TWI739419B - Manufacturing method of electrochromic material - Google Patents

Manufacturing method of electrochromic material Download PDF

Info

Publication number
TWI739419B
TWI739419B TW109115420A TW109115420A TWI739419B TW I739419 B TWI739419 B TW I739419B TW 109115420 A TW109115420 A TW 109115420A TW 109115420 A TW109115420 A TW 109115420A TW I739419 B TWI739419 B TW I739419B
Authority
TW
Taiwan
Prior art keywords
vanadium pentoxide
electrochromic material
electrochromic
manufacturing
copper
Prior art date
Application number
TW109115420A
Other languages
Chinese (zh)
Other versions
TW202142715A (en
Inventor
林天財
黃文昌
林俞呈
Original Assignee
崑山科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 崑山科技大學 filed Critical 崑山科技大學
Priority to TW109115420A priority Critical patent/TWI739419B/en
Application granted granted Critical
Publication of TWI739419B publication Critical patent/TWI739419B/en
Publication of TW202142715A publication Critical patent/TW202142715A/en

Links

Abstract

一種電致變色材料的製作方法,包含使五氧化二釩靶材及銅靶材在包括氬氣及氧氣的環境中進行共濺鍍處理,而在一個基板的表面上形成含有五氧化二釩,及摻雜在該五氧化二釩中的銅的電致變色材料。本發明電致變色材料的製作方法所製得的電致變色材料具有良好的離子儲存能力及電致變色能力。A method for manufacturing an electrochromic material includes co-sputtering a vanadium pentoxide target material and a copper target material in an environment including argon and oxygen, and forming a vanadium pentoxide containing vanadium pentoxide on the surface of a substrate, And an electrochromic material of copper doped in the vanadium pentoxide. The electrochromic material prepared by the manufacturing method of the electrochromic material of the present invention has good ion storage capacity and electrochromic capacity.

Description

電致變色材料的製作方法Manufacturing method of electrochromic material

本發明是有關於一種電致變色技術,特別是指一種電致變色材料及其製作方法。The present invention relates to an electrochromic technology, in particular to an electrochromic material and a manufacturing method thereof.

電致變色現象,是指在外加電場的作用下,使材料的光學性能發生連續的可逆變化的現象。現今利用電致變色現象所製造出的電致變色裝置的應用相當廣泛,例如非發光的資訊顯示器、可改變反射率的鏡子、智慧型窗戶,及調節表面熱的發散器等等。現有的電致變色裝置包含二片材質為玻璃或塑膠的透明基板,及夾設在該等透明基板中且依序堆疊的一層透明導電層、一層電致變色層、一層電解質層、一層離子儲存層、及一層透明導電層。Electrochromism refers to the phenomenon of continuous and reversible changes in the optical properties of materials under the action of an external electric field. Nowadays, electrochromic devices manufactured by using electrochromic phenomena are widely used, such as non-luminous information displays, mirrors that can change reflectivity, smart windows, and diffusers that regulate surface heat. The existing electrochromic device includes two transparent substrates made of glass or plastic, and a transparent conductive layer, an electrochromic layer, an electrolyte layer, and an ion storage layer sandwiched between the transparent substrates and stacked in sequence. Layer, and a transparent conductive layer.

五氧化二釩是一種具有層狀結構及中孔洞的非晶性多孔材料,而具有高孔面積及高表面積的性質,有助於提供良好的電極穿透力使得離子及電子在層與層之間遷入及遷出,因此五氧化二釩可應用在製作電致變色裝置中。但五氧化二釩的實際電容值不如理論電容值高,因此仍有需要提升五氧化二釩的電容值,以進一步提升電致變色裝置的性能。Vanadium pentoxide is an amorphous porous material with a layered structure and mesopores. It has the properties of high pore area and high surface area, which helps to provide good electrode penetration so that ions and electrons are in the layer and layer. Move in and out from time to time, so vanadium pentoxide can be used in the production of electrochromic devices. However, the actual capacitance value of vanadium pentoxide is not as high as the theoretical capacitance value, so there is still a need to increase the capacitance value of vanadium pentoxide to further improve the performance of the electrochromic device.

一般提高五氧化二釩的電容值的方式,例如,專利文獻TW I675929B揭示一種鉭摻雜五氧化二釩膜的製備方法,是利用射頻共濺鍍處理在五氧化二釩膜中摻雜鉭,以形成可應用做為電致變色裝置的離子儲存層的鉭摻雜五氧化二釩膜。該專利文獻透過在五氧化二釩膜中摻雜鉭而提升五氧化二釩的電容值,然而,該專利文獻所製得的鉭摻雜五氧化二釩膜的著色與去色穿透率差值仍不理想。A general way to increase the capacitance value of vanadium pentoxide. For example, patent document TW I675929B discloses a method for preparing a tantalum-doped vanadium pentoxide film, which uses radio frequency co-sputtering to dope tantalum in the vanadium pentoxide film. To form a tantalum-doped vanadium pentoxide film that can be used as an ion storage layer of an electrochromic device. This patent document increases the capacitance value of the vanadium pentoxide by doping tantalum in the vanadium pentoxide film. However, the tantalum-doped vanadium pentoxide film prepared by the patent document has poor coloring and decoloring transmittance. The value is still not ideal.

專利文獻TW 201807227A揭示一種鎳摻雜五氧化二釩膜的製備方法,是利用共濺鍍處理在五氧化二釩膜中摻雜鎳,以形成可應用於電致變色裝置的離子儲存層的鎳摻雜五氧化二釩膜。該專利文獻透過在五氧化二釩膜中摻雜鎳而提升五氧化二釩的電容值,然而,該專利文獻所製得的鎳摻雜五氧化二釩膜的著色與去色穿透率差值仍不理想。Patent document TW 201807227A discloses a method for preparing a nickel-doped vanadium pentoxide film, which uses co-sputtering to dope nickel in the vanadium pentoxide film to form nickel that can be applied to an ion storage layer of an electrochromic device Doped with vanadium pentoxide film. This patent document improves the capacitance value of the vanadium pentoxide by doping nickel in the vanadium pentoxide film. However, the nickel-doped vanadium pentoxide film prepared by the patent document has poor coloring and decoloring transmittance. The value is still not ideal.

因此,本發明的目的,即在提供一種具有較高的著色與去色穿透率差值的電致變色材料的製作方法。Therefore, the purpose of the present invention is to provide a method for manufacturing an electrochromic material with a higher difference in transmissivity between coloration and decolorization.

於是,本發明電致變色材料的製作方法,包含使五氧化二釩靶材及銅靶材在包括氬氣及氧氣的環境中進行共濺鍍處理,而在一個基板的表面上形成含有五氧化二釩,及摻雜在該五氧化二釩中的銅的電致變色材料。Therefore, the manufacturing method of the electrochromic material of the present invention includes co-sputtering the vanadium pentoxide target material and the copper target material in an environment including argon and oxygen, and forming a substrate containing pentoxide on the surface of a substrate. Vanadium, and an electrochromic material of copper doped in the vanadium pentoxide.

本發明的功效在於:本發明電致變色材料的製作方法透過將該銅靶材與五氧化二釩靶材進行該共濺鍍處理,使銅摻雜在五氧化二釩中而製得該電致變色材料,且該電致變色材料具有大的電容值,及較高的著色與去色穿透率差值。The effect of the present invention is that: the method for manufacturing the electrochromic material of the present invention performs the co-sputtering treatment on the copper target and the vanadium pentoxide target, so that the copper is doped in the vanadium pentoxide to obtain the electrochromic material. The electrochromic material, and the electrochromic material has a large capacitance value, and a higher difference in coloring and decoloring transmittance.

本發明電致變色材料的製作方法,包含以下步驟:使五氧化二釩靶材及銅靶材在包括氬氣及氧氣的環境中進行共濺鍍處理,而在一個基板的表面上形成含有五氧化二釩,及摻雜在該五氧化二釩中的銅的電致變色材料。The manufacturing method of the electrochromic material of the present invention includes the following steps: co-sputtering the vanadium pentoxide target material and the copper target material in an environment including argon and oxygen, and forming a substrate containing five Vanadium oxide, and an electrochromic material of copper doped in the vanadium pentoxide.

該五氧化二釩靶材例如但不限於純度為99%的五氧化二釩靶材。該銅靶材例如但不限於純度為99.9%的銅靶材。該基板例如但不限於氧化銦錫(ITO)玻璃基板。The vanadium pentoxide target material is, for example, but not limited to, a vanadium pentoxide target material with a purity of 99%. The copper target is, for example, but not limited to, a copper target with a purity of 99.9%. The substrate is, for example, but not limited to, an indium tin oxide (ITO) glass substrate.

該共濺鍍處理例如但不限於射頻磁控濺鍍(RF magnetron sputtering)。其中,該環境的壓力範圍例如但不限於5×10 -5torr,該氬氣的流量範圍例如但不限於20 sccm至25 sccm,該氧氣的流量範圍例如但不限於1 sccm至5 sccm,該氬氣與該氧氣的壓力比值範圍例如但不限於5至20。為使該電致變色材料具有更大的電容值及著色與去色穿透率差值,較佳地,該氧氣的壓力範圍為2.4×10 -4torr至8.3×10 -4torr。更佳地,該氧氣的壓力範圍為2.4×10 -4torr至4.5×10 -4torr。 The co-sputtering process is, for example, but not limited to, RF magnetron sputtering (RF magnetron sputtering). Wherein, the pressure range of the environment is for example but not limited to 5×10 -5 torr, the flow range of the argon gas is, for example, but not limited to 20 sccm to 25 sccm, and the flow rate range of the oxygen gas is for example, but not limited to, 1 sccm to 5 sccm. The pressure ratio of the argon gas to the oxygen gas ranges for example but not limited to 5-20. In order to make the electrochromic material have a greater capacitance value and a difference in transmissivity between coloration and decolorization, preferably, the pressure range of the oxygen is 2.4×10 -4 torr to 8.3×10 -4 torr. More preferably, the pressure range of the oxygen is 2.4×10 -4 torr to 4.5×10 -4 torr.

該五氧化二釩靶材的濺鍍功率沒有特別限制,只要大於該銅靶材的濺鍍功率即可。在本發明的一些實施態樣中,該五氧化二釩靶材的濺鍍功率例如但不限於為120W。The sputtering power of the vanadium pentoxide target is not particularly limited, as long as it is greater than the sputtering power of the copper target. In some embodiments of the present invention, the sputtering power of the vanadium pentoxide target is, for example, but not limited to, 120W.

該銅靶材的濺鍍功率沒有特別限制,只要能使銅摻雜在五氧化二釩中即可。在本發明的一些實施態樣中,該銅靶材的濺鍍功率範圍例如但不限於為5W至20W。為使該電致變色材料具有更高的著色與去色穿透率差值,較佳地,該銅靶材的濺鍍功率範圍為15W至20W;更佳地,該銅靶材的濺鍍功率為20W。The sputtering power of the copper target is not particularly limited, as long as the copper can be doped in the vanadium pentoxide. In some embodiments of the present invention, the sputtering power range of the copper target is, for example, but not limited to, 5W to 20W. In order to make the electrochromic material have a higher difference in coloration and decolorization transmittance, preferably, the sputtering power of the copper target is in the range of 15W to 20W; more preferably, the sputtering power of the copper target The power is 20W.

該基板的溫度範圍沒有特別限制。為使該電致變色材料具有更高的著色與去色穿透率差值,較佳地,該基板的溫度為25°C至100°C。The temperature range of the substrate is not particularly limited. In order to make the electrochromic material have a higher difference in coloration and decolorization transmittance, preferably, the temperature of the substrate is 25°C to 100°C.

該電致變色材料的製作方法所製得的電致變色材料具有大的電容值,及較高的著色與去色穿透率差值,該電致變色材料後續能夠應用在現有的任何電致變色裝置(electrochromic device)中,並作為該電致變色裝置的離子儲存層或電致變色層。The electrochromic material produced by the method of manufacturing the electrochromic material has a large capacitance value and a high difference in coloring and decoloring transmittance. The electrochromic material can be subsequently applied to any existing electrochromic material. In an electrochromic device, and as the ion storage layer or electrochromic layer of the electrochromic device.

本發明將就以下實施例來作進一步說明,但應瞭解的是,所述實施例僅為例示說明之用,而不應被解釋為本發明實施之限制。The present invention will be further illustrated with the following examples, but it should be understood that the examples are only for illustrative purposes and should not be construed as limitations to the implementation of the present invention.

實施例1Example 1

首先,將30mm×20mm且電阻值為6Ω-cm 2的ITO玻璃基板浸泡於丙酮中,並使用超音波震盪器震盪5分鐘以去除該ITO玻璃基板表面上的碳化物。再將該基板從丙酮中取出,並浸泡於純水中且並以超音波震盪器震盪5分鐘,以去除殘留丙酮。接著,將該基板從純水中取出,並浸泡於異丙醇中且使用超音波震盪器震盪5分鐘,以去除該ITO玻璃基板表面上的有機物。之後,將該基板從異丙醇中取出,並浸泡於純水中且以超音波震盪器震盪5分鐘,以去除殘留異丙醇。最後,將該基板從純水中取出,並以高壓氮氣進行乾燥處理,得到經處理的ITO玻璃基板。 First, an ITO glass substrate of 30 mm×20 mm and a resistance value of 6 Ω-cm 2 is immersed in acetone, and shaken with an ultrasonic oscillator for 5 minutes to remove carbides on the surface of the ITO glass substrate. The substrate was then taken out from acetone, immersed in pure water and shaken with an ultrasonic oscillator for 5 minutes to remove residual acetone. Next, the substrate was taken out of pure water, immersed in isopropanol and shaken with an ultrasonic oscillator for 5 minutes to remove organic matter on the surface of the ITO glass substrate. After that, the substrate was taken out of isopropanol, immersed in pure water and shaken with an ultrasonic oscillator for 5 minutes to remove residual isopropanol. Finally, the substrate was taken out of the pure water and dried with high-pressure nitrogen to obtain a processed ITO glass substrate.

接著,將該經處理的ITO玻璃基板放置在一台射頻磁控濺鍍設備的濺鍍腔體內的承載台上,且將該經處理的ITO玻璃基板加熱至100°C。先將該濺鍍腔體內的壓力控制在5×10 -5torr。接著,將氬氣(純度99.9%,流量為23 sccm及壓力為4.5 mtorr),及氧氣(純度99.9%,流量為2.3 sccm及壓力為4.5×10 -4torr)通入該濺鍍腔體內,並將該濺鍍腔體內的壓力控制在5 mtorr。之後,利用五氧化二釩靶材(廠牌為ADMAT,直徑為3英吋,五氧化二釩的純度為99.9%),以及銅靶材(廠牌為ADMAT,規格為3英吋,銅的純度為99.9%)進行共濺鍍,其中,該五氧化二釩靶材及該銅靶材與該經處理的ITO玻璃基板的距離為6公分,且該五氧化二釩靶材的濺鍍功率為120W,該銅靶材的濺鍍功率為5W,濺鍍時間為2小時,而在該經處理的ITO玻璃基板的表面上形成含有五氧化二釩,及摻雜在五氧化二釩中的銅的電致變色材料。 Then, the processed ITO glass substrate is placed on a carrier in the sputtering chamber of a radio frequency magnetron sputtering equipment, and the processed ITO glass substrate is heated to 100°C. First, control the pressure in the sputtering chamber to 5×10 -5 torr. Then, argon (purity 99.9%, flow rate of 23 sccm and pressure of 4.5 mtorr) and oxygen gas (purity of 99.9%, flow rate of 2.3 sccm and pressure of 4.5×10 -4 torr) are passed into the sputtering chamber, And control the pressure in the sputtering chamber to 5 mtorr. After that, use vanadium pentoxide target material (the brand is ADMAT, the diameter is 3 inches, the purity of the vanadium pentoxide is 99.9%), and the copper target material (the brand is ADMAT, the specification is 3 inches, the copper Purity is 99.9%) for co-sputtering, wherein the distance between the vanadium pentoxide target material and the copper target material and the processed ITO glass substrate is 6 cm, and the sputtering power of the vanadium pentoxide target material 120W, the sputtering power of the copper target is 5W, and the sputtering time is 2 hours. On the surface of the treated ITO glass substrate, vanadium pentoxide and vanadium pentoxide are formed on the surface of the glass substrate. Copper electrochromic material.

實施例2至6及比較例1Examples 2 to 6 and Comparative Example 1

實施例2至6及比較例1是以與實施例1類似的製作方法製備電致變色材料,差別在於如表1所示改變實施例2至6及比較例1中進行共濺鍍的條件,其中,比較例1未使用銅靶材。Examples 2 to 6 and Comparative Example 1 prepared electrochromic materials in a similar manufacturing method to that of Example 1. The difference was that the conditions for co-sputtering in Examples 2 to 6 and Comparative Example 1 were changed as shown in Table 1. Among them, Comparative Example 1 did not use a copper target.

比較例2至3Comparative examples 2 to 3

比較例2至3是以與實施例1類似的製作方法,差別在於:在比較例2中,是將實施例1的銅靶材置換成鉭靶材,而在比較例3中,是將實施例1的銅靶材置換成鎳靶材。Comparative Examples 2 to 3 are produced in a similar manner to Example 1, except that in Comparative Example 2, the copper target of Example 1 is replaced with a tantalum target, while in Comparative Example 3, The copper target of Example 1 was replaced with a nickel target.

[評價項目][Evaluation item]

1.膜厚1. Film thickness

利用一表面輪廓儀(廠牌KLA-Tencor,型號AS-IQ)量測實施例1至6及比較例1至3的電致變色材料的膜厚。A surface profiler (brand KLA-Tencor, model AS-IQ) was used to measure the film thickness of the electrochromic materials of Examples 1 to 6 and Comparative Examples 1 to 3.

2. 著色與去色穿透率差值2. Transmittance difference between coloring and decolorization

利用一紫外光-可見光光譜儀(廠牌HitachiHigh,型號U-2800A)量測實施例1至6及比較例1至3的電致變色材料在著色狀態及去色狀態的穿透率,其中,掃描波長範圍為300nm至900nm,以及對該電致變色材料施加+2.5V的電壓以獲得該電致變色材料在波長600nm且為著色狀態時的穿透率(T1,單位:%),對該電致變色材料施加-2.5V的電壓以獲得該電致變色材料在波長600nm且為去色狀態時的穿透率(T2,單位:%)。該電致變色材料的著色與去色穿透率差值ΔT=T2-T1。A UV-Visible Spectrometer (HitachiHigh, Model U-2800A) was used to measure the transmittance of the electrochromic materials of Examples 1 to 6 and Comparative Examples 1 to 3 in the colored state and the decolored state, where scanning The wavelength range is 300nm to 900nm, and a voltage of +2.5V is applied to the electrochromic material to obtain the transmittance (T1, unit: %) of the electrochromic material at a wavelength of 600nm and in a colored state. The electrochromic material is applied with a voltage of -2.5V to obtain the transmittance (T2, unit: %) of the electrochromic material at a wavelength of 600 nm and in a decolorized state. The transmissivity difference between coloring and decoloring of the electrochromic material is ΔT=T2-T1.

3.電容值3. Capacitance value

利用一循環伏安電化學裝置(廠牌KEITHLEY,型號2400)對實施例1至6及比較例1至3的電致變色材料進行循環伏安分析,以獲得橫軸為電壓(單位:V)且縱軸為電流(單位:mA)的循環伏安圖。其中,該循環伏安分析的測試條件為,工作電極為該電致變色材料(面積2cm×3cm),輔助電極為白金電極,參考電極為甘汞電極,電解液含有過氯酸鋰(LiClO 4,濃度為1M)及碳酸丙烯酯,掃描速度為12.5 mV/sec,掃描電壓為-2.5V至+2.5V,掃描循環圈數為5圈。然後,藉由該循環伏安圖得到的面積值來換算並求得對應的電容值(單位:F)。 Use a cyclic voltammetry electrochemical device (brand KEITHLEY, model 2400) to perform cyclic voltammetric analysis on the electrochromic materials of Examples 1 to 6 and Comparative Examples 1 to 3 to obtain the voltage on the horizontal axis (unit: V) And the vertical axis is the cyclic voltammogram of current (unit: mA). Among them, the test conditions of the cyclic voltammetry analysis are that the working electrode is the electrochromic material (area 2cm×3cm), the auxiliary electrode is a platinum electrode, the reference electrode is a calomel electrode, and the electrolyte contains lithium perchlorate (LiClO 4 , The concentration is 1M) and propylene carbonate, the scanning speed is 12.5 mV/sec, the scanning voltage is -2.5V to +2.5V, and the scanning cycle number is 5 laps. Then, use the area value obtained from the cyclic voltammogram to convert and obtain the corresponding capacitance value (unit: F).

表1   實施例 比較例 1 2 3 4 5 6 1 2 3 共濺鍍處理 V 2O 5濺鍍功率(W) 120 120 120 120 120 120 120 120 120 Cu濺鍍功率(W) 5 15 20 15 15 15 -- -- -- Ta濺鍍功率(W) -- -- -- -- -- -- -- 30 -- Ni濺鍍功率(W) -- -- -- -- -- -- -- -- 10 基板溫度 (°C) 100 100 100 80 100 25 100 100 100 氬氣流量 (sccm) 23 23 23 23 23 23 23 23 23 氬氣壓力 (10 -3torr) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 氧氣流量 (sccm) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 氧氣壓力 (10 -4torr) 4.5 4.5 4.5 4.5 2.4 4.5 4.5 4.5 4.5 濺鍍時間 (小時) 2 2 2 2 2 2 2 2 2 分析項目 膜厚 (nm) 117.8 170.5 171.1 93.89 170.5 66.83 86.2 153.1 221 ΔT (%) (600 nm) 14.4 16.6 25.6 13.5 15.2 21.6 2 11 5.1 電容值 (F) 44 77.1 73.2 49.8 42.1 67.3 35 64 78.6 Table 1 Example Comparative example 1 2 3 4 5 6 1 2 3 Co-sputtering treatment V 2 O 5 sputtering power (W) 120 120 120 120 120 120 120 120 120 Cu sputtering power (W) 5 15 20 15 15 15 - - - Ta sputtering power (W) - - - - - - - 30 - Ni sputtering power (W) - - - - - - - - 10 Substrate temperature (°C) 100 100 100 80 100 25 100 100 100 Argon flow (sccm) twenty three twenty three twenty three twenty three twenty three twenty three twenty three twenty three twenty three Argon pressure (10 -3 torr) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 Oxygen flow (sccm) 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 Oxygen pressure (10 -4 torr) 4.5 4.5 4.5 4.5 2.4 4.5 4.5 4.5 4.5 Sputtering time (hours) 2 2 2 2 2 2 2 2 2 Analysis Project Film thickness (nm) 117.8 170.5 171.1 93.89 170.5 66.83 86.2 153.1 221 ΔT (%) (600 nm) 14.4 16.6 25.6 13.5 15.2 21.6 2 11 5.1 Capacitance value (F) 44 77.1 73.2 49.8 42.1 67.3 35 64 78.6

參閱表1的電容值及著色與去色穿透率差值(ΔT),相較於比較例1的電致變色材料(沒有摻雜銅),實施例1至6透過使銅摻雜在五氧化二釩中所製得的電致變色材料具有較大的電容值及較高的著色與去色穿透率差值,證明實施例1至6所製得的電致變色材料具有較佳的離子儲存能力及電致變色特性。Refer to Table 1 for the capacitance value and the difference in coloring and decoloring transmittance (ΔT). Compared with the electrochromic material of Comparative Example 1 (without copper doping), Examples 1 to 6 doped copper in five The electrochromic material prepared in vanadium oxide has a larger capacitance value and a higher difference in coloring and decoloring transmittance, which proves that the electrochromic materials prepared in Examples 1 to 6 have better Ion storage capacity and electrochromic properties.

相較於比較例2(摻雜鉭)及比較例3(摻雜鎳),實施例1至6將銅摻雜在五氧化二釩中所製得的電致變色材料具有較高的著色與去色穿透率差值,證明實施例1至6具有較好的電致變色特性。Compared with Comparative Example 2 (doped tantalum) and Comparative Example 3 (doped nickel), the electrochromic materials prepared by doping copper in vanadium pentoxide in Examples 1 to 6 have higher coloration and The difference in decolorization transmittance proves that Examples 1 to 6 have good electrochromic properties.

綜上所述,本發明電致變色材料的製作方法所製得的電致變色材料具有大的電容值,及較高的著色與去色穿透率差值,繼而具有更好的離子儲存能力及電致變色特性,故確實能達成本發明的目的。In summary, the electrochromic material prepared by the method of manufacturing the electrochromic material of the present invention has a large capacitance value, and a higher difference in coloration and decolorization transmittance, and thus has a better ion storage capacity. And electrochromic characteristics, it can indeed achieve the purpose of the invention.

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。However, the above are only examples of the present invention. When the scope of implementation of the present invention cannot be limited by this, all simple equivalent changes and modifications made in accordance with the scope of the patent application of the present invention and the content of the patent specification still belong to Within the scope covered by the patent of the present invention.

Claims (6)

一種電致變色材料的製作方法,包含以下步驟: 使五氧化二釩靶材及銅靶材在包括氬氣及氧氣的環境中進行共濺鍍處理,而在一個基板的表面上形成含有五氧化二釩,及摻雜在該五氧化二釩中的銅的電致變色材料。 A manufacturing method of electrochromic material includes the following steps: The vanadium pentoxide target material and the copper target material are co-sputtered in an environment including argon and oxygen, and a substrate containing vanadium pentoxide is formed on the surface of a substrate, and is doped in the vanadium pentoxide The electrochromic material of copper. 如請求項1所述的電致變色材料的製作方法,其中,該銅靶材的濺鍍功率為5W至20W。The method for manufacturing an electrochromic material according to claim 1, wherein the sputtering power of the copper target is 5W to 20W. 如請求項2所述的電致變色材料的製作方法,其中,該銅靶材的濺鍍功率為15W至20W。The method for manufacturing an electrochromic material according to claim 2, wherein the sputtering power of the copper target is 15W to 20W. 如請求項3所述的電致變色材料的製作方法,其中,該銅靶材的濺鍍功率為20W。The method for manufacturing an electrochromic material according to claim 3, wherein the sputtering power of the copper target is 20W. 如請求項1所述的電致變色材料的製作方法,其中,該基板的溫度範圍為25°C至100°C。The method for manufacturing an electrochromic material according to claim 1, wherein the temperature of the substrate ranges from 25°C to 100°C. 如請求項1所述的電致變色材料的製作方法,其中,該氧氣的壓力範圍為2.4×10 -4torr至8.3×10 -4torr。 The method for manufacturing an electrochromic material according to claim 1, wherein the pressure of the oxygen gas ranges from 2.4×10 -4 torr to 8.3×10 -4 torr.
TW109115420A 2020-05-08 2020-05-08 Manufacturing method of electrochromic material TWI739419B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109115420A TWI739419B (en) 2020-05-08 2020-05-08 Manufacturing method of electrochromic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109115420A TWI739419B (en) 2020-05-08 2020-05-08 Manufacturing method of electrochromic material

Publications (2)

Publication Number Publication Date
TWI739419B true TWI739419B (en) 2021-09-11
TW202142715A TW202142715A (en) 2021-11-16

Family

ID=78778281

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109115420A TWI739419B (en) 2020-05-08 2020-05-08 Manufacturing method of electrochromic material

Country Status (1)

Country Link
TW (1) TWI739419B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832093B (en) * 2021-09-17 2024-02-11 崑山科技大學 Preparation method of electrochromic ion storage membrane

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044717A1 (en) * 2000-08-17 2002-04-18 Richardson Thomas J. Electrochromic materials, devices and process of making
CN101265036A (en) * 2008-04-07 2008-09-17 中国科学院广州能源研究所 Method for depositing vanadium dioxide thin film on glass under low temperature
WO2014093779A1 (en) * 2012-12-14 2014-06-19 Intermolecular, Inc. Improved low emissivity coating with optimal base layer material and layer stack
WO2015179834A1 (en) * 2014-05-23 2015-11-26 The Regents Of The University Of Michigan Ultra-thin doped noble metal films for optoelectronics and photonics applications
US20170029934A1 (en) * 2013-12-20 2017-02-02 Plansee Se W-ni sputtering target
US20170097552A1 (en) * 2009-03-31 2017-04-06 View, Inc. Fabrication of low defectivity electrochromic devices
JP2018502215A (en) * 2014-11-07 2018-01-25 プランゼー エスエー Metal oxide thin film, method for depositing metal oxide thin film, and apparatus comprising metal oxide thin film
EP3543781A1 (en) * 2012-08-09 2019-09-25 SAGE Electrochromics, lnc. Lithium metal oxide materials for electrochromic devices
TWI675929B (en) * 2018-10-16 2019-11-01 崑山科技大學 Method for preparing electrochromic ion storage membrane

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020044717A1 (en) * 2000-08-17 2002-04-18 Richardson Thomas J. Electrochromic materials, devices and process of making
CN101265036A (en) * 2008-04-07 2008-09-17 中国科学院广州能源研究所 Method for depositing vanadium dioxide thin film on glass under low temperature
US20170097552A1 (en) * 2009-03-31 2017-04-06 View, Inc. Fabrication of low defectivity electrochromic devices
EP3543781A1 (en) * 2012-08-09 2019-09-25 SAGE Electrochromics, lnc. Lithium metal oxide materials for electrochromic devices
WO2014093779A1 (en) * 2012-12-14 2014-06-19 Intermolecular, Inc. Improved low emissivity coating with optimal base layer material and layer stack
US20170029934A1 (en) * 2013-12-20 2017-02-02 Plansee Se W-ni sputtering target
WO2015179834A1 (en) * 2014-05-23 2015-11-26 The Regents Of The University Of Michigan Ultra-thin doped noble metal films for optoelectronics and photonics applications
JP2018502215A (en) * 2014-11-07 2018-01-25 プランゼー エスエー Metal oxide thin film, method for depositing metal oxide thin film, and apparatus comprising metal oxide thin film
TWI675929B (en) * 2018-10-16 2019-11-01 崑山科技大學 Method for preparing electrochromic ion storage membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832093B (en) * 2021-09-17 2024-02-11 崑山科技大學 Preparation method of electrochromic ion storage membrane

Also Published As

Publication number Publication date
TW202142715A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
Lee et al. VO2/WO3-based hybrid smart windows with thermochromic and electrochromic properties
KR102038184B1 (en) An Electrochromic Device
KR102149672B1 (en) Electrochromic device
Lin et al. Study of MoO3–NiO complementary electrochromic devices using a gel polymer electrolyte
Liu et al. Highly stable and flexible ITO-free electrochromic films with bi-functional stacked MoO3/Ag/MoO3 structures
KR101816536B1 (en) Electrochromic device and method of manufacturing the same
TWI739419B (en) Manufacturing method of electrochromic material
CN102260846A (en) Polycrystalline tin dioxide resistance changing film and preparation method and application thereof
JP2013213944A (en) Method for forming electrochromic thin film, and method for manufacturing electrochromic element
TWI675929B (en) Method for preparing electrochromic ion storage membrane
US20200363690A1 (en) Dynamic Windows Comprising Aqueous Electrolytes Having Enhanced Temperature Stability
TW201816495A (en) Method for fabricating electrochromic device
CN107315298B (en) Brown electrochromic charge storage electrode and preparation method thereof
KR102230604B1 (en) Method of manufacturing light-sensitive photochromic device and the device thereof
Sarangika et al. Low cost quasi solid state electrochromic devices based on F-doped tin oxide and TiO2
KR102010754B1 (en) An Electrochromic Device
KR102101151B1 (en) An Electrochromic Device
KR102056599B1 (en) An Electrochromic Device
CN111599918B (en) all-ITO memristor and preparation method thereof
KR101994807B1 (en) Method of manufacturing electrolyte membrane and electrochromic device, the device thereof
JP5225570B2 (en) Electrode substrate manufacturing method
JP2007087866A (en) Transparent conductive substrate and its manufacturing method, and photoelectric transfer element
TWI832093B (en) Preparation method of electrochromic ion storage membrane
CN110993799A (en) Tunable infrared transparent conductive film with photovoltaic function and preparation method thereof
KR102010734B1 (en) An Electrochromic Device