於MD配向之證據。又,圖4(c)中,僅為漫散射,於TD、ND上未表現出相關性。其表示於TD、ND上為無配向。因此,可知VdF/TFE系共聚物之實施例之試樣形成有NOC。
X射線繞射(廣角X射線散射法) 使用WAXS法觀察VdF/TFE系共聚物之實施例之試樣。將表1之實施例11之WAXS圖像作為VdF/TFE系共聚物之實施例之試樣之代表例示於圖5。圖5之(a)表示自through方向之觀察結果,(b)表示自edge方向之觀察結果,(c)表示自end方向之觀察結果。圖5(a)及(b)中示出了纖維圖案,故而表示高分子鏈(結晶之c軸)於MD高配向。另一方面,由於事實上圖5(c)示出幾乎無配向之德拜-謝樂環(Debye-Scherrer ring),故而表示VdF/TFE系共聚物之實施例之試樣之結晶之a、b軸幾乎無配向。藉此,可知VdF/TFE系共聚物之實施例之試樣形成有NOC。
進而,自圖5之結果亦確認到VdF/TFE系共聚物之實施例之試樣之結晶為β晶(參照非專利文獻9)。由於幾乎未觀察到非晶暈環,故而確認為高結晶性。
結晶尺寸及NOC之結構之研究 自圖4之MD方向之2點圖像求出VdF/TFE系共聚物之實施例之試樣之結晶尺寸(d)。作為VdF/TFE系共聚物之實施例之試樣之代表例,求出表1之實施例11之d,結果可知為29 nm。關於實施例1~16、18~20,表1中示出結晶尺寸。
自顯微鏡觀察及X射線觀察之結果推定出,VdF/TFE系共聚物之實施例之試樣為如圖1之大致球狀之NC於MD上副晶地排列而成之結構。
耐熱溫度與熔點之研究 藉由使用光學顯微鏡之試片尺寸直讀法測定VdF/TFE系共聚物之實施例(表1之實施例20)及VdF/TFE系共聚物之比較例1之試樣之耐熱溫度。定量地測量試片之縱向(MD)及橫向(TD),將於MD或TD上開始收縮(或膨脹)3%以上時之溫度設為耐熱溫度Th。又,亦一併研究熔點Tm。
根據圖11,VdF/TFE系共聚物之實施例20之試樣產生3%以上應變時之耐熱溫度Th約為134℃。熔點Tm約為140℃。
另一方面,根據圖12,比較例1之試樣之耐熱溫度Th約為75℃。又,熔點Tm約為129℃。
熔點 關於VdF/TFE系共聚物之實施例之試樣(表1之實施例9、10、16)及VdF/TFE系共聚物之比較例1之試樣之熔點,作為與使用示差掃描熱量計[DSC]以5 K/min之速度升溫時之熔解熱曲線上之極大值對應之溫度而求出。關於熔點Tm,實施例9之試樣為137.2℃,實施例10之試樣為138.1℃,實施例16之試樣為137.7℃。另一方面,比較例1之試樣之熔點Tm於126.4℃與128.0℃存在2個極大值。
自上述光學顯微鏡與DSC之研究可知,當對VdF/TFE系共聚物之實施例11與比較例1進行比較時,關於耐熱溫度及熔點,實施例之試樣大幅高於比較例之試樣。
拉伸破壞應力、拉伸彈性模數 對VdF/TFE系共聚物之實施例(表1之實施例10、11、12、13、14、15、16、18、19、20)及VdF/TFE系共聚物之比較例1及2之拉伸破壞應力、拉伸彈性模數進行測定。將結果示於表2。對實施例10之試樣測定拉伸破壞應力σB 與拉伸彈性模數Et ,並將表示該測定結果之典型圖示於圖6。對比較例1之試樣測定拉伸破壞應力(σB )與拉伸彈性模數(Et ),並將表示該測定結果之典型圖示於圖7。對比較例2之試樣測定拉伸破壞應力(σB )與拉伸彈性模數(Et ),並將表示該測定結果之典型圖示於圖10。當對VdF/TFE系共聚物之實施例之試樣與比較例進行比較時,關於彈性模數,實施例之試樣大幅高於比較例之試樣。
[表2]
Figure 108110981-A0304-0002
表面粗糙度 使用小型表面粗糙度測定機(Mitsutoyo公司製造 SJ-210),依據ISO1997對VdF/TFE系共聚物之實施例(表1之實施例9、10、11)測定算術平均粗糙度(Rz)。關於Rz,實施例9之試樣為2.54 μm,實施例10之試樣為0.39 μm,實施例11之試樣為0.19 μm。當對實施例10、11與實施例9之試樣進行比較時,關於Rz,實施例10、11之試樣大幅低於實施例9之試樣。其係藉由如下方式達成,即,於實施例10、11中,藉由將輥溫度設定得低於結晶化溫度,而使成形試樣容易自輥剝離。
剩餘極化及矯頑電場 對於VdF/TFE系共聚物之實施例之試樣(表1之實施例10、16、17)與比較例1之試樣,實施例10之試樣係於電場85 MVm-1 下測定剩餘極化及矯頑電場,實施例16之試樣係於電場80 MVm-1 下測定剩餘極化及矯頑電場,實施例17之試樣係於電場80 MVm-1 下測定剩餘極化及矯頑電場,比較例1之試樣係於電場140 MVm-1 下測定剩餘極化及矯頑電場。將結果示於表3。對實施例10之試樣測定剩餘極化Pr 與矯頑電場Ec ,並將表示該測定結果之典型圖示於圖8。對比較例1之試樣測定剩餘極化Pr 與矯頑電場Ec ,並將表示該測定結果之圖示於圖9。實施例(表1之實施例10、16、17)之試樣與比較例1之試樣相比,表現出超過45 mCm-2 之較高之剩餘極化Pr 。實施例(表1之實施例10、16、17)之試樣儘管表現出較高之剩餘極化,但仍表現出未達35 MVm-1 之較低之矯頑電場Ec
[表3]
Figure 108110981-A0304-0003
產業上之可利用性
本發明之成形體與習知之由VdF/TFE系共聚物所構成之成形體相比,具備優異之耐熱性、力學特性及鐵電性,因此可應用於習知之包含偏二氟乙烯/四氟乙烯系共聚物之結晶的成形體之用途、例如壓電膜、熱電感測器等,此外,由於能以較低之矯頑電場進行分極反轉,故而亦可較佳地用於高速切換元件、振動發電元件、圖像元件、可穿戴式感測器等用途。
1‧‧‧過冷熔融液 2a‧‧‧擠出機 2b‧‧‧冷卻轉接器 3‧‧‧夾持輥 10‧‧‧輥壓延伸長結晶化裝置
圖1係表示奈米配向結晶(NOC)之結構之示意圖。 圖2係實施例之試樣之製作中所使用之輥壓延伸長結晶化裝置之示意圖。 圖3係實施例之試樣之偏光顯微鏡圖像(自through方向之觀察結果)。 圖4係實施例之試樣之小角度X射線散射圖像,且(a)為來自through方向之觀察結果,(b)為來自edge方向之觀察結果,(c)為來自end方向之觀察結果。 圖5係實施例之試樣之廣角X射線散射圖像,且(a)為自through方向之觀察結果,(b)為自edge方向之觀察結果,(c)為自end方向之觀察結果。 圖6係表示實施例之試樣之拉伸破壞應力(σB )與拉伸彈性模數(Et )之測定結果的典型圖。 圖7係表示比較例之試樣之拉伸破壞應力(σB )與拉伸彈性模數(Et )之測定結果的圖。 圖8係表示實施例之試樣之剩餘極化(Pr )與矯頑電場(Ec )之測定結果的典型圖。 圖9係表示比較例之試樣之剩餘極化(Pr )與矯頑電場(Ec )之測定結果的圖。 圖10係表示比較例之試樣之拉伸破壞應力(σB )與拉伸彈性模數(Et )之測定結果的圖。 圖11係表示實施例之試樣之耐熱溫度之測定結果的繪圖。 圖12係表示比較例之試樣之耐熱溫度之測定結果的繪圖。
MD‧‧‧伸長方向

Claims (9)

  1. 一種成形體,其係包含偏二氟乙烯/四氟乙烯系共聚物之結晶者,其特徵在於:上述結晶為β晶,上述結晶為尺寸100nm以下之奈米配向結晶,且該成形體之算術平均粗糙度為3.0μm以下。
  2. 如請求項1所述之成形體,其中,上述偏二氟乙烯/四氟乙烯系共聚物為高結晶性。
  3. 如請求項1或2所述之成形體,其中,上述偏二氟乙烯/四氟乙烯系共聚物係相對於偏二氟乙烯單位與四氟乙烯單位之合計100莫耳%,偏二氟乙烯單位為50~95莫耳%,四氟乙烯單位為5~50莫耳%。
  4. 如請求項1或2所述之成形體,其為鐵電體。
  5. 如請求項1或2所述之成形體,其熔點為130℃以上。
  6. 如請求項1或2所述之成形體,其耐熱溫度為90℃以上。
  7. 如請求項1或2所述之成形體,其彈性模數為1.0GPa以上。
  8. 如請求項1或2所述之成形體,其剩餘極化為45mC/m2以上。
  9. 如請求項1或2所述之成形體,其矯頑電場為35MV/m以下。
TW108110981A 2018-03-30 2019-03-28 成形體 TWI759589B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018069704 2018-03-30
JPJP2018-069704 2018-03-30

Publications (2)

Publication Number Publication Date
TW201942156A TW201942156A (zh) 2019-11-01
TWI759589B true TWI759589B (zh) 2022-04-01

Family

ID=68060125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110981A TWI759589B (zh) 2018-03-30 2019-03-28 成形體

Country Status (7)

Country Link
US (1) US20210017375A1 (zh)
EP (1) EP3778724B1 (zh)
JP (1) JP7101373B2 (zh)
KR (1) KR102430668B1 (zh)
CN (1) CN111936562B (zh)
TW (1) TWI759589B (zh)
WO (1) WO2019189319A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189316A1 (ja) 2018-03-30 2019-10-03 ダイキン工業株式会社 成形体
CN116675800B (zh) * 2023-08-03 2024-01-30 宁德时代新能源科技股份有限公司 含氟聚合物、制备方法、正极极片、二次电池及用电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084750A1 (ja) * 2009-01-23 2010-07-29 国立大学法人広島大学 高分子シートおよびその製造方法
CN104704046A (zh) * 2012-10-16 2015-06-10 大金工业株式会社 高介电性膜

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219750A (ja) * 2000-11-10 2002-08-06 Asahi Glass Co Ltd 機械的強度の高いフッ素樹脂フィルム
US7214410B2 (en) * 2002-10-04 2007-05-08 Shipley Company, L.L.C. Process for selecting solvents for forming films of ferroelectric polymers
US8804307B2 (en) * 2007-01-26 2014-08-12 Daikin Industries, Ltd. Highly dielectric film having high withstanding voltage
WO2008108251A1 (ja) 2007-03-02 2008-09-12 Hiroshima University 高分子結晶体
JP2008248039A (ja) * 2007-03-29 2008-10-16 Hiroshima Univ 高分子結晶体およびその製造方法
KR100930588B1 (ko) * 2007-09-21 2009-12-09 경희대학교 산학협력단 높은 함량의 β-결정을 가진 폴리비닐리덴 플루오라이드필름의 제조 방법
US20090317916A1 (en) * 2008-06-23 2009-12-24 Ewing Kenneth J Chemical sample collection and detection device using atmospheric pressure ionization
EP2655446B1 (en) * 2010-12-22 2014-10-29 Solvay Specialty Polymers Italy S.p.A. Vinylidene fluoride and trifluoroethylene polymers
JP5628054B2 (ja) * 2011-01-18 2014-11-19 株式会社クレハ ポリフッ化ビニリデン樹脂組成物、着色樹脂フィルム、及び太陽電池モジュール用バックシート
JP2012181513A (ja) * 2011-02-10 2012-09-20 Daikin Ind Ltd エレクトロウエッティング用疎水性誘電体フィルム
WO2014158956A1 (en) * 2013-03-14 2014-10-02 Saudi Basic Industries Corporation Ferroelectric capacitor with improved fatigue and breakdown properties
US20160130388A1 (en) * 2013-07-19 2016-05-12 Mitsui Chemicals, Inc. Crystallized polymer film and method for producing the same
CN106660252A (zh) 2014-09-02 2017-05-10 国立大学法人广岛大学 高耐热性聚酯片
JP6455367B2 (ja) * 2014-09-16 2019-01-23 Agc株式会社 含フッ素樹脂組成物、成形品、電線および含フッ素樹脂組成物の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084750A1 (ja) * 2009-01-23 2010-07-29 国立大学法人広島大学 高分子シートおよびその製造方法
CN104704046A (zh) * 2012-10-16 2015-06-10 大金工业株式会社 高介电性膜

Also Published As

Publication number Publication date
CN111936562B (zh) 2023-06-16
KR102430668B1 (ko) 2022-08-09
CN111936562A (zh) 2020-11-13
EP3778724A4 (en) 2021-12-29
TW201942156A (zh) 2019-11-01
WO2019189319A1 (ja) 2019-10-03
US20210017375A1 (en) 2021-01-21
EP3778724B1 (en) 2024-05-01
JPWO2019189319A1 (ja) 2021-01-14
EP3778724A1 (en) 2021-02-17
KR20200128076A (ko) 2020-11-11
JP7101373B2 (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
Jia et al. Crystallization behavior and electroactive properties of PVDF, P (VDF-TrFE) and their blend films
Wang et al. Design, synthesis and processing of PVDF‐based dielectric polymers
Lutkenhaus et al. Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene)
Li et al. Studies on the transformation process of PVDF from α to β phase by stretching
Ren et al. Enhanced dielectric and ferroelectric properties of poly (vinylidene fluoride) through annealing oriented crystallites under high pressure
Lee et al. Lamellar crystalline structure of hard elastic HDPE films and its influence on microporous membrane formation
TWI759589B (zh) 成形體
Ding et al. Pore formation and evolution mechanism during biaxial stretching of β-iPP used for lithium-ion batteries separator
WO2014104089A1 (ja) 2軸延伸ポリプロピレンフィルム
Xu et al. Facile preparation of highly oriented poly (vinylidene fluoride) uniform films and their ferro-and piezoelectric properties
Wang et al. Taming the Phase Transition Ability of Poly (vinylidene fluoride) from α to γ′ Phase
TWI833867B (zh) 雙軸配向聚丙烯膜
TWI824088B (zh) 雙軸配向聚丙烯膜
JP2012530814A (ja) キャストフィルム、微孔膜及びこれらの調製方法
Yang et al. A biaxial stretched β‐isotactic polypropylene microporous membrane for lithium‐ion batteries
Bargain et al. Semicrystalline organization of VDF-and TrFE-based electroactive terpolymers: impact of the trans-1, 3, 3, 3-tetrafluoropropene termonomer
Ding et al. Influence of oriented β‐lamellae on deformation and pore formation in β‐nucleated polypropylene
Wang et al. Competition of shearing and cavitation effects on the deformation behavior of isotactic polypropylene during stretching
Sundaray et al. Unusual process-induced curl and shrinkage of electrospun PVDF membranes
Jayasuriya et al. Ferroelectric behavior in solvent cast poly (vinylidene fluoride/hexafluoropropylene) copolymer films
WO2020217930A1 (ja) ポリプロピレンフィルム、金属層一体型ポリプロピレンフィルム、及び、フィルムコンデンサ
Yang et al. Formation of oriented β‐transcrystals induced by self‐assembly of nucleating agent and its micropores formation during uniaxial stretching
JP7321145B2 (ja) 成形体
Murasawa et al. Electrically excited oscillation and crystalline structure of a nanoclay/poly (vinylidene fluoride) composite film
Osička et al. Anisotropy in CNT composite fabricated by combining directional freezing and gamma irradiation of acrylic acid