TWI756372B - 用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備 - Google Patents

用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備 Download PDF

Info

Publication number
TWI756372B
TWI756372B TW107106600A TW107106600A TWI756372B TW I756372 B TWI756372 B TW I756372B TW 107106600 A TW107106600 A TW 107106600A TW 107106600 A TW107106600 A TW 107106600A TW I756372 B TWI756372 B TW I756372B
Authority
TW
Taiwan
Prior art keywords
substrate
magnetic field
chamber
target
platform
Prior art date
Application number
TW107106600A
Other languages
English (en)
Other versions
TW201843324A (zh
Inventor
安東尼 維爾拜
史帝芬 柏吉斯
伊恩 蒙克里夫
克里夫 維迪克斯
史考特 海摩爾
隆達 辛德曼
Original Assignee
英商Spts科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Spts科技公司 filed Critical 英商Spts科技公司
Publication of TW201843324A publication Critical patent/TW201843324A/zh
Application granted granted Critical
Publication of TWI756372B publication Critical patent/TWI756372B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0072For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3476Testing and control
    • H01J37/3485Means for avoiding target poisoning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67213Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one ion or electron beam chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0161Controlling physical properties of the material
    • B81C2201/0163Controlling internal stress of deposited layers
    • B81C2201/017Methods for controlling internal stress of deposited layers not provided for in B81C2201/0164 - B81C2201/0169
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/0181Physical Vapour Deposition [PVD], i.e. evaporation, sputtering, ion plating or plasma assisted deposition, ion cluster beam technology

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一種用以控制由脈衝式直流(DC)物理氣相沉積形成之材料層中之應力變化的方法和裝置。 該方法包含以下步驟:提供包含材料層由之形成的一靶材和材料層可於其上形成的一基材的一腔室,且隨後在腔室內引入一氣體。 該方法進一步包含於腔室內產生一電漿,及靠近靶材施加一第一磁場以將電漿實質上定位鄰近靶材。一RF偏壓被施加到基材以將氣體離子從電漿吸向基材,且一第二磁場靠近基材被施加,以將來自電漿的氣體離子引導至在基材上形成之材料層上的選擇性區域。

Description

用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備
本發明涉及用以控制由物理氣相沉積形成之材料層中之應力變化之方法和設備。
微機電系統結合了通常利用諸如氮化鋁之材料和諸如鋁鈧氮化物之雙金屬氮化物的壓電性質的元件。材料通常使用物理氣相沉積技術沉積在一基材,諸如一晶圓上,並且發現材料內的應力分佈是影響元件操作特性的關鍵因素。晶圓上的材料沉積可以顯著變化,且因此形成在同一晶圓上的元件通常具有不同的操作特性。
為了實現在晶圓上形成之元件的均勻性質,橫穿腔室的電漿剖面配置為產生均勻地橫穿晶圓的濺鍍材料以達成沉積材料的均勻厚度。而且較佳產生[002]晶面定向之層體的紋理化生長且產生紋理化生長的關鍵條件包含高真空(<1×10-7 托)和高晶圓溫度,諸如>300℃。
使用物理氣相沉積形成之層體的應力分佈主要取決於兩項因素:晶圓溫度和層體上的離子轟擊。現已發現晶圓溫度過高會在晶圓冷卻和收縮時在層體內產生大的拉伸應力。而且,由於晶圓溫度在沉積期間大體上均勻,因此在沒有任何偏壓的情況下,晶圓上的沉積是均勻的(由於材料在晶圓表面上均勻冷凝)。然而,發現隨著晶圓冷卻和收縮,材料層內的應力在晶圓的中心崩陷,因為該層體裂開且鬆弛,如圖式的圖1中繪示。
當將適當的電壓差施加到晶圓時,電漿內的離子被吸引到晶圓並撞擊沉積在其上的材料,將沉積層壓縮成更壓縮的狀態,此有助於控制層體內的平均應力。藉由增加層體上的離子轟擊,電壓差可以降低氮化鋁層內的拉伸應力變化,例如從900兆帕降低到100兆帕。然而,發現應力分佈由於跨越腔室的電漿剖面而變得不均勻,如圖式的圖2所示。
腔室內的電漿通常由一旋轉磁場被限制在腔室內的一局部區域,且此磁場優先在晶圓的環形區域附近產生離子。鄰近環形區域的離子密度增加導致鄰近這些環形區域的層體上的更大離子轟擊。特別是,發現該層體在其外周附近比在中心處受到更多的離子轟擊,接著導致該層體之一更加伸張的中央區域和一更加壓縮的周邊,此造成晶圓收縮時層體裂化。
我們現在已經發明了解決至少一些上述問題的方法和設備。
依據本發明,從第一方面看,提供了一種控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化的方法,該方法包含之步驟為: 提供一腔室,該腔室包含一材料層由之形成的靶材和一材料層在其上形成的基材; 在該腔室內引入一氣體; 在該腔室內產生一電漿; 靠近該靶材施加一第一磁場以將電漿實質上定位鄰近靶材; 對該基材施加一RF偏壓; 靠近該基材施加一第二磁場,以將來自該電漿的氣體離子引導至形成在基材上之材料層上的選擇性區域, 其中由該第二磁場引導的氣體離子實質上不受該第一磁場的影響。
由於勞侖茲力的作用,在基材上的各個不同點且以各種相互作用模式產生之磁場可用以在層體表面處產生具有增加離子通量的局部區域。該力源於靶材和基材之間所施加的電場與鄰近晶圓的第二磁場的外積。雖然發現第一磁場影響晶圓厚度均勻性和靶材的使用壽命,但第二磁場可獨立調整以提供整個基材上的最佳應力均勻性。
在一個實施例中,第二磁場被施加在基材的中心部分。例如,基材可包括具有平面圓盤狀形狀的矽晶圓,且第二磁場可被施加在晶圓的中心。由於沉積層的應力狀態與溫度和離子轟擊有關,離子轟擊的增加導致在垂直於電場的最大磁通量區域中的拉伸應力降低,該區域通常垂直於晶圓表面。為了在晶圓內達成降低的應力變化,第二磁場的理想位置將是基材的中心,以便增加晶圓中心的離子轟擊,並從而降低中心區域的相對拉伸應力。
在一實施例中,該方法進一步包含相對於基材旋轉第二磁場。該旋轉可圍繞實質上垂直於基材延伸之一軸發生。
在一實施例中,該方法包含在材料層被形成時相對於基材旋轉第二磁場。該方法進一步包含多個沉積步驟用以形成材料層,且在開始每個步驟之前,使基材相對於平台旋轉。
在一實施例中,在每個沉積步驟之間,基材相對於平台旋轉360°/n的一角度範圍,其中n是沉積步驟的數目。
在一實施例中,該方法包含將氮氣及/或氬氣引入腔室中。在一實施例中,基材包含矽晶圓且靶材包含鋁。
依據從第二方面來看的本發明,提供用於控制由脈衝式直流物理氣相沉積形成之材料層中的應力變化的設備,該設備包含: 一用以容納形成材料層的一靶材和該材料層可於其上形成的一基材的腔室,該腔室包含用以將氣體引入腔室中的一入口; 一電漿產生配置,用以在腔室內產生電漿;以及, 一用以在使用中對基材施加RF偏壓的電壓源; 其中該設備進一步包含一第一磁場產生配置,該第一磁場產生配置被組配來在使用中產生靠近該靶材的第一磁場以將電漿定位鄰近該靶材;以及一第二磁場產生配置,用以在使用中產生靠近該基材的第二磁場,以將來自電漿的氣體離子引導至形成在基材上之材料層上的選擇性區域,且其中由第二磁場引導的氣體離子實質上不受第一磁場的影響。
在一實施例中,第一磁場產生配置包含一磁控管組件。
在一實施例中,第二磁場產生配置包含組配成一陣列的多個磁鐵。第二磁場產生配置設置在基材之與該基材面向電漿之一側相對立的一側。較佳地,在使用時陣列的中心係組配成鄰近基材的中心延伸。
在一實施例中,該設備進一步包含用以使該第二磁場產生配置相對於該基材施轉的構件。
在一實施例中,多個磁鐵安置在一匣盒內。使該匣盒自轉從而第二磁場產生配置降低沉積過程對第二磁場中小變化的敏感性,舉例而言,該小變化係因磁鐵位置所致。
在一實施例中,用以旋轉第二磁場的構件包含一與匣盒旋轉耦接的心軸。該心軸和匣盒由一馬達旋轉驅動。
在一實施例中,陣列之磁鐵的南北軸實質上互相平行地延伸。較佳地,南北軸實質上垂直於基材延伸。
在一實施例中,對於每個磁鐵而言設置鄰近基材的磁極是相同的。在一備選實施例中,對於陣列之相鄰磁鐵而言設置鄰近基材的磁極是不同磁極。因此,在後一實施例中,被設置鄰近基材的磁極較佳地整個陣列於北極與南極磁極之間交替。
第一和第二磁場實質上不相互作用,因此,電漿實質上不受第二磁場的影響,且被吸向基材的離子實質上不受第一磁場的影響。實驗已證明,離基材15毫米處,第二磁場強度降低了90%以上,且在與基材之一對應於靶材位置的間隔處,第二磁場強度降低至背景位準。
雖然本發明已於上文描述,但本發明擴展至上文或以下描述中所羅列之特徵的任何發明組合。雖然本文參照圖式詳細描述了本發明的說明性實施例,但應該理解,本發明不受限於這些確切的實施例。
此外,可以預期單獨地或作為實施例的一部分描述的特定特徵可以與其他單獨描述的特徵或其他實施例的部分組合,即使其他特徵和實施例沒有提及該特定特徵。因此,本發明擴展到此種尚未描述的特定組合。
參考圖式之圖3,繪示依據本發明一實施例用以控制由物理氣相沉積形成在基材上的一材料層(未示出)中之應力變化的設備10的示意圖。設備10包含一電接地的處理腔室11,在其內發生物理氣相沉積程序。腔室11配置成容納諸如矽晶圓12的一基材、以及一源材料或靶材13,該源材料或靶材13可以包含一平坦金屬層,諸如鋁盤,用以在矽晶圓12上形成一濺鍍層。該腔室11進一步包含入口14,用以與諸如惰性氣體氪、氖或氬等氣體源(未繪示)和諸如氮氣或氧氣的一反應性氣體耦接以形成一氮化物膜或形成一氧化物膜。裝置10進一步包含平台15,晶圓12位於其上於腔室11內。平台15係設置在腔室11內,使得晶圓12可與平坦的靶材13大體上平行定向設置,且使得大體上垂直於平台15延伸穿過晶圓中心的一晶圓軸與一大體上垂直於靶材13之平面延伸的靶材軸對齊。
裝置10進一步包含用於在腔室11內產生電漿的電漿產生配置16,且在所示的實施例中,電漿是由在靶材13與一設置在腔室11內的陽極環16a之間從一直流(DC)電源18a施加脈衝式DC功率來產生。射頻(RF)功率也從一RF電源18b施加到平台15上,以便由平台15向晶圓12提供一RF偏壓。通常,平台15常規地以13.56 MHz被驅動,惟本發明在此方面不受限制。電源操作是以一具有合適圖形使用者界面(未繪示)的控制器17來控制。
該設備進一步包含第一磁場產生配置19,其組配來產生一靠近靶材13的磁場以將電漿定位在靶材13周圍;及第二磁場產生配置20,用以產生靠近晶圓12的磁場。第一磁場產生配置19例如可包含磁控管組件19a,該磁控管組件19a設置在腔室11的外部,在靶材13之與面向基材12的一側相對立的一側,且該磁控管組件19a被配置成圍繞大體上橫向於靶材13的一軸旋轉。該第二磁場產生配置20可包含圓盤狀永久磁鐵21。然而,應該理解,永久磁鐵21可以用電磁鐵(未繪示)代替。
磁鐵21以預定的陣列放置在平台15上,使得磁鐵21的南北軸大體上彼此平行延伸,且在第一形態中,該陣列的磁鐵21被組配成陣列周圍的間隔磁鐵包含排列於最上方的交替磁極。在這方面,磁鐵21最上方的磁極可圍繞陣列在北與南之間交替。然而,在第二形態中,磁鐵21可以配置成每個磁鐵21的同一極(即,北極)配置在最上方。
參照圖式的圖4,繪示依據本發明的第一實施例的流程圖,該流程圖概述與一由脈衝式DC物理氣相沉積形成之材料層中之應力變化控制之方法100相關聯的步驟。當需要在一諸如矽晶圓12的基材上形成諸如氮化鋁或鋁鈧氮化物的材料層時,在步驟101中將磁性陣列20放置在平台15上,並在步驟102中將晶圓12放置在陣列20上。平台15可包括一例如用於容納磁性陣列20的凹槽15a,使得晶圓12在平台表面15b上延伸於陣列20上方。在步驟103中,鋁靶材13也被設置在腔室11內,且在步驟104,一可以包含氮氣或氬氣或氮氣/氬氣混合物的氣體(未繪示)經由入口14被引入腔室11中。
由在旋轉磁控管組件19a的同時於減壓下在陽極環16a和靶材13之間施加脈衝式DC電位,在步驟105中,一電漿於腔室11中產生。磁控管組件19a靠近靶材13產生一磁場,用以定位電漿並從而定位靶材13周圍的氣體離子。此一定位促進靶材13內的氣體離子的相互作用,並從而促進鋁原子由其釋放。
在步驟106,由RF電源18b將一RF偏壓施加到晶圓12。此一電氣偏壓導致大體上垂直於晶圓表面導引的電場,且導致帶正電的氣體離子被吸向晶圓12(在RF電壓波形的半週期期間)。離子撞擊晶圓12的表面且因而壓縮鋁原子的沉積層,這導致更壓縮的層體。由於電漿內產生之離子的變化,故撞擊晶圓12的離子密度在晶圓12上有變化。電漿輪廓取決於來自磁控管19a的磁場,且高磁場區域產生電漿及從而氣體離子的集中區域。發現用於物理氣相沉積過程的磁控管在靶材13周邊區域附近產生高離子密度的區域,此因而導致與中心區域相比靶材材料從其周邊的釋放(即侵蝕)增加。而且此一增加的離子密度導致與中心區域相比離子在圍繞晶圓12之周邊區域更集中轟擊晶圓12。
然而,RF偏壓與陣列20之磁場的相互作用在移動的氣體離子上產生一力,即勞侖茲力。該力取決於由RF偏置產生之電場與來自陣列20之磁場的外積。當來自陣列20的磁場和電場彼此垂直時,一最大力施加在氣體離子上。因此該力優先作用將離子重新導引或引導至晶圓12上電場和磁場垂直定向的區域,導致層體上這些區域的氣體離子密度增加。
陣列20被配置成在一與晶圓12的平面大體上平行的平面中延伸,且因此由組配為第一形態的陣列20產生的磁場在陣列20的相鄰磁鐵之間的位置、以及在陣列的徑向向內的位置對氣體離子提供最大的力。參見圖5a,繪示依據以設置在平台15上之第一形態組配的磁鐵21的平面圖,以及圖5b繪示在晶圓12上形成之層體的相對厚度。減少層厚度的區域以“-”標示,而增加層體厚度的區域以“+”標示。除了設置在磁鐵21之間的區域之外,氣體離子被引導至晶圓12的中心區域,並且因此作用於壓縮該層體的中心區域,導致晶圓12在中心區域處的層厚減小。此外,參見圖6,顯然地與在沈積過程期間沒有磁性陣列在之圖6b所示應力變化相較,晶圓12的中心區域上之應力變化大幅減小。
參見圖7a,繪示以設置在平台15上之第二形態組配的磁鐵21的平面圖,且圖7b繪示在晶圓12上形成之層體的相對厚度。由陣列20產生的磁場在在陣列20的一徑向向內和向外的位置處對氣體離子提供最大力。類似地,減小層厚的區域以“-”標示,而增加層厚的區域以“+”標示。氣體離子經引導至晶圓12的中心區域,且因此作用來壓縮該層體的中心區域,導致晶圓12在中心區域處的層厚減小。此外,參照見圖8,明顯地,晶圓12的中心區域上之應力變化大幅減小。
參見圖式的圖9,繪示在磁性陣列20分別包含直徑為36.5毫米、80毫米和125毫米之一中心區域的情況中,由脈衝式DC物理氣相沉積形成在200毫米直徑晶圓上之AlN層中的應力變化的圖示。中心區域中之應力變化看來都保持大體上均勻而不受中心區域的直徑(即磁鐵21的間隔)影響。
在參看圖式的圖10時,明顯地,為了適當地將氣體離子轉向到晶圓12上,由陣列20產生之磁場的強度不需要特別強。舉例而言,在晶圓表面上方5毫米處的水平場強度50高斯在該層體的中心區域上的應力分佈造成平坦化。例如,當此一磁場強度增加到100高斯時,則平坦化看來變得更加明顯。預期增加陣列20的磁場強度可以提供跨層應力變化的降低位準,磁場強度可增至場強度臨界值,但如果磁場增加超過臨界值,則預期磁場可能干擾磁控管19a的磁場。
在上述實施例中,晶圓12與靶材13分隔大於25毫米,因此由磁控管19a產生的磁場在到達晶圓表面之前降到背景位準。類似地,由陣列20產生的磁場在到達靶材13之前降低到背景位準。這導致磁控管19a的與陣列20的磁場之間的最小相互作用,且參照圖式的圖11,清楚地在靶材13與晶圓12的間隔>25毫米時(即靠近晶圓)時,主磁場是由陣列20產生的。
在晶圓12上形成層體之後,在步驟107關閉脈衝式DC電源18a和RF偏壓電源18b。然後在步驟108腔室可經由出口(未繪示)被排空,且具有該層體形成於其上之晶圓12可在步驟109被移出以供例如進一步處理。
為了進一步減少晶圓12中之應力變化,理想的是將沉積過程劃分成不連續的沉積步驟,藉以使晶圓12在每個步驟之後相對於平台15旋轉。發現該旋轉減少了磁場中的任何局部變化,該局部變化可能導致濺鍍膜厚度和晶圓應力的局部變化。為了達成令人滿意的磁場均一性,需要大量的不連續沉積步驟。然而,這不是一個切實可行的解決方案,因為該程序需要相當長的時間來產生濺鍍膜且因而降低產量。此外,發現即使使用大量的不連續步驟時,膜也展現出與非均勻靜態磁場相關的深度不一致性。
因此,為了自陣列20提供更均勻的磁場,圖3中的裝置10進一步包含用以相對於晶圓12旋轉磁性陣列20的驅動組件22,且該方法可進一步包含使用驅動組件22相對於晶圓12旋轉磁性陣列20。此一旋轉可包含連續旋轉、或其中磁場和晶圓相對於彼此保持預定義時段之靜止的分階段旋轉。發現磁場與晶圓12之間的相對旋轉減少了晶圓表面上之層體的壓實差異,並因此提供一更均勻的壓實層。而且,這種均勻的壓實進一步降低了層體內的拉伸應力,且從而減少層體中之應力變化。
參見圖式中的圖12和圖13,繪示用以相對於晶圓12旋轉磁性陣列20的驅動組件22。組件22設置在平台15內,其本身可包含用以控制平台15之溫度的構件23。如圖14所示,陣列20容納在位於平台15的凹槽15a內的圓形匣盒201內,且磁鐵21位於形成在匣盒201之上表面中之細長通道202內。通道202以大體上平行形態延伸橫跨匣盒201,且分成延伸到匣盒201的中心軸的第一側的第一組通道部分202a、和延伸到中心軸的第二側的第二組通道部分202b。
參見圖式的圖15,第一組通道部分202a與第二組通道部分202b對齊,且第一組和第二組通道部分202a、202b中的每一者分別填充尺寸配合各自通道部分202a、202b之磁鐵21。每組內的磁鐵21被定向成配置在最上面的磁極沿著各組在北極和南極21a、21b間交替。類似地,每一個通道202位於中心軸兩側的的部分202a、202b包含配置於最上方之相反磁極的磁鐵21。然而,所屬技術領域中具有通常知識者將明白,可以利用陣列20內的其他磁鐵21之配置。匣盒201以及從而磁鐵21被組配來在凹槽15a內由驅動組件22旋轉,該驅動組件22包含沿著平台15的中心軸延伸,且在其近端處耦合至一馬達(未繪示)或類似物之一驅動軸或心軸221,該馬達或類似物設置在腔室11外部用以旋轉心軸221。在這方面,心軸221可經由一個或多個伸縮管223密封至腔室11,以最小化腔室11的內部與周圍環境的氣體交換。心軸221的一近端區域延伸穿過形成在匣盒201內的通路203且以其旋轉軸為中心。通路203由匣盒201的下側延伸,且終止於在匣盒201的中央區域處形成之凹槽204的底部。心軸221的近端終止於中央晶圓升降件222,晶圓升降件222在正常操作時嵌置在凹槽204內。
心軸221和匣盒201旋轉地耦接一起,使心軸221的旋轉造成匣盒201的旋轉。旋轉耦接可以由利用分別包含多邊形橫截面的心軸和通道來達成。或者,心軸221和匣盒201可經由一鍵體(未繪示)旋轉耦接,該鍵體延伸於分別在心軸221的側壁和通道203內形成之一鍵槽內。然而,在任一實施例中,心軸221及從而中心晶圓升降件222係組配來經由一或多個致動器(未繪示)沿著匣盒201的旋轉軸縱向移動,使得中央晶圓升降件222可被升高至平台15的上表面上方,以將置放於其上的一晶圓12升高至平台15之上表面上方,並隨後在凹槽204內下降。
中央晶圓升降件222被成形為適當地支撐處於升高形態的晶圓12,且被組配成當處於降低形態時在平台15之上表面15b下方延伸以避免接觸晶圓12。供中央晶圓升降件222之用的凹槽204可形成在設置於通道202之間的匣盒201的一區域內,以避免干擾由磁性陣列20產生的磁場圖樣。或者,在凹槽204佔據延伸到通道202中的匣盒201之區域的情況中,則中央晶圓升降件222也可以結合一個或多個磁鐵21以維持由陣列20產生之磁場的均勻性。
參見圖式的圖16,繪示一流程圖概述與依據本發明的第二實施例的一用以控制由脈衝式DC物理氣相沉積形成之材料層中之應力變化的方法300相關的步驟。當使用第二實施例的方法300利用磁性陣列20和驅動組件22時,在步驟301中,首先將晶圓12放置在腔室11內之匣盒201上的平台15的上表面15b上。在步驟302,靶材13也被放置在腔室內,且在步驟303將需要的氣體/氣體混合物經由入口14引入到腔室11中。使厚度不均勻性平均化之徑向分量所需要的不連續沉積步驟的數目n接著在步驟304被選擇。例如,這可以是四個或五個不連續步驟,由此每一個沉積過程步驟被允許進行預定義的時段。
方法300隨後包含在步驟305相對於晶圓12旋轉匣盒以在晶圓12的表面上提供均勻的磁場(B)。然後在步驟306中藉由將脈衝式DC電位施加於陽極環16a和靶材13之間而產生電漿,並在步驟307使用RF電源18b將RF偏壓施加到晶圓12。
於是第一沉積步驟進行預定義時段。在第一沉積步驟之後,在步驟308停止旋轉,在步驟309熄滅電漿,且在步驟310去除RF偏壓。隨後在步驟311中使用致動器(未繪示)升高中央晶圓升降件222以將晶圓12自平台15舉起,且在步驟312使用馬達(未繪示)相對於平台15旋轉360°/n的一角度範圍。然後,在步驟313晶圓12被降低以更換在平台15的上表面15b上之晶圓12供隨後的沉積過程步驟用。例如,對於n=4,晶圓在沉積步驟之間相對於平台旋轉90°。
參見圖式之圖17和18,繪示當匣盒201相對於晶圓12靜止時由陣列20產生之磁場的切線(B切向 )和法線(B法向 )分量的圖示。每一圖繪示了在越過匣盒201的三個橫向位置沿著匣盒的毫特士拉的場強度變化,即在從晶圓的中心軸至其第一和第二側(以線AA和BB繪示)的25毫米處、以及沿著中心軸(用CC線繪示)。明顯地,在每個橫向位置處晶圓上的場分量存在很大的變化。
圖19提供了匣盒201在旋轉期間產生之磁場的平均法線和切線分量的圖示。可以看出,高度均勻的磁場被產生,其相應地導致具有高度均勻性質之膜的沉積。
一旦沉積過程的每個步驟完成,接著在步驟314經由出口(未繪示)將腔室11抽空,且在步驟315將其上形成有層體的晶圓12移除,例如供進一步處理。
10‧‧‧設備11‧‧‧(處理)腔室12‧‧‧矽晶圓13‧‧‧靶材14‧‧‧入口15‧‧‧平台15a,204‧‧‧凹槽15b‧‧‧平台表面16‧‧‧電漿產生配置16a‧‧‧陽極環17‧‧‧控制器18a‧‧‧直流(DC)電源18b‧‧‧RF電源19‧‧‧第一磁場產生配置19a‧‧‧磁控管(組件)20‧‧‧第二磁場產生配置21‧‧‧(永久)磁鐵21a‧‧‧北極21b‧‧‧南極22‧‧‧(驅動)組件23‧‧‧構件100,300‧‧‧方法101~109,301~315‧‧‧步驟201‧‧‧匣盒202‧‧‧通道202a‧‧‧(第一組通道)部分202b‧‧‧(第二組通道)部分203‧‧‧通路221‧‧‧心軸222‧‧‧中央晶圓升降件223‧‧‧伸縮管
本發明可以以各種方式施行,且僅藉由實例,現在將參照所附圖式描述其實施例,圖式中: 圖1是沉積在一矽晶圓上的氮化鋁層上應力的典型變化圖示; 圖2是在不同RF偏壓條件下沉積在一矽晶圓上的氮化鋁層上之應力變化的圖示; 圖3是依據本發明的實施例之一用於控制由物理氣相沉積形成之材料層中之應力變化的裝置的示意圖; 圖4是繪示依據本發明第一實施例之一與由物理氣相沉積形成之材料層中之應力變化控制方法相關之步驟的流程圖; 圖5a是磁鐵配置成第一形態之平台的平面圖; 圖5b是繪示形成在磁鐵配置成第一形態之晶圓上的氮化鋁層的相對厚度的等高線圖; 圖6是(a)於第一形態之磁鐵存在下(b)沒有磁性影響下沉積在一矽晶圓上的氮化鋁層上之應力變化的圖示; 圖7a是磁鐵配置成第二形態之平台的平面圖; 圖7b是繪示形成在磁鐵配置成第二形態之晶圓上之層體的相對厚度之等高線圖; 圖8是在於第二形態的磁鐵存在下沉積在一矽晶圓上的氮化鋁層上之應力變化的圖示; 圖9是沉積在一矽晶圓上的氮化鋁層上隨著陣列內的磁鐵間隔增加之應力變化的圖示; 圖10是在沉積在一矽晶圓上的氮化鋁層上隨著磁性陣列的不同磁場強度之應力變化的圖示;及, 圖11是靶材和基材之間的磁場強度變化的圖示。 圖12是一平台的橫截面圖,繪示具有中央晶圓升降件配置成降低形態的驅動組件; 圖13是一平台的橫截面圖,繪示具有中央晶圓升降件配置成升高形態的驅動組件; 圖14是匣盒的透視圖。 圖15是匣盒的平面圖,繪示匣盒內的磁鐵配置; 圖16是繪示依據本發明第二實施例的與一經由物理氣相沉積形成之材料層中之應力變化控制方法相關的步驟的流程圖。 圖17是沿著圖15中的線A-A,B-B和C-C截取的匣盒內磁鐵產生的磁場的切向(B切向)分量的圖示; 圖18是沿著圖15中的線A-A,B-B和C-C由盒內的磁鐵產生的磁場的法向(B法向)分量的圖示;及 圖19是在匣盒旋轉期間匣盒內由磁鐵產生的磁場的平均法向和切向分量的圖示。
10‧‧‧設備
11‧‧‧(處理)腔室
12‧‧‧矽晶圓
13‧‧‧靶材
14‧‧‧入口
15‧‧‧平台
15a‧‧‧凹槽
15b‧‧‧平台表面
16‧‧‧電漿產生配置
16a‧‧‧陽極環
17‧‧‧控制器
18a‧‧‧直流(DC)電源
18b‧‧‧RF電源
19a‧‧‧磁控管(組件)
20‧‧‧第二磁場產生配置
22‧‧‧(驅動)組件

Claims (25)

  1. 一種控制由脈衝式直流(DC)物理氣相沉積形成之材料層中之應力變化的方法,該方法包含如下步驟:提供一腔室,該腔室包含該材料層由之形成的一靶材和該材料層可在其上形成的一基材,其中該基材經安置於一平台上使得該基材在該腔室中之該平台之一外表面中之一凹槽上方;在該腔室內引入一氣體;使用在該腔室內之一陽極環及該靶材之間之一脈衝式DC電位在該腔室內產生一電漿;靠近該靶材施加一第一磁場,以將電漿實質上定位鄰近該靶材;對該基材施加一RF偏壓;靠近該基材施加實質上不與遠離該平台之任何其他磁場相互作用之一第二磁場,以將來自該電漿的氣體離子引導至形成在該基材上之該材料層上的選擇性區域,其中該第二磁場係由安置於該平台之該凹槽中之一磁性陣列產生於與該基材之一平坦表面實質上垂直之一方向中,且其中由該第二磁場引導的氣體離子實質上不受該第一磁場的影響。
  2. 如請求項1之方法,其中該第二磁場被施加在該基材的中心部分。
  3. 如請求項1或2之方法,進一步包含相對於該基材旋轉該第二磁場。
  4. 如請求項1或2之方法,進一步包含在形成該材料層時相對於該基材旋轉該第二磁場。
  5. 如請求項3之方法,其中該旋轉圍繞實質上垂直於該基材延伸的一軸發生。
  6. 如請求項1或2之方法,進一步包含多個用以形成該材料層的沉積步驟,其中在開始每個步驟之前,該基材相對於該平台旋轉。
  7. 如請求項6之方法,其中在每個沉積步驟之間,該基材相對於該平台旋轉360°/n的角度範圍,其中n是沉積步驟的數目。
  8. 如請求項1或2之方法,其中在該腔室內引入一氣體包含將一反應氣體引入該腔室中。
  9. 如請求項1或2之方法,其中在該腔室內引入一氣體進一步包含將一惰性氣體引入該腔室中。
  10. 如請求項1或2之方法,其中該基材包含一矽晶圓且該靶材包含鋁。
  11. 一種用以控制由脈衝式直流(DC)物理氣相沉積形成之材料層中的應力變化的設備,該設備包含:一用以容納該材料層由之形成的一靶材和該材料層可於其上形成的一基材的腔室,該腔室包含用以將一氣體引入該腔室中的一入口;一平台,其安置於該腔室中,其中該平台於暴露於該 腔室中之該平台之一外表面界定一凹槽;一電漿產生配置,用以在該腔室內產生一電漿,其中該電漿產生配置包含安置於該腔室中之一陽極環;一DC電源,其經組態以於該靶材及該陽極環之間施加脈衝式DC功率;以及一用以對該基材施加一RF偏壓的電壓源;其中該設備進一步包含一第一磁場產生配置,其被組配來在使用中產生一靠近該靶材的第一磁場以將該電漿定位鄰近該靶材;以及一第二磁場產生配置,其安置於延伸於實質上與該基材之一平坦表面之一平面平行之一方向中之該平台之該凹槽中,用以在使用中產生實質上不與遠離該平台之任何其他磁場相互作用之一靠近該基材的第二磁場以將來自該電漿的氣體離子引導至形成在基材上之該材料層上的選擇性區域,且其中由該第二磁場引導的氣體離子實質上不受該第一磁場的影響。
  12. 如請求項11之設備,其中該第一磁場產生配置包含一磁控管組件。
  13. 如請求項11或12之設備,其中該第二磁場產生配置係設置在該基材之與該基材面向該電漿之一側相對立的一側。
  14. 如請求項11或12之設備,其中該第二磁場產生配置包含組配成一陣列的多個磁鐵。
  15. 如請求項14之設備,進一步包含用以相對於該基材旋轉該第二磁場產生配置的構件。
  16. 如請求項15的設備,其中該等多個磁鐵係設置在一匣盒內。
  17. 如請求項16的設備,其中該用以旋轉該第二磁場的構件包含一與該匣盒旋轉耦接的心軸。
  18. 如請求項17之設備,其中該心軸與該匣盒經由一馬達被旋轉驅動。
  19. 如請求項14之設備,其中該等多個磁鐵係配置成一具有旋轉對稱性的陣列。
  20. 如請求項19的設備,其中,在使用時該陣列的一中心係組配成鄰近該基材的一中心延伸。
  21. 如請求項19的設備,其中該陣列之該等磁鐵的南北軸實質上彼此平行地延伸。
  22. 如請求項21的設備,其中該等南北軸實質上垂直於該基材延伸。
  23. 如請求項14之設備,其中針對每個磁鐵,設置鄰近該基材的磁極是相同的。
  24. 如請求項14之設備,其中針對該陣列的相鄰磁鐵,設置鄰近該基材的磁極是不同的磁極。
  25. 如請求項11或12之設備,其中該靶材實質上是平面的,而該基材實質上是平面的,以及該靶材和該基材在該腔室內以一實質上平行取向被定向。
TW107106600A 2017-04-20 2018-02-27 用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備 TWI756372B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
GBGB1706284.5A GB201706284D0 (en) 2017-04-20 2017-04-20 A method and apparatus for controlling stress variation in a material layer formed via pulsed DC physical vapour deposition
GB1706284.5 2017-04-20
??1706284.5 2017-04-20
GB1715726.4 2017-09-28
??1715726.4 2017-09-28
GBGB1715726.4A GB201715726D0 (en) 2017-04-20 2017-09-28 A method and apparatus for controlling stress variation in a material layer formed via pulsed dc physical vapor deposition

Publications (2)

Publication Number Publication Date
TW201843324A TW201843324A (zh) 2018-12-16
TWI756372B true TWI756372B (zh) 2022-03-01

Family

ID=58795680

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107106600A TWI756372B (zh) 2017-04-20 2018-02-27 用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備

Country Status (6)

Country Link
US (2) US11521840B2 (zh)
EP (1) EP3392370A1 (zh)
KR (1) KR102517019B1 (zh)
CN (1) CN108728809A (zh)
GB (2) GB201706284D0 (zh)
TW (1) TWI756372B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102104468B1 (ko) * 2015-12-30 2020-04-27 맷슨 테크놀로지, 인크. 밀리세컨드 어닐닝 시스템에서 공정 균일성을 향상시키기 위한 방법
GB201815216D0 (en) 2018-09-18 2018-10-31 Spts Technologies Ltd Apparatus and a method of controlling thickness variation in a material layer formed using physical vapour deposition
US10896821B2 (en) * 2018-09-28 2021-01-19 Lam Research Corporation Asymmetric wafer bow compensation by physical vapor deposition
US10903070B2 (en) 2018-09-28 2021-01-26 Lam Research Corporation Asymmetric wafer bow compensation by chemical vapor deposition
CN109837520A (zh) * 2018-12-20 2019-06-04 兰州空间技术物理研究所 电压和测温信号同轴传导的旋转工件的转轴及安装方法
CN111349899B (zh) * 2018-12-20 2022-02-25 上海陛通半导体能源科技股份有限公司 物理气相沉积材料的方法和设备
CN110527967B (zh) * 2019-09-23 2020-09-11 上海陛通半导体能源科技股份有限公司 物理气相沉积设备
CN110752135B (zh) * 2019-10-31 2022-05-27 北京北方华创微电子装备有限公司 射频偏压调节方法、装置及等离子体刻蚀设备
CN111155068B (zh) * 2020-04-02 2020-06-30 上海陛通半导体能源科技股份有限公司 物理气相沉积填孔设备
GB202115616D0 (en) * 2021-10-29 2021-12-15 Spts Technologies Ltd PVD method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847598A (zh) * 2001-11-14 2010-09-29 应用材料有限公司 用于溅射和再溅射的自离子化及电感耦合等离子体
CN102719798A (zh) * 2012-06-04 2012-10-10 深圳市华星光电技术有限公司 磁控溅射***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3566194D1 (en) 1984-08-31 1988-12-15 Hitachi Ltd Microwave assisting sputtering
US4871433A (en) 1986-04-04 1989-10-03 Materials Research Corporation Method and apparatus for improving the uniformity ion bombardment in a magnetron sputtering system
JPH07110912A (ja) 1993-10-14 1995-04-25 Sanyo Electric Co Ltd 磁気ヘッド及びその製造方法
JPH111770A (ja) 1997-06-06 1999-01-06 Anelva Corp スパッタリング装置及びスパッタリング方法
JP4120974B2 (ja) * 1997-06-17 2008-07-16 キヤノンアネルバ株式会社 薄膜作製方法および薄膜作製装置
US6143140A (en) * 1999-08-16 2000-11-07 Applied Materials, Inc. Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field
US6342134B1 (en) * 2000-02-11 2002-01-29 Agere Systems Guardian Corp. Method for producing piezoelectric films with rotating magnetron sputtering system
JP4205294B2 (ja) 2000-08-01 2009-01-07 キヤノンアネルバ株式会社 基板処理装置及び方法
DE112009000123T5 (de) 2008-01-15 2011-02-17 ULVAC, Inc., Chigasaki-shi Substratauflage, mit dieser versehene Zerstäubungsvorrichtung, und Dünnschichtbildungsverfahren
US20100096255A1 (en) 2008-10-22 2010-04-22 Applied Materials, Inc. Gap fill improvement methods for phase-change materials
US8936703B2 (en) * 2009-08-31 2015-01-20 Semicat, Inc. Methods to fabricate non-metal films on semiconductor substrates using physical vapor deposition
US20130101749A1 (en) * 2011-10-25 2013-04-25 Intermolecular, Inc. Method and Apparatus for Enhanced Film Uniformity
US20130319855A1 (en) * 2012-06-04 2013-12-05 Shenzhen China Star Optoelectronics Technology Co. Ltd. Magnetron sputtering system
US20150311046A1 (en) * 2014-04-27 2015-10-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Fabricating low-defect rare-earth doped piezoelectric layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847598A (zh) * 2001-11-14 2010-09-29 应用材料有限公司 用于溅射和再溅射的自离子化及电感耦合等离子体
CN102719798A (zh) * 2012-06-04 2012-10-10 深圳市华星光电技术有限公司 磁控溅射***

Also Published As

Publication number Publication date
KR20180118061A (ko) 2018-10-30
US11961722B2 (en) 2024-04-16
US20180308670A1 (en) 2018-10-25
KR102517019B1 (ko) 2023-03-31
GB201706284D0 (en) 2017-06-07
TW201843324A (zh) 2018-12-16
CN108728809A (zh) 2018-11-02
US20230094699A1 (en) 2023-03-30
US11521840B2 (en) 2022-12-06
GB201715726D0 (en) 2017-11-15
EP3392370A1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
TWI756372B (zh) 用以控制由脈衝式直流物理氣相沉積形成之材料層中之應力變化之方法及設備
JP5380464B2 (ja) プラズマ処理装置、プラズマ処理方法、および被処理基板を備える素子の製造方法
CN111349899B (zh) 物理气相沉积材料的方法和设备
JP4812991B2 (ja) プラズマ処理装置
US20070095651A1 (en) Protective offset sputtering
TWI755387B (zh) 直流磁控濺射設備
JP7236477B2 (ja) Pvd装置
TWI467041B (zh) 在靶材上同時使用射頻和直流功率的超均勻濺射沈積法
JP2000144399A (ja) スパッタリング装置
US20240014018A1 (en) Apparatus and a Method of Controlling Thickness Variation in a Material Layer Formed Using Physical Vapour Deposition
KR101926677B1 (ko) 성막 장치 및 성막 방법
KR20180049057A (ko) 진공처리장치 및 진공처리기판 제조방법
US20230307218A1 (en) Physical vapor deposition apparatus and method thereof
JPH10152775A (ja) プラズマ処理装置
JP6859095B2 (ja) 成膜方法
TWI845531B (zh) 控制使用物理氣相沉積形成之材料層的厚度變化的裝置及方法
JP7438853B2 (ja) マグネトロンスパッタリング装置
JP5236777B2 (ja) プラズマ処理装置
WO2020161957A1 (ja) 成膜装置および成膜方法
CN116783324A (zh) 磁控溅射装置用阴极单元及磁控溅射装置
JPH0551772A (ja) イオンエツチング方法および装置