TWI758821B - 半導體裝置及其製造方法 - Google Patents

半導體裝置及其製造方法 Download PDF

Info

Publication number
TWI758821B
TWI758821B TW109127523A TW109127523A TWI758821B TW I758821 B TWI758821 B TW I758821B TW 109127523 A TW109127523 A TW 109127523A TW 109127523 A TW109127523 A TW 109127523A TW I758821 B TWI758821 B TW I758821B
Authority
TW
Taiwan
Prior art keywords
region
insulating film
source
semiconductor device
insulating
Prior art date
Application number
TW109127523A
Other languages
English (en)
Other versions
TW202133440A (zh
Inventor
宮田俊敬
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202133440A publication Critical patent/TW202133440A/zh
Application granted granted Critical
Publication of TWI758821B publication Critical patent/TWI758821B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02148Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing hafnium, e.g. HfSiOx or HfSiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76205Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO in a region being recessed from the surface, e.g. in a recess, groove, tub or trench region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/20Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B41/23Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B41/27Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

實施方式係關於一種半導體裝置及其製造方法。 本實施方式之半導體裝置具備半導體區域、絕緣部、第1區域(源極)、第2區域(汲極)、控制電極(閘極電極)、第1電極、及第1絕緣膜。半導體區域包括第1表面,具有第1導電型。絕緣部形成於半導體區域,具有較第1表面沿半導體區域之深度方向後退之第2表面。第1區域位於絕緣部之第1部分與絕緣部之第2部分之間且設於半導體區域上。第2區域位於第1部分與第2部分之間,與第1區域分開,且設於半導體區域上。控制電極設於第1表面上方,位於第1區域與第2區域之間。第1電極設於第1區域之上,與第1區域相接。第1絕緣膜設於第1表面與第2表面之間的階差部之半導體區域之側壁。第1絕緣膜為包含鉿之絕緣膜。

Description

半導體裝置及其製造方法
此處所記載之實施方式係關於一種半導體裝置及其製造方法。
近年來,於LSI(Large Scale Integration,大規模積體電路)技術中,隨著積體化及元件動作之高速化,閘極長度之短距離化、源極區域及汲極區域之接合深度之淺化不斷發展。又,例如NAND(Not And,反及)型快閃記憶體等記憶胞之驅動用電晶體尺寸於決定記憶胞之半間距(HP:Half Pitch)之方面成為重要因素。
作為縮小電晶體尺寸之方法之一,有效的是將活性區域縮小化,將源極接點與絕緣分離區域之間之距離縮小化。然而,隨著源極接點與絕緣分離區域之間之距離之縮小化,源極接點搭於絕緣分離區域,源極接點與源極擴散接面之間之距離會靠近,因此導致接合洩漏上升,縮小化變得困難。
本發明之實施方式提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置及其製造方法。
實施方式之半導體裝置具備半導體區域、絕緣部、第1區域、第2區域、控制電極、第1電極、及第1絕緣膜。半導體區域包括第1表面,具有第1導電型。絕緣部形成於半導體區域,具有較第1表面沿半導 體區域之深度方向後退之第2表面。第1區域位於絕緣部之第1部分與絕緣部之第2部分之間且設於半導體區域上。第2區域位於第1部分與第2部分之間,與第1區域分開,且設於半導體區域上。控制電極設於第1表面上方,位於第1區域與第2區域之間。第1電極設於第1區域之上,與第1區域相接。第1絕緣膜設於第1表面與第2表面之間的階差部之半導體區域之側壁。第1絕緣膜為包含鉿之絕緣膜。
1:半導體裝置
1A:半導體裝置
2A:半導體裝置
10:半導體區域
12:絕緣分離區域(絕緣部)
14:控制電極(閘極電極)
16:氧化矽膜
18:氮化矽膜
20:閘極氧化膜
22:第1區域(源極)
23:第2區域(汲極)
24:源極擴展區域
25:汲極擴展區域
26:絕緣膜
28:層間絕緣膜
30:襯墊絕緣膜
32S:源極電極
32D:汲極電極
34G:閘極矽化物區域
34S:源極矽化物區域
34D:汲極矽化物區域
261:側壁絕緣膜
262:側壁絕緣膜(第1絕緣膜)
AA:活性區域
CD:汲極接點
CHD:汲極接觸孔
CHS:源極接觸孔
CS:第1電極(源極接點)
D:汲極區域
G:閘極電極
GC:閘極接點
S:源極區域
SF1:第1表面
SF2:第2表面
STI:絕緣分離區域
圖1A係實施方式之半導體裝置之模式性平面圖案構成圖。
圖1B係將活性區域縮小化的實施方式之半導體裝置之模式性平面圖案構成圖。
圖1C係進行縮小化直至源極接點及汲極接點之端部與絕緣分離區域相接的實施方式之半導體裝置之模式性平面圖案構成圖。
圖1D係進行縮小化直至源極接點及汲極接點之端部搭於絕緣分離區域的實施方式之變化例之半導體裝置之模式性平面圖案構成圖。
圖2A~圖2F係第1實施方式之半導體裝置之製造方法之一步驟且為沿圖1C之I-I線之模式性剖面構造圖。
圖2G及圖2H係第1實施方式之變化例之半導體裝置之製造方法之一步驟且為沿圖1D之II-II線之模式性剖面構造圖。
圖3A~圖3G係第2實施方式之半導體裝置之製造方法之一步驟且為沿圖1C之I-I線之模式性剖面構造圖。
圖3H~圖3J係第2實施方式之變化例之半導體裝置之製造方法之一步驟且為沿圖1D之II-II線之模式性剖面構造圖。
其次,參照圖式對實施方式進行說明。於以下所說明之圖式之記載中,對相同或類似之部分標註相同或類似之符號。但是,圖式為模式性者,應注意各構成零件之厚度與平面尺寸之關係等與實際中不同。故而,具體厚度或尺寸應參照以下之說明進行判斷。又,圖式彼此間當然亦包含相互之尺寸之關係或比率不同之部分。
又,以下所示之實施方式中例示用於將技術思想具體化之裝置或方法,但並不特定各構成零件之材質、形狀、構造、配置等。該實施方式於申請專利範圍內可進行各種變更。
以下說明之實施方式之半導體裝置係以金屬-氧化膜-半導體場效電晶體(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)為對象。又,於以下說明之實施方式中,有時亦將絕緣分離區域簡單記載為STI(淺溝隔離(Shallow Trench Isolation))。
[第1實施方式]
(平面圖案構成)
第1實施方式之半導體裝置1之模式性平面圖案構成如圖1A~圖1C所示般配置於X-Y平面上而表示。第1實施方式之變化例之半導體裝置1之模式性平面圖案構成如圖1D所示般配置於X-Y平面上而表示。
如圖1A所示,第1實施方式之半導體裝置1具備源極區域S、汲極區域D、及被源極區域S及汲極區域D夾著而配置之閘極電極G。活性區域AA具備源極區域S及汲極區域D、及被源極區域S及汲極區域D夾著而配置之通道區域,由絕緣分離區域包圍。絕緣分離區域例如由淺溝隔離(STI:Shallow Trench Isolation)形成。如圖1A所示,源極區域S之X 方向之尺寸由S1表示,Y方向之尺寸由W1表示,汲極區域D之X方向之尺寸由D1表示,Y方向之尺寸由W1表示。閘極電極G之X方向之尺寸由L1表示。W1、L1分別相當於實施方式之半導體裝置之通道寬度、通道長度。於源極區域S上配置有源極接點CS,於汲極區域D上配置有汲極接點CD。於沿Y方向延伸之閘極電極G上配置有閘極接點GC。源極接點CS之尺寸於X方向上由CI表示,於Y方向上由C1表示。汲極接點CD及閘極接點GC之尺寸亦與源極接點CS相同。
如圖1B所示,表示將活性區域AA於X方向上縮小化的第1實施方式之半導體裝置1之模式性平面圖案構成例。如圖1B所示,源極區域S之X方向之尺寸由S2表示,Y方向之尺寸由W1表示,汲極區域D之X方向之尺寸由D2表示,Y方向之尺寸由W1表示。此處,S2<S1成立,D2<D1成立。
閘極電極G之X方向之尺寸由L2表示。W1、L2分別相當於通道寬度、通道長度。於源極區域S上配置有源極接點CS,於汲極區域D上配置有汲極接點CD。於沿Y方向延伸之閘極電極G上配置有閘極接點GC。源極接點CS之尺寸於X方向上由CI表示,於Y方向上由C1表示,汲極接點CD及閘極接點GC之尺寸亦與源極接點CS相同。
如圖1C所示,表示進而將活性區域AA於X方向上縮小化,且縮小化至源極接點CS及汲極接點CD之端部與絕緣分離區域STI相接的第1實施方式之半導體裝置1之模式性平面圖案構成例。如圖1C所示,源極區域S之X方向之尺寸由S3表示,Y方向之尺寸由W1表示,汲極區域D之X方向之尺寸由D3表示,Y方向之尺寸由W1表示。此處,S3<S2<S1成立,D3<D2<D1成立。閘極電極G之X方向之尺寸由L3表示。 W1、L3分別相當於通道寬度、通道長度。於源極區域S上配置有端部與絕緣分離區域STI接觸之源極接點CS,於汲極區域D上配置有端部與絕緣分離區域STI接觸之汲極接點CD。於沿Y方向延伸之閘極電極G上配置有閘極接點GC。源極接點CS之尺寸於X方向上由CI表示,於Y方向上由C1表示,汲極接點CD及閘極接點GC之尺寸亦與源極接點CS相同。
如圖1D所示,表示進而將活性區域AA縮小化,且縮小化至源極接點CS及汲極接點CD之端部搭於絕緣分離區域STI的第1實施方式之變化例之半導體裝置1A之平面圖案構成例。如圖1D所示,源極區域S之X方向之尺寸由S4表示,Y方向之尺寸由W1表示,汲極區域D之X方向之尺寸由D4表示,Y方向之尺寸由W1表示。此處,S4<S3<S2<S1成立,D4<D3<D2<D1成立。閘極電極G之X方向之尺寸由L4表示。W1、L4分別相當於通道寬度、通道長度。於源極區域S上配置有端部接於絕緣分離區域STI之源極接點CS,於汲極區域D上配置有端部接於絕緣分離區域STI之汲極接點CD。於沿Y方向延伸之閘極電極G上配置有閘極接點GC。源極接點CS之尺寸於X方向上由CI表示,於Y方向上由C1表示,汲極接點CD之尺寸亦與源極接點CS及閘極接點GC之尺寸相同。再者,絕緣分離區域(STI)具有特定之寬度,但於圖1A~圖1D中,該方面被省略。又,圖1A~圖1D係以第1實施方式為對象進行了說明,但亦同樣適用於第2實施方式。
(洩漏增大之機制)
作為縮小電晶體尺寸之方法之一,如圖1A~圖1D所示,有效的是將活性區域AA縮小化,縮短源極接點CS及汲極接點CD與絕緣分離區域STI間之距離。然而,隨著源極接點CS及汲極接點CD與絕緣分離區域STI之 間之距離之縮小化,源極接點CS及汲極接點CD搭於絕緣分離區域STI後,源極接點與源極擴散pn接面之間之距離會靠近,因此導致接合洩漏上升。由於源極擴散層與半導體區域間之pn接面與源極接點CS界面靠近,因此於汲極、源極間施加偏壓電壓時,空乏層於通道內擴展時之源極擴散層與p型半導體區域間之pn接面之漏電流增大。若源極接點CS搭於絕緣分離區域STI,則當源極接點CS打開時會露出p型半導體區域(活性區域AA)端部。此處由於置入源極電極,因此源極接點CS與活性區域AA之端部之源極擴散層之距離縮小且接合洩漏上升。
於本實施方式之半導體裝置中,藉由使絕緣分離區域STI沿半導體區域之深度方向後退而凹陷,於因該凹陷而露出之半導體區域之側壁形成相對於氧化膜及氮化膜而言選擇比較高之絕緣膜,從而能夠抑制接合洩漏。又,藉由在閘極側壁亦形成相對於氧化膜及氮化膜而言選擇比較高之絕緣膜,能夠自對準地控制閘極電極G與源極接點CS之間之距離。同樣地,能夠自對準地控制閘極電極G與汲極接點CD之間之距離。其結果,於本實施方式中,能夠提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置。
(第1實施方式之半導體裝置之構成)
如圖2A及圖2B所示,表示第1實施方式之半導體裝置1且為沿圖1C之I-I線之模式性剖面構造。此處,圖2A係開設有源極接觸孔CHS及汲極接觸孔CHD之構造,圖2B係形成有源極接點CS及汲極接點CD之構造。
第1實施方式之半導體裝置1具備半導體區域10、絕緣分離區域(絕緣部)12、第1區域(源極)22、第2區域(汲極)23、控制電極(閘極電極)14、第1電極CS、及側壁絕緣膜(第1絕緣膜)262。半導體區域10包括 第1表面SF1,具有第1導電型。絕緣分離區域(絕緣部)12形成於半導體區域10,具有較第1表面SF1沿半導體區域10之深度方向後退之第2表面SF2。第1區域(源極)22位於絕緣分離區域(絕緣部)12之第1部分與絕緣分離區域(絕緣部)12之第2部分之間且設於半導體區域10上。第2區域(汲極)23位於第1部分與第2部分之間,與第1區域(源極)22分開,且設於半導體區域10上。控制電極(閘極電極)14設於第1表面SF1上方,位於第1區域(源極)22與第2區域(汲極)23之間。第1電極CS設於第1區域(源極)22之上,與第1區域(源極)22相接。側壁絕緣膜(第1絕緣膜)262設於第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁。側壁絕緣膜(第1絕緣膜)262為包含鉿之絕緣膜。以下進行詳細說明。
如圖2A所示,第1實施方式之半導體裝置1具備第1導電型之半導體區域10、絕緣分離區域(絕緣部)12、控制電極(閘極電極)14、側壁絕緣膜261、與第1導電型為相反導電型之第1區域(源極)22及第2區域(汲極)23、源極接觸孔CHS及汲極接觸孔CHD、源極電極32S、汲極電極32D、及側壁絕緣膜(第1絕緣膜)262。
半導體區域10例如具備相對於n型半導體基板形成p井擴散層之p型半導體區域。半導體區域10亦可具備p型半導體基板。
絕緣分離區域(絕緣部)12形成於半導體區域10之第1表面SF1,具有較第1表面SF1沿半導體區域10之深度方向後退之第2表面SF2。絕緣分離區域(絕緣部)12可由STI形成。再者,如圖2C~圖2H所示,絕緣分離區域(絕緣部)12具有特定之寬度。又,半導體區域10之深度方向係與上述X-Y平面垂直之方向。
控制電極(閘極電極)14介隔閘極氧化膜20形成於由絕緣分 離區域(絕緣部)12包圍之半導體區域10之上方。
控制電極(閘極電極)14設於第1表面SF1上,位於第1區域(源極)22與第2區域(汲極)23之間。源極電極32S設於第1區域(源極)22之上,與第1區域(源極)22連接。汲極電極32D設於第2區域(汲極)23之上,與第2區域(汲極)23連接。
側壁絕緣膜261配置於控制電極(閘極電極)14兩端之側壁,具備相對於氧化矽膜及氮化矽膜而言蝕刻選擇比較高之膜。
第1區域(源極)22及第2區域(汲極)23形成於控制電極(閘極電極)14之兩端部之第1表面SF1。
於控制電極(閘極電極)14兩端之第1表面SF1,具備與第1區域(源極)22鄰接之源極擴展區域24及與第2區域(汲極)23鄰接之汲極擴展區域25。
第1區域(源極)22位於絕緣分離區域(絕緣部)12之間且設於半導體區域10上。第2區域(汲極)23位於絕緣分離區域(絕緣部)12之間,於X方向上與第1區域(源極)22分開,且設於半導體區域10上。
源極接觸孔CHS形成於第1區域(源極)22上,汲極接觸孔CHD形成於汲極區域D上。
又,如圖2B所示,源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而構成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而構成汲極接點CD。
側壁絕緣膜(第1絕緣膜)262配置於第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁,具備相對於氧化矽膜及氮化矽膜而言蝕刻選擇比較高之絕緣膜。側壁絕緣膜(第1絕緣膜)262可與側壁絕 緣膜261同時形成。
側壁絕緣膜261及側壁絕緣膜(第1絕緣膜)262例如可具備鉿系氧化膜。鉿系氧化膜係相對於氧化矽膜及氮化矽膜而言蝕刻選擇比較高之膜,蝕刻選擇比約為10以上。
側壁絕緣膜261及側壁絕緣膜(第1絕緣膜)262例如可包含選自氧化鉿(HfOX)、矽氧化鉿(HfSiOX)、氮氧矽化鉿(HfSiON)之群中之任一不同之材料。
側壁絕緣膜261及側壁絕緣膜(第1絕緣膜)262之厚度係數nm以上數10nm以下。又,側壁絕緣膜261及側壁絕緣膜(第1絕緣膜)262之厚度亦可約2nm以上約20nm左右以下。
第1表面SF1及第2表面SF2之深度方向之長度係約數nm以上數10nm以下。又,第1表面SF1及第2表面SF2之深度方向之長度亦可約10nm以上約50nm以下。
於第1表面SF1與第2表面SF2之間的階差部之側壁形成側壁絕緣膜(第1絕緣膜)262,只要作為活性區域AA之半導體區域10或第1區域(源極)22及第2區域(汲極)23之端部由側壁絕緣膜(第1絕緣膜)262被覆而未露出,則能夠抑制接合洩漏之上升。
於控制電極(閘極電極)14之側壁,具備積層之氧化矽膜16及氮化矽膜18,側壁絕緣膜261積層配置於氮化矽膜18。
如圖2B所示,源極接點CS可與絕緣分離區域(絕緣部)12與第1區域(源極)22之界面相接而配置。同樣地,如圖2B所示,汲極接點CD亦可與絕緣分離區域(絕緣部)12與第2區域(汲極)23之界面相接而配置。
於第1實施方式之半導體裝置中,藉由使絕緣分離區域(絕 緣部)12沿半導體區域10之深度方向後退而凹陷,於因該凹陷而露出之半導體區域10或第1區域(源極)22及第2區域(汲極)23之側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,能夠抑制接合洩漏。
又,於第1實施方式之半導體裝置1中,藉由在閘極側壁亦形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜261,能夠自對準地控制控制電極(閘極電極)14與源極接點CS之間之距離。同樣地,能夠自對準地控制控制電極(閘極電極)14與汲極接點CD之間之距離。其結果,於第1實施方式中,能夠提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置。
(第1實施方式之變化例之半導體裝置之構成)
如圖2G及圖2H所示,表示第1實施方式之變化例之半導體裝置1A且為沿圖1D之II-II線之模式性剖面構造。此處,圖2G係開設有源極接觸孔CHS及汲極接觸孔CHD之構造,圖2H係形成有源極接點CS及汲極接點CD之構造。
如圖2G所示,第1實施方式之變化例之半導體裝置1A具備第1導電型之半導體區域10、絕緣分離區域(絕緣部)12、控制電極(閘極電極)14、側壁絕緣膜261、第1區域(源極)22及第2區域(汲極)23、源極接觸孔CHS及汲極接觸孔CHD、及側壁絕緣膜(第1絕緣膜)262。
又,如圖2H所示,源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而構成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而構成汲極接點CD。
又,如圖2H所示,源極接點CS可跨及絕緣分離區域(絕緣 部)12及第1區域(源極)22而配置。同樣地,如圖2H所示,汲極接點CD可跨及絕緣分離區域(絕緣部)12及第2區域(汲極)23而配置。其他構成與第1實施方式相同。
於第1實施方式之變化例之半導體裝置1A中,藉由使絕緣分離區域(絕緣部)12沿半導體區域10之深度方向後退而凹陷,於因該凹陷而露出之半導體區域10或第1區域(源極)22及第2區域(汲極)23之側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,亦能夠抑制接合洩漏。
若源極接點CS搭於絕緣分離區域(絕緣部)12,則當源極接點CS打開時會露出半導體區域10或第1區域(源極)22及第2區域(汲極)23之端部,但藉由在該側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,即使於絕緣分離區域(絕緣部)12上之開口部置入源極電極32S及汲極電極32D亦能夠抑制接合洩漏。即,即使源極電極32S及汲極電極32D誤落在STI上亦能夠避免接合洩漏。其結果,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
又,於第1實施方式之變化例之半導體裝置1A中,藉由在閘極側壁亦形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜261,亦能夠自對準地控制控制電極(閘極電極)14與源極接點CS之間之距離。同樣地,能夠自對準地控制控制電極(閘極電極)14與汲極接點CD之間之距離。其結果,於第1實施方式之變化例中,能夠提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置。
(第1實施方式之半導體裝置之製造方法)
如圖2A~圖2F所示,表示第1實施方式之半導體裝置之製造方法。
第1實施方式之半導體裝置之製造方法具有如下步驟:於第1導電型之半導體區域10之第1表面SF1形成絕緣分離區域(絕緣部)12;於由絕緣分離區域(絕緣部)12包圍之半導體區域10上方介隔閘極氧化膜20形成控制電極(閘極電極)14;於控制電極(閘極電極)14兩端之第1表面SF1形成與第1導電型為相反導電型之第1區域(源極)22及第2區域(汲極)23;蝕刻絕緣分離區域(絕緣部)12直至較第1表面SF1沿半導體區域10之深度方向後退之第2表面SF2;於第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁形成包含鉿之第1側壁絕緣膜(第1絕緣膜)262,於控制電極(閘極電極)14兩端之側壁形成包含鉿之第2側壁絕緣膜261;形成層間絕緣膜28;於層間絕緣膜28形成接觸孔CHS;於接觸孔CHS內形成與第1區域(源極)22連接之源極電極CS。以下將進行詳細說明。
(A1)首先,如圖2C所示,於p型半導體區域10之第1表面SF1形成絕緣分離區域(絕緣部)12,於由絕緣分離區域(絕緣部)12包圍之半導體區域10上方介隔閘極氧化膜20形成控制電極(閘極電極)14。此處,絕緣分離區域(絕緣部)12例如由四乙氧基矽烷(TEOS;Tetraethoxysilane)形成。控制電極(閘極電極)14例如由有摻雜之多晶矽等形成。
(A2)其次,例如利用化學氣相沈積(CVD:Chemical Vapor Deposition)法,於控制電極(閘極電極)14之側壁形成氧化矽膜16。此處,氧化矽膜16例如由TEOS形成。
(A3)其次,使用離子注入技術,於控制電極(閘極電極)14兩端之第1表面SF1形成n-源極擴展區域24及n-汲極擴展區域25。
(A4)其次,例如利用CVD法,於控制電極(閘極電極)14側 壁之氧化矽膜16上形成氮化矽膜18。
(A5)其次,使用離子注入技術,於控制電極(閘極電極)14兩端之第1表面SF1形成n+第1區域(源極)22及n+第2區域(汲極)23。
(B)其次,如圖2D所示,使用反應性離子蝕刻(RIE:Reactive Ion Etching)技術,對絕緣分離區域(絕緣部)12之表面進行蝕刻,形成具有較第1表面SF1沿半導體區域10之深度方向後退之第2表面SF2的STI。如圖2D所示,蝕刻絕緣分離區域(絕緣部)12之表面之同時亦蝕刻控制電極(閘極電極)14側壁之氧化矽膜16。
(C)其次,如圖2E所示,使用濺鍍技術等,於器件整面形成絕緣膜26。絕緣膜26係相對於氧化矽膜及氮化矽膜而言蝕刻選擇比較高之膜。
(D)其次,如圖2F所示,蝕刻絕緣膜26,形成配置於控制電極(閘極電極)14兩端之側壁之側壁絕緣膜261,及於第1表面SF1與第2表面SF2之間的階差部之半導體區域10或n+第1區域(源極)22及n+第2區域(汲極)23之側壁形成側壁絕緣膜(第1絕緣膜)262。再者,於絕緣膜26之蝕刻步驟中,於器件整面形成絕緣膜26後,於結晶化之前進行圖案化,利用乾式蝕刻或者濕式蝕刻進行去除。再者,可並用乾式蝕刻及濕式蝕刻。
(E1)其次,如圖2A所示,使用CVD技術等,對器件整面形成襯墊絕緣膜30。此處,襯墊絕緣膜30可應用氮化矽膜。
(E2)其次,如圖2A所示,去除第1區域(源極)22及第2區域(汲極)23之上之襯墊絕緣膜30,露出第1區域(源極)22及第2區域(汲極)23之表面後,使用CVD技術等對器件整面形成層間絕緣膜28後,使用化學機械研磨(CMP:Chemical Mechanical Polishing)技術進行平坦化。此 處,層間絕緣膜28例如作為與TEOS或者CMP之相容性良好之絕緣膜,可應用NSG(None-doped Silicate Glass,非摻雜矽酸鹽玻璃)膜等。藉由使用NSG膜,能夠以較高之研磨速率使NSG膜之表面良好地平坦化。再者,於形成上述襯墊絕緣膜30後,亦可於器件整面形成層間絕緣膜28。
(E3)其次,如圖2A所示,針對層間絕緣膜28,使用RIE等乾式蝕刻技術,於第1區域(源極)22及第2區域(汲極)23上形成源極接觸孔CHS及汲極接觸孔CHD。
再者,於形成上述襯墊絕緣膜30後,於在器件整面形成層間絕緣膜28之情形時,針對層間絕緣膜28開設源極接觸孔CHS及汲極接觸孔CHD之同時去除第1區域(源極)22及第2區域(汲極)23之上之襯墊絕緣膜30,露出第1區域(源極)22及第2區域(汲極)23之表面。
(F)其次,如圖2B所示,形成經由源極接觸孔CHS及汲極接觸孔CHD與第1區域(源極)22及第2區域(汲極)23連接之源極電極32S及汲極電極32D。源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而形成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而形成汲極接點CD。如圖2B所示,源極接點CS可接於絕緣分離區域(絕緣部)12與第1區域(源極)22之界面而配置。同樣地,如圖2B所示,汲極接點CD可接於絕緣分離區域(絕緣部)12與第2區域(汲極)23之界面而配置。
如圖2A所示,由於在控制電極(閘極電極)14兩端之側壁形成有側壁絕緣膜261,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,即使層間絕緣膜28及襯墊絕緣膜30被過蝕刻,側壁絕緣膜261相對而言亦不易被蝕刻。即,於形成源極接觸孔CHS及汲極接觸孔CHD時,利用側 壁絕緣膜261自對準地停止蝕刻。故而,能夠縮短源極接點CS與控制電極(閘極電極)14之間之距離。同樣地,能夠縮短汲極接點CD與控制電極(閘極電極)14之間之距離。
由於在第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁形成有側壁絕緣膜(第1絕緣膜)262,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,層間絕緣膜28及襯墊絕緣膜30容易被蝕刻,但側壁絕緣膜(第1絕緣膜)262相對而言不易蝕刻。其結果,如圖2B所示,即使源極接觸孔CHS及汲極接觸孔CHD與絕緣分離區域(絕緣部)12相接亦能夠避免接合洩漏。故而,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
(第1實施方式之變化例之半導體裝置之製造方法)
第1實施方式之變化例之半導體裝置之製造方法如圖2C~圖2F及圖2G及圖2H所示般表示。
第1實施方式之半導體裝置之製造方法之步驟A1~步驟A5及步驟B~步驟D於第1實施方式之變化例之半導體裝置之製造方法中亦共通。
(G1)上述步驟D之後,如圖2G所示,使用CVD技術等,對器件整面形成襯墊絕緣膜30。此處,襯墊絕緣膜30可應用氮化矽膜。
(G2)其次,如圖2G所示,於形成層間絕緣膜28後,使用CMP技術進行平坦化。此處,層間絕緣膜28例如可應用TEOS或者NSG膜等。藉由使用NSG膜,能夠以較高之研磨速率使NSG膜之表面良好地平坦化。
(G3)其次,如圖2G所示,對層間絕緣膜28使用RIE等乾式蝕刻技術,跨及第1區域(源極)22及絕緣分離區域(絕緣部)12形成源極接觸孔CHS,跨及第2區域(汲極)23及絕緣分離區域(絕緣部)12形成汲極接觸孔CHD。
(H)其次,如圖2H所示,形成經由源極接觸孔CHS及汲極接觸孔CHD與第1區域(源極)22及第2區域(汲極)23連接之源極電極32S及汲極電極32D。源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而形成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而形成汲極接點CD。
由於在第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁形成有側壁絕緣膜(第1絕緣膜)262,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,層間絕緣膜28及襯墊絕緣膜30容易被蝕刻,但側壁絕緣膜(第1絕緣膜)262相對而言不易被蝕刻。其結果,如圖2H所示,即使源極接點CS及汲極接點CD誤落在絕緣分離區域(絕緣部)12上亦能夠避免接合洩漏。故而,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
[第2實施方式]
如圖3A~圖3C所示,表示第2實施方式之半導體裝置2且為沿圖1C之I-I線之模式性剖面構造。
如圖3A~圖3C所示,第2實施方式之半導體裝置2具備第1導電型之半導體區域10、絕緣分離區域(絕緣部)12、控制電極(閘極電極)14、側壁絕緣膜261、第1區域(源極)22及第2區域(汲極)23、源極接觸 孔CHS及汲極接觸孔CHD、源極電極32S、汲極電極32D、側壁絕緣膜(第1絕緣膜)262、配置於控制電極(閘極電極)14上之閘極矽化物區域34G、配置於第1區域(源極)22上之源極矽化物區域34S、及配置於第2區域(汲極)23上之汲極矽化物區域34D。
源極矽化物區域34S及汲極矽化物區域34D包含選自Co、W、Ti、Ni之群中之任一不同之矽化物。閘極矽化物區域34G包含選自Co、W、Ti、及Ni之群中之任一不同之元素。
又,如圖3C所示,源極電極32S經由源極接觸孔CHS與源極矽化物區域34S電性連接而構成源極接點CS,汲極電極32D經由汲極接觸孔CHD與汲極矽化物區域34D電性連接而構成汲極接點CD。
如圖3C所示,源極接點CS可接於絕緣分離區域(絕緣部)12與第1區域(源極)22及源極矽化物區域34S之界面而配置。同樣地,如圖3C所示,汲極接點CD可接於絕緣分離區域(絕緣部)12與第2區域(汲極)23及汲極矽化物區域34D之界面而配置。其他構成與第1實施方式相同。
於第2實施方式之半導體裝置中,藉由使絕緣分離區域(絕緣部)12沿半導體區域10之深度方向後退而凹陷,於因該凹陷而露出之半導體區域10或源極矽化物區域34S及汲極矽化物區域34D之側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,亦能夠抑制接合洩漏。
又,於第2實施方式之半導體裝置1中,藉由在閘極側壁亦形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜261,能夠自對準地控制控制電極(閘極電極)14與源極接點CS之間之距離。同樣地,能夠自對準地控制控制電極(閘極電極)14與汲極接點CD之間之距離。其結 果,於第2實施方式中,能夠提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置。
(第2實施方式之變化例之半導體裝置之構成)
如圖3H~圖3J所示,表示第2實施方式之變化例之半導體裝置2A且為沿圖1D之II-II線之模式性剖面構造。
如圖3H~圖3J所示,第2實施方式之變化例之半導體裝置2A具備半導體區域10、絕緣分離區域(絕緣部)12、控制電極(閘極電極)14、側壁絕緣膜261、第1區域(源極)22及第2區域(汲極)23、源極接觸孔CHS及汲極接觸孔CHD、側壁絕緣膜(第1絕緣膜)262、配置於控制電極(閘極電極)14上之閘極矽化物區域34G、配置於第1區域(源極)22上之源極矽化物區域34S、及配置於第2區域(汲極)23上之汲極矽化物區域34D。
源極矽化物區域34S及汲極矽化物區域34D包含選自Co、W、Ti、Ni之群中之任一不同之矽化物。閘極矽化物區域34G包含選自Co、W、Ti、Ni、多晶矽之群中之任一不同之矽化物。
又,如圖3J所示,源極電極32S經由源極接觸孔CHS與源極矽化物區域34S電性連接而構成源極接點CS,汲極電極32D經由汲極接觸孔CHD與汲極矽化物區域34D電性連接而構成汲極接點CD。
又,如圖3J所示,源極接點CS可跨及絕緣分離區域(絕緣部)12、第1區域(源極)22及源極矽化物區域34S而配置。同樣地,如圖3J所示,汲極接點CD可跨及絕緣分離區域(絕緣部)12、第2區域(汲極)23及汲極矽化物區域34D而配置。其他構成與第2實施方式相同。
於第2實施方式之變化例之半導體裝置2A中,藉由使絕緣分離區域(絕緣部)12沿半導體區域10之深度方向後退而凹陷,於因該凹陷 而露出之半導體區域10或源極矽化物區域34S及汲極矽化物區域34D之側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,亦能夠抑制接合洩漏。
若源極接點CS搭於絕緣分離區域(絕緣部)12,則當源極接點CS打開時會露出半導體區域10或源極矽化物區域34S及汲極矽化物區域34D之端部,但藉由在該側壁形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜(第1絕緣膜)262,即使於絕緣分離區域(絕緣部)12上之開口部置入源極電極32S及汲極電極32D亦能夠抑制接合洩漏。即,即使源極電極32S及汲極電極32D誤落在STI上亦能夠避免接合洩漏。其結果,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
又,於第2實施方式之變化例之半導體裝置2A中,藉由在閘極側壁亦形成相對於氧化膜及氮化膜而言選擇比較高之側壁絕緣膜261,亦能夠自對準地控制控制電極(閘極電極)14與源極接點CS之間之距離。同樣地,能夠自對準地控制控制電極(閘極電極)14與汲極接點CD之間之距離。其結果,於第2實施方式之變化例中,能夠提供一種抑制接合洩漏之上升並且可縮小化之半導體裝置。
(第2實施方式之半導體裝置之製造方法)
如圖3A~圖3G所示,表示第2實施方式之半導體裝置之製造方法。
(A1)首先,如圖3D所示,於半導體區域10之第1表面SF1形成絕緣分離區域(絕緣部)12,於由絕緣分離區域(絕緣部)12包圍之半導體區域10上介隔閘極氧化膜20形成控制電極(閘極電極)14。此處,絕緣分離區域(絕緣部)12例如由TEOS形成。控制電極(閘極電極)14例如由有摻 雜之多晶矽等形成。
(A2)其次,例如利用CVD法,於控制電極(閘極電極)14之側壁形成氧化矽膜16。此處,氧化矽膜16例如由TEOS形成。
(A3)其次,使用離子注入技術,於控制電極(閘極電極)14兩端之第1表面SF1形成n-源極擴展區域24及n-汲極擴展區域25。
(A4)其次,例如利用CVD法,於控制電極(閘極電極)14側壁之氧化矽膜16上形成氮化矽膜18。
(A5)其次,使用離子注入技術,於控制電極(閘極電極)14兩端之第1表面SF1形成n+第1區域(源極)22及n+第2區域(汲極)23。
(A6)其次,於器件整面形成矽化物金屬,於控制電極(閘極電極)14上形成閘極矽化物區域34G,於第1區域(源極)22上形成源極矽化物區域34S,於第2區域(汲極)23上形成汲極矽化物區域34D。藉由在第1區域(源極)22之表面、第2區域(汲極)23之表面、及控制電極(閘極電極)14之表面形成作為金屬與矽之化合物之金屬矽化物,能夠減小薄片電阻或接點電阻。又,能夠自對準地形成矽化物。源極矽化物區域34S及汲極矽化物區域34D可包含選自Co、W、Ti、Ni之群中之任一不同之矽化物。又,閘極矽化物區域34G可包含選自Co、W、Ti、及Ni之群中之任一不同之元素。
(B)其次,如圖3E所示,使用RIE技術,對絕緣分離區域(絕緣部)12之表面進行蝕刻,形成具有較第1表面SF1沿半導體區域10之深度方向後退之第2表面SF2的STI。如圖3B所示,於蝕刻絕緣分離區域(絕緣部)12之表面之同時亦蝕刻控制電極(閘極電極)14側壁之氧化矽膜16。
(C)其次,如圖3F所示,使用濺鍍技術等,於器件整面形 成絕緣膜26。絕緣膜26係相對於氧化矽膜及氮化矽膜而言蝕刻選擇比較高之膜。
(D)其次,如圖3G所示,蝕刻絕緣膜26,於控制電極(閘極電極)14兩端之側壁形成側壁絕緣膜261。又,於第1表面SF1與第2表面SF2之間的階差部之側壁形成側壁絕緣膜(第1絕緣膜)262。利用側壁絕緣膜(第1絕緣膜)262,能夠保護第1表面SF1與第2表面SF2之間的階差部之半導體區域10或n+第1區域(源極)22及源極矽化物區域34S、n+第2區域(汲極)23及汲極矽化物區域34D之露出面。再者,於絕緣膜26之蝕刻步驟中,於器件整面形成絕緣膜26後,於結晶化之前進行圖案化,利用乾式蝕刻或者濕式蝕刻進行去除。再者,可併用乾式蝕刻及濕式蝕刻。
(E1)其次,如圖3A所示,使用CVD技術等,對器件整面形成襯墊絕緣膜30。此處,襯墊絕緣膜30可應用氮化矽膜。
(E2)其次,如圖3A所示,使用CVD技術等,對器件整面形成層間絕緣膜28後,使用CMP技術進行平坦化。此處,層間絕緣膜28例如可應用TEOS或者NSG膜等。
(E3)其次,如圖3A所示,針對層間絕緣膜28,使用RIE等乾式蝕刻技術,實施因被覆源極矽化物區域34S及汲極矽化物區域34D之襯墊絕緣膜30而停止之蝕刻,於源極接觸孔CHS及汲極接觸孔CHD之底部露出襯墊絕緣膜30。
(F)其次,如圖3B所示,使用RIE等乾式蝕刻技術,對被覆源極矽化物區域34S及汲極矽化物區域34D之襯墊絕緣膜30進行蝕刻,於源極矽化物區域34S及汲極矽化物區域34D上形成源極接觸孔CHS及汲極接觸孔CHD。
(G)其次,如圖3C所示,形成經由源極接觸孔CHS及汲極接觸孔CHD與源極矽化物區域34S及汲極矽化物區域34D連接之源極電極32S及汲極電極32D。源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而形成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而形成汲極接點CD。如圖3C所示,源極接點CS可接於絕緣分離區域(絕緣部)12與第1區域(源極)22之界面而配置。同樣地,如圖3C所示,汲極接點CD可接於絕緣分離區域(絕緣部)12與第2區域(汲極)23之界面而配置。
如圖3B所示,由於在控制電極(閘極電極)14兩端之側壁形成有側壁絕緣膜261,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,即使層間絕緣膜28及襯墊絕緣膜30被過蝕刻,側壁絕緣膜261相對而言亦不易被蝕刻。即,於形成源極接觸孔CHS及汲極接觸孔CHD時,利用側壁絕緣膜261,自對準地停止蝕刻。故而,能夠縮短源極接點CS與控制電極(閘極電極)14之間之距離。同樣地,能夠縮短汲極接點CD與控制電極(閘極電極)14之間之距離。
由於在第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁形成有側壁絕緣膜(第1絕緣膜)262,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,層間絕緣膜28及襯墊絕緣膜30容易被蝕刻,但側壁絕緣膜(第1絕緣膜)262相對而言不易被蝕刻。其結果,如圖3C所示,即使源極接觸孔CHS及汲極接觸孔CHD與絕緣分離區域(絕緣部)12相接,亦能夠避免接合洩漏。故而,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
(第2實施方式之變化例之半導體裝置之製造方法)
如圖3A~圖3D及圖3H~圖3J所示,表示第2實施方式之變化例之半導體裝置2A之製造方法。
第2實施方式之半導體裝置2A之製造方法之步驟A1~步驟A6及步驟B~步驟D於第2實施方式之變化例之半導體裝置之製造方法中亦共通。
(H1)於上述步驟D之後,如圖3H所示,具有使用CVD技術等對器件整面形成襯墊絕緣膜30之步驟。此處,襯墊絕緣膜30可應用氮化矽膜。
(H2)其次,如圖3H所示,使用CVD技術等,對器件整面形成層間絕緣膜28後,使用CMP技術進行平坦化。此處,層間絕緣膜28例如可應用TEOS或者NSG膜等。
(H3)其次,如圖3H所示,針對層間絕緣膜28,使用RIE等乾式蝕刻技術,實施因被覆源極矽化物區域34S及汲極矽化物區域34D之襯墊絕緣膜30而停止之蝕刻,於源極接觸孔CHS及汲極接觸孔CHD之底部露出襯墊絕緣膜30。
(I)其次,如圖3I所示,具有如下步驟:使用RIE等乾式蝕刻技術,對被覆源極矽化物區域34S及汲極矽化物區域34D之襯墊絕緣膜30進行蝕刻,跨及源極矽化物區域34S及絕緣分離區域(絕緣部)12形成源極接觸孔CHS,跨及汲極矽化物區域34D及絕緣分離區域(絕緣部)12形成汲極接觸孔CHD。
(J)其次,如圖3J所示,形成經由源極接觸孔CHS及汲極接觸孔CHD與源極矽化物區域34S及汲極矽化物區域34D連接之源極電極 32S及汲極電極32D。源極電極32S經由源極接觸孔CHS與第1區域(源極)22電性連接而形成源極接點CS,汲極電極32D經由汲極接觸孔CHD與第2區域(汲極)23電性連接而形成汲極接點CD。
由於在第1表面SF1與第2表面SF2之間的階差部之半導體區域10之側壁形成有側壁絕緣膜(第1絕緣膜)262,因此於形成源極接觸孔CHS及汲極接觸孔CHD時,層間絕緣膜28及襯墊絕緣膜30容易被蝕刻,但側壁絕緣膜(第1絕緣膜)262相對而言不易被蝕刻。其結果,如圖3J所示,即使源極接點CS及汲極接點CD誤落在絕緣分離區域(絕緣部)12上,亦能夠避免接合洩漏。故而,能夠縮短源極接點CS與絕緣分離區域(絕緣部)12之間之距離。同樣地,能夠縮短汲極接點CD與絕緣分離區域(絕緣部)12之間之距離。
於本實施方式之半導體裝置及其製造方法中,主要對n通道MOSFET進行了說明,但同樣亦可應用於導電型相反之p通道MOSFET。又,本實施方式之半導體裝置亦可應用於CMOS結構之高速邏輯LSI。又,本實施方式之半導體裝置例如亦可應用於構成NAND型快閃記憶體之周邊電路之高電壓pMOSFET、高電壓nMOSFET、低電壓pMOSFET、低電壓nMOSFET等。
已對本發明之若干實施方式進行了說明,但該等實施方式係作為例子而提出,並不用於限定發明之範圍。該等新穎實施方式能以其他多種方式實施,且能夠於不脫離發明主旨之範圍內進行各種省略、替換、變更。該等實施方式或其變化包含於發明之範圍或主旨中,並且包含於申請專利範圍所記載之發明及其均等之範圍內。
[相關申請案]
本申請案享有以日本專利申請2020-26136號(申請日:2020年2月19日)為基礎申請案之優先權。本申請案藉由參照該基礎申請案而包含基礎申請案之全部內容。
1:半導體裝置
AA:活性區域
CD:汲極接點
CS:第1電極(源極接點)
D:汲極區域
G:閘極電極
GC:閘極接點
S:源極區域

Claims (17)

  1. 一種半導體裝置,其具有: 第1導電型之半導體區域,其包含第1表面; 絕緣部,其形成於上述半導體區域,具有較上述第1表面沿上述半導體區域之深度方向後退之第2表面; 第1區域,其位於上述絕緣部之第1部分與上述絕緣部之第2部分之間,且設於上述半導體區域上; 第2區域,其位於上述第1部分與上述第2部分之間,與上述第1區域分開,且設於上述半導體區域上; 控制電極,其設於上述第1表面上方,位於上述第1區域與上述第2區域之間; 第1電極,其設於上述第1區域之上,與上述第1區域相接;及 第1絕緣膜,其設於上述第1表面與上述第2表面之間的階差部之上述半導體區域之側壁;且 上述第1絕緣膜為包含鉿之絕緣膜。
  2. 如請求項1之半導體裝置,其進而具有:位於上述控制電極兩端之側壁之第2絕緣膜。
  3. 如請求項2之半導體裝置,其中上述第1絕緣膜及上述第2絕緣膜包含鉿及氧。
  4. 如請求項3之半導體裝置,其中上述第1絕緣膜及上述第2絕緣膜包含選自氧化鉿、矽氧化鉿、及氮氧矽化鉿之群中之任一不同之材料。
  5. 如請求項2之半導體裝置,其中上述第1絕緣膜及上述第2絕緣膜之厚度係2 nm以上20 nm以下。
  6. 如請求項2之半導體裝置,其中上述第1表面至上述第2表面之深度方向之長度係2 nm以上20 nm以下。
  7. 如請求項2之半導體裝置,其更具備:依序積層於上述控制電極之側壁之氧化矽膜及氮化矽膜,上述第2絕緣膜積層於上述控制電極之側壁上所積層之上述氮化矽膜上。
  8. 如請求項1之半導體裝置,其中上述第1電極係接於上述絕緣部與上述第1區域之界面而設置。
  9. 如請求項1之半導體裝置,其中上述第1電極係跨及上述絕緣部及上述第1區域而設置。
  10. 如請求項1之半導體裝置,其中上述控制電極、上述第1區域及上述第2區域具備矽化物區域。
  11. 如請求項10之半導體裝置,其中上述矽化物區域包含選自Co、W、Ti、及Ni之群之任一不同之元素。
  12. 一種半導體裝置之製造方法,其係: 於第1導電型之半導體區域之第1表面形成絕緣部, 於由上述絕緣部包圍之上述半導體區域之上方介隔閘極氧化膜形成閘極電極, 於上述閘極電極兩端之上述第1表面形成與上述第1導電型為相反導電型之源極區域及汲極區域, 藉由蝕刻上述絕緣部,形成較上述第1表面沿上述半導體區域之深度方向後退之第2表面, 於上述第1表面與上述第2表面之間的階差部之上述半導體區域之側壁形成包含鉿之第1側壁絕緣膜,於上述閘極電極兩端之側壁形成包含鉿之第2側壁絕緣膜, 形成層間絕緣膜, 於上述層間絕緣膜形成接觸孔,及 於上述接觸孔內形成與上述源極區域連接之源極電極。
  13. 如請求項12之半導體裝置之製造方法,其中上述第1側壁絕緣膜及上述第2側壁絕緣膜包含選自氧化鉿、矽氧化鉿、及氮氧矽化鉿之群中之任一不同之材料。
  14. 如請求項12之半導體裝置之製造方法,其中上述接觸孔係與上述絕緣部與上述源極區域之界面相接而形成。
  15. 如請求項12之半導體裝置之製造方法,其中上述接觸孔係跨及上述絕緣部及上述源極區域而形成。
  16. 如請求項12之半導體裝置之製造方法,其中於上述閘極電極之上形成閘極矽化物區域,於上述源極區域之上形成源極矽化物區域。
  17. 如請求項16之半導體裝置之製造方法,其中上述閘極矽化物區域及上述源極矽化物區域包含選自Co、W、Ti、及Ni之群中之任一不同之元素。
TW109127523A 2020-02-19 2020-08-13 半導體裝置及其製造方法 TWI758821B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026136 2020-02-19
JP2020026136A JP2021132096A (ja) 2020-02-19 2020-02-19 半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
TW202133440A TW202133440A (zh) 2021-09-01
TWI758821B true TWI758821B (zh) 2022-03-21

Family

ID=77272839

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109127523A TWI758821B (zh) 2020-02-19 2020-08-13 半導體裝置及其製造方法

Country Status (4)

Country Link
US (1) US20210257446A1 (zh)
JP (1) JP2021132096A (zh)
CN (1) CN113284937A (zh)
TW (1) TWI758821B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11973120B2 (en) 2020-06-24 2024-04-30 Etron Technology, Inc. Miniaturized transistor structure with controlled dimensions of source/drain and contact-opening and related manufacture method
US11972983B2 (en) 2020-06-24 2024-04-30 Etron Technology, Inc. Miniaturized transistor structure with controlled dimensions of source/drain and contact-opening and related manufacture method
JP2023044840A (ja) * 2021-09-21 2023-04-03 キオクシア株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011612A1 (en) * 2000-07-31 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
TW201635495A (zh) * 2014-12-25 2016-10-01 Renesas Electronics Corp 半導體裝置及其製造方法
US20170092723A1 (en) * 2015-09-29 2017-03-30 International Business Machines Corporation High-k spacer for extension-free cmos devices with high mobility channel materials
TW201916179A (zh) * 2017-09-28 2019-04-16 日商瑞薩電子股份有限公司 半導體裝置及其製造方法
TW201937735A (zh) * 2017-12-12 2019-09-16 日商瑞薩電子股份有限公司 半導體裝置及其製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3205306B2 (ja) * 1998-12-08 2001-09-04 松下電器産業株式会社 半導体装置およびその製造方法
TWI252565B (en) * 2002-06-24 2006-04-01 Hitachi Ltd Semiconductor device and manufacturing method thereof
US7560780B2 (en) * 2005-12-08 2009-07-14 Intel Corporation Active region spacer for semiconductor devices and method to form the same
US9136330B2 (en) * 2013-07-22 2015-09-15 GlobalFoundries, Inc. Shallow trench isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011612A1 (en) * 2000-07-31 2002-01-31 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
TW201635495A (zh) * 2014-12-25 2016-10-01 Renesas Electronics Corp 半導體裝置及其製造方法
US20170092723A1 (en) * 2015-09-29 2017-03-30 International Business Machines Corporation High-k spacer for extension-free cmos devices with high mobility channel materials
TW201916179A (zh) * 2017-09-28 2019-04-16 日商瑞薩電子股份有限公司 半導體裝置及其製造方法
TW201937735A (zh) * 2017-12-12 2019-09-16 日商瑞薩電子股份有限公司 半導體裝置及其製造方法

Also Published As

Publication number Publication date
JP2021132096A (ja) 2021-09-09
TW202133440A (zh) 2021-09-01
US20210257446A1 (en) 2021-08-19
CN113284937A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
TWI618242B (zh) 半導體裝置及其形成方法
TWI758821B (zh) 半導體裝置及其製造方法
JP5550286B2 (ja) 半導体装置の製造方法
US8487382B2 (en) Device scheme of HKMG gate-last process
US9935197B2 (en) Semiconductor devices with low junction capacitances
US9184053B2 (en) Semiconductor device and method of manufacturing the same
US7868395B2 (en) Metal insulator semiconductor field effect transistor having fin structure
US7303955B2 (en) Semiconductor memory device with high operating current and method of manufacturing the same
US8426283B1 (en) Method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate
JP2020507213A (ja) 垂直輸送フィン電界効果トランジスタおよび垂直輸送フィン電界効果トランジスタの形成方法
US10325921B2 (en) Semiconductor device and manufacturing method of the same
JP5640379B2 (ja) 半導体装置の製造方法
JP2003332582A (ja) 半導体装置及びその製造方法
US20150187783A1 (en) Semiconductor device and fabricating method thereof
US7821074B2 (en) Semiconductor device and method for manufacturing same
US7427544B2 (en) Semiconductor device and method of manufacturing the same
US20200373317A1 (en) Semiconductor device and manufacturing method thereof
US11158644B2 (en) Semiconductor device with field effect transistors of differing gate dielectric thickness on the same substrate and method of manufacturing the same
US20220359552A1 (en) Semiconductor device and manufacturing method thereof
US20090020828A1 (en) Semiconductor device and its manufacturing method
JP2005039280A (ja) 低電力フラッシュメモリセルおよび方法
JP2010062499A (ja) 半導体装置および半導体装置の製造方法
TW202226546A (zh) 記憶體元件及其製作方法
JP6543392B2 (ja) 半導体装置
TW202145533A (zh) 記憶體裝置及其製造方法