TWI757855B - 用於在參數化模型預測中提高確定性的方法 - Google Patents

用於在參數化模型預測中提高確定性的方法 Download PDF

Info

Publication number
TWI757855B
TWI757855B TW109129693A TW109129693A TWI757855B TW I757855 B TWI757855 B TW I757855B TW 109129693 A TW109129693 A TW 109129693A TW 109129693 A TW109129693 A TW 109129693A TW I757855 B TWI757855 B TW I757855B
Authority
TW
Taiwan
Prior art keywords
clusters
latent space
dimensional data
model
parametric model
Prior art date
Application number
TW109129693A
Other languages
English (en)
Other versions
TW202117575A (zh
Inventor
馬克辛 帕薩瑞可
史考特 安德森 米德雷布魯克斯
柯恩 艾德瑞安納斯 凡斯庫瑞恩
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP19195954.3A external-priority patent/EP3789923A1/en
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202117575A publication Critical patent/TW202117575A/zh
Application granted granted Critical
Publication of TWI757855B publication Critical patent/TWI757855B/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明描述一種用於在參數化模型預測中提高確定性之方法。該方法包含將與一參數化模型相關聯之一潛在空間中之維度資料群集成群集。不同群集對應於一給定輸入之不同部分。該方法包含基於該潛在空間中之該維度資料運用該參數化模型預測一輸出。該方法包含運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的該給定輸入之一復原版本。在一些實施例中,該方法包含判定哪些群集對應於具有較高方差之預測輸出,及藉由新增至該潛在空間之維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。

Description

用於在參數化模型預測中提高確定性的方法
本說明書係關於一種用於在參數化模型預測中提高確定性之裝置及方法。
微影投影裝置可用於(例如)積體電路(IC)之製造中。在此情況下,圖案化器件(例如,遮罩)可含有或提供對應於IC之個別層的圖案(「設計佈局」),且此圖案可藉由諸如經由圖案化器件上之圖案來輻照目標部分的方法而轉印至基板(例如矽晶圓)上之目標部分(例如包含一或多個晶粒)上,該目標部分已經塗佈有一層輻射敏感材料(「抗蝕劑」)。一般而言,單個基板含有藉由微影投影裝置順次地將圖案轉印至其上的複數個鄰近目標部分,一次一個目標部分。在一種類型之微影投影裝置中,在一個操作中將整個圖案化器件上之圖案轉印至一個目標部分上。此裝置通常被稱作步進器。在通常稱為步進掃描裝置之替代裝置中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化器件進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化器件上之圖案之不同部分逐漸地轉印至一個目標部分。一般而言,由於微影投影裝置將具有縮減比率M(例如4),故基板被移動之速度F將為投影光束掃描圖案化器件之速度的 1/M倍。可(例如)自以引用的方式併入本文中之US 6,046,792搜集到關於如本文中所描述之微影器件的更多資訊。
在將圖案自圖案化器件轉印至基板之前,基板可經歷各種工序,諸如,上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序(「曝光後工序」),諸如曝光後烘烤(PEB)、顯影、硬烘烤及對經轉印圖案之量測/檢測。此工序陣列係用作製造一器件(例如IC)之個別層的基礎。基板接著可經歷諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械研磨等各種程序,該等程序皆意欲精整器件之個別層。若在器件中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在器件。接著藉由諸如切塊或鋸切之技術來使此等器件彼此分離,據此,可將個別器件安裝於載體上、連接至銷釘等。
因此,製造諸如半導體器件之器件通常涉及使用多個製作程序來處理基板(例如半導體晶圓)以形成該等器件之各種特徵及多個層。通常使用(例如)沈積、微影、蝕刻、化學機械研磨及離子植入來製造及處理此等層及特徵。可在基板上之複數個晶粒上製作多個器件,且接著將該等器件分離成個別器件。此器件製造程序可被視為圖案化程序。圖案化程序涉及圖案化步驟,諸如使用微影裝置中之圖案化器件來將圖案化器件上的圖案轉印至基板之光學或奈米壓印微影,且圖案化程序通常但視情況涉及一或多個相關圖案處理步驟,諸如藉由顯影裝置進行抗蝕劑顯影、使用烘烤工具來烘烤基板、使用蝕刻裝置使用圖案進行蝕刻等。另外,通常在圖案化程序中涉及一或多個度量衡程序。
如所提及,微影為在製造諸如IC之器件時的中心步驟,其中形成於基板上之圖案界定器件之功能元件,諸如微處理器、記憶體晶片 等。類似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他器件。
隨著半導體製造程序繼續進步,幾十年來,功能元件之尺寸已不斷地減小,而每器件的諸如電晶體之功能元件之量已在穩固地增加,此遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前技術狀態下,使用微影投影裝置來製造器件之層,該等微影投影裝置使用來自深紫外照明源之照明將設計佈局投影至基板上,從而產生尺寸遠低於100nm(亦即小於來自照明源(例如,193nm照明源)之輻射的波長之一半)的個別功能元件。
供印刷尺寸小於微影投影裝置之經典解析度限制之特徵的此程序根據解析度公式CD=k1×λ/NA而通常被稱為低k1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248nm或193nm),NA為微影投影裝置中之投影光學器件之數值孔徑,CD為「臨界尺寸(critical dimension)」(通常為所印刷之最小特徵大小),且k1為經驗解析度因數。大體而言,k1愈小,則在基板上再現類似於由設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影裝置、設計佈局或圖案化器件。此等步驟包括(例如,但不限於)NA及光學相干設定之最佳化、定製照明方案、相移圖案化器件之使用、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。如本文所使用之術語「投影光學器件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括(例如)折射光學器件、反射光學器件、孔隙及反射折射光學器件。術語「投影光學器件」亦可包括根據此等設計類型中之任一 者操作從而集體地或單獨地導向、塑形或控制投影輻射光束的組件。術語「投影光學器件」可包括微影投影裝置中之任何光學組件,而不管光學組件定位於微影投影裝置之光學路徑上之何處。投影光學器件可包括用於在來自源之輻射通過圖案化器件之前塑形、調節及/或投影該輻射的光學組件,及/或用於在該輻射通過圖案化器件之後塑形、調節及/或投影該輻射的光學組件。投影光學器件通常不包括源及圖案化器件。
根據一實施例,提供一種用於進行參數化模型預測之方法。該方法包含運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集。不同群集對應於一給定輸入之不同部分。該方法包含基於該潛在空間中之該維度資料運用該參數化模型預測一輸出。該方法包含運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的該給定輸入之一復原版本。
在一些實施例中,預測及變換為同步的。
在一些實施例中,將該潛在空間中之該維度資料變換成該給定輸入之該復原版本以便於該潛在空間中之所關注點的可視化。
在一些實施例中,該方法進一步包含識別該潛在空間中之該等所關注點。
在一些實施例中,該等所關注點包含以下中之一或多者:與該潛在空間中之其他點相比具有相對較高方差或不確定性之點;並不位於一群集內之點;或位於與該潛在空間中之其他點及/或群集之間的笛卡爾距離相比距該潛在空間中之一或多個其他點及/或群集相對較遠之一笛卡爾距離處的點。
在一些實施例中,該方法包含使用該等所關注點、該等群集、該給定輸入之該復原版本及/或該輸出來評估該參數化模型之效能。
在一些實施例中,該方法包含運用該參數化模型將與該給定輸入相關聯之較高維資料變換成該潛在空間中之該維度資料。
在一些實施例中,該參數化模型係一機器學習模型。在一些實施例中,該參數化模型包含編碼器-解碼器架構。在一些實施例中,該編碼器-解碼器架構包含可變編碼器-解碼器架構,且該方法包含運用一機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在一輸出空間中產生實現。
在一些實施例中,該潛在空間包含低維編碼。
在一些實施例中,藉由該編碼器-解碼器架構之一編碼器來編碼該潛在空間中之該維度資料。
在一些實施例中,基於該潛在空間中之該維度資料運用該編碼器-解碼器架構之第一部分來預測該輸出。在一些實施例中,該編碼器-解碼器架構之該第一部分為一第一解碼器。在一些實施例中,藉由該編碼器-解碼器架構之一第二解碼器將該潛在空間中之該維度資料變換成該給定輸入的該復原版本。
在一些實施例中,該給定輸入包含與一半導體製造程序相關聯之一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。在一些實施例中,該給定輸入與一目標圖案設計、缺陷或用於該半導體製造程序之程序參數相關聯。在一些實施例中,該輸出包含一經預測遮罩影像、一缺陷機率或用於該半導體製造程序之經預測程序參數。
在一些實施例中,該方法包含基於該等群集、該輸出,及/或該輸入之該復原版本調整該參數化模型。在一些實施例中,調整可經組態以增強該輸出之一或多個部分與一地面實況之一或多個部分之間的協定。
在一些實施例中,調整該參數化模型包含藉由新增至該潛在空間之一維度而使該參數化模型更具描述性,及/或運用與該等群集中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
在一些實施例中,藉由新增至該潛在空間之該維度而使該參數化模型更具描述性或運用與該等群集中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像、更多樣化之資料及額外剪輯作為輸入來訓練該參數化模型;及/或將更多維度用於編碼向量,及在該參數化模型中使用更多編碼層。
在一些實施例中,更多樣化之訓練樣本包含相對於先前訓練材料之額外及/或更多樣化的影像、額外及/或更多樣化的資料,及額外及/或更多樣化的剪輯。
在一些實施例中,該方法進一步包含判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具有更高方差之經預測輸出。
在一些實施例中,判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。
在一些實施例中,該方法包含藉由新增至該潛在空間之該 維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
在一些實施例中,作為一半導體製造程序之部分,該方法進一步包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測基板幾何結構之確定性。
在一些實施例中,作為一半導體製造程序之部分,該方法包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測一連續色調遮罩(CTM)之確定性。
在一些實施例中,該方法進一步包含訓練該參數化模型。訓練包含對該潛在空間中之該維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性。基於該給定維度資料及所判定之不確定性訓練該參數化模型(例如,可使用該給定維度資料及所判定之不確定性來訓練一單獨的參數化模型,且來自彼第二模型之輸出可用於引導第一參數化模型之訓練)。
在一些實施例中,該給定維度資料及對應不確定性形成輸入輸出訓練對。在一些實施例中,該參數化模型包含一神經網路,且其中運用該給定維度資料及該等對應不確定性來訓練該參數化模型包含將該等輸入輸出訓練對提供至該神經網路,因此該神經網路可學會預測新的輸出實現。
在一些實施例中,作為一半導體製造程序之部分,該方法包含將經訓練參數化模型用於預測遮罩或倍縮光罩幾何結構。
根據另一實施例,提供一種用於訓練一參數化模型之方法。該方法包含對一潛在空間中之維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性。運用該給定維度資料及所判定之不確定性來訓練該參數化模型。(此可例如為上文所論述之第二參數化模型,及/或其他模型)。
在一些實施例中,該參數化模型係一機器學習模型。
在一些實施例中,該參數化模型包含一神經網路。
在一些實施例中,該參數化模型包含編碼器-解碼器架構。
在一些實施例中,編碼器架構包含經組態以將模型輸入變換成該潛在空間中之該維度資料的該參數化模型之一部分,且解碼器架構包含經組態以將該潛在空間中之該維度資料變換成該等輸出實現的該參數化模型之一不同部分。
在一些實施例中,該編碼器架構及該解碼器架構包含具有帶一或多個節點之一或多個層的一或多神經網路。
在一些實施例中,該方法進一步包含運用該參數化模型之該部分將與該等模型輸入相關聯的較高維資料變換成該潛在空間中之該維度資料,該潛在空間中之該維度資料包含與相關聯於該等模型輸入之該較高維資料相比維度更低的資料。
在一些實施例中,該等模型輸入包含與一半導體製造程序相關聯之一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。
在一些實施例中,該等模型輸入與一目標圖案設計、缺陷 或用於一半導體製造程序之程序參數相關聯。
在一些實施例中,該潛在空間中之該維度資料包含與模型輸入相關聯之多維向量。
在一些實施例中,該等多個輸出實現包含用於一半導體製造程序之經預測遮罩影像、缺陷機率或經預測程序參數。
在一些實施例中,預測包含運用一神經網路之一或多個層及/或一或多個節點將該維度資料之一多維向量解碼成一輸出實現。
在一些實施例中,判定該不確定性包含判定經預測之多個輸出實現的一方差。
在一些實施例中,判定該方差包含判定經預測之多個輸出實現的一範圍、一標準偏差、一最大值、一最小值、一平均值、一中值,及/或一模式。
在一些實施例中,經預測之多個輸出實現包含影像,且判定該不確定性包含判定指示該等影像之間的差異之一度量。
在一些實施例中,該給定維度資料及對應不確定性形成輸入輸出訓練對。
在一些實施例中,該參數化模型包含一神經網路,且運用該給定維度資料及該等對應不確定性來訓練該參數化模型包含將該等輸入輸出訓練對提供至該神經網路,因此該神經網路可學會預測新的輸出實現。
在一些實施例中,該方法進一步包含判定該潛在空間中之該維度資料的哪些部分對應於與該維度資料之其他部分相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等部分取樣。
在一些實施例中,判定該潛在空間中之該維度資料的哪些部分對應於具有較高方差之經預測輸出實現促進對額外訓練資料之選擇。
在一些實施例中,作為一半導體製造程序之部分,該方法進一步包含將經訓練參數化模型用於預測遮罩或倍縮光罩幾何結構。
在一些實施例中,作為一半導體製造程序之部分,該方法進一步包含將經訓練參數化模型用於預測一連續色調遮罩(CTM)。
根據另一實施例,提供一種用於判定對半導體製造程序參數之調整的方法。該方法包含運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集。不同群集對應於一給定輸入之不同部分。該方法包含基於該潛在空間中之該維度資料運用該參數化模型預測一輸出。該方法包含運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的該給定輸入之一復原版本。該方法包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型之一或多個參數,以提高參數化模型預測之確定性。該方法包含基於來自經調整參數化模型之預測來判定對一或多個半導體製造程序參數之調整。
在一些實施例中,作為該半導體製造程序之部分,該方法包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測一連續色調遮罩(CTM)之確定性。
在一些實施例中,一或多個經判定之半導體製造程序參數包含一遮罩設計、一光瞳形狀、一劑量或一焦點中之一或多者。
在一些實施例中,一或多個經判定之半導體製造程序參數包含該遮罩設計。在一些實施例中,判定對該一或多個半導體製造程序參 數之調整包含將該遮罩設計自一第一遮罩設計改變為一第二遮罩設計。
在一些實施例中,該給定輸入包含一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。
根據另一實施例,提供一種其上具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施上文所描述之任一方法。
根據另一實施例,提供一種用於提高參數化模型預測之確定性的方法。該方法包含:運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集,其中不同群集對應於一給定輸入之不同部分;基於該潛在空間中之該維度資料運用該參數化模型預測一輸出;運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的一給定輸入之一復原版本;及基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型之一或多個參數,以提高該等參數化模型預測之確定性。
在一些實施例中,該方法進一步包含判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具有更高方差之經預測輸出。
在一些實施例中,判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。
在一些實施例中,調整包含藉由新增至該潛在空間之維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該 參數化模型。
在一些實施例中,藉由新增至該潛在空間之維度而使該參數化模型更具描述性及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像及更多樣化之資料作為輸入來訓練該參數化模型;及/或將更多維度用於編碼向量,及在該參數化模型中使用更多編碼層。
在一些實施例中,該方法進一步包含訓練該參數化模型。訓練包含對該潛在空間中之該維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性。基於該給定維度資料及所判定之不確定性來訓練該參數化模型。
在一些實施例中,該方法進一步包含判定該潛在空間中之該維度資料的哪些群集對應於與該維度資料之其他群集相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等群集進行取樣。
在一些實施例中,該潛在空間中之個別群集對應於該維度資料中之不同經編碼圖案。
在一些實施例中,調整該參數化模型之一或多個參數包含判定單獨的每圖案資訊,該資訊指示哪些圖案類型為該參數化模型所熟知且引起相對一致之預測,及哪些圖案類型對於該參數化模型係陌生的且引起相對可變之預測。
在一些實施例中,該單獨的每圖案資訊包含方差、潛在空間覆蓋率及/或一分佈。
在一些實施例中,調整該參數化模型之一或多個參數包含調整該參數化模型之一維度及/或該參數化模型之一或多個層的權重。
在一些實施例中,該方法進一步包含基於該等群集、該輸出及/或該輸入之該復原版本調整該參數化模型以減小該等參數化模型預測之一方差及/或增強對新圖案之參數化模型預測。
在一些實施例中,該方法進一步包含:識別該潛在空間中之所關注點,其中該等所關注點包含以下中之一或多者:與該潛在空間中之其他點相比具有相對較高方差或不確定性之點,並不位於一群集內之點,或位於與該潛在空間中之其他點及/或群集之間的笛卡爾距離相比距該潛在空間中之一或多個其他點及/或群集相對較遠之一笛卡爾距離處的點;及使用該等所關注點、該等群集、該給定輸入之該復原版本及/或該輸出來評估該參數化模型之效能。
在一些實施例中,該參數化模型包含可變編碼器-解碼器架構。藉由該編碼器-解碼器架構之一編碼器來編碼該潛在空間中之該維度資料。基於該潛在空間中之該維度資料運用該編碼器-解碼器架構之一解碼器預測該輸出,且藉由該編碼器-解碼器架構之一第二解碼器將該潛在空間中之該維度資料變換成該給定輸入之該復原版本。該方法進一步包含運用一機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在一輸出空間中產生實現。
根據另一實施例,提供一種其上具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施本文中所描述之任一方法。
12A:輻射源
14A:光學器件組件
16Aa:光學器件組件
16Ab:光學器件組件
16Ac:透射光學器件
18A:圖案化器件
20A:孔徑
21:輻射光束
22A:基板平面
22:琢面化場鏡面器件
24:琢面化光瞳鏡面器件
26:經圖案化光束
28:反射元件
30:反射元件
31:照明模型
32:投影光學器件模型
35:設計佈局模型
36:空中影像
37:抗蝕劑模型
38:抗蝕劑影像
40:操作
42:操作
44:操作
46:操作
48:操作
100:電腦系統
102:匯流排
104:處理器
105:處理器
106:主記憶體
108:唯讀記憶體
110:儲存器件
112:顯示器
114:輸入器件
116:游標控制件
118:通信介面
120:網路鏈路
122:區域網路
124:主機電腦
126:網際網路服務提供者
128:網際網路
130:伺服器
210:EUV輻射發射電漿
211:源腔室
212:收集器腔室
220:圍封結構
221:開口
230:污染物截留器
240:光柵光譜濾光器
251:上游輻射收集器側部
252:下游輻射收集器側部
253:掠入射反射器
254:掠入射反射器
255:掠入射反射器
300:概述
400:參數化模型
402:網路
403:輸入
404:潛在空間
405:輸出
406:網路
408:解碼器
410:解碼器
411:復原版本
500:群集
502:維度資料
504:群集
506:部分
508:部分
510:部分
512:部分
514:部分
520:影像
530:經預測CTM影像
532:復原影像
550:跳躍連接
600:可視化結果
602:方差函數
604:可能路徑
1000:微影投影裝置
AD:調整構件
B:輻射光束
C:目標部分
CO:聚光器
IF:虛擬源點
IL:照明系統
IN:積光器
LA:裝置
LAS:雷射
M1:圖案化器件對準標記
M2:圖案化器件對準標記
MA:圖案化器件
MT:第一物件台
O:點虛線
P1:基板對準標記
P2:基板對準標記
PM:第一***
PS:投影系統
PS2:位置感測器
PW:第二***
SO:輻射源
W:基板
WT:第二物件台
併入於本說明書中且構成本說明書之一部分的附圖說明一 或多個實施例且連同本說明書解釋此等實施例。現在將參看隨附示意性圖式而僅作為實例來描述本發明之實施例,在該等圖式中,對應元件符號指示對應部分,且在該等圖式中:圖1展示根據一實施例的微影系統之各種子系統的方塊圖。
圖2說明根據一實施例的用於模擬微影投影裝置中之微影的例示性流程圖。
圖3說明根據一實施例的用於在參數化模型預測中提高確定性之現存方法之操作的概述。
圖4說明根據一實施例的包含可變自動編碼器之參數化模型的實例。
圖5說明根據一實施例將潛在空間中之維度資料群集成群集,其中不同群集對應於給定輸入之不同部分。
圖6根據一實施例說明具有對應方差函數及可能路徑之潛在空間的可視化結果,該可能路徑藉由最大化方差之實例梯度上升演算法而獲得。
圖7為根據一實施例之實例電腦系統的方塊圖。
圖8為根據一實施例之微影投影裝置的示意圖。
圖9為根據一實施例之另一微影投影裝置的示意圖。
圖10為根據一實施例之圖9中之裝置的更詳細視圖。
圖11為根據一實施例之圖9及圖10之裝置的源收集器模組SO之更詳細視圖。
參數化模型(例如,諸如可變自動編碼器之機器學習模型及/或其他參數化模型)依賴於訓練。為限制訓練時間及相關聯成本,用於訓練此類模型之資料設定應具有大小最小之最大資料多樣性。迄今為止,不存在用以最佳化經選擇用於訓練之資料的良好方式。實際上,自較大資料集隨機地取樣訓練資料,直至達至預定義成本函數度量為止。電子模型預測通常與昂貴的實體模型進行比較。舉例而言,通常訓練先前的次解析度輔助特徵(SRAF)模型(僅作為一個實例)以使用此等昂貴的實體模型自目標設計預測連續透射遮罩(CTM)。通常使用包含目標/實體基板(例如,實體CTM遮罩)影像對之驗證資料集來評估先前模型之效能。類似於此之驗證程序提供對經訓練參數化模型之效能的全局指示,但並不根據在訓練期間遭遇之圖案類型提供模型預測準確度之分解。
本發明系統及方法經組態以藉由搜尋包含圖案(例如,與模型預測中之較高不確定性相關聯)之訓練資料改良參數化模型之訓練。本發明系統及方法經組態以判定用於訓練模型以改良其預測效能之一組增強輸入(例如,圖案),而非依賴於隨機或其他訓練資料選擇方法。本發明系統及方法經組態以使用所描述之訓練資料選擇操作來在參數化模型預測中提高確定性。
本發明系統及方法充分利用參數化模型(例如,可變編碼器-解碼器)之潛在空間的低維度及緊密性來在潛在空間中直接執行(例如,圖案)群集(例如,對於經編碼圖案)。此藉由圖案(或逐群集)資訊促進圖案之判定。有利地,緊密且分開之潛在空間導致圖案群集之自然分離。藉由判定單獨的每圖案資訊(例如,統計資料,諸如方差、潛在空間覆蓋率、每群集分佈等),本發明系統及方法提供關於為參數化模型所熟知(例如, 引起一致預測)之圖案類型及相對陌生(例如,導致廣泛可變預測)之圖案類型的資訊。另外,此圖案群集幾乎不需要額外計算資源,此係因為對於參數化模型而言其比典型訓練程序便宜得多。
在一些實施例中,訓練模型可包括對潛在空間中之維度資料進行取樣,且對於潛在空間中之每一樣本:預測多個輸出實現以在潛在空間中產生給定維度資料之輸出實現的分佈;及判定與多個輸出實現之分佈相關聯的不確定性。可運用完全單獨的參數化模型,例如上文所描述的編碼器/解碼器模型之子部分(例如,可或可不包括編碼器/解碼器架構)及/或其他模型執行此取樣及不確定性之預測。接著可運用給定維度資料及所判定之不確定性來訓練(或重新訓練)單獨參數化模型。舉例而言,來自單獨參數化模型之輸出可用於引導(第一)模型之訓練。此進一步描述於下文中。
儘管在本文中可特定地參考半導體及/或IC製造,但應明確理解,本文之描述具有許多其他可能應用。舉例而言,其可在半導體製造領域外,在使用預測性參數化模型之任何領域使用。其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。在此等替代應用中,熟習此項技術者應瞭解,在此等替代應用之上下文中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別可與更一般之術語「遮罩」、「基板」及「目標部分」互換。另外,應注意,本文中所描述之方法在多樣化領域中可具有許多其他可能的應用,該等領域諸如,語言處理系統、自動駕駛汽車、醫療成像及診斷、語意分段、去雜訊、晶片設計、電子設計自動化等。本發明方法可應用於其中量化機器學習模型預測中之不確定性係有利的任何領域中。
在本文獻中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外輻射(例如具有為365、248、193、157或126nm之波長)及極紫外輻射(EUV,例如具有在約5至100nm範圍內之波長)。
圖案化器件可包含或可形成一或多個設計佈局。可利用電腦輔助設計(computer-aided design;CAD)程式來產生設計佈局。此程序常常被稱作EDA(電子設計自動化)。大多數CAD程式遵循預定設計規則集合,以便產生功能設計佈局/圖案化器件。基於處理及設計限制而設定此等規則。舉例而言,設計規則定義器件(諸如閘、電容器等)或互連線之間的空間容許度,以確保器件或線彼此不會以非所要方式相互作用。設計規則限制中之一或多者可被稱作「臨界尺寸」(CD)。器件之臨界尺寸可被定義為線或孔之最小寬度或兩條線或兩個孔之間的最小空間。因此,CD調節經設計器件之總大小及密度。器件製作中之目標中之一者係在基板上如實地再生原始設計意圖(經由圖案化器件)。
本文中所使用之術語「遮罩」或「圖案化器件」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化器件,該經圖案化橫截面對應於待在基板之目標部分中產生之圖案。在此上下文中亦可使用術語「光閥」。除經典遮罩(透射或反射;二元、相移、混合式等等)以外,其他此類圖案化器件之實例亦包括可程式化鏡面陣列。此器件之實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此裝置所隱含之基本原理為(例如):反射表面之經定址區域使入射輻射反射為繞射輻射,而未經定址區域使入射輻射反射為非繞射輻射。在使用適當濾光器的情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,該光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用適 合之電子構件來執行所需矩陣定址。其他此類圖案化器件之實例亦包括可程式化LCD陣列。在以引用方式併入本文中之美國專利第5,229,872號中給出此構造之一實例。
作為簡要介紹,圖1說明例示性微影投影裝置10A。主要組件為:輻射源12A,其可為深紫外線(DUV)準分子雷射源或包括極紫外線(EUV)源的其他類型之源(如上文所論述,微影投影裝置自身無需具有輻射源);照明光學器件,其例如定義部分相干性(被表示為均方偏差)且可包括塑形來自源12A之輻射的光學器件組件14A、16Aa及16Ab;圖案化器件18A;及透射光學器件16Ac,其將圖案化器件圖案之影像投影至基板平面22A上。在投影光學器件之光瞳平面處的可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學器件之數值孔徑NA=n sin(Θmax),其中n為基板與投影光學器件之最後元件之間的介質之折射率,且Θmax為自投影光學器件射出的仍可照射於基板平面22A上之光束的最大角度。
在微影投影裝置中,源將照明(亦即,輻射)提供至圖案化器件,且投影光學器件經由該圖案化器件將該照明導向至基板上且塑形該照明。投影光學器件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為基板位階處之輻射強度分佈。抗蝕劑模型可用以根據空中影像來計算抗蝕劑影像,此情形之一實例可發現於美國專利申請公開案第US 2009-0157630號中,該美國專利申請公開案之揭示內容特此以其全文引用之方式併入。抗蝕劑模型僅與抗蝕劑層之屬性(例如,在曝光、曝光後烘烤(PEB)及顯影期間發生的化學程序之效應)相關。微影投影裝置之光學屬性(例如,照明、圖案化器件及投影光學器件之屬性)指示空中影 像且可被界定於光學模型中。因為可改變用於微影投影裝置中之圖案化器件,所以需要使圖案化器件之光學屬性與至少包括源及投影光學器件的微影投影裝置之其餘部分之光學屬性分離。用以將設計佈局變換成各種微影影像(例如,空中影像、抗蝕劑影像等),使用彼等技術及模型來應用OPC且評估效能(例如,根據製程窗)之技術及模型的細節描述於美國專利申請公開案第US 2008-0301620、2007-0050749、2007-0031745、2008-0309897、2010-0162197及2010-0180251號中,各自美國專利申請公開案之揭示內容特此以全文引用之方式併入。
理解微影程序之一種態樣係理解輻射與圖案化器件之相互作用。可自在輻射到達圖案化器件之前的輻射之電磁場及表徵該相互作用之函數判定在輻射通過圖案化器件之後的輻射之電磁場。此函數可稱為遮罩透射函數(其可用於描述透射圖案化器件及/或反射圖案化器件之相互作用)。
遮罩透射函數可具有多種不同形式。一種形式為二元。二元遮罩透射函數在圖案化器件上之任何給定位置處具有兩個值(例如零及正常數)中之任一者。呈二元形式之遮罩透射函數可被稱作二元遮罩。另一形式為連續的。亦即,圖案化器件之透射率(或反射率)的模數係圖案化器件上之位置的連續函數。透射率(或反射率)之相位亦可為圖案化器件上之位置的連續函數。呈連續形式之遮罩透射函數可稱為連續色調遮罩或連續透射遮罩(CTM)。舉例而言,可將CTM表示為像素化影像,其中可向每一像素指派介於0與1之間的值(例如0.1、0.2、0.3等)來代替0或1之二元值。在一些實施例中,CTM可為像素化灰度影像,其中每一像素具有值(例如,在[-255,255]範圍內,在[0,1]或[-1,1]範圍或其他適當範圍內之 標準化值)。
薄遮罩近似(亦稱為克希荷夫(Kirchhoff)邊界條件)廣泛地用於簡化對輻射與圖案化器件之相互作用之判定。薄遮罩近似假定圖案化器件上之結構之厚度與波長相比極小,且遮罩上的結構之寬度與波長相比極大。因此,薄遮罩近似假定在圖案化器件之後的電磁場為入射電磁場與遮罩透射函數之乘積。然而,當微影程序使用具有愈來愈短之波長的輻射,且圖案化器件上之結構變得愈來愈小時,對薄遮罩近似之假定可分解。舉例而言,由於結構(例如頂面與側壁之間的邊緣)之有限厚度,輻射與結構之相互作用(「遮罩3D效應」或「M3D」)可變得重要。在遮罩透射函數中涵蓋此散射可使得遮罩透射函數能夠較佳捕捉輻射與圖案化器件之相互作用。在薄遮罩近似下之遮罩透射函數可被稱作薄遮罩透射函數。涵蓋M3D的遮罩透射函數可稱為M3D遮罩透射函數。
常常需要能夠以計算方式判定圖案化程序將如何在基板上產生所要圖案。因此,可提供模擬以模擬程序之一或多個部分。舉例而言,需要能夠模擬在抗蝕劑顯影之後將圖案化器件圖案轉印至基板之抗蝕劑層上以及彼抗蝕劑層中產生之圖案上的微影程序。
圖2中說明用於模擬微影投影裝置中之微影的例示性流程圖。照明模型31表示照明之光學特性(包括輻射強度分佈及/或相位分佈)。投影光學器件模型32表示投影光學器件之光學特性(包括由投影光學器件引起的輻射強度分佈及/或相位分佈之改變)。設計佈局模型35表示設計佈局之光學特性(包括由給定設計佈局造成的對輻射強度分佈及/或相位分佈之改變),該設計佈局為在圖案化器件上或藉由圖案化器件而形成之特徵之配置的表示。可使用照明模型31、投影光學器件模型32及設計佈 局模型35來模擬空中影像36。可使用抗蝕劑模型37而自空中影像36模擬抗蝕劑影像38。舉例而言,亦可模擬(例如,藉由設計佈局模型35及/或其他模型)諸如CTM遮罩及/或其他遮罩之遮罩影像。微影之模擬可例如預測抗蝕劑影像中之輪廓及/或CD。
更特定言之,照明模型31可表示照明之光學特性,該等光學特性包括但不限於NA-均方偏差(σ)設定,以及任何特定照明形狀(例如,離軸照明,諸如,環形、四極、偶極等)。投影光學器件模型32可表示投影光學器件之光學特性,包括例如像差、失真、折射率、實體大小或尺寸等。設計佈局模型35亦可表示實體圖案化器件之一或多個物理屬性,如例如全文以引用方式併入之美國專利第7,587,704號中所描述。與微影投影裝置相關聯之光學屬性(例如照明、圖案化器件及投影光學器件之屬性)規定空中影像。由於微影投影裝置中使用之圖案化器件可改變,故需要將圖案化器件之光學屬性與至少包括照明及投影光學器件之微影投影裝置之其餘部分的光學屬性分離(因此設計佈局模型35)。
可使用抗蝕劑模型37以自空中影像演算抗蝕劑影像,可在全文特此以引用方式併入之美國專利第8,200,468號中找到此情形之實例。抗蝕劑模型通常與抗蝕劑層之屬性(例如,在曝光、曝光後烘烤及/或顯影期間發生的化學程序之效應)有關。
模擬之目標在於準確地預測例如邊緣置放、空中影像強度斜率、次解析度輔助特徵(SRAF)及/或CD,其接著可與預期或目標設計相比較。預期設計通常被定義為預OPC設計佈局,其可以諸如GDSII、OASIS或另一檔案格式之標準化數位檔案格式而提供。
自該設計佈局,可識別被稱作「剪輯」之一或多個部分。 在一些實施例中,提取剪輯集合,其表示設計佈局中之複雜圖案(通常為約50個至1000個剪輯,但可使用任何數目個剪輯)。如熟習此項技術者應瞭解,此等圖案或剪輯表示設計之小部分(例如,電路、單元等),且該等剪輯尤其表示需要特定關注及/或驗證之小部分。換言之,剪輯可為設計佈局之部分,或可類似或具有臨界特徵係藉由體驗而識別(包括由客戶提供之剪輯)、藉由試誤法而識別或藉由執行全晶片模擬而識別的設計佈局之部分的類似行為。剪輯通常含有一或多個測試圖案或量規圖案。可由客戶基於設計佈局中需要特定影像最佳化之已知臨界特徵區域而先驗地提供初始較大剪輯集合。替代地,在另一實施例中,可藉由使用識別臨界特徵區域之某種自動化(諸如,機器視覺)或手動演算法而自整個設計佈局提取初始較大剪輯集合。
舉例而言,模擬及模型化可用以組態圖案化器件圖案之一或多個特徵(例如執行光學近接校正)、照明之一或多個特徵(例如改變照明之空間/角強度分佈之一或多個特性,諸如改變形狀),及/或投影光學器件之一或多個特徵(例如數值孔徑等)。此組態通常可分別被稱作遮罩最佳化、源最佳化及投影最佳化。可獨立地執行或以不同組合形式組合此最佳化。一個此類實例為源-遮罩最佳化(source-mask optimization;SMO),其涉及組態圖案化器件圖案之一或多個特徵連同照明之一或多個特徵。最佳化技術可聚焦於剪輯中之一或多者。最佳化可使用本文中所描述之機器學習模型以預測各種參數(包括影像等)之值。
在一些實施例中,可將系統之最佳化程序表示為成本函數。最佳化程序可包含尋找系統之最小化成本函數之一組參數(設計變數、程序變數等)。成本函數可取決於最佳化之目標而具有任何適合形 式。舉例而言,成本函數可為系統之某些特性(評估點)相對於此等特性之預期值(例如理想值)之偏差的加權均方根(RMS)。成本函數亦可為此等偏差(亦即,最差偏差)之最大值。術語「評估點」應被廣泛地解譯為包括系統或製作方法之任何特性。歸因於系統及/或方法之實施的實務性,系統之設計及/或程序變數可經限制至有限範圍及/或可相互相依。在微影投影裝置之狀況下,約束常常與硬體之物理屬性及特性(諸如,可調諧範圍及/或圖案化器件可製造性設計規則)相關聯。評估點可包括基板上之抗蝕劑影像上之實體點,以及非物理特性,諸如(例如)劑量及焦點。
在一些實施例中,照明模型31、投影光學器件模型32、設計佈局模型35、抗蝕劑模型37、SMO模型及/或與積體電路製造程序相關聯及/或在積體電路製造程序中所包括之其他模型可為執行本文中所描述之方法之操作的經驗模型。該經驗模型可基於各種輸入(例如,遮罩或晶圓影像之一或多個特性、設計佈局之一或多個特性、圖案化器件之一或多個特性、微影程序中所使用之照明之一或多個特性,諸如波長,等)之間的相關性預測輸出。
作為一實例,經驗模型可為機器學習模型及/或任何其他參數化模型。在一些實施例中,機器學習模型(例如)可為及/或包括數學方程式、演算法、標繪圖、圖表、網路(例如神經網路),及/或其他工具及機器學習模型組件。舉例而言,機器學習模型可為及/或包括具有輸入層、輸出層及一或多個中間或隱藏層之一或多個神經網路。在一些實施例中,一或多個神經網路可為及/或包括深度神經網路(例如,在輸入層與輸出層之間具有一或多個中間或隱藏層的神經網路)。
作為一實例,一或多個神經網路可基於大的神經單元(或人 工神經元)集合。該一或多個神經網路可不嚴格地模仿生物大腦工作之方式(例如,經由由軸突連接之大的生物神經元簇)。神經網路之每一神經單元可與該神經網路之許多其他神經單元連接。此類連接可加強或抑制其對所連接之神經單元之激活狀態之影響。在一些實施例中,每一個別神經單元可具有將所有其輸入之值組合在一起之求和函數。在一些實施例中,每一連接(或神經單元自身)可具有臨限函數使得信號在其被允許傳播至其他神經單元之前必須超出臨限值。此等神經網路系統可為自學習及經訓練,而非經明確程式化,且與傳統電腦程式相比,可在某些問題解決領域中顯著更佳地執行。在一些實施例中,一或多個神經網路可包括多個層(例如,其中信號路徑自前端層橫穿至後端層)。在一些實施例中,可由神經網路利用反向傳播技術,其中使用前向刺激以對「前端」神經單元重設權重。在一些實施例中,對一或多個神經網路之刺激及抑制可更自由流動,其中連接以較混亂且複雜之方式相互作用。在一些實施例中,一或多個神經網路之中間層包括一或多個卷積層、一或多個重現層及/或其他層。
可使用一組訓練資料(例如,地面實況)來訓練一或多個神經網路(亦即其參數經判定)。訓練資料可包括一組訓練樣本。每一樣本可為包含輸入物件(通常為向量,其可被稱為特徵向量)及所要輸出值(亦被稱為監督信號)之一對。訓練演算法分析訓練資料,且藉由基於訓練資料調整神經網路之參數(例如一或多個層之權重)來調整神經網路的行為。舉例而言,在給出形式為{(x1,y1),(x2,y2),...,(xN,yN)}之N個訓練樣本之集合使得xi為第i實例的特徵向量且yi為其監督信號之情況下,訓練演算法尋找神經網路g:X→Y,其中X為輸入空間且Y為輸出空間。特徵向量為表示某物件(例如如以上實例中之晶圓設計、剪輯等)之數值特徵之n維向量。與此等向量 相關聯之向量空間常常稱為特徵空間或潛在空間。在訓練之後,神經網路可用於使用新樣本來進行預測。
如上文所描述,本發明方法及系統包括使用可變編碼器-解碼器架構之參數化模型(例如,諸如神經網路之機器學習模型)。在模型(例如,神經網路)之中部(例如,中間層)中,本發明模型規劃將輸入(例如,影像、張量或與圖案相關聯之其他輸入或半導體製造程序的其他特徵)中之資訊囊封至模型的低維編碼(例如,潛在空間)。本發明系統及方法充分利用潛在空間之低維度及緊密性來在潛在空間中直接執行圖案群集。此藉由圖案資訊促進圖案(群集)之判定。有利地,緊密且分開之潛在空間導致圖案群集之自然分離。藉由判定單獨的每圖案資訊(例如,統計資料,諸如方差、潛在空間覆蓋率、每群集分佈等),本發明系統及方法提供關於為參數化模型所熟知(例如,引起一致預測)之圖案類型及相對陌生(例如,導致廣泛可變預測)之圖案類型的資訊。
本發明系統及方法經組態以藉由主動地搜尋包含(例如)與模型預測中之較高不確定性相關聯之圖案的訓練資料來改良參數化模型之訓練。本發明系統及方法經組態以判定一組增強輸入(例如,圖案)以用於基於導致較高不確定性之該等輸入(圖案)進行訓練。運用此組增強的輸入圖案來再訓練或進一步訓練該模型會改良模型之預測效能。模型不一定必須依賴於用於訓練資料之隨機或其他資料選擇方法。
本發明系統及方法經組態以使用所描述之訓練資料選擇操作來在參數化模型預測中提高確定性。藉由重複潛在空間群集之處理,識別與較高預測不確定性相關聯之群集及/或圖案,及運用此等或相關圖案再訓練模型,訓練將比在例如隨機地選擇訓練樣本時有效得多。
應注意,儘管貫穿本說明書提及機器學習模型、神經網路及/或編碼器-解碼器架構,但機器學習模型、神經網路及編碼器-解碼器架構僅為實例,且本文中所描述的操作可應用於不同參數化模型。
圖3說明用於在參數化模型預測中提高確定性之本發明方法之一個實施例的操作的概述300。在操作40處,可運用參數化模型將與給定輸入相關聯之較高維資料變換成潛在空間中之較低維資料。在操作42處,潛在空間中之維度資料藉由模型群集成群集。不同群集對應於給定輸入之不同部分。在操作44處,模型基於潛在空間中之維度資料預測輸出。在操作46處,藉由模型將潛在空間中之維度資料變換成對應於群集中之一或多者之給定輸入的復原版本。在一些實施例中,變換可包括編碼或解碼、投影、映射,及/或其他變換操作。在一些實施例中,預測(操作44)及變換(操作46)為同步或幾乎同步的。在操作48處,再訓練、進一步訓練及/或基於群集、輸出及/或給定輸入之復原版本以其他方式調整該模型,以提高參數化模型之預測的確定性。
在一些實施例中,如本文中所描述,參數化模型係機器學習模型。在一些實施例中,該參數化模型包含編碼器-解碼器架構。在一實施例中,該編碼器-解碼器架構包含可變編碼器-解碼器架構,且操作40及/或其他操作包含運用機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在輸出空間中產生實現。潛在空間包含低維編碼及/或其他資訊(如本文中所描述)。在藉由編碼器計算分佈(諸如高斯)之參數(諸如μ(mu)及σ)的情況下,若藉由自分佈取樣而形成潛在空間,則該潛在空間為機率性的。
圖4說明參數化模型400之實例。舉例而言,模型400可為 可變自動編碼器。可變自動編碼器可使用編碼器或編碼器網路402來將輸入403(與圖案及/或其他輸入相關聯之影像、文字、信號等)編碼成連續表示,亦被稱作潛在空間404,且使用解碼器或解碼器網路406來產生對應輸出405(表示圖案及/或其他特徵之經預測影像、文字、信號、數值等)。使用輸入物件/輸出值對(例如,如上文所描述)執行網路402、406兩者之訓練。在一些實施例中,模型400可經充分訓練。在此等實施例中,圖3中描述之操作40至48可經組態以藉由判定哪些類型的圖案導致由模型400進行之預測中的更多不確定性來改良模型400。在一些實施例中,模型400可部分地經訓練。在此等實施例中,操作40至48可促進包括形成潛在空間404之模型400的至少部分訓練。如圖4中所展示,模型400包括解碼器網路406中之兩個不同解碼器408及410,或類似於解碼器(如下文所描述)起作用之解碼器網路406的部分。在一些實施例中,解碼器410經組態以使編碼器或編碼器網路402之編碼(映射)反相,以使得輸出(例如,下文所描述的復原版本411)與輸入403相似。
返回至圖3,舉例而言,在操作40中,可藉由機器學習(參數化)模型編碼器-解碼器架構之編碼器(例如,圖4中所展示之編碼器或編碼器網路402)執行變換(例如,編碼、投影、映射等)。給定輸入可包含例如影像、剪輯、經編碼影像、經編碼剪輯、向量、來自機器學習模型之先前層的資料、文字、信號、與半導體製造程序相關聯之其他資料,及/或可經編碼之任何其他資料及/或物件。在一些實施例中,舉例而言,給定輸入與目標圖案設計、缺陷或用於半導體製造程序之程序參數相關聯。
在一些實施例中,低維編碼表示輸入(例如影像)之一或多個特徵。輸入之一或多個特徵可被認為係輸入之關鍵或決定性特徵。特徵 可被認為係輸入之關鍵或決定性特徵,此係因為其與所要輸出之其他特徵相比相對而言更具預測性,及/或例如具有其他特性。在低維編碼中所表示之一或多個特徵(維度)可(例如由程式設計師在創建本機器學習模型時)預定、由神經網路之先前層判定、由使用者經由與本文中所描述之系統相關聯的使用者介面調整,及/或可藉由其他方法來判定。在一些實施例中,由低維編碼表示之特徵(維度)之數量可(例如由程式設計師在創建本機器學習模型時)預定、基於來自神經網路之先前層之輸出而判定、由使用者經由與本文中所描述之系統相關聯的使用者介面而調整,及/或藉由其他方法來判定。
維度(特徵)可用於分類事實、變數、屬性、自由度、類型及/或輸入之其他特徵。維度資料可為具有數個事實、變數、數個自由度、數種類型及/或其他特徵之資料。資料之事實、變數、自由度、類型等可為資料之「維度」。維度資料可具有各種形式,包括向量形式(例如,多維向量)。在一些實施例中,潛在空間中之維度資料包含與模型輸入相關聯之多維向量,及/或其他資訊。藉助於非限制性實例,模型輸入可包含影像。影像可具有相對較高的維數(特徵數)。舉例而言,影像可具有不同色彩及/或處於不同位置之像素的大小、數量,及/或其他維度。潛在空間中之維度資料可具有相對較低的維數(特徵數)。舉例而言,潛在空間中之維度資料可包含表示輸入影像之關鍵特徵的多維向量。
如上文所描述,在操作42中,潛在空間中之維度資料藉由模型群集成群集,其中不同群集對應於給定輸入之不同部分。圖5說明將潛在空間404中之維度資料502群集500成群集504,其中不同群集504對應於給定輸入403之不同部分506至514。在圖5中所展示之實例中,輸入403 為目標遮罩設計之影像520。不同部分506至514與目標遮罩設計之不同圖案相關聯。如圖5中所展示,編碼器或編碼器網路402將目標設計之影像520中的高維資料映射至低維潛在空間404。
操作42(圖3)包含判定潛在空間404之維度資料502的哪些群集504或群集504之部分(其與目標遮罩設計之不同圖案相關聯)對應於與維度資料502之其他群集504或群集504之其他部分相比具有更高方差之經預測輸出405。判定潛在空間404中之維度資料502的哪些群集504或群集504之部分對應於具有較高方差之經預測輸出405促進對額外訓練資料之選擇。舉例而言,可選擇包括與群集(例如,一或多個群集504)相關聯之圖案(例如,506至514中之一或多者)的訓練資料以用於訓練,該等群集對應於具有較高方差之輸出。
有利地,潛在空間404為低維(例如,與影像空間相比)。此促進群集演算法之應用。可應用之群集演算法的實例包括k均值群集、均值移位群集、DBSCAN(利用雜訊之應用的基於密度之空間群集)、期望最大化群集、凝聚式層級群集,及/或其他群集演算法。應注意,在一些實施例中,可直接地在影像空間而非潛在空間404中執行群集。此可至少由於影像空間之高維值而為計算上更昂貴的,但仍為有可能的。
在群集之後,解碼器408(或圖4中所展示之類似於解碼器起作用之解碼器網路406之一部分)將潛在空間404中之低維編碼映射、投影、解碼或以其他方式變換至輸出405。在此實例中,輸出405為經預測CTM影像530。第二解碼器410將潛在空間404中之低維編碼映射、投影、解碼或以其他方式變換回對應於群集504中之一或多者的給定輸入403之復原版本411。在圖5中所展示之實例中,給定輸入之復原版本為目標遮罩 設計之影像520的復原影像532。因此,與第二解碼器410組合之編碼器或編碼器網路402實施恆等算子之近似。恆等算子為將輸入映射至輸出而無需對其進行修改之算子。因此,理想地,輸出等於輸入。在自動編碼器(402+410)的情況下,歸因於壓縮成較小潛在空間404,吾人具有近似恆等算子,此係由於一些資訊因壓縮而丟失。此對於使在潛在空間404中經群集及/或標識之圖案可視化係有用的。在一些實施例中,模型400可經組態以將映射(圖5中未展示)自潛在空間404提供至屬性,諸如缺陷機率、製程窗參數及/或其他屬性。
回應於群集,對應於個別群集504之圖案形狀506至514可使用第二解碼器410而可視化。另外,可使用圖案使用指示符(諸如圖案可變性、圖案頻率及/或其他指示符)來表徵個別圖案506至514(其對應於個別群集504)。可基於此等指示符及/或其他資訊作出關於模型400之效能的決定。特定圖案506至514及/或其他相似圖案之更多實例可基於特定圖案之高輸出預測可變性而新增至訓練資料集。在下文對操作44、46及48(圖3)之繼續論述中提供額外細節。
在一些實施例中,操作42(圖3)包括使用群集、基於梯度之方法及/或其他方法判定潛在空間404中之位置,該等位置對應於與潛在空間404中之其他位置相比具有更高方差(其導致更多模型預測不確定性)的預測輸出(例如,圖案)。換言之,操作42可包括搜尋潛在空間404以識別潛在空間404中之模型400捕捉最差之位置(其對應於圖案)。可選擇對應於潛在空間404中之此等位置的輸入(例如,圖案之影像)作為額外訓練輸入。
在模型400經訓練(如本文中所描述)時,潛在空間404形成 (例如)經編碼圖案之經壓縮、連續表示,其促進潛在空間404中之搜尋及最佳化操作的效能。舉例而言,搜尋及最佳化操作可包括群集、基於梯度之方法(例如,梯度上升)及/或其他方法。
圖6說明具有對應方差函數602及可能路徑604之潛在空間404的可視化結果600,該可能路徑604藉由最大化方差(例如,判定潛在空間404中對應於與最高預測不確定性相關聯之輸入圖案的位置)之實例梯度上升演算法而獲得。用於判定潛在空間404中對應於最高方差(或預測不確定性)之位置的方法可變化。方差之不同量度可用於最大化。舉例而言,當影像中之一小區域臨界時最大方差值可能相關,而均方根方差值可更好地用於描述總體擬合。對於運用影像之度量衡應用,可以使用強烈得朝向特徵邊緣加權之rms類方法。搜尋方法亦可能不同,其中梯度搜尋僅為一個實例。
在一些實施例中,用於此搜尋之起點可為潛在空間404中之隨機位置。在一些實施例中,實際上可使用對應於具有最高方差之輸出(例如,圖案)的自一組可能之輸入(例如,圖案之影像)判定之開始位置。在一些實施例中,操作42(圖3)可包括例如規則地或隨機地粗略取樣之潛在空間404,且接著選擇具有最高輸出方差之位置作為起點。在最佳化期間亦可使用此方法以避免在局部最佳處結束。自該起點,操作42可跨潛在空間404執行梯度搜尋(作為一個實例)以判定對應於最大輸出方差之位置。
應注意,輸出(例如,圖案)對於特定使用情況(例如,並不需要推論以描述不相關的機密圖案)應為相關的。此意謂很可能不需要沿著或超出潛在空間404之邊界進行搜尋(當模型400合理地經訓練時)。若梯 度搜尋(例如)判定對應於最大輸出方差之位置朝向潛在空間邊界定位,則可能需要檢查模型400輸出405之相關性,潛在空間404可能需要在對應方向上擴展(例如,藉由新增維度、額外訓練資料等),及/或可能需要判定新的開始位置。可能需要避免接近潛在空間404之原點的開始位置,此係由於此可為或類似於奇點,且最終可能未產生相關的經解碼影像。
再次參考圖3及圖5,在操作44(圖3)中,輸出405(圖5)包含經預測遮罩影像(例如,圖5中所展示之530)、缺陷機率、用於半導體製造程序之經預測程序參數,及/或其他預測。基於潛在空間404中之維度資料及/或其他資訊預測輸出405。運用編碼器-解碼器架構之第一部分來預測輸出405。在一些實施例中,編碼器-解碼器架構之第一部分為第一解碼器408。然而,編碼器-解碼器架構之解碼器408可能並非傳統解碼器。舉例而言,編碼器-解碼器架構之解碼器408可包括來自編碼器或編碼器網路402之並不穿過潛在空間404的跳躍連接550。舉例而言,純編碼器-解碼器架構通常並不包括跳躍連接。使用跳躍連接以便將高解析度資訊自輸入傳送至輸出。此改良輸出之品質。潛在空間404不一定含有完整資訊以便產生輸出405,因此資訊並非必需的。(然而,的確需要僅自潛在空間404產生復原版本411(下文描述)。因此,402與410之間不存在跳躍連接。)
在操作46(圖3)中,藉由編碼器-解碼器架構之第二部分將潛在空間404(圖5)中之維度資料變換(例如,解碼、投影、映射等)成給定輸入403之復原版本411。舉例而言,編碼器-解碼器架構之第二部分可為第二解碼器410。應注意,第二解碼器410並不包括包括於編碼器-解碼器架構之第一部分(例如,第一解碼器408)中的跳躍連接550。將潛在空間404中之維度資料變換成給定輸入403之復原版本411以便於潛在空間404 中之所關注點的可視化。所關注點包含具有高方差或不確定性之點(例如,如關於圖6所描述)。在一些實施例中,該等所關注點包含以下中之一或多者:與潛在空間中之其他點相比具有相對較高方差或不確定性之點;並不位於群集內之點;位於與潛在空間中之其他點及/或群集之間的笛卡爾距離相比距潛在空間中之一或多個其他點及/或群集相對較遠之笛卡爾距離處的點,及/或其他所關注點。舉例而言,似乎並非任何群集之部分的點可為所關注點。距另一點及/或另一群集達一臨限笛卡爾距離的點可為所關注點。此等實例並不意欲為限制性的。
在操作48(圖3)中,所關注點、群集、輸出、輸給定輸入之復原版本及/或其他資訊可用於評估參數化模型400(圖5)之效能。舉例而言,所關注點及/或輸出可用於判定給定輸入之預測一致性(或方差)。在一些實施例中,操作48包含藉由新增至潛在空間之維度而使參數化模型更具描述性,及/或運用與所判定群集或群集之部分中之一或多者相關聯的更多樣化之訓練資料或與較高方差(例如,與較高預測不確定性相關聯之圖案)相關聯的潛在空間404(圖5及圖6)中之位置來訓練參數化模型。在一些實施例中,新增至潛在空間之維度包含組態潛在空間以描述或表示輸入之更多維度或特徵(參見上文所描述的影像之維度或特徵的實例)。藉助於非限制性實例,新增至潛在空間之維度可包含相對於用於給定輸入(例如,影像)及/或其他操作的最初或先前編碼之特徵向量運用更多特徵來編碼潛在空間中之特徵向量。在一些實施例中,新增至潛在空間之維度包含編碼器-解碼器網路架構的導致潛在空間(例如,編碼器與解碼器之間的層)中之維度提高的任何改變。
在一些實施例中,判定單獨的每圖案資訊(例如,諸如方 差、潛在空間覆蓋率、每群集分佈等之統計資料)、判定潛在空間404中之與最高預測不確定性相關聯的位置,及/或如上文所描述之其他操作促進對為參數化模型400所熟知(例如,且與一致預測相關聯)的圖案類型及相對陌生(例如,且與廣泛可變預測相關聯)的圖案類型之判定。操作48可包括藉由訓練模型400運用包含與模型400預測中之較高不確定性相關聯之圖案的訓練資料來改良參數化模型400之訓練。運用此組增強的輸入(例如,圖案)來再訓練或進一步訓練模型400會改良模型之預測效能。
在一些實施例中,操作48包含再訓練、進一步訓練及/或基於群集、所關注點(例如,具有最高方差之點)、輸出及/或輸入之復原版本以其他方式調整參數化模型,以增強輸出(例如,特定圖案之維度、特定類型之缺陷、製造程序參數窗等)的一或多個部分與地面實況的一或多個部分之間的協定。地面實況可為藉由參數化模型模型化之物體的實體版本之已知或所量測屬性(例如,實體遮罩之圖案維度、特定類型之缺陷的位置、在實際製造程序中使用之程序參數等)。
在一些實施例中,藉由新增至潛在空間之維度而使參數化模型更具描述性或運用與相關聯於最高預測不確定性之該等群集或點中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像、更多樣化之資料及額外剪輯作為輸入來訓練參數化模型;及/或將更多維度用於編碼向量,及在參數化模型中使用更多編碼層。可基於潛在空間404中之與較高預測不確定性相關聯之群集及對應圖案及/或點及/或其他資訊來判定任何或全部此等物體。如上文所描述,使用此資訊作為訓練資料允許參數化模型對此等及其他相似圖案進行更準確預測。
在一些實施例中,與相關聯於最高預測不確定性之一或多個群集或點相關聯的資料可包含:對應於與潛在空間中之其他點相比具有相對較高方差或不確定性之潛在空間中的點中之一或多者的資料;對應於位於特定群集內之點的資料;對應於並不位於群集內之點的資料;對應於位於與潛在空間中之其他點之間的笛卡爾距離相比距潛在空間中之一或多個其他點相對較遠之笛卡爾距離處的點的資料;及/或其他資料。換言之,舉例而言,用於調整模型之訓練資料的多樣性不必限於與潛在空間中之給定群集或點相關聯的資料。與潛在空間中之特定群集或點無關的資料可用於調整(例如,再訓練)模型,及/或用於其他目的。舉例而言,可以使用全新的或不同的訓練資料。更多樣化之影像及/或更多樣化之資料可指描述新的及/或與用於先前訓練之特徵不同的特徵的影像及/或資料,描述目標設計或圖案的與先前訓練中使用之彼等不同之部分的影像及/或資料,用於與先前訓練中使用之彼等處理條件不同之處理條件的影像及/或資料,及/或其他資訊。
在一些實施例中,操作48包含訓練、再訓練、進一步訓練及/或基於獲自潛在空間中之維度資料的樣本以其他方式調整參數化模型。此訓練(再訓練等)包含對潛在空間中之維度資料進行取樣,且對於潛在空間中之每一樣本:預測多個輸出實現以在潛在空間中產生給定維度資料之輸出實現的分佈;及判定與多個輸出實現之分佈相關聯的不確定性(或方差)。接著可運用給定維度資料及對應經判定不確定性來訓練(再訓練等)用於不確定性預測之單獨參數化模型。舉例而言,來自此單獨參數化模型之輸出可用於引導(例如,找出與最高不確定性相關聯之潛在空間的區域)(第一)參數化模型之訓練。
在一些實施例中,取樣包含判定潛在空間中之維度資料的哪些部分對應於與維度資料之其他部分相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等部分取樣。在一些實施例中,可基於來自應用於上文關於圖6所描述的不確定性預測之單獨的參數化模型之梯度上升演算法的輸出及/或其他資訊執行取樣。如上文所描述及圖6中所展示,梯度上升演算法最大化潛在空間中之方差(例如,判定潛在空間404(圖4)中之對應於與最高預測不確定性相關聯之輸入圖案的位置)。可在由梯度上升演算法輸出之一或多個位置處或附近獲得潛在空間(例如,404)中之資料的樣本。樣本可在由梯度上升演算法輸出之位置處或附近獲得,此係因為此潛在空間維度資料表示參數化模型經最少訓練以進行處置(例如,產生最高預測不確定性)的一或多個圖案。
應注意,用於判定潛在空間404(圖4)中對應於最高方差(或預測不確定性)之位置的方法可變化。如上文所描述,方差(或預測不確定性)之不同量度可用於最大化。舉例而言,當影像中之一小區域臨界時最大方差值可能相關,而均方根方差值可更好地用於描述總體擬合。對於運用影像之度量衡應用,可以使用強烈得朝向特徵邊緣加權之rms類方法。搜尋方法亦可能不同,其中梯度上升搜尋演算法僅為一個實例。
在一些實施例中,該給定維度資料及對應不確定性形成輸入輸出訓練對。在一些實施例中,單獨參數化模型包含機器學習模型,該機器學習模型包含可變自動編碼器(例如,具有編碼及解碼架構),該可變自動編碼器包括至少一個神經網路(例如,如本文中所描述,具有節點等)。運用給定維度資料及對應不確定性來訓練單獨參數化模型包含將輸入輸出訓練對提供至神經網路,因此,可變自動編碼器可學會預測新的輸 出實現。
如本文中所描述,編碼器架構包含經組態以將模型輸入變換成潛在空間中之維度資料的參數化模型之一部分,且解碼器架構包含經組態以將潛在空間中之維度資料變換成輸出實現的參數化模型之不同部分。
藉助於非限制性實際實例,在一些實施例中,模型輸入可與目標圖案設計、缺陷或用於半導體製造程序之程序參數相關聯。潛在空間中之維度資料可包含與模型輸入相關聯之多維向量。多個輸出實現可包含經預測遮罩影像、缺陷機率、用於半導體製造程序之經預測程序參數,及/或其他資訊。在一些實施例中,預測包含運用神經網路之一或多個層及/或一或多個節點將維度資料之多維向量解碼成輸出實現。
判定不確定性可包含判定經預測之多個輸出實現的方差及/或其他資訊。在一些實施例中,判定方差包含判定經預測之多個輸出實現的範圍、標準偏差、最大值、最小值、平均值、中值、模式及/或其他特性。舉例而言,經預測之多個輸出實現可包含影像,且判定不確定性可包含判定指示該等影像之間的差異之度量。指示此類差異之度量可包括目視指示器、給定影像屬性之範圍、給定影像屬性之標準偏差、最大值及/或最小值影像屬性、中值影像、模式影像,及/或其他度量。
換言之,針對不確定性預測訓練單獨參數化模型可包含對潛在空間z中之維度資料進行取樣(例如,產生輸入資料),其中z表示潛在空間中之維度資料,其可為例如潛在空間中之(低)維度編碼(向量)。舉例而言,對潛在空間z中之維度資料進行取樣可係根據在參數化模型(例如,可變自動編碼器)之更早訓練期間使用之(例如,低維編碼的)先前分佈 p(z)。對於z之每一樣本,相同樣本穿過可變自動編碼器之解碼器部分若干次以針對彼樣本(例如,輸出資料)產生多個輸出實現(預測)。此等輸出實現可聚合且其方差v(z)可經判定。舉例而言,z之樣本及對應方差v(z)可形成輸入輸出訓練對(z,v(z))。針對不確定性預測訓練參數化模型可包含將輸入輸出訓練對提供至(至少一個)神經網路,因此,可變自動編碼器可學會(更好地)預測新的輸出實現(例如,對於相同或不同模型輸入)。此等操作針對z之若干不同樣本可重複若干次。
在一些實施例中,操作48包含基於群集、所關注點、輸出及/或給定輸入之復原版本調整參數化模型,以提高參數化模型的確定性。調整可經組態以減小參數化模型預測之方差,增強對新圖案之參數化模型預測,及/或經組態用於其他目的。在一些實施例中,操作48包含基於群集、所關注點、輸出及/或給定輸入之復原版本調整參數化模型之一或多個參數(例如,權重、層的數目、潛在空間之維度等)以提高參數化模型預測之確定性。在一些實施例中,調整參數化模型可包含如本文中所描述訓練或再訓練模型(例如,基於與較高預測不確定性相關聯之圖案)。在一些實施例中,調整參數化模型可包含手動地改變權重、層的數目、潛在空間之維度等。
在一些實施例中,調整包含藉由新增至該潛在空間之維度而使參數化模型更具描述性,及/或運用與相關聯於較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型(其中潛在空間中之個別群集對應於維度資料中的不同經編碼圖案,如本文中所描述)。調整可包括判定潛在空間中之維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具 有更高方差之經預測輸出(例如,如本文中所描述)。判定潛在空間中之維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。使參數化模型更具描述性包含相對於先前訓練材料,使用與群集中之一或多者相關的更多樣化之影像及更多樣化之資料作為輸入以訓練參數化模型;將更多維度用於編碼向量,及在參數化模型中使用更多編碼層;及/或其他操作。
在一些實施例中,調整參數化模型之一或多個參數包含判定單獨的每圖案(例如,或每群集)資訊,其指示哪些圖案類型為參數化模型所熟知且引起相對一致之預測,且指示圖案類型對於參數化模型係陌生的且引起相對可變之預測(例如,使用本文中所描述的操作中之一或多者)。單獨的每圖案資訊包含方差、潛在空間覆蓋率、分佈及/或其他資訊。
藉助於非限制性實例,作為半導體製造程序之部分,可進行調整以用於預測基板、遮罩、倍縮光罩、及/或其他幾何結構。作為另一實例,作為半導體製造程序之部分,操作48可包含基於群集、輸出、所關注點及/或給定輸入之復原版本調整參數化模型,以提高該參數化模型預測連續透射遮罩(CTM)之確定性。該等實例並不意欲為限制性的。可對任何參數化模型進行調整,其中在參數化模型預測中提高確定性係有利的。
在一些實施例中,操作48包含基於來自經調整參數化模型之預測來判定對一或多個半導體製造程序參數之調整。在一些實施例中,一或多個經判定半導體製造程序參數包含遮罩設計、光瞳形狀、劑量、焦點及/或其他參數中之一或多者。在一些實施例中,一或多個經判定半導 體製造程序參數包含遮罩設計以使得遮罩設計自第一遮罩設計改變為第二遮罩設計。預期與積體電路製作程序之若干不同態樣及/或其他程序相關的其他實例。
圖7為說明可輔助實施本文中所揭示之方法、流程或裝置的電腦系統100之方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構及與匯流排102耦接以用於處理資訊之處理器104(或多個處理器104及105)。電腦系統100亦包括耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令的主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存器件。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令的唯讀記憶體(ROM)108或其他靜態儲存器件。提供諸如磁碟或光碟之儲存器件110,且該儲存器件110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如,陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入器件114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入器件為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如滑鼠、軌跡球或游標方向按鍵。此輸入器件通常具有在兩個軸線(第一軸(例如,x)及第二軸(例如,y))上之兩個自由度,從而允許該器件指定平面中之位置。觸控面板(螢幕)顯示器亦可被用作輸入器件。
根據一個實施例,本文中所描述之一或多種方法的部分可 藉由電腦系統100回應於處理器104執行主記憶體106中所含有之一或多個指令的一或多個序列來執行。可將此類指令自另一電腦可讀媒體(諸如儲存器件110)讀取至主記憶體106中。主記憶體106中所含之指令序列的執行促使處理器104執行本文中所描述之程序步驟。亦可使用呈多處理配置之一或多個處理器以執行主記憶體106中所含之指令序列。在一替代性實施例中,可代替或結合軟體指令而使用硬連線電路。因此,本文中之描述不限於硬體電路系統與軟體之任何特定組合。
如本文所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此類媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括(例如)光碟或磁碟,諸如儲存器件110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如,在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體之常見形式包括(例如)軟碟、軟性磁碟、硬碟、磁帶、任何其他磁媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
各種形式之電腦可讀媒體可涉及將一或多個指令之一或多個序列攜載至處理器104以供執行。舉例而言,初始地可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線來發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器將資料轉換為紅外線信號。耦接至匯流 排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體106擷取並執行指令。由主記憶體106接收之指令可視情況在由處理器104實行之前或之後儲存於儲存器件110上。
電腦系統100亦可包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦合,該網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供與對應類型之電話線的資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供至相容LAN之資料通信連接。亦可實施無線鏈路。在任何此實施中,通信介面118發送且接收攜載表示各種類型之資訊之數位資料流的電信號、電磁信號或光學信號。
網路鏈路120通常經由一或多個網路將資料通信提供至其他資料器件。舉例而言,網路鏈路120可經由區域網路122向主機電腦124或向由網際網路服務提供者(ISP)126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」128)而提供資料通信服務。區域網路122及網際網路128皆使用攜載數位資料串流之電、電磁或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號為輸送資訊的例示性形式之載波,該等信號將數位資料攜載至電腦系統100且自電腦系統100攜載數位資料。
電腦系統100可經由網路、網路鏈路120及通信介面118發送訊息且接收包括程式碼之資料。在網際網路實例中,伺服器130可經由網際網路128、ISP 126、區域網路122及通信介面118傳輸用於應用程式之所請求程式碼。舉例而言,一個此類經下載應用程式可提供本文中所描 述之方法的全部或部分。所接收程式碼可在其經接收時由處理器104執行,及/或儲存於儲存器件110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。
圖8為根據一實施例之微影投影裝置的示意圖。微影投影裝置可包括照明系統IL、第一物件台MT、第二物件台WT及投影系統PS。照明系統IL可調節輻射光束B。在此實例中,照明系統亦包含輻射源SO。第一物件台(例如,圖案化器件台)MT可具備用以固持圖案化器件MA(例如,倍縮光罩)之圖案化器件固持器,且連接至用以相對於物品PS來準確地定位該圖案化器件之第一***。第二物件台(例如基板台)WT可具備用以固持基板W(例如,抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於物品PS來準確地定位該基板之第二***。投影系統(例如其包括透鏡)PS(例如折射、反射或反射折射光學系統)可將圖案化器件MA之經輻照部分成像至基板W之目標部分C(例如,包含一或多個晶粒)上。
如所描繪,裝置可屬於透射類型(亦即,具有透射圖案化器件)。然而,一般而言,其亦可屬於反射類型,例如(具有反射圖案化器件)。裝置可使用與經典遮罩不同種類之圖案化器件;實例包括可程式化鏡面陣列或LCD矩陣。
源SO(例如,水銀燈或準分子雷射、雷射產生電漿(laser produced plasma;LPP)EUV源)產生輻射光束。舉例而言,此光束係直接地抑或在已橫穿諸如光束擴展器之調節構件之後饋入至照明系統(照明器)IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照 明器IL通常將包含各種其他組件,諸如積光器IN及聚光器CO。以此方式,入射於圖案化器件MA上之光束B在其橫截面中具有所要均一性及強度分佈。
在一些實施例中,源SO可在微影投影裝置之外殼內(此常常為源SO為例如水銀燈時之狀況),但其亦可遠離微影投影裝置。舉例而言,其產生之輻射光束可經導引至該裝置中(例如憑藉合適導向鏡)。此後一情境可為例如在源SO為準分子雷射(例如,基於KrF、ArF或F2雷射作用)時之狀況。
光束B可隨後截取被固持於圖案化器件台MT上之圖案化器件MA。在已橫穿圖案化器件MA的情況下,光束B可穿過透鏡,該透鏡將光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如以便使不同目標部分C定位於光束B之路徑中。相似地,第一定位構件可用以例如在自圖案化器件庫機械地擷取圖案化器件MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化器件MA。一般而言,可憑藉長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在步進器(相對於步進掃描工具)之狀況下,圖案化器件台MT可僅連接至短衝程致動器,或可固定。
可在兩種不同模式(步進模式及掃描模式)下使用所描繪工具。在步進模式中,將圖案化器件台MT保持基本上靜止,且將整個圖案化器件影像在一個操作中投影((亦即,單次「閃光」)至目標部分C上。可使基板台WT在x及/或y方向上移位,使得不同目標部分C可由光束B輻照。在掃描模式中,基本上相同的情形適用,不同之處在於不在單次「閃光」中曝光給定目標部分C。替代地,圖案化器件台MT可以速度v在給定 方向(例如「掃描方向」,或「y」方向)上移動,使得使投影光束B遍及圖案化器件影像進行掃描。並行地,基板台WT以速度V=Mv在相同方向或相對方向上同時地移動,其中M為透鏡之放大率(通常M=1/4或1/5)。以此方式,可在不必損害解析度的情況下曝光相對大目標部分C。
圖9為另一微影投影裝置LA之示意圖。LA可包括源收集器模組SO、經組態以調節輻射光束B(例如EUV輻射)的照明系統(照明器)IL、支撐結構MT、基板台WT及投影系統PS。支撐結構(例如,圖案化器件台)MT可經建構以支撐圖案化器件(例如,遮罩或倍縮光罩)MA且連接至經組態以準確地定位該圖案化器件之第一***PM。基板台(例如,晶圓台)WT可經建構以固持基板(例如,抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二***PW。投影系統(例如,反射性投影系統)PS可經組態以將藉由圖案化器件MA賦予給輻射光束B之圖案投影於基板W的目標部分C(例如,包含一或多個晶粒)上。
如此實例中所展示,LA可屬於反射類型(例如,使用反射圖案化器件)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以圖案化器件可具有包含(例如)鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度層為四分之一波長。可藉由X射線微影來產生甚至更小的波長。由於大部分材料在EUV及x射線波長下具吸收性,因此圖案化器件構形上的圖案化吸收材料之薄件(例如,在多層反射器的頂部上之TaN吸收器)界定特徵將印刷(正性抗蝕劑)或不印刷(負性抗蝕劑)在何處。
照明器IL可自源收集器模組SO接收極紫外線輻射光束。用以產生EUV輻射之方法包括但不一定限於藉由EUV範圍中之一或多個發 射譜線將材料轉換成具有至少一個元素之電漿狀態,元素例如氙、鋰或錫。在一種此類方法(常常被稱為雷射產生電漿(「LPP」))中,可藉由運用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料小滴、串流或群集)而產生電漿。源收集器模組SO可為包括雷射(圖10中未展示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射(例如EUV輻射),該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射與源收集器模組可為分離實體。在此實例中,可不認為雷射形成微影裝置之部分,且輻射光束可憑藉包含例如合適導向鏡及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他實例中,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面器件及琢面化光瞳鏡面器件。照明器可用以調節輻射光束,以在其橫截面中具有期望均一性及強度分佈。
輻射光束B可入射於固持於支撐結構(例如,圖案化器件台)MT上之圖案化器件(例如,遮罩)MA上,且由該圖案化器件進行圖案化。在自圖案化器件(例如,遮罩)MA反射之後,輻射光束B穿過投影系統PS,該投影系統PS將光束聚焦至基板W之目標部分C上。憑藉第二***PW及位置感測器PS2(例如,干涉式器件、線性編碼器或電容式感測器),可準確地移動基板台WT(例如,以便將不同目標部分C定位在輻射 光束B之路徑中)。相似地,第一***PM及另一位置感測器PS可用以相對於輻射光束B之路徑來準確地定位圖案化器件(例如,遮罩)MA。可使用圖案化器件對準標記M1、M2及基板對準標記P1、P2來對準圖案化器件(例如,遮罩)MA及基板W。
所描繪之裝置LA可用於以下模式中之至少一者:步進模式、掃描模式及靜止模式。在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如,圖案化器件台)MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。在掃描模式中,在將賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如,圖案化器件台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之縮小率/放大率及影像反轉特性來判定基板台WT相對於支撐結構(例如圖案化器件台)MT之速度及方向。在靜止模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如,圖案化器件台)MT保持基本上靜止,從而固持可程式化圖案化器件,且移動或掃描基板台WT。在此模式中,通常採用脈衝式輻射源,且在基板平台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化器件。此操作模式可易於應用於利用可程式化圖案化器件(諸如上文所提及之類型的可程式化鏡面陣列)之無遮罩微影。
圖10為與圖9(及圖8)中所展示之LA類似或相同之微影投影裝置1000的詳細視圖。如圖10中所展示,微影投影裝置可包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經組態以使得可在源收集器模組SO之圍封結構220中維持真空環境。可由放電產生電漿源 形成EUV輻射發射電漿210。可由氣體或蒸氣(例如,Xe氣體、Li蒸氣或Sn蒸氣)而產生EUV輻射,其中產生熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由造成至少部分離子化電漿之放電來產生熱電漿210。為了輻射之高效產生,可需要為(例如)10帕斯卡之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一些實施例中,提供經激發的錫(Sn)之電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由定位於源腔室211中之開口中或後方的視情況選用的氣體障壁或污染物截留器230(在一些情況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。收集器腔室211可包括可為所謂的掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側部251及下游輻射收集器側部252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射以沿著由點虛線『O』指示之光軸聚焦於虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置以使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,該照明系統IL可包括琢面化場鏡面器件22及琢面化光瞳鏡面器件24,琢面化場鏡面器件22及琢面化光瞳鏡面器件24經配置以提供在圖案化器件MA處的輻射光束21之所要角分佈,以及在圖案化器件MA處的輻射強度之所要均一性。在由支撐結構MT固持之圖案化器件MA處反射輻射光束21後,隨即形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。比所展示元件更多之元件通常可存在於照明 光學器件單元IL及投影系統PS中。取決於例如微影裝置之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖10所展示之反射元件多1至6個的額外反射元件。
如圖10所說明之收集器光學器件CO被描繪為具有掠入射反射器253、254及255之巢狀收集器,僅作為收集器(或收集器鏡面)之一實例。掠入射反射器253、254及255經安置為圍繞光軸O軸向對稱,且此類型之收集器光學器件CO可與常常稱為DPP源之放電產生電漿源組合使用。
圖11為微影投影裝置(先前圖中所展示)之源收集器模組SO之詳細視圖。源收集器模組SO可為微影投影裝置輻射系統之部分。雷射LAS經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十eV的電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間所產生之高能輻射自電漿發射,由近正入射收集器光學器件CO收集,且聚焦至圍封結構220中的開口221上。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其供能夠產生愈來愈短波長之新興成像技術使用。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193nm波長且甚至能夠藉由使用氟雷射來產生157nm波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20nm至5nm之範圍內的波長,以便產生在此範圍內之光子。
可使用以下條項進一步描述實施例。
1.一種用於判定對半導體製造程序參數之調整的方法,該方法包含:運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集,其中不同群集對應於一給定輸入之不同部分;基於該潛在空間中之該維度資料運用該參數化模型預測一輸出;運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的該給定輸入之一復原版本;基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型之一或多個參數,以提高參數化模型預測之確定性;及基於來自經調整參數化模型之預測來判定對一或多個半導體製造程序參數之調整。
2.如條項1之方法,作為該半導體製造程序之部分,其進一步包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測一連續色調遮罩(CTM)之確定性。
3.如條項1至2中任一項之方法,其中一或多個經判定之半導體製造程序參數包含一遮罩設計、一光瞳形狀、一劑量或一焦點中之一或多者。
4.如條項3之方法,其中一或多個經判定之半導體製造程序參數包含該遮罩設計,且判定對該一或多個半導體製造程序參數之調整包含將該遮罩設計自一第一遮罩設計改變為一第二遮罩設計。
5.如條項1至4中任一項之方法,其中該給定輸入包含一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層之資料中的一或多者。
6.一種用於進行參數化模型預測之方法,該方法包含: 運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集,其中不同群集對應於一給定輸入之不同部分;基於該潛在空間中之該維度資料運用該參數化模型預測一輸出;及運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的該給定輸入之一復原版本。
7.如條項6之方法,其中預測及變換係同步的。
8.如條項6或7之方法,其中將該潛在空間中之該維度資料變換成該給定輸入之該復原版本以便於該潛在空間中之所關注點的可視化。
9.如條項6至8中任一項之方法,其進一步包含識別該潛在空間中之所關注點。
10.如條項9之方法,其中該等所關注點包含以下中之一或多者:與該潛在空間中之其他點相比具有相對較高方差或不確定性之點;並不位於一群集內之點;或位於與該潛在空間中之其他點及/或其他群集之間的笛卡爾距離相比距該潛在空間中之一或多個其他點及/或群集相對較遠之一笛卡爾距離處的點。
11.如條項8至10中任一項之方法,其進一步包含使用該等所關注點、該等群集、該給定輸入之該復原版本及/或該輸出來評估該參數化模型之效能。
12.如條項6至11中任一項之方法,其進一步包含運用該參數化模型將與該給定輸入相關聯之高維資料變換成該潛在空間中之該維度資料。
13.如條項6至12中任一項之方法,其中該參數化模型係一機器學習模型。
14.如條項6至13中任一項之方法,其中該參數化模型包含編碼器- 解碼器架構。
15.如條項14之方法,其中該編碼器-解碼器架構包含可變編碼器-解碼器架構,該方法進一步包含運用一機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在一輸出空間中產生實現。
16.如條項15之方法,其中該潛在空間包含一低維編碼。
17.如條項14至16中任一項之方法,其中該潛在空間中之該維度資料由該編碼器-解碼器架構之一編碼器編碼。
18.如條項14至17中任一項之方法,其中基於該潛在空間中之該等維度資料運用該編碼器-解碼器架構之一第一部分來預測該輸出。
19.如條項18之方法,其中該編碼器-解碼器架構之該第一部分為一第一解碼器。
20.如條項14至19中任一項之方法,其中藉由該編碼器-解碼器架構之一第二解碼器將該潛在空間中之該維度資料變換成該給定輸入的該復原版本。
21.如條項6至20中任一項之方法,其中該給定輸入包含與一半導體製造程序相關聯之一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。
22.如條項21之方法,其中該給定輸入與一目標圖案設計、缺陷或用於該半導體製造程序之程序參數相關聯。
23.如條項6至22中任一項之方法,其中該輸出包含一經預測遮罩影像、一缺陷機率或用於該半導體製造程序之經預測程序參數。
24.如條項6至23中任一項之方法,其進一步包含基於該等群集、該輸出及/或該輸入之該復原版本調整該參數化模型。
25.如條項24之方法,其中調整經組態以增強該輸出之一或多個部分與一地面實況之一或多個部分之間的協定。
26.如條項24或25中任一項之方法,其中調整該參數化模型包含藉由新增至該潛在空間之一維度而使該參數化模型更具描述性,及/或運用與該等群集中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
27.如條項26之方法,其中藉由新增至該潛在空間之該維度而使該參數化模型更具描述性,及/或運用與該等群集中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像、更多樣化之資料及額外剪輯作為輸入來訓練該參數化模型;及/或將更多維度用於編碼向量,且在該參數化模型中使用更多編碼層。
28.如條項26或27中任一項之方法,其中更多樣化之訓練樣本包含相對於先前訓練材料之額外及/或更多樣化的影像、額外及/或更多樣化的資料,及額外及/或更多樣化的剪輯。
29.如條項6至28中任一項之方法,其進一步包含判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具有更高方差之經預測輸出。
30.如條項29之方法,其中判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。
31.如條項30之方法,其進一步包含藉由新增至該潛在空間之該維 度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
32.如條項6至31中任一項之方法,作為一半導體製造程序之部分,其進一步包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測基板幾何結構之確定性。
33.如條項6至32中任一項之方法,作為一半導體製造程序之部分,其進一步包含基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型,以提高該參數化模型預測一連續色調遮罩(CTM)之確定性。
34.如條項6至33中任一項之方法,其進一步包含訓練該參數化模型,訓練包含:對該潛在空間中之該維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性;及基於該給定維度資料及所判定之不確定性來訓練該參數化模型。
35.如條項34之方法,其中該參數化模型係一機器學習模型。
36.如條項34至35之方法,其中該參數化模型包含一神經網路。
37.如條項34至36中任一項之方法,其中該參數化模型包含編碼器-解碼器架構。
38.如條項34至37中任一項之方法,其中編碼器架構包含經組態以 將模型輸入變換成該潛在空間中之該維度資料的該參數化模型之一部分,且解碼器架構包含經組態以將該潛在空間中之該維度資料變換成該等輸出實現的該參數化模型之一不同部分。
39.如條項38之方法,其中該編碼器架構及該解碼器架構包含具有帶一或多個節點之一或多個層的一或多神經網路。
40.如條項38至39中任一項之方法,其進一步包含運用該參數化模型之該部分將與該等模型輸入相關聯的較高維資料變換成該潛在空間中之該維度資料,該潛在空間中之該維度資料包含與相關聯於該等模型輸入之該較高維資料相比維度更低的資料。
41.如條項38至40中任一項之方法,其中該模型輸入包含與一半導體製造程序相關聯的一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。
42.如條項38至41中任一項之方法,其中該模型輸入與一目標圖案設計、缺陷或用於一半導體製造程序之程序參數相關聯。
43.如條項34至42中任一項之方法,其中該潛在空間中之該維度資料包含與模型輸入相關聯之多維向量。
44.如條項34至43中任一項之方法,其中該多個輸出實現包含經預測遮罩影像、缺陷機率,或用於一半導體製造程序之經預測程序參數。
45.如條項34至44中任一項之方法,其中該預測包含運用一神經網路之一或多個層及/或一或多個節點將該維度資料之一多維向量解碼成一輸出實現。
46.如條項34至45中任一項之方法,其中判定該不確定性包含判定經預測之多個輸出實現的一方差。
47.如條項46之方法,其中判定該方差包含判定經預測之多個輸出實現的一範圍、一標準偏差、一最大值、一最小值、一平均值、一中值,及/或一模式。
48.如條項34至47中任一項之方法,其中經預測之多個輸出實現包含影像,且其中判定該不確定性包含判定指示該等影像之間的差異之一度量。
49.如條項34至48中任一項之方法,其中該給定維度資料及對應不確定性形成輸入輸出訓練對。
50.如條項49之方法,其中該參數化模型包含一神經網路,且其中運用該給定維度資料及該等對應不確定性來訓練該參數化模型包含將該等輸入輸出訓練對提供至該神經網路,因此該神經網路可學會預測新的輸出實現。
51.如條項34至50中任一項之方法,其進一步包含判定該潛在空間中之該維度資料的哪些部分對應於與該維度資料之其他部分相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等部分取樣。
52.如條項51之方法,其中判定該潛在空間中之該維度資料的哪些部分對應於具有較高方差之經預測輸出實現促進對額外訓練資料之選擇。
53.如條項34至52中任一項之方法,作為一半導體製造程序之部分,其進一步包含將經訓練參數化模型用於預測遮罩或倍縮光罩幾何結構。
54.如條項34至53中任一項之方法,作為一半導體製造程序之部分,其進一步包含將經訓練參數化模型用於預測一連續色調遮罩(CTM)。
55.一種用於訓練一參數化模型之方法,該方法包含: 對一潛在空間中之維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性;及運用該給定維度資料及所判定之不確定性來訓練該參數化模型。
56.如條項55之方法,其中該參數化模型係一機器學習模型。
57.如條項55至56之方法,其中該參數化模型包含一神經網路。
58.如條項55至57中任一項之方法,其中該參數化模型包含編碼器-解碼器架構。
59.如條項55至58中任一項之方法,其中編碼器架構包含經組態以將模型輸入變換成該潛在空間中之該維度資料的該參數化模型之一部分,且解碼器架構包含經組態以將該潛在空間中之該維度資料變換成該等輸出實現的該參數化模型之一不同部分。
60.如條項59之方法,其中該編碼器架構及該解碼器架構包含具有帶一或多個節點之一或多個層的一或多神經網路。
61.如條項59至60中任一項之方法,其進一步包含運用該參數化模型之該部分將與該等模型輸入相關聯的較高維資料變換成該潛在空間中之該維度資料,該潛在空間中之該維度資料包含與相關聯於該等模型輸入之該較高維資料相比維度更低的資料。
62.如條項59至61中任一項之方法,其中該模型輸入包含與一半導體製造程序相關聯的一影像、一剪輯、一經編碼影像、一經編碼剪輯或來自該參數化模型之一先前層的資料中之一或多者。
63.如條項59至62中任一項之方法,其中該模型輸入與一目標圖案設計、缺陷或用於一半導體製造程序之程序參數相關聯。
64.如條項55至63中任一項之方法,其中該潛在空間中之該維度資料包含與模型輸入相關聯之多維向量。
65.如條項55至64中任一項之方法,其中該多個輸出實現包含經預測遮罩影像、缺陷機率,或用於一半導體製造程序之經預測程序參數。
66.如條項55至65中任一項之方法,其中該預測包含運用一神經網路之一或多個層及/或一或多個節點將該維度資料之一多維向量解碼成一輸出實現。
67.如條項55至66中任一項之方法,其中判定該不確定性包含判定經預測之多個輸出實現的一方差。
68.如條項67之方法,其中判定該方差包含判定經預測之多個輸出實現的一範圍、一標準偏差、一最大值、一最小值、一平均值、一中值,及/或一模式。
69.如條項55至68中任一項之方法,其中經預測之多個輸出實現包含影像,且其中判定該不確定性包含判定指示該等影像之間的差異之一度量。
70.如條項55至69中任一項之方法,其中該給定維度資料及對應不確定性形成輸入輸出訓練對。
71.如條項70之方法,其中該參數化模型包含一神經網路,且其中運用該給定維度資料及該等對應不確定性來訓練該參數化模型包含將該等輸入輸出訓練對提供至該神經網路,因此該神經網路可學會預測新的輸出實現。
72.如條項55至71中任一項之方法,其進一步包含判定該潛在空間中之該維度資料的哪些部分對應於與該維度資料之其他部分相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等部分取樣。
73.如條項72之方法,其中判定該潛在空間中之該維度資料的哪些部分對應於具有較高方差之經預測輸出實現促進對額外訓練資料之選擇。
74.如條項55至73中任一項之方法,作為一半導體製造程序之部分,其進一步包含將經訓練參數化模型用於預測遮罩或倍縮光罩幾何結構。
75.如條項55至74中任一項之方法,作為一半導體製造程序之部分,其進一步包含將經訓練參數化模型用於預測一連續色調遮罩(CTM)。
76.一種其上具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如條項1至75中任一項之方法。
77.一種用於提高參數化模型預測之確定性的方法,該方法包含:運用一參數化模型將與該參數化模型相關聯之一潛在空間中之維度資料群集成群集,其中不同群集對應於一給定輸入之不同部分;基於該潛在空間中之該維度資料運用該參數化模型預測一輸出;運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的一給定輸入之一復原版本;及基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型之一或多個參數,以提高該等參數化模型預測之確定性。
78.如條項77之方法,其進一步包含判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具有更高方差之經預測輸出。
79.如條項78之方法,其中判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。
80.如條項78或79之方法,其中調整包含藉由新增至該潛在空間之該維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
81.如條項80之方法,其中藉由新增至該潛在空間之該維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像及更多樣化之資料作為輸入來訓練該參數化模型;及/或將更多維度用於編碼向量,且在該參數化模型中使用更多編碼層。
82.如條項77至81中任一項之方法,其進一步包含訓練該參數化模型,訓練包含:對該潛在空間中之該維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性;及基於該給定維度資料及所判定之不確定性來訓練該參數化模型。
83.如條項82之方法,其進一步包含判定該潛在空間中之該維度資 料的哪些群集對應於與該維度資料之其他群集相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等群集取樣。
84.如條項77至83中任一項之方法,其中該潛在空間中之個別群集對應於該維度資料中之不同經編碼圖案。
85.如條項84之方法,其中調整該參數化模型之該一或多個參數包含判定單獨的每圖案資訊,該資訊指示哪些圖案類型為該參數化模型所熟知且引起相對一致之預測,及哪些圖案類型對於該參數化模型係陌生的且引起相對可變之預測。
86.如條項85之方法,其中該單獨的每圖案資訊包含方差、潛在空間覆蓋率及/或一分佈。
87.如條項77至86中任一項之方法,其中調整該參數化模型之該一或多個參數包含調整該參數化模型之一維度及/或該參數化模型之一或多個層的權重。
88.如條項77至87中任一項之方法,其進一步包含基於該等群集、該輸出及/或該輸入之該復原版本調整該參數化模型以減小該等參數化模型預測之一方差及/或增強新圖案之參數化模型預測。
89.如條項77至88中任一項之方法,其進一步包含:識別該潛在空間中之所關注點,其中該等所關注點包含以下中之一或多者:與該潛在空間中之其他點相比具有相對較高方差或不確定性之點,並不位於一群集內之點,位於與該潛在空間中之其他點及/或群集之間的笛卡爾距離相比距該潛在空間中之一或多個其他點及/或群集相對較遠之一笛卡爾距離處的點;及使用該等所關注點、該等群集、該給定輸入之該復原版本及/或該輸 出來評估該參數化模型之效能。
90.如條項77至89中任一項之方法,其中該參數化模型包含可變編碼器-解碼器架構;其中藉由該編碼器-解碼器架構之一編碼器來編碼該潛在空間中之該維度資料,基於該潛在空間中之該維度資料運用該編碼器-解碼器架構之一解碼器來預測該輸出,且藉由該編碼器-解碼器架構之一第二解碼器將該潛在空間中之該維度資料變換成該給定輸入之該復原版本;且其中該方法進一步包含運用一機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在一輸出空間中產生實現。
91.一種其上具有指令之非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如條項77至90中任一項之方法。
雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上的成像,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如,用於在不同於矽晶圓的基板上之成像的微影成像系統。另外,所揭示元件之組合及子組合可包含單獨的實施例。舉例而言,判定機器學習模型之可變性可包含判定由該模型進行之個別預測中之可變性,及/或由該模型產生之後驗分佈之經取樣集合中之可變性。此等特徵可包含單獨的實施例,及/或此等特徵可在同一實施例中一起使用。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述一般進行修改。
400:參數化模型
402:網路
403:輸入
404:潛在空間
405:輸出
408:解碼器
410:解碼器
411:復原版本
500:群集
502:維度資料
504:群集
506:部分
508:部分
510:部分
512:部分
514:部分
520:影像
530:經預測CTM影像
532:復原影像
550:跳躍連接

Claims (15)

  1. 一種用於提高參數化模型預測之確定性(certainty)的方法,該方法包含:運用一參數化模型,將與該參數化模型相關聯之一潛在(latent)空間中之維度資料群集成群集(clusters),其中不同群集對應於一給定輸入之不同部分;基於該潛在空間中之該維度資料運用該參數化模型預測一輸出;運用該參數化模型將該潛在空間中之該維度資料變換成對應於該等群集中之一或多者的一給定輸入之一復原版本;及基於該等群集、該輸出及/或該給定輸入之該復原版本調整該參數化模型之一或多個參數,以提高該等參數化模型預測之確定性。
  2. 如請求項1之方法,其進一步包含判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於與該維度資料的其他群集或群集之其他部分相比具有更高方差之經預測輸出。
  3. 如請求項2之方法,其中判定該潛在空間中之該維度資料的哪些群集或群集之部分對應於具有較高方差之經預測輸出促進對額外訓練資料之選擇。
  4. 如請求項2或3之方法,其中調整包含藉由新增至該潛在空間之一維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所 判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型。
  5. 如請求項4之方法,其中藉由新增至該潛在空間之該維度而使該參數化模型更具描述性,及/或運用與相關聯於該較高方差之所判定群集或群集的部分中之一或多者相關聯的更多樣化之訓練資料來訓練該參數化模型包含:相對於先前訓練材料,使用與該等群集中之一或多者相關的更多樣化之影像及更多樣化之資料作為輸入來訓練該參數化模型;及/或將更多維度用於編碼向量,且在該參數化模型中使用更多編碼層。
  6. 如請求項1至3中任一項之方法,其進一步包含訓練該參數化模型,訓練包含:對該潛在空間中之該維度資料進行取樣,且對於該潛在空間中之每一樣本:預測多個輸出實現以在該潛在空間中產生給定維度資料之輸出實現的一分佈;及判定與該多個輸出實現之該分佈相關聯的一不確定性;及基於該給定維度資料及所判定之不確定性來訓練該參數化模型。
  7. 如請求項6之方法,其進一步包含判定該潛在空間中之該維度資料的哪些群集對應於與該維度資料之其他群集相比具有更高方差之經預測輸出實現,且自對應於較高方差之該等群集取樣。
  8. 如請求項1至3中任一項之方法,其中該潛在空間中之個別群集對應於該維度資料中之不同經編碼圖案。
  9. 如請求項8之方法,其中調整該參數化模型之該一或多個參數包含判定單獨的每圖案資訊,該資訊指示哪些圖案類型為該參數化模型所熟知且引起相對一致之預測,及哪些圖案類型對於該參數化模型係陌生的且引起相對可變之預測。
  10. 如請求項9之方法,其中該單獨的每圖案資訊包含方差、潛在空間覆蓋率及/或一分佈。
  11. 如請求項1至3中任一項之方法,其中調整該參數化模型之該一或多個參數包含:調整該參數化模型之一維度及/或該參數化模型之一或多個層的權重。
  12. 如請求項1至3中任一項之方法,其進一步包含基於該等群集、該輸出及/或該輸入之該復原版本調整該參數化模型以減小該等參數化模型預測之一方差及/或增強新圖案之該等參數化模型預測。
  13. 如請求項1至3中任一項之方法,其進一步包含:識別該潛在空間中之所關注點,其中該等所關注點包含以下中之一或多者:與該潛在空間中之其他點相比具有相對較高方差或不確定性之 點,並不位於一群集內之點,位於與該潛在空間中之其他點及/或群集之間的笛卡爾距離相比距該潛在空間中之一或多個其他點及/或群集相對較遠之一笛卡爾距離處的點;及使用該等所關注點、該等群集、該給定輸入之該復原版本及/或該輸出來評估該參數化模型之效能。
  14. 如請求項1至3中任一項之方法,其中該參數化模型包含可變編碼器-解碼器架構;其中藉由該編碼器-解碼器架構之一編碼器來編碼該潛在空間中之該維度資料,基於該潛在空間中之該維度資料運用該編碼器-解碼器架構之一解碼器來預測該輸出,且藉由該編碼器-解碼器架構之一第二解碼器將該潛在空間中之該維度資料變換成該給定輸入之該復原版本;且其中該方法進一步包含運用一機率性潛在空間訓練該可變編碼器-解碼器架構,該機率性潛在空間在一輸出空間中產生實現。
  15. 一種其上具有指令用於提高參數化模型預測之確定性之非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施如請求項1至14中任一項之方法。
TW109129693A 2019-09-06 2020-08-31 用於在參數化模型預測中提高確定性的方法 TWI757855B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP19195954.3 2019-09-06
EP19195954.3A EP3789923A1 (en) 2019-09-06 2019-09-06 Method for increasing certainty in parameterized model predictions
EP19210026 2019-11-19
EP19210026.1 2019-11-19
EP20188310 2020-07-29
EP20188310.5 2020-07-29

Publications (2)

Publication Number Publication Date
TW202117575A TW202117575A (zh) 2021-05-01
TWI757855B true TWI757855B (zh) 2022-03-11

Family

ID=71994524

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109129693A TWI757855B (zh) 2019-09-06 2020-08-31 用於在參數化模型預測中提高確定性的方法

Country Status (5)

Country Link
US (1) US20220335290A1 (zh)
KR (1) KR20220038501A (zh)
CN (1) CN114341885A (zh)
TW (1) TWI757855B (zh)
WO (1) WO2021043551A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11380516B2 (en) 2017-04-13 2022-07-05 Fractilia, Llc System and method for generating and analyzing roughness measurements and their use for process monitoring and control
EP4075340A1 (en) * 2021-04-15 2022-10-19 ASML Netherlands B.V. Modular autoencoder model for manufacturing process parameter estimation
EP4075339A1 (en) * 2021-04-15 2022-10-19 ASML Netherlands B.V. Modular autoencoder model for manufacturing process parameter estimation
EP4075341A1 (en) * 2021-04-18 2022-10-19 ASML Netherlands B.V. Modular autoencoder model for manufacturing process parameter estimation
EP4060408A1 (en) * 2021-03-16 2022-09-21 ASML Netherlands B.V. Method and system for predicting process information with a parameterized model
KR20240063109A (ko) * 2021-09-02 2024-05-09 에이에스엠엘 네델란즈 비.브이. 선택된 패턴 세트를 평가하는 방법
KR102590974B1 (ko) * 2021-09-10 2023-10-17 프랙틸리아 엘엘씨 확률적 프로세스 윈도우들의 검출

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395047B2 (ja) * 2003-10-27 2010-01-06 インターナショナル・ビジネス・マシーンズ・コーポレーション 相互関係マップの効率的な長距離計算用のデザインへの再ネスティング
US8245160B2 (en) * 2005-08-08 2012-08-14 Asml Netherlands B.V. System and method for creating a focus-exposure model of a lithography process
CN103106331A (zh) * 2012-12-17 2013-05-15 清华大学 基于降维和增量式极限学习机的光刻线宽智能预测方法
US8930172B2 (en) * 2008-11-10 2015-01-06 Asml Netherlands B.V. Methods and systems for parameter-sensitive and orthogonal gauge design for lithography calibration
US9588439B1 (en) * 2010-12-21 2017-03-07 Asml Netherlands B.V. Information matrix creation and calibration test pattern selection based on computational lithography model parameters
TWI606312B (zh) * 2015-07-17 2017-11-21 Asml荷蘭公司 用於模擬輻射與結構互動之方法及設備、度量衡方法及設備、元件製造方法
TWI609283B (zh) * 2013-05-21 2017-12-21 克萊譚克公司 對參數追蹤最佳化之計量系統及使用於計量系統之方法
CN108984822A (zh) * 2017-06-02 2018-12-11 三星电子株式会社 用于确定是否对掩模结构进行订制的方法、非暂时性计算机可读介质和/或装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
JP4075966B2 (ja) 1996-03-06 2008-04-16 エーエスエムエル ネザーランズ ビー.ブイ. 差分干渉計システム及びこのシステムを具えたリソグラフステップアンドスキャン装置
US7695876B2 (en) 2005-08-31 2010-04-13 Brion Technologies, Inc. Method for identifying and using process window signature patterns for lithography process control
US7617477B2 (en) 2005-09-09 2009-11-10 Brion Technologies, Inc. Method for selecting and optimizing exposure tool using an individual mask error model
US7694267B1 (en) 2006-02-03 2010-04-06 Brion Technologies, Inc. Method for process window optimized optical proximity correction
US7882480B2 (en) 2007-06-04 2011-02-01 Asml Netherlands B.V. System and method for model-based sub-resolution assist feature generation
US7707538B2 (en) 2007-06-15 2010-04-27 Brion Technologies, Inc. Multivariable solver for optical proximity correction
US20090157630A1 (en) 2007-10-26 2009-06-18 Max Yuan Method of extracting data and recommending and generating visual displays
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
NL2003699A (en) 2008-12-18 2010-06-21 Brion Tech Inc Method and system for lithography process-window-maximixing optical proximity correction.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395047B2 (ja) * 2003-10-27 2010-01-06 インターナショナル・ビジネス・マシーンズ・コーポレーション 相互関係マップの効率的な長距離計算用のデザインへの再ネスティング
US8245160B2 (en) * 2005-08-08 2012-08-14 Asml Netherlands B.V. System and method for creating a focus-exposure model of a lithography process
US8930172B2 (en) * 2008-11-10 2015-01-06 Asml Netherlands B.V. Methods and systems for parameter-sensitive and orthogonal gauge design for lithography calibration
US9588439B1 (en) * 2010-12-21 2017-03-07 Asml Netherlands B.V. Information matrix creation and calibration test pattern selection based on computational lithography model parameters
CN103106331A (zh) * 2012-12-17 2013-05-15 清华大学 基于降维和增量式极限学习机的光刻线宽智能预测方法
TWI609283B (zh) * 2013-05-21 2017-12-21 克萊譚克公司 對參數追蹤最佳化之計量系統及使用於計量系統之方法
TWI606312B (zh) * 2015-07-17 2017-11-21 Asml荷蘭公司 用於模擬輻射與結構互動之方法及設備、度量衡方法及設備、元件製造方法
CN108984822A (zh) * 2017-06-02 2018-12-11 三星电子株式会社 用于确定是否对掩模结构进行订制的方法、非暂时性计算机可读介质和/或装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chen Kaiyuan et al:"Skip The Question You Don't Know:An Embedding Space Approach",2019 International Joint Conference on Neural Networks (IJCNN),IEEE,14 July 2019 (2019-07-14),pages 1-7 *
Chen Kaiyuan et al:"Skip The Question You Don't Know:An Embedding Space Approach",2019 International Joint Conference on Neural Networks (IJCNN),IEEE,14 July 2019 (2019-07-14),pages 1-7。

Also Published As

Publication number Publication date
TW202117575A (zh) 2021-05-01
WO2021043551A1 (en) 2021-03-11
US20220335290A1 (en) 2022-10-20
KR20220038501A (ko) 2022-03-28
CN114341885A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
TWI757663B (zh) 降低於機器學習模型預測中之不確定性之方法
US20210271172A1 (en) Methods of determining process models by machine learning
TWI757855B (zh) 用於在參數化模型預測中提高確定性的方法
TWI655553B (zh) 用於微影程序的電腦實施方法及電腦程式產品
TWI738169B (zh) 用於為佈局圖案化程序判定訓練圖案之方法及相關的電腦程式產品
KR20170096018A (ko) 기계 학습에 의한 피처 검색
TWI752539B (zh) 用於模型校準以減少模型預測不確定性的預測資料選擇
EP3789923A1 (en) Method for increasing certainty in parameterized model predictions
WO2021175570A1 (en) Machine learning based subresolution assist feature placement
TWI778722B (zh) 用於選擇資訊模式以訓練機器學習模型之設備及方法
TW202036169A (zh) 藉由源及遮罩最佳化以建立理想源光譜的方法
TWI667553B (zh) 判定圖案之特性之方法
EP3660744A1 (en) Method for decreasing uncertainty in machine learning model predictions
WO2021249720A1 (en) Aberration impact systems, models, and manufacturing processes
KR20230154852A (ko) 반도체 제조 관련 프로세스의 패턴 선택 방법
CN115729052A (zh) 记录有指令的非瞬态计算机可读介质