JP5225570B2 - Electrode substrate manufacturing method - Google Patents

Electrode substrate manufacturing method Download PDF

Info

Publication number
JP5225570B2
JP5225570B2 JP2006285178A JP2006285178A JP5225570B2 JP 5225570 B2 JP5225570 B2 JP 5225570B2 JP 2006285178 A JP2006285178 A JP 2006285178A JP 2006285178 A JP2006285178 A JP 2006285178A JP 5225570 B2 JP5225570 B2 JP 5225570B2
Authority
JP
Japan
Prior art keywords
substrate
transparent conductive
film
base material
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006285178A
Other languages
Japanese (ja)
Other versions
JP2008103208A (en
Inventor
秀幸 柴田
顕一 岡田
隆之 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006285178A priority Critical patent/JP5225570B2/en
Publication of JP2008103208A publication Critical patent/JP2008103208A/en
Application granted granted Critical
Publication of JP5225570B2 publication Critical patent/JP5225570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Hybrid Cells (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、透明導電性基板を備えた光電変換素子に用いられる電極基板の製造方法に関する。 The present invention relates to a method for manufacturing of an electrode substrate used for a photoelectric conversion element having a permeable transparent conductive substrate.

薄膜形成技術の発達により、ある材料の表面のみを異なる材料の薄膜でコートすることで、新しい機能の付加が可能であることが知られている。一例として、レンズなどの光学部品に、ある膜を積層し、反射防止の機能を付加したり、ガスバリア性の低い樹脂基板にガスバリア性の高い薄膜を積層することで、軽量である等の樹脂基板の特性を有しつつ、ガスバリア性の機能を付加したりする技術が知られている。   With the development of thin film formation technology, it is known that a new function can be added by coating only the surface of a certain material with a thin film of a different material. As an example, a resin film that is lightweight by laminating a film on an optical component such as a lens and adding an antireflection function, or laminating a thin film with a high gas barrier property on a resin substrate with a low gas barrier property A technique for adding a gas barrier function while having the above characteristics is known.

またその他にも、液晶ディスプレイ(LCD)等の電子機器の製造における透明電極の作製、発光ダイオードの製造における発光体層の形成等、各種の用途に薄膜形成技術が利用されている。薄膜形成技術としては、スパッタリング、真空蒸着、イオンプレーティング、CVDやスプレー熱分解法などが知られている。   In addition, thin film formation techniques are used for various applications such as the production of transparent electrodes in the production of electronic devices such as liquid crystal displays (LCDs) and the formation of light emitter layers in the production of light-emitting diodes. Known thin film forming techniques include sputtering, vacuum deposition, ion plating, CVD, and spray pyrolysis.

一般的には、結晶性の高い良質な膜を成膜するためには、低温よりも高温で成膜を行う、あるいは、成膜後に高温で熱処理をした方が良いことが知られており、例えば、透明導電膜として代表的なインジウム−スズ酸化膜では、250℃程度での成膜が行われている(例えば、特許文献1参照)。   In general, it is known that in order to form a high-quality film with high crystallinity, it is better to perform film formation at a higher temperature than at a low temperature, or heat treatment at a high temperature after film formation, For example, a typical indium-tin oxide film as a transparent conductive film is formed at about 250 ° C. (see, for example, Patent Document 1).

特に透明性が要求される用途には、基材にガラスが多く用いられているが、軽量化などの要求からプラスチック等の樹脂基材への適用化が求められている。しかしながら、プラスチック等の樹脂基材は耐熱性が低く、高温における成膜に不向きであることから、低温において結晶化度の向上を図り、低抵抗な被膜を形成する方法が考案されている(例えば、特許文献2、特許文献3を参照)。   In particular, in applications where transparency is required, glass is often used as a base material, but application to resin base materials such as plastics is required because of demands for weight reduction and the like. However, since resin base materials such as plastics have low heat resistance and are not suitable for film formation at high temperatures, a method for improving the crystallinity at low temperatures and forming a low resistance film has been devised (for example, , Patent Document 2 and Patent Document 3).

しかしながら、熱膨張係数の大きな基材、例えばプラスチック基板上に、より熱膨張係数が小さな薄膜を形成する場合、基材と膜の熱膨張係数の違いから、成膜後の膜の耐熱性に問題が発生する。具体的には、熱による基材の膨張が膜に比較して大きいために、膜に対し引っ張り応力が作用してクラック等の損傷が発生し、様々な特性低下をもたらしていた。例えば、透明導電膜をガラス基板上に成膜した積層体の場合、膜と基材の熱膨張係数がほぼ同等なため、上述のような原因による耐熱性の問題は比較的少ないものの、熱膨張係数のより高いプラスチック基板上へ成膜した場合、基材の熱膨張に透明導電膜が追従できずにクラックが生じ、重要な特性である、抵抗値の上昇をもたらしていた。
特開2003−323818号公報 特開2005−56771号公報 特開1999−279756号公報
However, when a thin film with a smaller coefficient of thermal expansion is formed on a substrate with a large coefficient of thermal expansion, such as a plastic substrate, there is a problem with the heat resistance of the film after film formation due to the difference in coefficient of thermal expansion between the substrate and the film Will occur. Specifically, since the expansion of the base material due to heat is larger than that of the film, tensile stress acts on the film to cause damage such as cracks, resulting in various deteriorations in characteristics. For example, in the case of a laminate in which a transparent conductive film is formed on a glass substrate, the thermal expansion coefficient of the film and the base material is almost the same. When a film was formed on a plastic substrate having a higher coefficient, the transparent conductive film could not follow the thermal expansion of the base material, causing cracks, resulting in an increase in resistance, which is an important characteristic.
JP 2003-323818 A JP 2005-56771 A JP 1999-279756 A

本発明は、このような従来の実情に鑑みて提案されたものであり、透明導電膜と基材の熱膨張係数の違いに限らずあらゆる変形に起因する、透明導電膜のクラック等の損傷を抑制し、耐熱性や耐薬品性、耐プレス性等に優れた透明導電性基板の製造方法を提供することを第一の目的とする。
また、本発明は、透明導電性基板を用いた光電変換素子用電極基板であって、透明導電膜と基材の熱膨張係数の違いに限らずあらゆる変形に起因する、透明導電膜のクラック等の損傷を抑制し、耐熱性や耐薬品性、耐プレス性等に優れた透明導電性基板を有する光電変換素子に用いられる電極基板の製造方法を提供することを第二の目的とする。
The present invention has been proposed in view of such a conventional situation, and is not limited to the difference in thermal expansion coefficient between the transparent conductive film and the substrate, and damage such as cracks in the transparent conductive film caused by any deformation. The first object is to provide a method for producing a transparent conductive substrate that is suppressed and excellent in heat resistance, chemical resistance, press resistance and the like.
Further, the present invention is an electrode substrate for a photoelectric conversion element using a transparent conductive substrate, which is not limited to the difference in thermal expansion coefficient between the transparent conductive film and the base material, and cracks in the transparent conductive film, etc. It is a second object of the present invention to provide a method for producing an electrode substrate used for a photoelectric conversion element having a transparent conductive substrate that is excellent in heat resistance, chemical resistance, press resistance and the like.

本発明の請求項1に記載の電極基板の製造方法は、増感色素を担持させた多孔質酸化物
半導体層を有し、窓極として機能する第一電極基板と、少なくとも一部に電解質層を介し
て該第一電極基板と対向して配される第二電極基板とを備え、前記第一電極基板および前
記第二電極基板の少なくとも一方は、樹脂からなる基材と該基材の一面に金属酸化物から
なる透明導電膜を配してなる透明導電性基板を有する光電変換素子に用いられる電極基板
の製造方法であって、前記基材を加熱して膨張させることにより、前記基材を延伸状態に
保持する工程と、前記延伸状態を保ちつつ、前記基材の一面に前記透明導電膜を形成する
工程と、前記延伸状態を解除し、前記透明導電膜に圧縮応力をかける工程と、前記透明導
電膜の表面に、多孔質酸化物半導体を含有するペーストを塗布する工程と、前記ペースト
を焼成する工程と、を備え、前記延伸状態における、前記基材の延伸率が、少なくとも一
方向に対して0.08%以上1%以下であり、前記加熱における前記基材の温度を、100℃以上かつ該基材の軟化点温度以下とすることを特徴とする。
The method for producing an electrode substrate according to claim 1 of the present invention comprises a first electrode substrate having a porous oxide semiconductor layer carrying a sensitizing dye and functioning as a window electrode, and at least a part of the electrolyte layer. A second electrode substrate disposed opposite to the first electrode substrate, wherein at least one of the first electrode substrate and the second electrode substrate includes a base material made of resin and one surface of the base material A method for producing an electrode substrate used in a photoelectric conversion element having a transparent conductive substrate in which a transparent conductive film made of a metal oxide is disposed on the substrate, wherein the substrate is heated and expanded, Maintaining the stretched state, forming the transparent conductive film on one surface of the substrate while maintaining the stretched state, releasing the stretched state, and applying compressive stress to the transparent conductive film; The surface of the transparent conductive film has a porous oxide semi-conductor. A step of applying a paste containing a body, and a step of firing the paste, wherein the stretch ratio of the base material in the stretched state is 0.08% or more and 1% or less in at least one direction. And the temperature of the substrate in the heating is 100 ° C. or more and the softening point temperature of the substrate or less .

本発明では、樹脂からなる基材のように、透明導電膜と熱膨張係数が大きく異なる基材上へ透明導電膜を形成する際に、基材を加熱などの方法により膨張させておき、成膜後に圧縮応力をかけることで、基材の膨張に透明導電膜が追従することが可能となる。これにより透明導電膜と基材の熱膨張係数の違いに限らずあらゆる変形に起因する、透明導電膜のクラック等の損傷を抑制することができる。その結果、耐熱性や耐薬品性、耐プレス性等に優れた透明導電性基板の製造方法を提供することができる。   In the present invention, when a transparent conductive film is formed on a base material having a coefficient of thermal expansion greatly different from that of a transparent conductive film, such as a resin base material, the base material is expanded by a method such as heating. By applying compressive stress after the film formation, the transparent conductive film can follow the expansion of the base material. Thereby, not only the difference in the thermal expansion coefficient of a transparent conductive film and a base material but damage, such as a crack of a transparent conductive film resulting from every deformation | transformation, can be suppressed. As a result, a method for producing a transparent conductive substrate excellent in heat resistance, chemical resistance, press resistance and the like can be provided.

また、本発明では、樹脂からなる基材上へ透明導電膜を形成する際に、基材を加熱などの方法により膨張させておき、成膜後に圧縮応力をかけることで、基材の膨張に透明導電膜が追従することが可能となる。これにより透明導電膜と基材の熱膨張係数の違いに限らずあらゆる変形に起因する、透明導電膜のクラック等の損傷を抑制することができる。その結果、耐熱性や耐薬品性、耐プレス性等に優れた透明導電性基板を有する光電変換素子に用いられる電極基板の製造方法を提供することができる。このような電極基板を用いた光電変換素子は、前記機械的特性の低下に起因する特性低下(例えば、光電変換特性の低下等)を抑制することができ、その結果、耐久性に優れたものとなる。   Further, in the present invention, when forming a transparent conductive film on a substrate made of resin, the substrate is expanded by a method such as heating, and a compressive stress is applied after the film formation, thereby expanding the substrate. The transparent conductive film can follow. Thereby, not only the difference in the thermal expansion coefficient of a transparent conductive film and a base material but damage, such as a crack of a transparent conductive film resulting from every deformation | transformation, can be suppressed. As a result, the manufacturing method of the electrode substrate used for the photoelectric conversion element which has a transparent conductive substrate excellent in heat resistance, chemical resistance, press resistance, etc. can be provided. The photoelectric conversion element using such an electrode substrate can suppress the characteristic deterioration (for example, a photoelectric conversion characteristic fall etc.) resulting from the said mechanical characteristic fall, and, as a result, was excellent in durability It becomes.

以下、本発明に係る透明導電性基板および光電変換素子の一実施形態を図面に基づいて説明する。   Hereinafter, an embodiment of a transparent conductive substrate and a photoelectric conversion element according to the present invention will be described with reference to the drawings.

図1は、本発明に係る透明導電性基板の一実施形態を示す概略断面図である。
この透明導電性基板10は、透明基材11、および、その一方の面11aに形成された透明導電膜12から概略構成されている。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a transparent conductive substrate according to the present invention.
The transparent conductive substrate 10 is generally composed of a transparent base material 11 and a transparent conductive film 12 formed on one surface 11a thereof.

透明基材11としては、光透過性の樹脂からなる基板が用いられ、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材11は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材11としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。   As the transparent base material 11, a substrate made of a light-transmitting resin is used, and any material such as polyethylene terephthalate, polycarbonate, polyethersulfone, etc., which is usually used as a transparent base material for photoelectric conversion elements, can be used. Can do. The transparent substrate 11 is appropriately selected from these in consideration of resistance to the electrolytic solution. Moreover, as a transparent base material 11, the board | substrate which is excellent in the light transmittance as much as possible is preferable on a use, and the board | substrate whose transmittance | permeability is 90% or more is more preferable.

透明導電膜12は、透明基材11に導電性を付与するために、その一方の面11aに形成された薄膜である。本発明では、透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜12は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜12を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、高い透明性と低い抵抗とを兼ね備えるという観点から、ITO、FTOが好ましい。
The transparent conductive film 12 is a thin film formed on one surface 11a in order to impart conductivity to the transparent substrate 11. In the present invention, the transparent conductive film 12 is preferably a thin film made of a conductive metal oxide in order to obtain a structure that does not significantly impair the transparency of the transparent conductive substrate.
Examples of the conductive metal oxide that forms the transparent conductive film 12 include tin-added indium oxide (ITO), fluorine-added tin oxide (FTO), and tin oxide (SnO 2 ). Among these, ITO and FTO are preferable from the viewpoint of having both high transparency and low resistance.

また、透明導電膜12としては、ITOのみからなる単層の膜、ITOからなる膜にTOからなる膜が積層されてなる積層膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜、が好適な構成として挙げられる。このような構成を採ることにより、可視域における光の吸収量が少なく、抵抗が低い透明導電性基板を構成することができる。   Further, as the transparent conductive film 12, a single layer film made only of ITO, a laminated film in which a film made of ITO is laminated on a film made of ITO, or a film made of FTO is laminated on a film made of ITO. The laminated film is a preferable configuration. By adopting such a configuration, it is possible to configure a transparent conductive substrate with a small amount of light absorption in the visible range and a low resistance.

次に、この実施形態の透明導電性基板の製造方法について説明する。
樹脂からなる透明基材11の一面11aを覆うように金属酸化物からなる透明導電膜12を形成し、透明導電性基板10を作製する。
このとき本発明では、透明基材11を延伸状態に保持する工程と、前記延伸状態を保ちつつ、透明基材11の一面に前記透明導電膜12を形成する工程と、前記延伸状態を解除し、透明導電膜12に圧縮応力をかける工程と、を備えることを特徴とする。
Next, the manufacturing method of the transparent conductive substrate of this embodiment is demonstrated.
A transparent conductive film 12 made of a metal oxide is formed so as to cover one surface 11a of the transparent base material 11 made of resin, and the transparent conductive substrate 10 is produced.
At this time, in the present invention, the step of holding the transparent substrate 11 in the stretched state, the step of forming the transparent conductive film 12 on one surface of the transparent substrate 11 while maintaining the stretched state, and the stretching state are released. And applying a compressive stress to the transparent conductive film 12.

樹脂のように熱膨張係数の大きな材料からなる透明基材11上に、より熱膨張係数の小さな透明導電膜12を形成する際に、予め透明基材11を延伸させた状態で成膜することで、成膜後に温度などで基材が膨張しても、透明基材11の熱膨張に透明導電膜12が追従することが可能となり、透明導電膜12の損傷を抑制することができる。これにより透明導電膜12および透明導電性基板10の耐熱性を向上できる。   When forming the transparent conductive film 12 having a smaller thermal expansion coefficient on the transparent base material 11 made of a material having a large thermal expansion coefficient such as a resin, the film is formed in a state in which the transparent base material 11 is previously stretched. Thus, even if the base material expands due to temperature or the like after film formation, the transparent conductive film 12 can follow the thermal expansion of the transparent base material 11, and damage to the transparent conductive film 12 can be suppressed. Thereby, the heat resistance of the transparent conductive film 12 and the transparent conductive substrate 10 can be improved.

予め、透明基材11を延伸させる度合いは、後工程や使用環境で加熱などにより膨張する、あるいは延伸される度合いと同じか、それ以上が好ましい。それ以下の延伸であっても効果は得られるが、その程度は小さい。
具体的には、前記延伸状態における、透明基材11の延伸率が、少なくとも一方向に対して0.08%以上1%以下であることが好ましい。透明基材11の延伸率を0.08%以上とすることで、耐プレス性等の機械的強度を向上することができる。一方、延伸しすぎると、それを解除した際の反りが生じるため、その後の用途を考えると0.3%以下程度が好ましいが、耐熱性、耐薬品性については、透明基材11が復元する範囲(1%以下)であれば問題ない。
The degree to which the transparent substrate 11 is stretched in advance is preferably the same as or higher than the degree to which it is expanded or stretched by heating or the like in a post-process or use environment. Even if it is less than that, the effect can be obtained, but the degree is small.
Specifically, the stretching ratio of the transparent substrate 11 in the stretched state is preferably 0.08% or more and 1% or less with respect to at least one direction. By setting the stretching ratio of the transparent substrate 11 to 0.08% or more, mechanical strength such as press resistance can be improved. On the other hand, if the film is stretched too much, warping occurs when it is released. Therefore, it is preferably about 0.3% or less in consideration of the subsequent use, but the transparent base material 11 is restored with respect to heat resistance and chemical resistance. If it is within the range (1% or less), there is no problem.

透明基材11を延伸状態にする方法としては、特に限定されないが、例えば機械的な引っ張りによる膨張や、加熱などによる熱膨張が考えられる。特に加熱による方法は、透明基材11に無理なく均一な膨張をさせることができ有効な方法と考えられる。また、容易に均一な延伸状態を保つことができる。   A method for bringing the transparent base material 11 into a stretched state is not particularly limited, but for example, expansion due to mechanical pulling or thermal expansion due to heating or the like can be considered. In particular, the method by heating is considered to be an effective method because the transparent substrate 11 can be uniformly expanded without difficulty. Moreover, a uniform stretched state can be easily maintained.

具体的には、スパッタリング法や蒸着法などにより透明導電膜12を成膜する際に、予め、透明基材11を加熱し熱膨張させる。この際の加熱する温度は、透明基材11の耐熱温度よりも、数十度低い温度である必要があり、また、成膜後に要求される透明導電性基板10の耐熱温度よりも高いことが重要である。成膜後に要求される耐熱温度より成膜温度が低くても、耐熱性の向上は見られるがその効果は小さい。なお、透明導電性基板10を光電変換素子などに用いる場合、少なくとも100℃以上での耐熱性が要求されるため、この場合には100℃以上かつ基材の軟化点以下での成膜温度が望ましい。   Specifically, when the transparent conductive film 12 is formed by a sputtering method, a vapor deposition method, or the like, the transparent substrate 11 is heated and thermally expanded in advance. The heating temperature at this time needs to be several tens of degrees lower than the heat resistant temperature of the transparent base material 11 and may be higher than the heat resistant temperature of the transparent conductive substrate 10 required after film formation. is important. Even if the film formation temperature is lower than the heat resistance temperature required after film formation, the heat resistance is improved, but the effect is small. When the transparent conductive substrate 10 is used for a photoelectric conversion element or the like, heat resistance at least at 100 ° C. or higher is required. In this case, the film forming temperature at 100 ° C. or higher and below the softening point of the substrate is required. desirable.

すなわち、延伸状態における透明基材11に熱処理を施し、該熱処理における該透明基材11の温度を100℃以上、該透明基材11の軟化点温度以下とすることが好ましい。本範囲内にすることにより、基材自身が不可逆変形することなく、抵抗値の変動が少ない透明導電膜12を形成することができる。   That is, it is preferable that the transparent substrate 11 in the stretched state is subjected to a heat treatment, and the temperature of the transparent substrate 11 in the heat treatment is set to 100 ° C. or more and not more than the softening point temperature of the transparent substrate 11. By setting it within this range, the transparent conductive film 12 with little variation in resistance value can be formed without causing irreversible deformation of the substrate itself.

透明基材11が加熱され熱膨張した状態で、スパッタリングなどにより透明導電膜12を形成することで、耐熱性の高い透明導電膜12および透明導電性基板10が形成される。成膜方法は上記の他に、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、EB蒸着法などが挙げられる。加熱雰囲気は特に制限されないが、酸化等による膜質低下がある場合には、低酸素雰囲気中、あるいは真空中で行われることが好ましい。   The transparent conductive film 12 and the transparent conductive substrate 10 having high heat resistance are formed by forming the transparent conductive film 12 by sputtering or the like in a state where the transparent base material 11 is heated and thermally expanded. In addition to the above, the film forming method includes a DC magnetron sputtering method, an RF magnetron sputtering method, an EB vapor deposition method, and the like. The heating atmosphere is not particularly limited, but when there is film quality deterioration due to oxidation or the like, it is preferably performed in a low oxygen atmosphere or in a vacuum.

このようにして得られる透明導電性基板10は、透明基材11の熱膨張に透明導電膜が追従することが可能となり、透明導電膜12と透明基材11の熱膨張係数の違いに限らずあらゆる変形に起因する、透明導電膜12のクラック等の損傷の発生を抑制することができる。その結果、耐熱性や耐薬品性、耐プレス性等に優れた透明導電性基板の製造方法を提供することができる。   The transparent conductive substrate 10 thus obtained allows the transparent conductive film to follow the thermal expansion of the transparent base material 11, and is not limited to the difference in the thermal expansion coefficient between the transparent conductive film 12 and the transparent base material 11. Generation | occurrence | production of damages, such as a crack of the transparent conductive film 12, resulting from every deformation | transformation can be suppressed. As a result, a method for producing a transparent conductive substrate excellent in heat resistance, chemical resistance, press resistance and the like can be provided.

図2は、本発明に係る光電変換素子の一実施形態を示す概略断面図である。
図2において、符号10は透明導電性基板、11は透明基材、12は透明導電膜、13は多孔質酸化物半導体層、14は作用極、15は電解質層、16は他の基材、17は導電膜、18は対極、19は封止部材、30は色素増感型光電変換素子をそれぞれ示している。
この光電変換素子30は、作用極14と、対極18と、これらの間に封入された電解質からなる電解質層15と、から概略構成されている。
FIG. 2 is a schematic cross-sectional view showing one embodiment of the photoelectric conversion element according to the present invention.
In FIG. 2, 10 is a transparent conductive substrate, 11 is a transparent substrate, 12 is a transparent conductive film, 13 is a porous oxide semiconductor layer, 14 is a working electrode, 15 is an electrolyte layer, 16 is another substrate, Reference numeral 17 denotes a conductive film, 18 denotes a counter electrode, 19 denotes a sealing member, and 30 denotes a dye-sensitized photoelectric conversion element.
This photoelectric conversion element 30 is generally configured by a working electrode 14, a counter electrode 18, and an electrolyte layer 15 made of an electrolyte enclosed between them.

作用極14は、透明導電性基板10をなす透明導電膜12の一方の面に形成され、増感色素を担持させた多孔質酸化物半導体層13とから構成されている。
対極18は、他の基材16と、この一方の面上に形成された導電膜17とから構成されている。
光電変換素子30において、電解質層15を作用極14と対極18で挟んでなる積層体が、その外周部が封止部材19によって接着、一体化されて光電変換素子として機能する。
The working electrode 14 is formed on one surface of the transparent conductive film 12 constituting the transparent conductive substrate 10 and is composed of a porous oxide semiconductor layer 13 carrying a sensitizing dye.
The counter electrode 18 is composed of another base material 16 and a conductive film 17 formed on this one surface.
In the photoelectric conversion element 30, a laminated body in which the electrolyte layer 15 is sandwiched between the working electrode 14 and the counter electrode 18 is bonded and integrated by a sealing member 19 to function as a photoelectric conversion element.

多孔質酸化物半導体層13は、透明導電膜12の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層13を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。 The porous oxide semiconductor layer 13 is provided on the transparent conductive film 12, and a sensitizing dye is supported on the surface thereof. The semiconductor for forming the porous oxide semiconductor layer 13 is not particularly limited, and any semiconductor can be used as long as it is generally used for forming a porous oxide semiconductor for a photoelectric conversion element. As such a semiconductor, for example, titanium oxide (TiO 2 ), tin oxide (SnO 2 ), tungsten oxide (WO 3 ), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), or the like can be used. .

多孔質酸化物半導体層13を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、加熱処理して空隙を形成させ多孔質化する方法などを適用することができる。   As a method for forming the porous oxide semiconductor layer 13, for example, a dispersion obtained by dispersing commercially available oxide semiconductor fine particles in a desired dispersion medium, or a colloidal solution that can be prepared by a sol-gel method is used as necessary. After adding the desired additives, after applying by a known application method such as screen printing method, ink jet printing method, roll coating method, doctor blade method, spray coating method, etc., heat treatment is performed to form voids and make it porous The method to do can be applied.

増感色素としては、ビピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポルフィリン、フタロシアニンなどの含金属錯体、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。   As the sensitizing dye, a ruthenium complex containing a bipyridine structure or a terpyridine structure as a ligand, a metal-containing complex such as porphyrin or phthalocyanine, or an organic dye such as eosin, rhodamine or merocyanine can be applied. Therefore, those exhibiting behavior suitable for the intended use and the semiconductor used can be selected without particular limitation.

電解質層15は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン液体、酸化物半導体粒子および導電性粒子を含むゲル状の電解質が用いられる。   The electrolyte layer 15 is formed by impregnating a porous oxide semiconductor layer 13 with an electrolytic solution, or after impregnating the porous oxide semiconductor layer 13 with an electrolytic solution, the electrolytic solution is applied to an appropriate gel. Gelled (pseudo-solidified) using an agent and formed integrally with the porous oxide semiconductor layer 13, or a gel electrolyte containing an ionic liquid, oxide semiconductor particles, and conductive particles Is used.

上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキシド誘導体、アミノ酸誘導体などが挙げられる。
As said electrolyte solution, what melt | dissolved electrolyte components, such as an iodine, iodide ion, and tertiary butyl pyridine, in organic solvents, such as ethylene carbonate and methoxyacetonitrile, is used.
Examples of the gelling agent used for gelling the electrolytic solution include polyvinylidene fluoride, a polyethylene oxide derivative, and an amino acid derivative.

上記イオン液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
The ionic liquid is not particularly limited, and examples thereof include room temperature molten salts that are liquid at room temperature and have a quaternized compound having a nitrogen atom as a cation.
Examples of the cation of the room temperature molten salt include quaternized imidazolium derivatives, quaternized pyridinium derivatives, and quaternized ammonium derivatives.
Examples of the anion of the room temperature molten salt include BF 4 , PF 6 , F (HF) n , bistrifluoromethylsulfonylimide [N (CF 3 SO 2 ) 2 ], iodide ions, and the like.
Specific examples of the ionic liquid include salts composed of quaternized imidazolium-based cations and iodide ions or bistrifluoromethylsulfonylimide ions.

上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)、二酸化ケイ素が特に好ましい。この二酸化チタンあるいは二酸化ケイ素の平均粒径は2nm〜1000nm程度が好ましい。
The oxide semiconductor particles are not particularly limited in terms of the type and particle size of the substance, but those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel the electrolytic solution are used. In addition, the oxide semiconductor particles are required to have excellent chemical stability against other coexisting components contained in the electrolyte without reducing the conductivity of the electrolyte. In particular, even when the electrolyte contains a redox pair such as iodine / iodide ions or bromine / bromide ions, the oxide semiconductor particles are preferably those that do not deteriorate due to an oxidation reaction.
Examples of such oxide semiconductor particles include TiO 2 , SiO 2 , SnO 2 , WO 3 , ZnO, Nb 2 O 5 , In 2 O 3 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , SrTiO 3 , One or a mixture of two or more selected from the group consisting of Y 2 O 3 , Ho 2 O 3 , Bi 2 O 3 , CeO 2 , and Al 2 O 3 is preferable. Titanium dioxide fine particles (nanoparticles), silicon dioxide Is particularly preferred. The average particle diameter of the titanium dioxide or silicon dioxide is preferably about 2 nm to 1000 nm.

上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質中で酸化被膜(絶縁被膜)などを形成して導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
As the conductive fine particles, conductive particles such as a conductor and a semiconductor are used. The range of the specific resistance of the conductive particles is preferably 1.0 × 10 −2 Ω · cm or less, and more preferably 1.0 × 10 −3 Ω · cm or less. Further, the type and particle size of the conductive particles are not particularly limited, and those that are excellent in miscibility with an electrolytic solution mainly composed of an ionic liquid and that gel this electrolytic solution are used. Furthermore, it is necessary that the oxide film (insulating film) or the like is not formed in the electrolyte to lower the conductivity, and that the chemical stability against other coexisting components contained in the electrolyte is excellent. In particular, even when the electrolyte contains an oxidation / reduction pair such as iodine / iodide ion or bromine / bromide ion, an electrolyte that does not deteriorate due to oxidation reaction is preferable.
Examples of such conductive fine particles include those composed mainly of carbon, and specific examples include particles such as carbon nanotubes, carbon fibers, and carbon black. All methods for producing these substances are known, and commercially available products can also be used.

他の基材16としては、透明基材11と同様のものや、特に光透過性をもつ必要がないことから金属板、合成樹脂板などが用いられる。
導電膜17は、他の基材16に導電性を付与するために、その一方の面に形成された金属、炭素、導電性高分子などからなる薄膜である。導電膜17としては、例えば炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったものが好適に用いられるが、電極として機能するものであれば特に限定されるものではない。
As the other base material 16, a metal plate, a synthetic resin plate, or the like is used because it is not necessary to have the same material as the transparent base material 11, or particularly need to have light transmittance.
The conductive film 17 is a thin film made of metal, carbon, a conductive polymer, or the like formed on one surface of the other base material 16 in order to impart conductivity. As the conductive film 17, for example, a layer of carbon, platinum, or the like, which has been heat-treated after vapor deposition, sputtering, and application of chloroplatinic acid is preferably used, but is not particularly limited as long as it functions as an electrode. Absent.

封止部材19としては、透明導電性基板10をなす透明基材および対極18をなす他の基材16に対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(三井デュポンポリケミカル社製)などが挙げられる。   The sealing member 19 is not particularly limited as long as it has excellent adhesion to the transparent base material forming the transparent conductive substrate 10 and the other base material 16 forming the counter electrode 18. For example, a carboxylic acid group is included in the molecular chain. Adhesives made of a thermoplastic resin having the above are desirable, and specific examples include Hi Milan (manufactured by Mitsui DuPont Polychemical Co., Ltd.), Binnel (manufactured by Mitsui DuPont Polychemical Co., Ltd.), and the like.

次に、この実施形態の光電変換素子30の製造方法について説明する。
まず、樹脂からなる透明基材11の一面11aを覆うように金属酸化物からなる透明導電膜12を形成し、透明導電性基板10を作製する。
このとき本発明では、前記透明基材11を延伸状態に保持する工程と、前記延伸状態を保ちつつ、前記透明基材11の一面に前記透明導電膜12を形成する工程と、前記延伸状態を解除し、前記透明導電膜12に圧縮応力をかける工程と、を備えることを特徴とする。
Next, the manufacturing method of the photoelectric conversion element 30 of this embodiment is demonstrated.
First, the transparent conductive film 12 made of a metal oxide is formed so as to cover the one surface 11a of the transparent base material 11 made of resin, and the transparent conductive substrate 10 is produced.
At this time, in the present invention, the step of holding the transparent base material 11 in a stretched state, the step of forming the transparent conductive film 12 on one surface of the transparent base material 11 while maintaining the stretched state, and the stretched state include And a step of applying a compressive stress to the transparent conductive film 12.

上述したように、樹脂のように熱膨張係数の大きな材料からなる透明基材11上に、より熱膨張係数の小さな透明導電膜12を形成する際に、予め透明基材11を延伸させた状態で成膜することで、成膜後に温度などで基材が膨張しても、透明基材11の膨張に透明導電膜12が追従することが可能となる。これにより透明導電膜12の損傷を抑制することができる。その結果、透明導電膜12および透明導電性基板10の耐熱性、耐薬品性、耐プレス性等の機械的特性を向上できる。   As described above, when the transparent conductive film 12 having a smaller thermal expansion coefficient is formed on the transparent base material 11 made of a material having a large thermal expansion coefficient such as a resin, the transparent base material 11 is previously stretched. By forming the film, the transparent conductive film 12 can follow the expansion of the transparent substrate 11 even if the substrate expands due to temperature or the like after the film formation. Thereby, damage to the transparent conductive film 12 can be suppressed. As a result, mechanical properties such as heat resistance, chemical resistance, and press resistance of the transparent conductive film 12 and the transparent conductive substrate 10 can be improved.

次いで、透明導電膜12を覆うように、多孔質酸化物半導体層13を形成する。この多孔質酸化物半導体層13の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電膜12の表面に塗布するものである。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電膜12上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電膜12の上を移動させる方法が挙げられる。
Next, the porous oxide semiconductor layer 13 is formed so as to cover the transparent conductive film 12. The formation of the porous oxide semiconductor layer 13 mainly includes a coating process and a drying / firing process.
The coating process is a process in which, for example, a paste of TiO 2 colloid obtained by mixing TiO 2 powder and a surfactant at a predetermined ratio is applied to the surface of the transparent conductive film 12 that has been made hydrophilic. At this time, as a coating method, a pressing means is used so that the applied colloid maintains a uniform thickness while pressing the colloid on the transparent conductive film 12 using a pressing means (for example, a glass rod). A method of moving on the transparent conductive film 12 is exemplified.

乾燥・焼成工程とは、例えば大気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ30分間、150℃の温度にて焼成する方法が挙げられる。   The drying / firing process includes, for example, a method in which the coated colloid is allowed to stand at room temperature for approximately 30 minutes in the atmosphere, and then dried, and then fired at a temperature of 150 ° C. for approximately 30 minutes using an electric furnace. It is done.

次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層13に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN719粉末を加えて調整したものを予め準備しておく。
シャーレ状の容器内に入れた色素溶媒に、別途電気炉にて120〜150℃程度に加熱処理した多孔質酸化物半導体層13を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層13は、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層13を透明基板上に設けてなる作用極14(窓極とも呼ぶ)を得る。
このようにして得られる電極基板は、透明導電膜と基材の熱膨張係数の違いに起因する、透明導電膜のクラック等の損傷の発生を抑制することができる。これにより、耐熱性、耐薬品性(電解液)、耐プレス性等の機械的特性が向上したものとなる。
Next, the dye is supported on the porous oxide semiconductor layer 13 formed by the coating process and the drying / firing process.
As the dye solution for supporting the dye, for example, a solution prepared by adding an extremely small amount of N719 powder to a solvent of acetonitrile and t-butanol in a volume ratio of 1: 1 is prepared in advance.
The porous oxide semiconductor layer 13 that has been separately heated in an electric furnace at about 120 to 150 ° C. is immersed in a dye solvent placed in a petri dish-like container, and immersed in a dark place for a whole day and night (approximately 20 hours). To do. Thereafter, the porous oxide semiconductor layer 13 taken out from the dye solution is washed using a mixed solution of acetonitrile and t-butanol.
Through the above-described steps, a working electrode 14 (also referred to as a window electrode) obtained by providing a porous oxide semiconductor layer 13 made of a dye-supported TiO 2 thin film on a transparent substrate is obtained.
Thus, the electrode substrate obtained can suppress generation | occurrence | production of damages, such as a crack of a transparent conductive film resulting from the difference in the thermal expansion coefficient of a transparent conductive film and a base material. Thereby, mechanical properties such as heat resistance, chemical resistance (electrolytic solution), and press resistance are improved.

一方、別の基材(必ずしも透明である必要はない)の一方の面に、例えば白金からなる導電膜17を蒸着法などにより形成してなる対極18を設ける。この対極18には、その厚み方向に貫通する穴を少なくとも1ヶ所設ける。この穴は、後述する電解液を注入する際の注入口である。   On the other hand, a counter electrode 18 formed by forming a conductive film 17 made of, for example, platinum by an evaporation method or the like is provided on one surface of another base material (not necessarily transparent). The counter electrode 18 is provided with at least one hole penetrating in the thickness direction. This hole is an inlet for injecting an electrolyte solution to be described later.

色素担持させたTiO薄膜からなる多孔質酸化物半導体層13が上方をなすように作用極14を配置し、この多孔質酸化物半導体層13と導電膜17が対向するように、対極18を作用極14に重ねて設けることにより積層体が形成される。その後、積層体の側部、すなわち作用極14と対極18の重なった外周付近を、例えばハイミラン(三井デュポンポリケミカル社製)、バイネル(三井デュポンポリケミカル社製)からなる封止部材19で封止する。 The working electrode 14 is disposed so that the porous oxide semiconductor layer 13 made of a dye-supported TiO 2 thin film is located above, and the counter electrode 18 is disposed so that the porous oxide semiconductor layer 13 and the conductive film 17 face each other. A laminated body is formed by being provided over the working electrode 14. Thereafter, the side part of the laminate, that is, the vicinity of the outer periphery where the working electrode 14 and the counter electrode 18 overlap each other is sealed with a sealing member 19 made of, for example, High Milan (Mitsui DuPont Polychemical Co., Ltd.) or Binell (Mitsui DuPont Polychemical Co., Ltd.). Stop.

封止部材19が固化した後、積層体の空隙、すなわち作用極14と対極18と封止部材19で囲まれた空間内に、対極18に設けた注入口から電解質溶液を注入する。これにより色素増感型の光電変換素子30が形成される。   After the sealing member 19 is solidified, the electrolyte solution is injected from the inlet provided in the counter electrode 18 into the gap of the laminate, that is, the space surrounded by the working electrode 14, the counter electrode 18, and the sealing member 19. Thereby, the dye-sensitized photoelectric conversion element 30 is formed.

このようにして得られる光電変換素子30は、作用極14において、耐熱性、耐薬品性(例えば、電解液)、耐プレス性等の機械的特性が向上した透明導電性基板10を用いているので、該機械的特性の低下に起因する特性低下(例えば、抵抗値の上昇ひいては光電変換特性の低下等)を抑制することができ、その結果、耐久性に優れたものとなる。   The photoelectric conversion element 30 thus obtained uses the transparent conductive substrate 10 with improved mechanical properties such as heat resistance, chemical resistance (for example, electrolytic solution), press resistance, and the like in the working electrode 14. Therefore, it is possible to suppress the characteristic deterioration (for example, the increase of the resistance value and the decrease of the photoelectric conversion characteristic) due to the deterioration of the mechanical characteristics, and as a result, the durability is excellent.

以上、本発明の透明導電性基板および光電変換素子について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。   The transparent conductive substrate and the photoelectric conversion element of the present invention have been described above. However, the present invention is not limited to the above example, and can be appropriately changed as necessary.

図3は、本実施例で用いたスパッタリングによる成膜装置である。
この成膜装置50は、チャンバ51内に、支持手段52と、該支持手段52の外側面部に対向してそれぞれ設けられた加熱装置53と、第一カソード54と、第二カソード55と、表面処理装置56と、を備える。
支持手段52は、カルーセル型基材で、図3では、略八角柱形状をしており、この外周側面部に被処理体である基材が取り付けられる。支持手段52は、内蔵されている図示しない回転機構により、成膜中は図中の矢印方向に一定の自転速度で回転する。
加熱装置53は、基材を所定の温度に加熱、保持しながら薄膜を形成するため、基材を加熱する。加熱装置53は、例えば赤外線ランプヒータである。
FIG. 3 shows a film forming apparatus by sputtering used in this example.
The film forming apparatus 50 includes a support unit 52, a heating unit 53 provided facing the outer surface of the support unit 52, a first cathode 54, a second cathode 55, a surface, and a chamber 51. And a processing device 56.
The support means 52 is a carousel-type base material, which has a substantially octagonal prism shape in FIG. 3, and a base material that is an object to be processed is attached to the outer peripheral side surface portion. The support means 52 is rotated at a constant rotation speed in the direction of the arrow in the figure during film formation by a built-in rotation mechanism (not shown).
The heating device 53 heats the base material in order to form a thin film while heating and holding the base material at a predetermined temperature. The heating device 53 is, for example, an infrared lamp heater.

第一カソード(ITOターゲット)54は、支持手段の外側面部に対向して設けられ、ターゲットをスパッタして被処理体の一面上にITO薄膜を形成する。この装置では、通常DCスパッタ法で成膜する代わりに、RFカソードを使用している。
第二カソード(TOターゲット)55は、支持手段の外側面部に対向して設けられ、ターゲットをスパッタして基材の一面上にTO薄膜を形成する。
表面処理装置56は、形成された薄膜に対して、例えばプラズマ洗浄等の表面処理を施す。
また、チャンバ51内は、図示しない真空排気装置により、真空状態とされている。
The first cathode (ITO target) 54 is provided to face the outer surface portion of the support means, and the target is sputtered to form an ITO thin film on one surface of the object to be processed. In this apparatus, an RF cathode is usually used instead of film formation by DC sputtering.
The second cathode (TO target) 55 is provided to face the outer surface portion of the support means, and forms a TO thin film on one surface of the substrate by sputtering the target.
The surface treatment device 56 performs surface treatment such as plasma cleaning on the formed thin film.
The chamber 51 is evacuated by a vacuum exhaust device (not shown).

このような成膜装置50を用いて成膜する場合、まず被処理体である基材を支持手段52の外側面部に設置する。
その後、チャンバ51内を真空排気装置により、真空引きを行う。
成膜前に加熱装置(赤外線ランプヒータ)52を用いて、基材の表面温度を予め昇温しておく。
チャンバ51内にプラズマガスを導入し、支持手段52を一定の自転速度で回転させながら、スパッタリングにより基材の一面にITO膜を成膜する。
In the case of forming a film using such a film forming apparatus 50, first, a base material that is an object to be processed is placed on the outer surface portion of the support means 52.
Thereafter, the inside of the chamber 51 is evacuated by a vacuum exhaust device.
Prior to film formation, the surface temperature of the substrate is raised in advance using a heating device (infrared lamp heater) 52.
An ITO film is formed on one surface of the substrate by sputtering while introducing a plasma gas into the chamber 51 and rotating the support means 52 at a constant rotation speed.

すなわち、この成膜装置50では、第一カソード(ITOターゲット)54がRFスパッタされている状態のプラズマ空間内を、基材を設置したカルーセル型の支持手段52が、一定の自転速度で回転しつつ通過する際に、基材上に極薄のITO膜が形成される。次に積層形成されるまでに、実質的な成膜時間の3〜4倍程度の時間、高真空中を通過し、次の成膜前に加熱装置52により再加熱される。このプロセスを繰り返すことで、極薄のITO膜が複数積層されて厚膜のITO膜が形成される。
例えば支持手段52は12秒で一回転し、350μm/分で成膜が行われる。
That is, in this film forming apparatus 50, the carousel type support means 52 provided with the base material rotates at a constant rotation speed in the plasma space where the first cathode (ITO target) 54 is RF-sputtered. In passing, an extremely thin ITO film is formed on the substrate. Next, the film is passed through a high vacuum for about 3 to 4 times as long as the actual film formation time, and is reheated by the heating device 52 before the next film formation. By repeating this process, a plurality of ultrathin ITO films are stacked to form a thick ITO film.
For example, the support means 52 rotates once in 12 seconds, and film formation is performed at 350 μm / min.

以上のような成膜装置を用いて透明導電性基板を作製した。
(実施例1)
透明基材には厚さ188μmのポリエチレンナフタレート(PEN)基板(線膨張係数:約20×10−6/K)を用いた。
この基材をスパッタチャンバにセットし真空引きを行った。スパッタ装置にはバッチ式のカルーセル型スパッタ装置を用いた。成膜前にスパッタチャンバに設置してある赤外線ランプヒータを用いて、PEN基板の表面温度を150℃に予め昇温した。スパッタのプラズマガスにはアルゴンを用い、7×10−3Torrの真空下で、カルーセルを回転させながら、スパッタリングにより基材の一面に透明導電膜としてITO膜(線膨張係数:約7.2×10−6/K)を成膜し、透明導電性基板を作製した。
このときの成膜条件を表1に示す。
A transparent conductive substrate was produced using the film forming apparatus as described above.
Example 1
As the transparent substrate, a 188 μm thick polyethylene naphthalate (PEN) substrate (linear expansion coefficient: about 20 × 10 −6 / K) was used.
The substrate was set in a sputtering chamber and evacuated. A batch type carousel type sputtering apparatus was used as the sputtering apparatus. Prior to film formation, the surface temperature of the PEN substrate was raised to 150 ° C. in advance using an infrared lamp heater installed in the sputtering chamber. Argon is used as a plasma gas for sputtering, and an ITO film (linear expansion coefficient: about 7.2 ×) is formed on one surface of the substrate by sputtering while rotating the carousel under a vacuum of 7 × 10 −3 Torr. 10 −6 / K) to form a transparent conductive substrate.
The film forming conditions at this time are shown in Table 1.

Figure 0005225570
Figure 0005225570

(実施例2〜実施例5)
成膜温度を50℃(実施例2)、80℃(実施例3)、100℃(実施例4)、120℃(実施例5)としたこと以外は実施例1と同様にして成膜を行い、透明導電性基板を作製した。
(Example 2 to Example 5)
The film formation was performed in the same manner as in Example 1 except that the film formation temperature was 50 ° C. (Example 2), 80 ° C. (Example 3), 100 ° C. (Example 4), and 120 ° C. (Example 5). And a transparent conductive substrate was produced.

(実施例6〜実施例10)
基材に、ポリエチレンテレフタレート(PET)(実施例6)、ポリカーボネート(PC)(実施例7)、ポリアリレート(PAR)(実施例8)、ポリシクロオレフィン(PCO)(実施例9)、ポリメチルメタクリレート(PMMA)(実施例10)を用いたこと以外は実施例1と同様にして成膜を行い、透明導電性基板を作製した。
(Example 6 to Example 10)
Polyethylene terephthalate (PET) (Example 6), polycarbonate (PC) (Example 7), polyarylate (PAR) (Example 8), polycycloolefin (PCO) (Example 9), polymethyl Except for using methacrylate (PMMA) (Example 10), film formation was performed in the same manner as in Example 1 to produce a transparent conductive substrate.

(実施例11)
実施例1と同様にPEN基板にITO膜を成膜後、同様に基板を加熱した状態で、TO(酸化スズ)膜を積層形成し、透明導電性基板を作製した。
(Example 11)
After forming an ITO film on the PEN substrate in the same manner as in Example 1, a TO (tin oxide) film was laminated and formed in the same manner while the substrate was heated to produce a transparent conductive substrate.

(比較例1〜比較例6)
成膜温度を室温(24℃)とし、基材に、ポリエチレンナフタレート(PEN)(比較例1)、ポリエチレンテレフタレート(PET)(比較例2)、ポリカーボネート(PC)(比較例3)、ポリアリレート(PAR)(比較例4)、ポリシクロオレフィン(PCO)(比較例5)、ポリメチルメタクリレート(PMMA)(比較例6)を用いたこと以外は実施例1と同様にして成膜を行い、透明導電性基板を作製した。
(Comparative Examples 1 to 6)
The film forming temperature was room temperature (24 ° C.), and the base material was polyethylene naphthalate (PEN) (Comparative Example 1), polyethylene terephthalate (PET) (Comparative Example 2), polycarbonate (PC) (Comparative Example 3), polyarylate (PAR) (Comparative Example 4), polycycloolefin (PCO) (Comparative Example 5), polymethyl methacrylate (PMMA) (Comparative Example 6) was used, and film formation was performed in the same manner as in Example 1, A transparent conductive substrate was produced.

(比較例7〜比較例8)
基材に、ソーダガラスを用いて、成膜温度を室温(比較例7)と120℃(比較例8)とし、他は実施例1と同様にして成膜を行い、透明導電性基板を作製した。
(Comparative Example 7 to Comparative Example 8)
Using soda glass as the base material, the film formation temperature was set to room temperature (Comparative Example 7) and 120 ° C. (Comparative Example 8), and the film formation was performed in the same manner as in Example 1 to produce a transparent conductive substrate. did.

以上のようにしてソーダガラス基材上に形成された透明導電膜のXRD解析結果を図4に示す。ここで、図4の各スペクトルの右側部に示した温度は、基板の加熱温度を表す。
図4から明らかなように、基板の加熱温度が160℃以下の場合、特定の2θにおいて強い回折ピークが殆ど観測されないことから、ITO膜の結晶化が殆ど生じないことが分かった。なお、本例ではプラズマガスとして酸素を導入していないので、酸素欠損の状態になっており、キャリア濃度が通常よりも高くなっている。
The XRD analysis result of the transparent conductive film formed on the soda glass substrate as described above is shown in FIG. Here, the temperature shown on the right side of each spectrum in FIG. 4 represents the heating temperature of the substrate.
As is apparent from FIG. 4, when the substrate heating temperature is 160 ° C. or lower, a strong diffraction peak is hardly observed at a specific 2θ, so that it is found that the ITO film is hardly crystallized. In this example, since oxygen is not introduced as the plasma gas, it is in an oxygen deficient state and the carrier concentration is higher than usual.

また、得られた透明導電性基板について、耐熱性、耐薬品性、耐プレス性および全光線透過率について評価を行った。以下に、各評価条件について述べる。
耐熱性とは、150℃で1時間加熱を5サイクル行った後の比抵抗の測定値である。
耐薬品性とは、エタノールとアセトニトリルに、それぞれ40℃、13時間浸漬した後の比抵抗の測定値である。
また、耐プレス性とは、室温にて、1分間、100MPaプレス後に、比抵抗が10%以上、上昇したものを不良(×印)、それ以外を良(○印)として評価を行った。
これらの評価結果を、基材の線膨張係数と併せて表2に示す。
Moreover, about the obtained transparent conductive substrate, heat resistance, chemical resistance, press resistance, and total light transmittance were evaluated. Each evaluation condition is described below.
The heat resistance is a measured value of specific resistance after 5 cycles of heating at 150 ° C. for 1 hour.
Chemical resistance is a measured value of specific resistance after being immersed in ethanol and acetonitrile for 13 hours at 40 ° C., respectively.
In addition, the press resistance was evaluated by determining that the specific resistance increased by 10% or more after pressing at 100 MPa for 1 minute at room temperature, and that the others were defective (x mark), and the others were good (◯ mark).
These evaluation results are shown in Table 2 together with the linear expansion coefficient of the substrate.

Figure 0005225570
Figure 0005225570

表2から明らかなように、室温で透明導電膜を形成した比較例1〜5では、加熱後や薬品浸漬後において、抵抗値が大幅に上昇してしまっている。これは、透明導電膜にクラック等の損傷が発生してしまっているためと考えられる。また、耐プレス性においても良好な結果が得られていない。   As is clear from Table 2, in Comparative Examples 1 to 5 in which the transparent conductive film was formed at room temperature, the resistance value was significantly increased after heating or after chemical immersion. This is presumably because damage such as cracks has occurred in the transparent conductive film. Also, good results have not been obtained in press resistance.

これに対し、基材を加熱して熱膨張させた状態で透明導電膜を形成した実施例では、加熱後や薬品浸漬後においても、抵抗値の上昇は小さくなる。また、耐プレス性においても良好な結果が得られている。特に、基材の加熱温度が100℃以上で、基材の膨張率(延伸率)が0.08%以上のときに、特に良好な結果が得られていることがわかる。   On the other hand, in the Example which formed the transparent conductive film in the state which heated the base material and was thermally expanded, the raise of a resistance value becomes small after a heating or chemical | medical immersion. Also, good results have been obtained in press resistance. In particular, it can be seen that particularly good results are obtained when the heating temperature of the substrate is 100 ° C. or higher and the expansion coefficient (stretching rate) of the substrate is 0.08% or higher.

例えば、基板を予め加熱することで膨張させておき、基板に比べて線膨張係数の大きな膜をその上に成膜した場合、成膜した後に室温まで冷却すると圧縮応力が働く。基板が樹脂であるなど弾性の大きな材料では、圧縮応力の具体的な値を測定することは極めて困難であることから、基板、および膜のそれぞれの線膨張係数を指標にして成膜条件を求めると簡便である。このときの膨張率(延伸率)の差(Δ1)は一般的に、次の(1)式で表される。ここで、βTFは膜の線膨張係数、βSUB は基板の線膨張係数、TDEP は成膜温度、TRTは室温、をそれぞれ表す。 For example, when the substrate is expanded in advance by heating and a film having a larger linear expansion coefficient than that of the substrate is formed thereon, a compressive stress is applied when the film is cooled to room temperature after film formation. Since it is extremely difficult to measure a specific value of compressive stress with a highly elastic material such as a resin substrate, the film formation conditions are determined using the linear expansion coefficients of the substrate and the film as indices. And simple. The difference (Δ1) in the expansion coefficient (stretch ratio) at this time is generally expressed by the following equation (1). Here, β TF represents the linear expansion coefficient of the film, β SUB represents the linear expansion coefficient of the substrate, T DEP represents the film forming temperature, and T RT represents the room temperature.

Figure 0005225570
Figure 0005225570

表2に挙げた各種樹脂基板、および膜材料である酸化インジウムの線膨張係数の値から、(1)式を用いて膨張率(延伸率)の差を算出すると、例えばPEN基板を用いた場合、膨張率(延伸率)の差が0.08%以上になる温度条件で基板を予め膨張させ成膜した場合、耐プレス性の改善が認められた。より線膨張係数の大きなPC基板を用いた場合には、0.65%まで膨張させて成膜しても同様に耐プレス性は維持される。加熱による膨張では、基板の耐熱温度以上に加熱することはできないため、実質的に膨張率(延伸率)の差が1%以下の範囲で膨張させれば上記の耐プレス性が得られる。また、加熱以外の方法で膨張率(延伸率)の差が1%以上に基板を膨張させることも可能であるが、基板の不可逆的塑性変形が起こる虞もあり、できる限り小さな膨張率(延伸率)の差であることが望ましいため、さらに大きく膨張させることは実質的に意味はない。   When the difference in expansion coefficient (stretch ratio) is calculated from the various resin substrates listed in Table 2 and the value of the linear expansion coefficient of indium oxide, which is a film material, using the formula (1), for example, when a PEN substrate is used When the substrate was previously expanded under the temperature condition where the difference in expansion rate (stretching rate) was 0.08% or more, film formation was improved. When a PC substrate having a larger linear expansion coefficient is used, press resistance is similarly maintained even when the film is expanded to 0.65%. In the expansion by heating, the substrate cannot be heated to a temperature higher than the heat resistant temperature of the substrate. Therefore, if the difference in expansion coefficient (stretching ratio) is substantially expanded within a range of 1% or less, the above press resistance can be obtained. In addition, it is possible to expand the substrate to a difference in expansion coefficient (stretching ratio) of 1% or more by a method other than heating, but there is a possibility that the irreversible plastic deformation of the substrate may occur, and the expansion coefficient (stretching) is as small as possible. Since it is desirable to have a difference in the ratio), it is substantially meaningless to expand it further.

逆に、この各種樹脂基板上に形成した膜を耐熱試験温度まで加熱したときの、基板と膜の膨張率(延伸率)の差(Δ2)は、次の(2)式で表される。ここで、βTFは膜の線膨張係数、βSUB は基板の線膨張係数、TDEP は成膜温度、TTESTは試験温度、をそれぞれ表す。 Conversely, the difference (Δ2) in the expansion coefficient (stretching ratio) between the substrate and the film when the film formed on the various resin substrates is heated to the heat resistance test temperature is expressed by the following equation (2). Here, β TF represents the linear expansion coefficient of the film, β SUB represents the linear expansion coefficient of the substrate, T DEP represents the film formation temperature, and T TEST represents the test temperature.

Figure 0005225570
Figure 0005225570

このような耐熱試験温度まで加熱したとき、膜には引張応力が働き、膨張率(延伸率)の差が大きい場合には破断することになる。同様に、(1)式を用いて膨張率(延伸率)の差を算出すると、例えばPEN基板を用いた場合、膨張率(延伸率)の差が0.08%以上になる温度条件で基板を予め膨張させ成膜した場合、(2)式から算出される膨張率(延伸率)の差は0.07%未満になり、150℃の耐熱性試験で抵抗値の上昇が観測されなかった。より線膨張率の大きなPC基板を用いた場合には、0.65%まで膨張させて成膜しても同様に耐熱性は維持される。加熱による膨張では、基板の耐熱温度以上に加熱することはできないため、実質的に膨張率(延伸率)の差が1%以下の範囲で膨張させれば上記の耐熱性が得られる。また、加熱以外の方法で膨張率(延伸率)の差が1%以上に基板を膨張させることも可能であるが、基板の不可逆的塑性変形が起こる虞もあり、できる限り小さな膨張率(延伸率)の差であることが望ましいため、さらに大きく膨張させることは実質的に意味はない。   When heated to such a heat resistance test temperature, tensile stress acts on the film, and if the difference in expansion coefficient (stretch ratio) is large, the film will break. Similarly, when the difference in expansion coefficient (stretching ratio) is calculated using the formula (1), for example, when a PEN substrate is used, the substrate is used under a temperature condition where the difference in expansion coefficient (stretching ratio) is 0.08% or more. When the film was expanded in advance, the difference in expansion coefficient (stretching ratio) calculated from equation (2) was less than 0.07%, and no increase in resistance value was observed in the 150 ° C. heat resistance test. . When a PC substrate having a larger linear expansion coefficient is used, the heat resistance is similarly maintained even when the film is expanded to 0.65%. In the expansion by heating, the substrate cannot be heated to a temperature higher than the heat resistant temperature of the substrate. Therefore, if the difference in expansion coefficient (stretching ratio) is substantially expanded within a range of 1% or less, the above heat resistance can be obtained. In addition, it is possible to expand the substrate to a difference in expansion coefficient (stretching ratio) of 1% or more by a method other than heating, but there is a possibility that the irreversible plastic deformation of the substrate may occur, and the expansion coefficient (stretching) is as small as possible. Since it is desirable to have a difference in the ratio), it is substantially meaningless to expand it further.

本発明は、透明導電性基板および該透明導電性基板を備えた光電変換素子に適用可能である。   The present invention is applicable to a transparent conductive substrate and a photoelectric conversion element provided with the transparent conductive substrate.

本発明に係る透明導電性基板の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the transparent conductive substrate which concerns on this invention. 本発明に係る光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element which concerns on this invention. 実施例で用いたスパッタ成膜装置の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the sputter film deposition apparatus used in the Example. 実施例で形成された透明導電膜のXRD測定結果を示す図である。It is a figure which shows the XRD measurement result of the transparent conductive film formed in the Example.

符号の説明Explanation of symbols

10 透明導電性基板、11 透明基材、12 透明導電膜、13 多孔質酸化物半導体層、14 作用極(窓極)、15 電解質層、16 他の基材、17 導電膜、18 対極、19 封止部材、30 光電変換素子。   DESCRIPTION OF SYMBOLS 10 Transparent conductive substrate, 11 Transparent base material, 12 Transparent electrically conductive film, 13 Porous oxide semiconductor layer, 14 Working electrode (window electrode), 15 Electrolyte layer, 16 Other base materials, 17 Conductive film, 18 Counter electrode, 19 Sealing member, 30 photoelectric conversion element.

Claims (1)

増感色素を担持させた多孔質酸化物半導体層を有し、窓極として機能する第一電極基板と、少なくとも一部に電解質層を介して該第一電極基板と対向して配される第二電極基板とを備え、前記第一電極基板および前記第二電極基板の少なくとも一方は、樹脂からなる基材と該基材の一面に金属酸化物からなる透明導電膜を配してなる透明導電性基板を有する光電変換素子に用いられる電極基板の製造方法であって、
前記基材を加熱して膨張させることにより、前記基材を延伸状態に保持する工程と、
前記延伸状態を保ちつつ、前記基材の一面に前記透明導電膜を形成する工程と、
前記延伸状態を解除し、前記透明導電膜に圧縮応力をかける工程と、
前記透明導電膜の表面に、多孔質酸化物半導体を含有するペーストを塗布する工程と、
前記ペーストを焼成する工程と、を備え、
前記延伸状態における、前記基材の延伸率が、少なくとも一方向に対して0.08%以上1%以下であり、
前記加熱における前記基材の温度を、100℃以上かつ該基材の軟化点温度以下とすることを特徴とする電極基板の製造方法。
A first electrode substrate having a porous oxide semiconductor layer carrying a sensitizing dye and functioning as a window electrode; and a first electrode substrate disposed at least partially opposite the first electrode substrate with an electrolyte layer interposed therebetween. A transparent conductive film comprising a base material made of a resin and a transparent conductive film made of a metal oxide on one surface of the base material. An electrode substrate manufacturing method used for a photoelectric conversion element having a conductive substrate,
Maintaining the substrate in a stretched state by heating and expanding the substrate; and
Forming the transparent conductive film on one surface of the substrate while maintaining the stretched state;
Releasing the stretched state and applying a compressive stress to the transparent conductive film;
Applying a paste containing a porous oxide semiconductor to the surface of the transparent conductive film;
Baking the paste, and
In the stretched state, the stretching ratio of the base material is 0.08% or more and 1% or less with respect to at least one direction,
The method for producing an electrode substrate, wherein the temperature of the base material in the heating is set to 100 ° C. or higher and not higher than a softening point temperature of the base material .
JP2006285178A 2006-10-19 2006-10-19 Electrode substrate manufacturing method Active JP5225570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285178A JP5225570B2 (en) 2006-10-19 2006-10-19 Electrode substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285178A JP5225570B2 (en) 2006-10-19 2006-10-19 Electrode substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2008103208A JP2008103208A (en) 2008-05-01
JP5225570B2 true JP5225570B2 (en) 2013-07-03

Family

ID=39437384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285178A Active JP5225570B2 (en) 2006-10-19 2006-10-19 Electrode substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP5225570B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023402B2 (en) * 2010-12-27 2016-11-09 日東電工株式会社 Transparent conductive film and method for producing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206008A (en) * 1982-05-26 1983-12-01 コニカ株式会社 Method of forming transparent conductive laminate
JPS61117589A (en) * 1984-11-13 1986-06-04 セイコーエプソン株式会社 Electrode film formation of substrate for display panel
JPH11279756A (en) * 1998-03-26 1999-10-12 Okura Ind Co Ltd Formation of transparent conductive film
JP4015861B2 (en) * 2002-02-21 2007-11-28 日東電工株式会社 Method for producing transparent conductive laminate
JP4260494B2 (en) * 2002-02-26 2009-04-30 株式会社フジクラ Manufacturing method of transparent electrode substrate, manufacturing method of photoelectric conversion element, and manufacturing method of dye-sensitized solar cell
JP4225155B2 (en) * 2003-08-07 2009-02-18 住友金属鉱山株式会社 Transparent conductive film, method for manufacturing the same, and display device
JP4601283B2 (en) * 2003-11-07 2010-12-22 大日本印刷株式会社 Electrode substrate for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell
JP4628728B2 (en) * 2004-09-17 2011-02-09 株式会社フジクラ Transparent conductive substrate and dye-sensitized solar cell provided with the same
JP2006147235A (en) * 2004-11-17 2006-06-08 Central Glass Co Ltd Film with indium tin oxide transparent conductive membrane
JP2007087866A (en) * 2005-09-26 2007-04-05 Fujikura Ltd Transparent conductive substrate and its manufacturing method, and photoelectric transfer element
JP2007234397A (en) * 2006-03-01 2007-09-13 Ulvac Japan Ltd Transparent electrode and its forming method
JP2008077942A (en) * 2006-09-20 2008-04-03 Fujikura Ltd Transparent conductive substrate, its manufacturing method, and photoelectric conversion element

Also Published As

Publication number Publication date
JP2008103208A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
KR101144038B1 (en) Curved dye-sensitized solar cell and method for manufacturing the same
AU2008321843B2 (en) Electrode substrate for photoelectric conversion element, method of manufacturing electrode substrate for photoelectric conversion element, and photoelectric conversion element
JP2003323818A (en) Base material for transparent electrode
US20110240112A1 (en) Flexible dye-sensitized solar cell and preparation method thereof
EP2296215A1 (en) Dye-sensitized solar cell
KR20180083823A (en) Perovskite based solar cell and method of manufacturing the same
JP5338897B2 (en) Dye adsorption method and adsorption apparatus for photosensitized dye, and method and apparatus for producing dye-sensitized solar cell
WO2014003294A1 (en) Technique for producing perovskite-based mesoporous thin film solar cell
KR20150100216A (en) Solid Thin Film Solar Cell Based on Perovskite Sensitizer and Manufacturing Method Thereof
Chen Characterization of porous WO3 electrochromic device by electrochemical impedance spectroscopy
JP4948815B2 (en) Method for producing dye-sensitized solar cell
JP5095126B2 (en) Photoelectric conversion element
JP4310961B2 (en) Dye-sensitized solar cell
JP5005206B2 (en) Working electrode of dye-sensitized solar cell, dye-sensitized solar cell including the same, and method for producing working electrode of dye-sensitized solar cell
JP2008077942A (en) Transparent conductive substrate, its manufacturing method, and photoelectric conversion element
JP5225570B2 (en) Electrode substrate manufacturing method
JP2004319130A (en) Manufacturing method of photoelectric transfer device, photoelectric transfer element, manufacturing method of electronic device, electronic device and forming method of semiconductor particulate layer and laminate structure
JP5160045B2 (en) Photoelectric conversion element
TWI739419B (en) Manufacturing method of electrochromic material
JP2007087866A (en) Transparent conductive substrate and its manufacturing method, and photoelectric transfer element
JP2009145458A (en) Electrochromic device and its manufacturing method
JP5422960B2 (en) Oxide semiconductor electrode for photoelectric conversion, method for producing the same, and dye-sensitized solar cell including the same
JP4628728B2 (en) Transparent conductive substrate and dye-sensitized solar cell provided with the same
KR20140115406A (en) Method of preparing zinc oxide nanorod composite, zinc oxide nanorod composite prepared from the same, and dye sensitized solar cell including the zinc oxide nanorod composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130313

R151 Written notification of patent or utility model registration

Ref document number: 5225570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250