TWI728233B - 成膜裝置 - Google Patents

成膜裝置 Download PDF

Info

Publication number
TWI728233B
TWI728233B TW107107832A TW107107832A TWI728233B TW I728233 B TWI728233 B TW I728233B TW 107107832 A TW107107832 A TW 107107832A TW 107107832 A TW107107832 A TW 107107832A TW I728233 B TWI728233 B TW I728233B
Authority
TW
Taiwan
Prior art keywords
gas
separation
processing
rotating table
turntable
Prior art date
Application number
TW107107832A
Other languages
English (en)
Other versions
TW201901739A (zh
Inventor
佐佐木優
高橋宏輔
早瀨文朗
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201901739A publication Critical patent/TW201901739A/zh
Application granted granted Critical
Publication of TWI728233B publication Critical patent/TWI728233B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

提供一種可有效果地分離旋轉台上方側所形成之第1、第2處理區域氛圍的成膜裝置。
成膜處理裝置會對被設置於真空容器內,並載置於旋轉之旋轉台上的基板供給處理氣體,以進行成膜處理。旋轉台上方係設置有藉由分離區域來互相分離之第1處理區域、第2處理區域。構成各分離區域之分離區域形成構件係具有:延伸於徑向且互相隔有間隔地設置,並與旋轉台之間形成狹窄之間隙的緣部;以及設置於緣部所夾置之區域,而用以形成高度尺寸會較該狹窄之間隙要大的緩衝空間之凹部,從分離氣體供給部來將分離氣體朝緩衝空間內供給。

Description

成膜裝置
本發明係關於一種將不同之處理氣體供給至形成於載置有基板之旋轉台上方側,且會互相分離之第1、第2處理區域,以進行成膜的技術。
對基板之半導體晶圓(以下,稱為「晶圓」)進行成膜之成膜裝置係有一種在配置於真空容器內之旋轉台上,以圍繞其旋轉中心的方式來載置複數晶圓,而以將不同之處理氣體供給至旋轉台上方側之既定位置的方式來分離配置複數處理區域(第1、第2處理區域)者。此成膜裝置在讓旋轉台旋轉時,會使各晶圓一邊在旋轉中心周圍公轉,一邊依序重複通過各處理區域,而藉由在該等晶圓表面讓處理氣體反應來層積出原子層或分子層,以進行成膜。
關於上述成膜裝置,本案申請人已開發出一種成膜裝置,係設置有從真空容器之頂板朝下方側突出之扇形凸狀部,而在旋轉台與凸狀部之間形成狹窄空間並於該凸狀部形成沿著旋轉台徑向來延伸的溝部,且將具備有沿著長度方向互相隔有間隔地設置之複數噴出口的分離氣體噴嘴配置於溝部內(例如專利文獻1)。藉由從分離氣體噴嘴來將分離氣體朝旋轉台噴出,便可使分離氣體流向上述狹窄空間內,而朝各處理區域內流出,來分離相鄰之處理區域氛圍,以抑制處理氣體彼此之混合。
關於上述成膜裝置,本案發明者便開發一種更有效果地分離處理區域間之氛圍的技術。
【先前技術文獻】
【專利文獻】
專利文獻1:日本特開2010-239102號公報:段落0031~0034、圖2,4
本發明係在此般情況下所完成者,其目的在於提供一種可有效果地分離旋轉台上方側所形成之第1、第2處理區域氛圍的成膜裝置。
本發明之成膜裝置,係將基板載置於真空容器內所設置之旋轉台一面側,並藉由讓該旋轉台旋轉,來在該旋轉台之旋轉中心周圍使基板公轉,並對該基板供給處理氣體,以進行成膜處理的成膜處理裝置,具備有:第1處理氣體供給部及第2處理氣體供給部,係分離設置於該旋轉台之旋轉方向,而用以對該基板分別供給第1處理氣體及第2處理氣體;以及分離區域,係為了分離供給有該第1處理氣體之第1處理區域與供給有該第2處理氣體之第2處理區域的氛圍而設置於該第1、第2處理區域之間;該分離區域係具備有:分離區域形成構件,係具有:複數緣部,係從該旋轉台之旋轉中心側朝周緣部側而延伸於徑向,並互相隔有間隔地設置於該旋轉方向,且用以各別與該旋轉台之間形成狹窄之間隙;以及凹部,係設置於在相鄰配置之該緣部之間所夾置的區域,並會朝該旋轉台之一面側開口,而用以在與該旋轉台之間形成高度尺寸會較該狹窄之間隙要大的緩衝空間;以及分離氣體供給部,係用以將分離氣體朝該緩衝空間內供給。
本發明係藉由於分離第1、第2處理區域氛圍的分離區域配置具備有凹部之分離區域形成構件,並將分離氣體朝旋轉台與凹部之間所形成的緩衝空間內供給,便可有效果地分離第1、第2處理區域。
W‧‧‧晶圓
1‧‧‧成膜裝置
11‧‧‧真空容器
2‧‧‧旋轉台
4、4a、4b、4c‧‧‧分離區域形成構件
40‧‧‧緩衝空間
41‧‧‧凹部
42、42a‧‧‧(徑向)緣部
50‧‧‧分離氣體噴嘴
51‧‧‧原料氣體噴嘴
52‧‧‧分離氣體噴嘴
53‧‧‧第1氧化氣體噴嘴
54‧‧‧第2氧化氣體噴嘴
7‧‧‧控制部
圖1係本發明實施形態相關之成膜裝置的縱剖側視圖。
圖2係該成膜裝置之橫剖平面圖。
圖3係從下面側來觀察該成膜裝置所設置之分離區域形成構件的平面圖。
圖4係該成膜裝置之作用圖。
圖5係顯示該成膜裝置所設置之第1、第2處理區域及分離區域的縱剖面展開圖。
圖6係顯示該分離區域形成構件變形例的平面圖。
圖7係顯示該分離區域形成構件的其他變形例之平面圖。
圖8係顯示比較例相關之分離區域形成構件構成的說明圖。
圖9係顯示實施例相關之模擬結果的說明圖。
圖10係顯示比較例相關之模擬結果的說明圖。
圖11係顯示實施例相關之成膜結果的第1說明圖。
圖12係顯示實施例相關之成膜結果的第2說明圖。
圖13係顯示比較例相關之成膜結果的第1說明圖。
圖14係顯示比較例相關之成膜結果的第2說明圖。
本發明一實施形態係就藉由ALD(Atomic Layer Deposition)法來對基板之晶圓W成膜出ZrO膜的成膜裝置1來加以說明。就以本範例之成膜裝置1所實施之ALD法的概要來加以闡述,在讓為含Zr(鋯)之原料氣體(第1處理氣體)之例如三(二甲氨基)環戊二烯鋯(以下,稱為「ZAC」)氣化後之氣體吸附於晶圓W後,將為氧化該ZAC之氧化氣體(第2處理氣體)的臭氧(O3)氣體供給至該晶圓W表面,來形成ZrO(氧化鋯)分子層。藉由對1片晶圓W重複複數次進行此一連串的處理,來形成ZrO膜。
如圖1、2所示,成膜裝置1係具備有概略圓形之扁平真空容器11以及真空容器11內所設置之圓板狀旋轉台2。真空容器11會藉由頂板12以及成為真空容器11之側壁及底部的容器本體13所構成。
旋轉台2係由例如石英玻璃(以下僅稱「石英」)所構成,其中心部係設置有朝垂直下方延伸之金屬製旋轉軸21。旋轉軸21會被***至具有形成於容器本體13底部之開口部14的套部141內,套部141下端部係連接有以氣密地阻塞真空容器11的方式來設置之旋轉驅動部22。另外,旋轉台2可由不鏽 鋼等的金屬所構成。
旋轉台2會透過旋轉軸21來被水平支撐於真空容器11內,並藉由旋轉驅動部22之作用來從上面側觀察例如繞順時針旋轉。
又,套部141上端部為了防止原料氣體或氧化氣體等從旋轉台2上面側朝下面側捲入,係設置有將N2(氮)氣體供給至套部141及容器本體13之開口部14與旋轉軸21的間隙之氣體供給管15。
另一方面,在構成真空容器11之頂板12下面係形成有以朝向旋轉台2中心部而對向之方式來突出,且平面形狀為圓環狀之中心部區域C。進一步地,頂板12下面係設置有從中心部區域C朝旋轉台2外側變寬,且平面形狀為扇形之分離區域形成構件4,其詳細構成會在之後詳述。
中心部區域C與旋轉台2中心部的間隙會構成N2氣體流道16。此流道16係從連接於頂板12之氣體供給管來供給有N2氣體,流入至流道16內之N2會從旋轉台2上面與中心部區域C的間隙橫跨其整周而朝旋轉台2之徑向外側來被加以噴出。此N2氣體會使供給至旋轉台2上之互相不同的位置(下述吸附區域(第1處理區域)R1及第1、第2氧化區域(第2處理區域)R2、R3)的原料氣體及氧化氣體在旋轉台2中心部(流道16)分歧而防止互相接觸之情事。
如圖1所示,位於旋轉台2下方之容器本體13底面會沿著該旋轉台2之周圍方向來形成有俯視時為圓環狀之扁平凹部31。此凹部31底面係橫跨旋轉台2下面整體所對向的區域,來配置有例如由細長管狀之碳絲加熱器所構成的加熱器32。加熱器32會藉由來自未圖示的供電部之供電來發熱,並透過旋轉台2來加熱晶圓W。
又,配置有加熱器32之凹部31上面會藉由例如由石英所構成之圓環狀板構件的遮蔽件33來加以阻塞。
又,在位於該凹部31外周側的容器本體13底面開口有將真空容器11內排氣之排氣口34、35。排氣口34、35係連接有由真空泵等所構成之未圖示的真空排氣機構。
又,如圖2所示,容器本體13側壁係設置有晶圓W之搬出入口36以及開閉該搬出入口36的閘閥37。外部搬送機構所保持之晶圓W會透過此搬出入口36來被搬入至真空容器11內。旋轉台2上面會以圍繞相當於旋轉台2之旋 轉中心的流道16周圍之方式來形成有構成晶圓W載置區域的複數凹部23。被搬入至真空容器11內之晶圓W會被載置於各凹部23內。搬送機構與凹部之間的晶圓之收授會藉由透過設置於各凹部23之未圖示的貫穿口來在旋轉台2上方位置與下方位置之間升降自如地構成之升降銷來加以進行,另省略升降銷之記載。
進一步地如圖2所示,旋轉台2上方係依序沿著旋轉台2之旋轉方向隔有間隔地配設有原料氣體噴嘴51、分離氣體噴嘴52、第1氧化氣體噴嘴53、第2氧化氣體噴嘴54、分離氣體噴嘴55。該等氣體噴嘴51~55中,原料氣體噴嘴51、第1,第2氧化氣體噴嘴53,54會從真空容器11側壁朝向旋轉台2中心部而沿著徑向來形成為水平延伸之棒狀。構成各氣體噴嘴51、53、54之噴嘴本體下面係互相隔有間隔地形成有多數噴出口56,以將從未圖示之原料氣體供給源或氧化氣體供給源所供給的ZAC氣體、臭氧氣體透過該等噴出口56來讓各氣體朝下方側噴出。
本範例中原料氣體噴嘴51會構成第1處理氣體供給部,第1,第2氧化氣體噴嘴53、54會構成第2處理氣體供給部。
另一方面,關於分離氣體噴嘴52、55之構成便與下述分離區域形成構件4之構成來一併說明。
另外,在以下說明中,係將從既定基準位置沿著旋轉台2之旋轉方向的方向稱為旋轉方向下游側,將其相反的方向稱為上游側。
如圖2所示,原料氣體噴嘴51會藉由形成為從該原料氣體噴嘴51朝旋轉台2之旋轉方向上游側及下游側各自變寬的扇形之石英製噴嘴蓋體57來加以覆蓋。噴嘴蓋體57係具有提高其下方之ZAC氣體濃度,且提高ZAC氣體朝晶圓W的吸附性之機能。
又,第1氧化氣體噴嘴53及第2氧化氣體噴嘴54會朝向旋轉台2之旋轉方向而互相隔有間隔地被加以設置。進一步地,下游側之第2氧化氣體噴嘴54會藉由形成為從該第2氧化氣體噴嘴54之配置位置朝向下游側來變寬的扇形的石英製氧化區域蓋體6來加以覆蓋。如圖1、圖5所示,氧化區域蓋體6下面係形成有凹部62,第2氧化氣體噴嘴54會被***至此凹部62內之上游側位置。
又,圍繞凹部62之氧化區域蓋體6的周緣部61會較凹部62之頂面要朝下方側突出,而與旋轉台2上面之間形成狹窄間隙。從第2氧化氣體噴嘴54所供給之臭氧氣體會在氧化區域蓋體6與旋轉台2之間的空間內擴散後,朝氧化區域蓋體6外部流出。氧化區域蓋體6係具有提高該空間內之臭氧氣體濃度並提高與吸附於晶圓W的ZAC氣體的反應性之機能。
如圖2所示,在旋轉台2上面側中,原料氣體噴嘴51之噴嘴蓋體57的下方區域為進行原料氣體之ZAC氣體的吸附的吸附區域R1,第1氧化氣體噴嘴53下方區域為進行利用臭氧氣體之ZAC氣體的氧化之第1氧化區域R2。又,在設置有氧化區域蓋體6之本範例中,氧化區域蓋體6與旋轉台2之間的空間會成為第2氧化區域R3。
本實施形態中,吸附區域R1係相當於第1處理區域,第1、第2氧化區域R2、R3係相當於第2處理區域。
在使用第1,第2氧化氣體噴嘴53、54並可供給臭氧氣體的本範例之成膜裝置1中,可對應於成膜條件等而使用雙方的氧化氣體噴嘴53、54來進行成膜,亦可使用任一者氧化氣體噴嘴53、54來進行成膜。
然後,觀察旋轉台2之旋轉方向,吸附區域R1與第1氧化區域R2之間,以及第2氧化區域R3與吸附區域R1之間係配置有分離區域形成構件4。分離區域形成構件4會互相分離吸附區域R1以及第1、第2氧化區域R2、R3,以達成形成有用以防止原料氣體與氧化氣體之混合的分離區域D的機能。
在此,容器本體13底面所設置之一邊側的排氣口34會在噴嘴蓋體57(吸附區域R1)之下游端附近位置而朝旋轉台2外側開口,以將剩餘的ZAC氣體排氣。另邊側的排氣口35會在第2氧化區域R3與相對於該第2氧化區域R3而鄰接於該旋轉方向下游側的分離區域D之間,而朝旋轉台2外側開口,以將剩餘的臭氧氣體排氣。亦從各排氣口34、35來將分別從各分離區域D、旋轉台2下方之氣體供給管15及旋轉台2之中心部區域所供給之N2氣體排氣。
在具備上述所說明之構成的成膜裝置1中,各分離區域D會藉由具備有與以往不同之構成的分離區域形成構件4來加以形成。以下,亦參照圖3,就分離區域形成構件4以及分離區域D之構成來加以說明。
本範例之分離區域形成構件4係由例如石英所構成,且平面形狀為概略 扇形之扁平構件。如圖3所示,分離區域形成構件4從旋轉台2之旋轉中心的P點看來,係以延伸於概略徑向的2邊(緣部42)所構成的中心角θ會在20°以上,60°以下的範圍內,更佳地為在20°以上,30°以下的範圍內的方式來加以形成。
另外本範例中,從金屬所致之污染防止的觀點看來,係顯示採用石英製分離區域形成構件4的情況,但在可採用強度較石英要高的金屬製分離區域構件4的成膜裝置1中,中心角θ的下限便可縮小至10°左右。
分離區域形成構件4下面係形成有中心角會較分離區域構件4本體要小的概略扇形凹部41,該凹部會朝向下方側開口。靠近該扇形之中心的區域中,凹部41會成為固定寬度之溝部區域41a,而延伸至上述中心部區域C側。
然後,凹部41周圍(延伸於徑向2邊以及延伸於周圍方向的圓弧)會成為以圍繞該凹部41之方式來突出之緣部42、43。
在此,圖5係顯示從側面側來將真空容器11展開的樣子。如圖1、5所示,上述分離區域形成構件4會被固定於構成真空容器11之頂板12下面側,而形成上述分離區域D。
分離區域形成構件4之各配置位置中,在延伸於徑向的2個緣部42下面與旋轉台2上面之間會形成有狹窄間隙(圖5)。又,由於徑向之緣部42的長度會較旋轉台2半徑要長,故周圍方向之緣部43便會被配置於較旋轉台2外周要靠外側。從而,在旋轉台2外周與周緣方向之緣部43內周之間亦會形成有間隙(圖1、2)。
藉由上述所說明之構成,便如圖1、5所示,各分離區域形成構件4之凹部41與旋轉台2上面之間係形成有被設置於在相鄰配置之緣部42之間所夾置的區域,而朝向載置有晶圓W之旋轉台2上面(一面側)來開口,並且高度尺寸會較緣部42下面與旋轉台2上面之間的狹窄間隙要大的緩衝空間40。
進一步地如圖1、3等所示,針對該緩衝空間40,分離氣體噴嘴52、55會貫穿緣部43而從真空容器11(容器本體13)側壁來被***,並沿著旋轉台2之徑向來伸出至緩衝空間40內。分離氣體噴嘴52、55會將從未圖示之分離氣體供給源所供給之分離氣體的非活性氣體(例如N2氣體)朝各緩衝空間40內噴出。被***至緩衝空間40內之各分離氣體噴嘴52、55前端部係形成有 開口,而從該開口來將分離氣體朝緩衝空間40內,例如沿著該徑向而朝橫向導入。
分離氣體噴嘴52、55會構成本實施形態之分離氣體供給部。
在此,便參照圖5,來舉緩衝空間40相關之設計參數範例。在將5~6片直徑300mm的晶圓W載置於例如半徑為400~600mm的旋轉台2,而進行成膜處理之成膜裝置1的情況,將從旋轉台2上面(凹部23內所載置之晶圓W的上面。以下相同)到緩衝空間40之頂面的高度尺寸h1調節為在17~20mm範圍內之數值,將徑向之緣部42與旋轉台2上面之間的狹窄間隙的高度尺寸h2調節為在1~4mm範圍內之數值,將位於扇形兩端之徑向的緣部42之寬度尺寸w調節在50~60mm範圍內之數值。又,較佳地,緩衝空間40之寬度變窄的溝部區域41a的寬度尺寸為20mm以上。
相對於具有上述所例示之尺寸範圍的緩衝空間40,85~150mm範圍內之長度的分離氣體噴嘴52、55前端會透過周圍方向的緣部43,以位於緩衝空間40內之方式來加以配置。
具備有上述所說明之構成的成膜裝置1如圖1所示,係設置有由用以進行裝置整體動作之控制的電腦所構成的控制部7。此控制部7係儲存有對晶圓W實行成膜處理之程式。該程式會將控制訊號傳送至成膜裝置1各部以控制各部動作。具體而言,來自各氣體噴嘴51~55的各種氣體之供給量調整、加熱器32之輸出控制、來自氣體供給管15及中心部區域C之流道16的N2氣體之供給量調整、利用旋轉驅動部22的旋轉台2之旋轉速度調整等會依照控制訊號來加以進行。上述程式係以進行該等控制,來實行上述各動作的方式來組設有步驟群。該程式可從硬碟、光碟、磁光碟、記憶卡、軟碟等的記憶媒體來被安裝於控制部7內。
就具備上述所說明之構成的成膜裝置1之作用來加以說明。
首先,成膜裝置1會將真空容器11內之壓力及加熱器32之輸出調節為晶圓W搬入時之狀態,而等待晶圓W之搬入。然後,在藉由例如鄰接之真空搬送室所設置之未圖示的搬送機構來搬送處理對象的晶圓W時,便開啟閘閥37。搬送機構會透過開啟後之搬出入口36來進入至真空容器11內,而將晶圓W載置於旋轉台2之凹部23內。然後,便以將晶圓W載置於各凹部23內的 方式來讓旋轉台2間歇性地旋轉,並重複此動作。
在晶圓W之搬入結束後,便讓搬送機構從真空容器11內退離,而在關閉閘閥37後,藉由從排氣口34、35的排氣來將真空容器11內真空排氣至既定壓力。又,分別從分離氣體噴嘴52、55及中心部區域C之流道16、旋轉台2下方側的氣體供給管15來供給既定量之N2氣體。然後,便開始旋轉台2之旋轉,而以成為預設之旋轉速度的方式來進行速度調整,並開始從供電部來朝加熱器32供給電力,以加熱晶圓W。
然後,在將晶圓W加熱至設定溫度的例如250℃後,便開始從原料氣體噴嘴51、第1,第2氧化氣體噴嘴53,54來供給各種氣體(原料氣體、氧化氣體)(圖4)。關於2根第1、第2氧化氣體噴嘴53、54,是要使用任一根來進行氧化氣體之供給或是使用兩者來進行氧化氣體之供給則是預設於記憶有成膜處理之條件的處理配方。
旋轉台2之各凹部23所載置的晶圓W會藉由原料氣體、氧化氣體的供給,來依序重複通過原料氣體噴嘴51之噴嘴蓋體57下方的吸附區域R1→第1氧化氣體噴嘴53下方的第1氧化區域R2→藉由氧化區域蓋體6所覆蓋之第2氧化區域R3。
然後,吸附區域R1中,係將從原料氣體噴嘴51所噴出之ZAC氣體吸附於晶圓W,第1、第2氧化區域R2、R3中係藉由從氧化氣體噴嘴53所供給之臭氧氣體來氧化所吸附之ZAC,而形成有1層或複數層ZrO分子層。
如此一來,在持續旋轉台2之旋轉時,便會依序在晶圓W表面層積出ZrO分子層,來形成ZrO膜,並使其膜厚逐步變大。
又,此時,由於吸附區域R1與第1、第2氧化區域R2、R3之間會因為分離區域D及流道16而被分離,故難以在不必要的場所產生起因於原料氣體與氧化氣體之接觸的沉積物。
參照圖4、5,就具備有本範例之分離區域形成構件4的分離區域D之作用來加以確認。徑向的緣部43與旋轉台2上面之間的狹窄間隙之高度尺寸h2及旋轉台2外周與周圍方向之緣部43內周的間隙之寬度尺寸係相較於緩衝空間40之高度尺寸h1要小相當多。因此,N2氣體便會在擴散於緩衝空間40內後,透過該等間隙而朝分離區域D外側流出。
此時,上述各間隙便會成為N2氣流的阻抗,而使得緩衝空間40內之壓力成為較緩衝空間40外部之壓力要高的狀態。其結果,便應可藉由從分離區域D朝外流出之N2氣流及緩衝空間40內外的壓力差的兩者,來使被供給至吸附區域R1、第1,第2氧化區域R2,R3的各處理氣體(原料氣體(ZAC氣體)、氧化氣體(臭氧))形成為難以進入至其他處理區域的狀態。
進一步地,分離氣體噴嘴52、55會沿著旋轉台2之徑向來被***至緩衝空間40內,而成為朝橫向來供給N2氣體(圖3)之結構。如上述,雖其他氣體噴嘴51、53、54會在噴嘴本體下面形成有噴出口56,而朝下方側噴出氣體,但在此情況,便會衝撞於旋轉台2及晶圓W表面,而形成有沿著該等面來橫向流通之氣流。從而,於緩衝空間40內配置與其他氣體噴嘴51、53、54為相同構成的分離氣體噴嘴時,於N2氣體充分擴散於該緩衝空間40內前,便會有產生氣體會從旋轉台2與緣部42、43之間隙流出而分流之虞。於是,藉由將N2氣體橫向地供給至緩衝空間40內,便可均勻地提高緩衝空間40內之壓力。
然而,採用從被***於徑向的分離氣體噴嘴52、55來朝橫向供給N2氣體的構成並非必要條件。在只要設置緩衝空間40便能充分得到分離各處理區域的作用之情況,亦可使用與原料氣體噴嘴51等為相同構成之分離氣體噴嘴52、55。
此時,亦可在構成分離氣體噴嘴52、55之噴嘴本體的細管一側面或兩側面互相隔有間隔地設置多數氣體噴出口,來抑制伴隨著分離氣體會衝撞於旋轉台2或晶圓W表面而形成上述分流。
緩衝空間40內之壓力可藉由增減來自分離氣體噴嘴52、55的N2氣體供給流量來加以調節。由於可充分分離各處理區域(吸附區域R1/第1、第2氧化區域R2、R3)的緩衝空間40內之壓力會依旋轉台2之旋轉速度及緩衝空間40外部之壓力等的處理條件而變化,故難以一概而論。但是,如下述實施例所示,為了分離各處理區域所需要的N2氣體之供給流量可藉由反映出實際處理條件之流體模擬及實驗等而在事前掌握。
回到成膜處理之說明,係實行上述動作,並在對各晶圓W形成所欲膜厚之ZrO膜的時機點、讓旋轉台2旋轉例如既定次數的時機點來停止來自第 1、第2氧化氣體噴嘴53、54的各種氣體供給。然後,停止旋轉台2之旋轉,並讓加熱器32之輸出成為待機時之狀態,而結束成膜處理。
之後,將真空容器11內之壓力調節成晶圓W搬出時之狀態,而開啟閘閥37,並以和搬入時相反之順序來將晶圓W取出,而結束成膜處理。
根據本實施形態之成膜裝置1便會有下述效果。藉由在將吸附區域(第1處理區域)R1、第1,2氧化區域(第2處理區域)R2,R3之氛圍分離的分離區域D處配置具備有凹部41之分離區域形成構件4,而將N2氣體(分離氣體)朝旋轉台2與凹部41之間所形成之緩衝空間40內供給,便可有效果地分離各區域R1/R2、R3。
在此,各分離區域D(分離區域形成構件4)之緩衝空間40的構成並不限於使用圖3所說明的範例。可例如圖6所示之分離區域形成構件4a般,設置緣部42a並將凹部41分割於徑向來設置複數緩衝空間40,而將分離氣體噴嘴52、55***至各緩衝空間40。
又,可如圖7所示之分離區域形成構件4b般,藉由分隔構件44來將凹部41分割於周圍方向。又,圖7係顯示有相對於旋轉台2之徑向內側所配置的緩衝空間40,而從旋轉台2中心側來將分離氣體噴嘴52、55***的範例。
進一步地,分離區域形成構件4及凹部41的平面形狀並不一定要為扇形。可例如設置從旋轉台2周緣側帶狀地覆蓋至中心側的概略矩形形狀之分離區域形成構件4,並於其下面側形成平面形狀為矩形之凹部41來構成緩衝空間40。
然後,使用本範例之成膜裝置所成膜出之膜並不限於ZrO膜。可就例如以二氯矽烷(DCS)氣體及二(特丁胺基)矽烷(BTBAS)氣體等為原料氣體(第1處理氣體),以氧氣或臭氧氣體為氧化氣體(第2處理氣體)的SiO2膜之成膜、以DCS氣體及BTBAS氣體等為原料氣體,取代氧化氣體而使用氨氣(NH3)或一氧化二氮(N2O)氣體等的氮化氣體(第2處理氣體)的SiN膜等的各種成膜處理來使用本範例之成膜裝置1。
又,可在設置有氧化區域蓋體6之區域,設置具備有例如電漿形成用天線之電漿形成部,而將氧氣或氬氣等的電漿形成氣體(相當於第2處理氣體)電漿化,來進行以藉由氧化氣體或氮化氣體等所形成之分子層的改質。在 此情況,第2氧化區域R3會成為電漿形成區域(第2處理區域)R3,而電漿形成區域R3與吸附區域R1便會藉由使用分離區域形成構件4的分離區域D來被加以分離。
進一步地,可在設置有吸附區域R1、反應區域(氧化區域或氮化區域)R2以及電漿形成區域R3的真空容器11內,配置3個分離區域形成構件4,來分離各區域R1、R2、R3彼此。在此情況,夾置各分離區域D而相鄰的區域R1、R2、R3的一者便會相當於第1處理區域,而另者則會相當於第2處理區域。
【實施例】
(模擬)
改變形成分離區域D的構件,來模擬ZAC氣體從吸附區域R1朝第1氧化區域R2側進入的產生狀況。
A.模擬條件
(實施例1)就使用圖1~5所說明之實施形態相關的分離區域形成構件4來形成緩衝空間40的情況,來進行模擬。分離區域形成構件4之設計參數係中心角θ為30°,緩衝空間40之高度h1為17.5mm,緣部42下面與旋轉台2上面之間的間隙的高度h2為3mm,緣部42之寬度尺寸w為55mm。處理條件係真空容器11內之壓力為266Pa,ZAC氣體供給流量為1slm,N2氣體供給流量為5slm,旋轉台2之旋轉速度為6rpm。
(比較例1)如圖8所示,使用沿著噴嘴本體下面而互相隔有間隔地來形成有多數噴出口56的分離氣體噴嘴50來進行N2氣體之供給,而除了形成有收納該分離氣體噴嘴50之寬度a為20mm的溝部45的點以外,以及使用不具備凹部的以往類型之分離區域形成構件(凸狀部)4c(中心角度θ'為60°)來形成分離區域D的點以外,都以與實施例1相同之條件來進行模擬。
B.模擬結果
將實施例1之結果顯示於圖9,將比較例1之結果顯示於圖10。
根據圖9所示之實施例1的結果,關於供給至吸附區域R1的ZAC氣體幾乎確認不到會進入至第1氧化氣體區域R2側。
另一方面,確認到使用以往類型之分離區域形成構件4c的比較例1中,一部分的ZAC氣體卻會通過分離區域D,而進入至第1氧化氣體區域R2。從 而,為了充分分離吸附區域R1與第1氧化區域R2,便需要使N2氣體的供給量加得更多。
在與比較例1所使用的以往類型之分離區域形成構件4c做比較時,得知本實施形態相關之分離區域形成構件4雖中心角θ較小,且更小型,但卻可以更少的N2氣體供給量,來良好地分離分離區域D之上游側、下游側的不同處理區域R1、R2之氛圍。
(實驗)
使用實驗例1、比較例2的分離區域形成構件4、4c來形成分離區域D,而進行ZrO膜之成膜。
A.實驗條件
(實驗例2-1)為了掌握有效的吸附區域R1,係於旋轉台2載置6片晶圓W,而在停止旋轉台2之狀態下,以既定時間來進行ZAC氣體的吸附後,讓旋轉台2旋轉,並僅從第2氧化氣體噴嘴54來將臭氧氣體供給至氧化區域蓋體6既定時間,以成膜出ZrO膜。ZAC氣體之吸附會錯開旋轉台2之停止位置而實施2套。除了臭氧氣體之供給流量為10slm,N2氣體供給流量為10slm,反應溫度為250℃的點以外,都與實施例1為相同之成膜條件。
(實驗例2-2)為了掌握有效的第2氧化區域R3,係於與實施例2-1同樣的旋轉台2載置6片晶圓W,而在讓旋轉台2旋轉並進行既定時間的ZAC氣體之吸附後,在停止旋轉台2之狀態下,僅從第2氧化氣體噴嘴54來將臭氧氣體供給至氧化區域蓋體6既定時間,以成膜出ZrO膜。臭氧氣體之供給會錯開旋轉台2之停止位置而實施2套。成膜條件係與實施例2-1相同。
(比較例2-1)除了使用比較例1之分離區域形成構件4c的點以外,都以與實施例2-1同樣的條件下來進行成膜。
(比較例2-2)除了使用比較例1之分離區域形成構件4c的點以外,都以與實施例2-2同樣的條件下來進行成膜。
B.實驗結果
於圖11、圖12顯示實施例2-1、2-2之成膜處理後的旋轉台2上之晶圓W各停止位置的ZrO膜厚分布。又,於圖13、14顯示關於比較例2-1、2-2之同樣的膜厚分布。該等圖式中,係重疊顯示錯開停止位置而實施2套的成膜結 果。
根據圖11所示之實施例2-1結果,即便來自分離氣體噴嘴52、55之N2氣體供給流量為較多的10slm,仍可將高濃度的ZAC氣體供給至吸附區域R1,吸附區域R1所配置之晶圓W係形成有平均為6.43nm的ZrO膜。
又,根據圖12所示之實施例2-2結果,確認到在較氧化區域蓋體6所覆蓋之區域要下游側會變寬的區域中存在有可氧化ZAC氣體的區域(第2氧化區域R3),而第2氧化區域R3所配置之晶圓W係形成有平均為1.79nm的ZrO膜。
另一方面,圖13所示之比較例2-1的結果中,因為為了提高使用分離區域形成構件4c的分離效果,而增加供給流量的N2氣體之影響,使得ZAC氣體被稀釋。其結果,吸附區域R1所配置之晶圓W的ZrO膜之平均膜厚便減少至3.46nm。
又,圖14所示之比較例2-2的結果中,在與實施例2-2比較時,會受到增加供給流量的N2氣體之影響而使得第2氧化區域R3範圍變窄,又,第2氧化區域R3所配置之晶圓W的ZrO膜之平均膜厚亦會減少至1.64nm。
根據上述實施例2-1、2-2,比較例2-2、2-2的結果,確認到具備形成有緩衝空間40之分離區域D的成膜裝置1可以短時間來成膜出更厚的膜,且成膜效率亦為良好。
W‧‧‧晶圓
D‧‧‧分離區域
R1‧‧‧第1處理區域
R2、R3‧‧‧第2處理區域
1‧‧‧成膜裝置
13‧‧‧容器本體
16‧‧‧流道
2‧‧‧旋轉台
23‧‧‧凹部
34、35‧‧‧排氣口
36‧‧‧搬出入口
37‧‧‧閘閥
4‧‧‧分離區域形成構件
40‧‧‧緩衝空間
41‧‧‧凹部
51‧‧‧原料氣體噴嘴
52‧‧‧分離氣體噴嘴
53‧‧‧第1氧化氣體噴嘴
54‧‧‧第2氧化氣體噴嘴
55‧‧‧分離氣體噴嘴
57‧‧‧蓋體
6‧‧‧蓋體

Claims (3)

  1. 一種成膜裝置,係將基板載置於真空容器內所設置之旋轉台一面側,並藉由讓該旋轉台旋轉,來在該旋轉台之旋轉中心周圍使基板公轉,並對該基板供給處理氣體,以進行成膜處理的成膜處理裝置,具備有:第1處理氣體供給部及第2處理氣體供給部,係分離設置於該旋轉台之旋轉方向,而用以對該基板分別供給第1處理氣體及第2處理氣體;以及分離區域,係為了分離供給有該第1處理氣體之第1處理區域與供給有該第2處理氣體之第2處理區域的氛圍而設置於該第1、第2處理區域之間;該分離區域係具備有:分離區域形成構件,係具有:複數緣部,係從該旋轉台之旋轉中心側朝周緣部側而延伸於徑向,並互相隔有間隔地設置於該旋轉方向,且用以各別與該旋轉台之間形成狹窄之間隙;以及凹部,係設置於在相鄰配置之該緣部之間所夾置的區域,並會朝該旋轉台之一面側開口,而用以在與該旋轉台之間形成高度尺寸會較該狹窄之間隙要大的緩衝空間;以及分離氣體供給部,係用以將分離氣體朝該緩衝空間內供給;該分離氣體供給部係具備有沿著該旋轉台之徑向來將分離氣體噴出至該緩衝空間內的分離氣體噴嘴。
  2. 如申請專利範圍第1項之成膜裝置,其中該分離區域形成構件係平面形狀會被形成為扇形,該扇形的兩端係設置有該緣部,該等兩端之緣部所構成之角度係在20°以上,60°以下的範圍內。
  3. 如申請專利範圍第1項之成膜裝置,其中該分離氣體噴嘴係設置於會從該旋轉台之周緣部側或旋轉中心側來將分離氣體噴出至該緩衝空間內的位置。
TW107107832A 2017-03-10 2018-03-08 成膜裝置 TWI728233B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046479 2017-03-10
JP2017046479A JP6809304B2 (ja) 2017-03-10 2017-03-10 成膜装置

Publications (2)

Publication Number Publication Date
TW201901739A TW201901739A (zh) 2019-01-01
TWI728233B true TWI728233B (zh) 2021-05-21

Family

ID=63446113

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107107832A TWI728233B (zh) 2017-03-10 2018-03-08 成膜裝置

Country Status (5)

Country Link
US (1) US20180258527A1 (zh)
JP (1) JP6809304B2 (zh)
KR (1) KR20180103724A (zh)
CN (1) CN108570663B (zh)
TW (1) TWI728233B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200133406A (ko) * 2019-05-20 2020-11-30 주성엔지니어링(주) 기판처리장치
JP7037526B2 (ja) * 2019-09-10 2022-03-16 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法及びプログラム
JP2023044571A (ja) * 2021-09-17 2023-03-30 キオクシア株式会社 レーザー加工装置、レーザー剥離方法および半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000473A1 (en) * 1999-01-18 2003-01-02 Chae Yun-Sook Method of delivering gas into reaction chamber and shower head used to deliver gas
US20100116209A1 (en) * 2008-11-10 2010-05-13 Tokyo Electron Limited Film deposition apparatus
JP2014022653A (ja) * 2012-07-20 2014-02-03 Tokyo Electron Ltd 成膜装置及び成膜方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS501315Y1 (zh) * 1969-12-29 1975-01-14
US8808456B2 (en) * 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
JP5195175B2 (ja) * 2008-08-29 2013-05-08 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5497423B2 (ja) * 2009-12-25 2014-05-21 東京エレクトロン株式会社 成膜装置
JP2012084598A (ja) * 2010-10-07 2012-04-26 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2014017296A (ja) * 2012-07-06 2014-01-30 Tokyo Electron Ltd 成膜方法
JP6135455B2 (ja) * 2013-10-25 2017-05-31 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6529973B2 (ja) * 2013-11-26 2019-06-12 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated バッチ処理用傾斜プレート及びその使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030000473A1 (en) * 1999-01-18 2003-01-02 Chae Yun-Sook Method of delivering gas into reaction chamber and shower head used to deliver gas
US20100116209A1 (en) * 2008-11-10 2010-05-13 Tokyo Electron Limited Film deposition apparatus
JP2014022653A (ja) * 2012-07-20 2014-02-03 Tokyo Electron Ltd 成膜装置及び成膜方法

Also Published As

Publication number Publication date
US20180258527A1 (en) 2018-09-13
JP6809304B2 (ja) 2021-01-06
KR20180103724A (ko) 2018-09-19
TW201901739A (zh) 2019-01-01
CN108570663A (zh) 2018-09-25
CN108570663B (zh) 2023-02-21
JP2018152427A (ja) 2018-09-27

Similar Documents

Publication Publication Date Title
JP7343553B2 (ja) 空間的原子層堆積におけるガス分離制御
TWI523970B (zh) 成膜裝置(一)
KR101535683B1 (ko) 성막 장치, 기판 처리 장치, 성막 방법 및 기억 매체
JP5062144B2 (ja) ガスインジェクター
JP5434484B2 (ja) 成膜装置、成膜方法及び記憶媒体
KR101387289B1 (ko) 성막 장치 및 성막 방법
JP5712874B2 (ja) 成膜装置、成膜方法及び記憶媒体
KR101852233B1 (ko) 성막 방법
JP5396264B2 (ja) 成膜装置
TWI728233B (zh) 成膜裝置
US9443716B2 (en) Precise critical dimension control using bilayer ALD
US9039837B2 (en) Film deposition apparatus and substrate processing apparatus
TW201026882A (en) Film deposition apparatus, substrate process apparatus, and turntable
JP6747220B2 (ja) 基板処理装置及び基板処理方法
KR101917414B1 (ko) 노즐 및 이를 사용한 기판 처리 장치
TWI661079B (zh) 成膜裝置
TWI659124B (zh) 成膜裝置
US20090088001A1 (en) Substrate processing apparatus and manufacturing method of semiconductor device
TW201944456A (zh) 基底處理設備和基底處理方法
TWI698548B (zh) 成膜裝置、成膜方法及記憶媒體
JP5403113B2 (ja) 成膜装置
KR20150111319A (ko) 진공 처리 장치
JP6680190B2 (ja) 成膜装置
KR20180138152A (ko) 성막 방법, 성막 장치 및 기억 매체
US20230068938A1 (en) Film forming apparatus and film forming method