TWI718813B - 三維半導體裝置的製造方法 - Google Patents

三維半導體裝置的製造方法 Download PDF

Info

Publication number
TWI718813B
TWI718813B TW108146218A TW108146218A TWI718813B TW I718813 B TWI718813 B TW I718813B TW 108146218 A TW108146218 A TW 108146218A TW 108146218 A TW108146218 A TW 108146218A TW I718813 B TWI718813 B TW I718813B
Authority
TW
Taiwan
Prior art keywords
material layer
layer
shaped material
strip
shaped
Prior art date
Application number
TW108146218A
Other languages
English (en)
Other versions
TW202040698A (zh
Inventor
舛岡富士雄
原田望
伊索 李
Original Assignee
新加坡商新加坡優尼山帝斯電子私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商新加坡優尼山帝斯電子私人有限公司 filed Critical 新加坡商新加坡優尼山帝斯電子私人有限公司
Publication of TW202040698A publication Critical patent/TW202040698A/zh
Application granted granted Critical
Publication of TWI718813B publication Critical patent/TWI718813B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0335Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices
    • H10B10/12Static random access memory [SRAM] devices comprising a MOSFET load element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明提供一種三維半導體裝置的製造方法。於半導體層6上形成遮罩材料層7。並且,形成頂部具有其具備相同平面形狀之帶狀遮罩材料層9a的帶狀遮罩材料層8a。並且,形成連接帶狀遮罩材料層7、8a的兩側面而於頂部具有其具備相同平面形狀之帶狀遮罩材料層15a、15b的帶狀遮罩材料層12aa、12ab。並且,形成連接帶狀遮罩材料層12aa、12ab之外側的兩側面而於頂部具有其具備相同平面形狀之帶狀遮罩材料層17a、17b的帶狀遮罩材料層16a、16b。並且,於前述帶狀遮罩材料層9a的上方朝向與俯視下前述帶狀遮罩材料層9a所延伸的方向正交的方向形成正交帶狀遮罩材料層。於該正交帶狀遮罩材料層與帶狀遮罩材料層3a、16a、16b的重疊區域藉由半導體層6的蝕刻而形成半導體柱。並且,形成將該半導體柱作為通道的柱狀半導體裝置。

Description

三維半導體裝置的製造方法
本揭示係關於三維半導體裝置的製造方法。
近年來,於LSI(Large Scale Integration;大型積體電路)使用三維構造電晶體。其中,就可提供高積體度之半導體裝置而言,柱狀半導體裝置之SGT(Surrounding Gate Transistor;環繞閘電晶體)係受到注目。此外,對於具有SGT之半導體裝置之進一步高積體化、高性能化有所需求。
一般的平板型金屬氧化物半導體(MOS)電晶體中,通道係在沿著半導體基板之上表面的水平方向延伸。相對於此,SGT的通道係沿垂直於半導體基板之上表面的方向延伸(參照例如專利文獻1、非專利文獻1)。因此,SGT相較於平板型金屬氧化物半導體電晶體,能夠達到半導體裝置的高密度化。
第10圖係顯示N通道SGT的示意構造圖。在具有P型或i型(本質型)之導電型的Si柱220(以下將矽半導體柱簡稱為「Si柱」)內之上下的位置,形成N+層221a、221b(以下將高濃度地含有施體雜質的半導體區域稱為「N+層」)其一方為源極時,另一方形成為汲極。成為此源極、汲極的N +層221a、221b之間的Si柱220的部分係成為通道區域222。閘極絕緣層223係形成為包圍此通道區域222。閘極導體層224係形成為包圍此閘極絕緣層223。SGT中,成為源極、汲極的N+層221a、221b、通道區域222、閘極絕緣層223、及閘極導體層224係全體形成為柱狀。因此,俯視下,SGT的占有面積相當於平板型金屬氧化物半導體電晶體之單一源極或汲極N+層的占有面積。因此,具有SGT的電路晶片,與具有平板型金屬氧化物半導體電晶體的電路晶片相比較,更能夠實現晶片尺寸的縮小化。
因而有使用第9圖所示之SGT之電路的高積體化之需求。
[先前技術文獻]
[專利文獻]
(專利文獻1)日本特開平2-188966號公報
(非專利文獻)
(非專利文獻1) Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991)
(非專利文獻2) C.Y.Ting,V.J.Vivalda,and H.G.Schaefer:“Study of planarized sputter-deposited SiO2“,J.Vac.Sci. Technol. 15(3),p.p.1105-1112,May/June (1978)
(非專利文獻3) N.Loubt, et al. :”Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyound FinFET” 2107 Symposium on VLSI Technology of Technical Papers, pp. T230, 231 (2017)
實現柱狀半導體裝置的高密度化之需求。
本發明的第一觀點的三維半導體裝置的製造方法係包含:
於位於第一基板上之至少一部分或整體由半導體層構成的第二基板上形成第一材料層的步驟;
於前述第一材料層上,形成俯視下朝一方向延伸之頂部上具有第一帶狀材料層的第二帶狀材料層的步驟,該第一帶狀材料層具有相同的俯視形狀;
從下起形成第二材料層與第三材料層而覆蓋整體的步驟;
對上述覆蓋整體進行平滑化以使前述第二材料層與前述第三材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
於平滑化後的前述第二材料層的頂部形成被夾持於平滑化後的前述第三材料層與前述第一帶狀材料層的側面的第三帶狀材料層的步驟;
去除平滑化後的前述第三材料層的步驟;
以前述第一帶狀材料層與前述第三帶狀材料層作為遮罩,蝕刻前述第二材料層,而形成接於前述第二帶狀材料層之兩側側面的第四帶狀材料層 的步驟;
從下起形成第四材料層與第五材料層而覆蓋整體的步驟;
對上述覆蓋整體進行平滑化以使前述第四材料層與前述第五材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
於平滑化後的前述第四材料層的頂部形成被夾持於平滑化後的前述第五材料層與前述第三帶狀材料層的側面的第五帶狀材料層的步驟;
去除前述第五材料層的步驟;
以前述第一帶狀材料層、前述第三帶狀材料層及前述第五帶狀材料層作為遮罩,蝕刻前述第四材料層,形成接於前述第四帶狀材料層的側面的第六帶狀材料層的步驟;
去除前述第三帶狀材料層與前述第四帶狀材料層的步驟;
於前述第一帶狀材料層之更上方或更下方,形成俯視下與前述第一帶狀材料層正交之由單層或複數層構成的第七帶狀材料層的步驟;
至少藉由前述第一帶狀材料層與前述第五帶狀材料層、或前述第二帶狀材料層與前述第六帶狀材料層,形成俯視下位於前述第七帶狀材料層、前述第二帶狀材料層及前述第六帶狀材料層之第一重疊區域之俯視下為長方形或圓形的第一遮罩材料層的步驟;以及
以前述第一遮罩材料層作為遮罩,蝕刻前述第二基板,於前述第一基板上形成由前述半導體層構成的三維形狀半導體層的步驟;
且將前述三維形狀半導體層作為通道。
較佳係前述製造方法中,
形成前述第三帶狀材料層的步驟係包含:
以前述第一帶狀材料層與平滑化後的前述第三材料層作為遮罩,蝕刻前述第二材料層的頂部,形成第一凹部的步驟;以及
填埋前述第一凹部而形成上表面位置與前述第一帶狀材料層的上表面位置相同的前述第三帶狀材料層的步驟。
較佳係前述製造方法中,
形成前述第五帶狀材料層的步驟係包含:
以前述第一帶狀材料層、前述第三帶狀材料層及前述第五材料層作為遮罩,蝕刻前述第四材料層的頂部,形成第二凹部的步驟;以及
填埋前述第二凹部而形成上表面位置與前述第一帶狀材料層的上表面位置相同的前述第五帶狀材料層的步驟。
較佳係前述製造方法中,
垂直方向中,於前述第一帶狀材料層之更上方或更下方,形成頂部上具有俯視下沿一方向延伸的第八帶狀材料層且俯視下具有與前述第七帶狀材料層為相同形狀的第九帶狀材料層,
前述第七帶狀材料層係藉由下列步驟所形成:
從下起形成第六材料層與第七材料層而覆蓋整體的步驟;
對上述覆蓋整體進行平滑化以使前述第六材料層與前述第七材料層的上表面位置成為前述第八帶狀材料層的上表面位置的步驟;
以前述第八帶狀材料層與平滑化後的前述第七材料層作為遮罩,蝕刻平滑化後的前述第六材料層的頂部,形成第三凹部的步驟;
填埋前述第三凹部而形成上表面位置與前述第八帶狀材料層的上表面位置相同的第十帶狀材料層的步驟;
去除前述第六材料層的步驟;
以前述第八帶狀材料層與前述第十帶狀材料層作為遮罩,蝕刻前述第六材料層,形成接於前述第九帶狀材料層之兩側側面的第十一帶狀材料層的步驟;以及
去除前述第八帶狀材料層與前述第九帶狀材料層或者去除前述第十帶狀材料層與前述第十一帶狀材料層,將剩餘的帶狀材料層的下層或上下兩層作為前述第七帶狀材料層。
較佳係前述製造方法中,
俯視下,前述第二帶狀材料層與前述第四帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
較佳係前述製造方法中,
俯視下,前述第二帶狀材料層與前述第六帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
較佳係前述製造方法中,
前述三維形狀半導體層係於前述第一基板上沿垂直方向豎立的半導體柱。
較佳係前述製造方法中,
前述半導體柱係由沿前述一方向或與前述一方向正交的方向鄰接排列之至少第一半導體柱、第二半導體柱及第三半導體柱構成,
且該三維半導體裝置的製造方法包含:
包圍前述第一半導體柱、前述第二半導體柱及前述第三半導體柱的側面而形成第一閘極絕緣層的步驟;以及
包圍前述第一閘極絕緣層而形成第一閘極導體層的步驟;
前述第一閘極導體層係填埋前述第一半導體柱、前述第二半導體柱及前述第三半導體柱之至少兩個前述半導體柱之間而形成。
較佳係前述製造方法中,
係包含去除形成於前述基板上之複數個前述半導體柱中之任一者的步驟。
較佳係前述製造方法中,
係包含在形成複數個前述半導體柱之前,俯視下,不形成前述第七帶狀材料層之一部分區域的步驟,
且俯視下,於前述第七帶狀材料層之前述一部分區域之下未形成有複數個前述半導體柱中之任一者。
較佳係前述製造方法中,
係包含:
於前述第一材料層上,與形成頂部上具有前述第一帶狀材料層的第二帶狀材料層的步驟併行地,將頂部上具有第十二帶狀材料層的第十三帶狀材料層,沿相同前述一方向延伸而形成的步驟,該第十二帶狀材料層係頂部具有相同的俯視形狀;
於前述第一材料層上,與形成頂部上具有前述第三帶狀材料層的第四帶狀材料層的步驟併行地,將頂部上具有第十四帶狀材料層的第十五帶狀材料層,沿相同前述一方向延伸而形成的步驟,該第十四帶狀材料層係頂部具有相同的俯視形狀;
形成位於相對之前述第四帶狀材料層與前述第十五帶狀材料層之間且 接於該第四帶狀材料層與該第十五帶狀材料層的側面,並且與前述第六帶狀材料層為相同形狀的第十六帶狀材料層的步驟;以及
去除前述第三帶狀材料層、前述第四帶狀材料層、前述第十四帶狀材料層及前述第十五帶狀材料層的步驟。
較佳係前述製造方法中,
將平滑後的前述第二材料層的頂部氧化,形成前述第三帶狀材料層。
較佳係前述製造方法中,
將原子離子進行離子植入至平滑後的前述第二材料層的頂部,形成前述第三帶狀材料層。
較佳係前述製造方法中,
係包含:
俯視下,以一方向的兩端接於保持材料層,且沿垂直方向以第一半導體層與第八材料層為一組而往上方堆積複數個的構造來形成前述第二基板的步驟;
在形成前述三維形狀半導體層之後,去除前述第八材料層的步驟;
包圍前述三維形狀半導體層之前述第一半導體層而形成第二閘極絕緣層的步驟;
包圍前述第二閘極絕緣層而形成第二閘極導體層的步驟;
去除前述保持材料層的步驟;以及
形成前述俯視下接於前述一方向的前述第一半導體層的兩端且含有施體或受體雜質的雜質層的步驟。
本發明的第二觀點的三維半導體裝置的製造方法係包含:
於位於第一基板上之至少一部分或整體由半導體層構成的第二基板上形成第一材料層的步驟;
於前述第一材料層上,形成俯視下沿一方向延伸之頂部上具有第一帶狀材料層的第二帶狀材料層的步驟,該第一帶狀材料層具有相同的俯視形狀;
從下起形成第二材料層與第三材料層而覆蓋整體的步驟;
對上述覆蓋整體進行平滑化以使前述第二材料層與前述第三材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
於平滑化後的前述第二材料層的頂部形成被夾持於平滑化後的前述第三材料層與前述第一帶狀材料層的側面的第三帶狀材料層的步驟;
去除平滑化後的前述第三材料層的步驟;
以前述第一帶狀材料層與前述第三帶狀材料層作為遮罩,蝕刻前述第二材料層,形成頂部上具有前述第三帶狀材料層的第四帶狀材料層的步驟;
去除前述第一帶狀材料層與前述第二帶狀材料層的步驟;
於前述第三帶狀材料層之更上方或更下方,形成俯視下與前述第四帶狀材料層正交之由單層或複數層構成的第五帶狀材料層的步驟;
至少藉由前述第一帶狀材料層與前述第五帶狀材料層、或前述第二帶狀材料層與前述第六帶狀材料層,形成俯視下位於前述第四帶狀材料層、及前述第五帶狀材料層之第一重疊區域之俯視下為長方形或圓形的第一遮罩材料層的步驟;以及
以前述第一帶狀材料層作為遮罩,蝕刻前述第二基板,於前述基板上形成由前述半導體層構成的三維形狀半導體層的步驟;
且將前述三維形狀半導體層作為通道。
較佳係前述製造方法中,
形成前述第三帶狀材料層的步驟係包含:
以前述第一帶狀材料層與前述第三材料層作為遮罩,蝕刻前述第二材料層的頂部,形成第一凹部的步驟;以及
形成填埋前述第一凹部且上表面位置與前述第一帶狀材料層的上表面位置相同的前述第三帶狀材料層的步驟。
較佳係前述製造方法中,
俯視下,前述第二帶狀材料層與前述第四帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
較佳係前述製造方法中,
前述三維形狀半導體層係於前述第一基板上沿垂直方向豎立的半導體柱。
較佳係前述製造方法中,
前述半導體柱係由沿前述一方向或與前述一方向正交的方向鄰接排列之至少第一半導體柱及第二半導體柱構成,
且該三維半導體裝置的製造方法包含:
包圍前述第一半導體柱及前述第二半導體柱的側面而形成第一閘極絕緣層的步驟;以及
包圍前述第一閘極絕緣層而形成第一閘極導體層的步驟;
前述第一閘極導體層係填埋前述第一半導體柱與前述第二半導體柱之間而形成。
較佳係前述製造方法中,
係包含去除形成於前述基板上之複數個前述半導體柱中之任一者的步驟。
較佳係前述製造方法中,
係包含在形成複數個前述半導體柱之前,俯視下,不形成前述第七帶狀材料層之一部分區域的步驟,
且俯視下,於前述第七帶狀材料層之前述一部分區域之下未形成有複數個前述半導體柱中之任一者。
較佳係前述製造方法中,
係包含:
與前述第一帶狀材料層及前述第二帶狀材料層之形成同時地,形成俯視下與前述第一帶狀材料層及前述第二帶狀材料層並行且頂部具有第六帶狀材料層的第七帶狀材料層的步驟;
與前述第三帶狀材料層及前述第四帶狀材料層之形成同時地,形成接於前述第六帶狀材料層與前述第七帶狀材料層的兩側面且頂部具有第八帶狀材料層的第九帶狀材料層的步驟;以及
與去除前述第一帶狀材料層及前述第二帶狀材料層的步驟併行地,去除前述第六帶狀材料層及前述第七帶狀材料層的步驟。
較佳係前述製造方法中,
前述第九帶狀材料層與前述第四帶狀材料層之俯視下的間隔係形成為與前述第二帶狀材料層或前述第七帶狀材料層之一者相同或與雙方相同。
較佳係前述製造方法中,
將平滑化後的前述第二材料層的頂部氧化,形成前述第三帶狀材料層。
較佳係前述製造方法中,
將原子離子進行離子植入至平滑後的前述第二材料層的頂部,形成前述第三帶狀材料層。
較佳係前述製造方法中,
係包含:
俯視下,以一方向的兩端接於保持材料層,且沿垂直方向以前述半導體層與第四材料層為一組而往上方堆積複數個的構造來形成前述第二基板的步驟;
在形成前述三維形狀半導體層之後,去除前述第四材料層的步驟;
包圍前述三維形狀半導體層之前述半導體層而形成第二閘極絕緣層的步驟;
包圍前述第二閘極絕緣層而形成第二閘極導體層的步驟;
去除前述保持材料層的步驟;以及
形成前述俯視下接於前述一方向的前述半導體層的兩端且含有施體或受體雜質的雜質層的步驟。
依據本發明,可實現高密度的柱狀半導體裝置。
1:P層基板
1a:SiO2基板
2,2a,2b:N層
3,3a,3b,3c,3d,43a,43c,43d,43e,43f,43g,43h,44a,44c,44d,44e,44f,44g,44h,66a,66c,66d,66f,97a,97c,97d,97e,97h,98a,98c,98d,98f:N+層
3A,3B:帶狀N+層
4A:帶狀P+層
4,4a,4c,4d,5,5a,43b,43g,44b,44g,66b,66e,97b,97e,98b,98e:P+層
6:i層
6a,6b,6c,6d,6e,6f,6h,6i,6j,61a,61b,61c,61d,61e,60f,61a,61b,61c,61d,61e,61f,93a,93b,93c,93d,93e,93f,93g,93h:Si柱
7,8,9,10,26,7a,7b,7c,7d,7e,7f,7g,7h,7i,7j,30a,30b,30c,30d,31a,31b,31c,31d,38a,38b,38c,38d,60a,60b,60c,60d,60e,60f,92a,92b,92c,92d,92e,92f,92g,92h,100a,100b,122,131:遮罩材料層
8,16,16A,16B,24,42:SiN層
8Aa,8Ab,16AA,16AB,16BA,16BB,90a,90b,90c,90d,90e,90f,90g,90h:正方形SiN層
8a,9a,10a,15a,15b,16a,16b,17a,17b,19a,19b,20a,20b,21a,21b,26,27a,27b,27A,27B,27C,27D,28a,28b,33a,33b,15A,15B,17A,17B,81,83a,83b,85a,85b,87a,87b,100a,100b,102aa,102ab,102ba,102bb,108,125,127a,127b,129a,129b,133a,133b,135aa,135ab,135ba,135bb:帶狀遮罩材料層
8aa,8ab,9aa,9ab,16aa,16ba,16bb,17aa,17ba,17bb,20aa,20ba,20bb,21aa,21 ba,21bb:正方形遮罩材料層
9Aa,9Ab,17Aa,17Ab,17Ba,17Bb,91a,91b,91c,91d,91e,91f,91g,91h:正方形遮罩材料層
12,12a,12b,18a,18b,120a,120b,120c:SiGe層
12aa,12ab,18a,18b,25,12Aa,12Ab,80,103aa,103ab,103ba,103bb:帶狀SiGe層
13,13a,13b,13ba,22,22a,22b,32a,32b,34,46,48,50,52,54,130:SiO2
14a,14b,14A,14B,106:凹部
16A,16B,24a,24b,82a,82b,86a,86b,101a,101b,104a,104b,104c,124,128a,128b,136aa,136ab,136ba,136bb:帶狀SiN層
35,63:HfO2
40a,40b,40c,40d,65a,65b,65c,65d:TiN層
47a,47b,49a,49b,51a,51b,51c,51d,53a,53b,55a,55b,69a,69b,71a,71b,73a,73b,74a,74b,102a,102b,103a,103b:連接孔
105:阻劑層
111:SiOC層
112a,112b:帶狀SiO2
114a,114b:帶狀氮化SiGe層
BL:位元配線金屬層
C1,C2:連接配線金屬層
R1,R2:圓弧部分
RBL:反轉位元配線金屬層
Vdd:電源配線金屬層
Vss1,Vss2:接地配線金屬層
WL:字元配線金屬層
第1A圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1B圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1C圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1D圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1E圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1F圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1G圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1H圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1I圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1J圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1K圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1L圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1M圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1N圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1O圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1P圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1Q圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1R圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1S圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1T圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1U圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1V圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1W圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1X圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1Y圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1Z圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1XX圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第1YY圖係用以說明第1實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第2A圖係用以說明本發明之第2實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第2B圖係用以說明本發明之第2實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第2C圖係用以說明本發明之第2實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第2D圖係用以說明本發明之第2實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3A圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3B圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3C圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3D圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3E圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第3F圖係用以說明本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第4A圖係用以說明本發明之第4實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第4B圖係用以說明本發明之第4實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5A圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5B圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5C圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5D圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5E圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第5F圖係用以說明本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第6圖係用以說明本發明之第6實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第7圖係用以說明本發明之第7實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第8A圖係用以說明本發明之第8實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第8B圖係用以說明本發明之第8實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第8C圖係用以說明本發明之第8實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第8D圖係用以說明本發明之第8實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第8E圖係用以說明本發明之第8實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第9A圖係用以說明本發明之第9實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第9B圖係用以說明本發明之第9實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第9C圖係用以說明本發明之第9實施形態之具有SGT之柱狀半導體裝置的製造方法的平面圖與剖面構造圖。
第10圖係顯示習知例的SGT的示意構造圖。
以下參照圖式說明本發明的實施形態之柱狀半導體裝置的製造方法。
(第1實施形態)
以下參照第1A圖至第1XX圖,針對本發明之第1實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
如第1A圖所示,藉由磊晶成長法將N層2形成於P層基板1上。並且,藉由離子植入法將N+層3及P+層4、5形成於N層2的表層。並且,形成i層(本質型Si層)6。並且,形成由SiO2層、氧化鋁(Al2O3)層、SiO2層構成的遮罩材料層7。此外,i層6也可利用含有少量的施體或受體雜質的N型或P型的Si來形成。並且,堆疊氮化矽(SiN)層8。並且,堆疊由SiO2層構成的遮罩材料層9。並且,堆疊由SiN層構成的遮罩材料層10。
接著,如第1B圖所示,將藉由光刻法(lithography)形成之俯視下沿Y方向延伸的帶狀阻劑層(未圖示)作為遮罩,而蝕刻遮罩材料層10。藉此,形成俯視下沿Y方向延伸的帶狀遮罩材料層10a。此外,也可將此帶狀遮罩材料層10a藉由等向性蝕刻,使帶狀遮罩材料層10a的寬度形成為比 阻劑層的寬度細。藉此,能夠形成具有寬度比可利用光刻法形成之最小的阻劑層的寬度更小的帶狀遮罩材料層10a。並且,以帶狀遮罩材料層10a作為遮罩,藉由例如RIE(Reactive Ion Etching;反應離子蝕刻法)將遮罩材料層9蝕刻而形成帶狀遮罩材料層9a。相對於藉由等向性蝕刻所形成的帶狀遮罩材料層10a的剖面成為底部的寬度大於頂部的寬度的梯形,遮罩材料層9a的剖面由於藉由RIE蝕刻而成為矩形。此矩形剖面係導致以帶狀遮罩材料層9a作為遮罩之蝕刻圖案之精確度提升。
接著,如第1C圖所示,以帶狀遮罩材料層9a作為遮罩,藉由例如RIE法將遮罩材料層8蝕刻而形成帶狀遮罩材料層8a。前述帶狀遮罩材料層10a可於遮罩材料層8的蝕刻之前去除,或是也可留存。
接著,如第1D圖所示,藉由ALD(Atomic Layered Deposition;原子層沈積)法形成SiGe層12及SiO2層13而覆蓋遮罩材料層7(第一材料層)、帶狀遮罩材料層8a(第二帶狀材料層)、9a(第一帶狀材料層)全體。此時,SiGe層12(第二材料層)的剖面係在頂部產生圓弧部分R1。此圓弧部分R1較佳為形成於比帶狀遮罩材料層8a更上部。
接著,如第1E圖所示,以例如藉由流動式CVD(Flow Chemical Vapor Deposition;流動式化學氣相沈積)法形成的SiO2層(未圖示)覆蓋全面,並且,藉由CMP(Chemical Mechanical Polishing;化學機械研磨)研磨SiO2層13(第3材料層)及SiGe層12至上表面位置成為帶狀遮罩材料層9a上表面位置,而形成SiO2層13a、SiGe層12a、12b。此時,SiGe層12a、12b的頂部側面希望能垂直。因此,SiO2層13及SiGe層12的研磨步驟中,較佳係去除第1D圖中的SiGe層12頂部的圓弧部分R1。
接著,如第1F圖所示,以SiO2層、帶狀遮罩材料層9a作為遮罩來蝕刻SiGe層12a、12b的頂部而形成凹部14a、14b(第一凹部)。較佳係蝕刻SiGe層12a、12b之頂部的圓弧部分R1且此凹部14a、14b的底部位置位於帶狀遮罩材料層9a的下部位置。藉由於SiO2層13及SiGe層12的研磨步驟中去除第1D圖中的SiGe層12頂部的圓弧部分R1,而可形成外周側面為垂直的凹部14a、14b。
接著,如第1G圖所示,於全面被覆SiN層(未圖示),且藉由CMP法研磨SiN層全面至上表面位置成為帶狀遮罩材料層9a上表面位置。藉此,於帶狀遮罩材料層8a、9a的兩側,形成俯視下具有與SiGe層12a、12b頂部形狀相同形狀的SiN層15a、15b(第三帶狀材料層)。
並且,如第1H圖所示,去除SiO2層13。
接著,如第1I圖所示,以帶狀遮罩材料層9a、15a、15b作為遮罩而蝕刻SiGe層12a、12b,形成帶狀SiGe層12aa、12ab(第四帶狀材料層)。此時,俯視下,帶狀SiGe層12aa與帶狀SiGe層12ab的寬度相同。
接著,如第1J圖所示,以覆蓋全面的方式形成由ALD法所形成的SiN層16以及由FCVD法所形成的SiO2層13b。此時,與第1D圖同樣地,形成於SiN層16(第四材料層)之頂部的圓弧部分R2較佳為位於比帶狀遮罩材料層9a更上部。
接著,進行研磨至此SiO2層13b(第五材料層)與SiN層16的上表面位置成為與帶狀遮罩材料層9a的上表面位置相同。並且,進行與第1E圖、第1F圖同樣的步驟,而如第1K圖所示,形成位於帶狀SiN層16A、16B 之上且被帶狀遮罩材料層15a、15b與SiO2層13ba所包夾的凹部14A、14B(第二凹部)。
如第1L圖所示,形成接於帶狀SiGe層12aa、12ab之兩側側面的帶狀SiN層16a、16b,以及接於帶狀遮罩材料層15a、15b之兩側側面的帶狀遮罩材料層17a、17b(第五帶狀材料層)。
接著,藉由ALD法,覆蓋全面地形成SiGe層(未圖示)。並且,覆蓋全面地形成SiO2層(未圖示)。並且,進行研磨至此SiO2層與SiGe層的上表面位置成為與帶狀遮罩材料層9a的上表面位置相同。並且,進行與第1E圖至第1I圖同樣的步驟,如第1M圖所示,形成接於帶狀遮罩材料層16a、16b(第六帶狀材料層)之兩側側面的帶狀SiGe層18a、18b,以及接於帶狀遮罩材料層17a、17b之兩側側面的帶狀遮罩材料層19a、19b。
接著,藉由ALD法,覆蓋全面地形成SiN層(未圖示)。並且,覆蓋全面地形成SiO2層(未圖示)。並且,進行研磨至此SiO2層與SiN層的上表面位置成為與帶狀遮罩材料層9a的上表面位置相同。並且,進行與第1E圖至第1I圖同樣的步驟,如第1N圖所示,形成接於帶狀遮罩材料層18a、18b之兩側側面的帶狀遮罩材料層20a、20b,以及接於帶狀遮罩材料層19a、19b之兩側側面的帶狀遮罩材料層21a、21b。
接著,藉由蝕刻去除帶狀遮罩材料層15a、15b、19a、19b、及帶狀SiGe層12aa、12ab、18a、18b。藉此,如第1O圖所示,於遮罩材料層7上形成帶狀遮罩材料層8a、16a、16b、20a、20b,以及帶狀遮罩材料層8a、16a、16b、20a、20b上的帶狀遮罩材料層9a、17a、17b、21a、21b。
接著,於全面被覆SiO2層(未圖示)。並且,如第1P圖所示,藉由CMP法進行研磨至SiO2層的上表面位置成為帶狀遮罩材料層9a的上表面位置而形成SiO2層22。並且,於全面形成SiN層24及SiGe層(未圖示)。並且,形成由沿X方向延伸之SiN層所構成的帶狀遮罩材料層26(第八帶狀材料層)。並且,將藉由光刻法與RIE法所形成的帶狀遮罩材料層26作為遮罩而蝕刻SiGe層,形成沿X方向延伸的帶狀SiGe層25(第九帶狀材料層)。
接著,藉由進行與第1c圖至第1I圖同樣的步驟(進行與第1c圖至第1I圖同樣的步驟之形成第六帶狀材料層、第七帶狀材料層、第三凹部、第十帶狀材料層及第十一帶狀材料層的步驟),如第1Q圖所示,形成接於帶狀SiGe層25之兩側側面之由SiN層構成的帶狀遮罩材料層28a、28b(第七帶狀材料層)、及接於帶狀遮罩材料層26之兩側側面的SiO2層、氧化鋁層、由SiO2層構成的帶狀遮罩材料層27a、27b(第七帶狀材料層)。
接著,如第1R圖所示,去除帶狀遮罩材料層26及帶狀SiGe層25,而於SiN層24上形成俯視下沿X方向延伸的帶狀遮罩材料層28a、28b,以及帶狀遮罩材料層28a、28b上的帶狀遮罩材料層27a、27b。
接著,如第1S圖所示,以帶狀遮罩材料層27a、27b、28a、28b作為遮罩,蝕刻SiN層24、帶狀遮罩材料層9a、17a、17b、21a、21b、8a、16a、16b、20a、20b、及SiO2層22。藉此,於帶狀遮罩材料層27a、28a之下形成帶狀SiN層24a、俯視下為正方形的遮罩材料層21aa、21ba、17aa、17ba、9aa、以及位於正方形的遮罩材料層21aa、21ba、17aa、17ba、9aa之下的正方形的遮罩材料層20aa、20ba、16aa、16ba、8aa。同樣地,於帶狀遮罩材料層27b、28b之下形成帶狀SiN層24b、俯視下為正方形的遮罩材 料層21ba、21bb、17ba、17bb、9ab、以及位於正方形的遮罩材料層21ba、21bb、17ba、17bb、9ab之下的正方形的遮罩材料層20ba(未圖示)、20bb(未圖示)、16ba(未圖示)、16bb(未圖示)、8ab。而且,同時於帶狀SiN層24a之下且於帶狀遮罩材料層21aa、21ba、17aa、17ba、9aa、20aa、20ba、16aa、16ba、8aa之間形成SiO2層22a。同樣地,於帶狀SiN層24b之下且於帶狀遮罩材料層21ba、21bb、17ba、17bb、9ab、20ba、20bb、16ba、16bb、8ab之間形成SiO2層22b。
接著,如第1T圖所示,去除帶狀遮罩材料層27a、27b、28a、28b、帶狀SiN層24a、24b、SiO2層22a、22b。藉此,於遮罩材料層7上形成俯視下為正方形的遮罩材料層21aa、21ab、21ba、21bb、17aa、17ba、17ba、17bb、9aa、9ba、及正方形的遮罩材料層20aa、20ab、20ba、20bb、16aa、16ab、16ba、16bb、8aa、8ab。
接著,以遮罩材料層21aa、21ab、21ba、21bb、17aa、17ab、17ba、17bb、9aa、9ab、及遮罩材料層20aa、20ab、20ba、20bb、16aa、16ab、16ba、17bb、8aa、8ab作為遮罩,利用RIE法蝕刻遮罩材料層7。並且,去除遮罩材料層21aa、21ab、21ba、21bb、17aa、17ab、17ba、17bb、9aa、9ab、及遮罩材料層20aa、20ab、20ba、20bb、16aa、16ba、16bb、8aa、8ab。藉此,如第1U圖所示,於i層6上形成遮罩材料層7a、7b、7c、7d、7e、7f、7g、7h、7i、7j(第一遮罩材料層)。例如,在利用RIE法蝕刻遮罩材料層7之前,對正方形的遮罩材料層21aa、21ab、21ba、21bb、17aa、17ab、17ba、17bb、9aa、9ab、及正方形的遮罩材料層20aa、20ab、20ba、 20bb、16aa、16ab、16ba、16bb、8aa、8ab之一方或雙方略為進行等向性蝕刻。藉此,使俯視下的遮罩材料層7a至7j的形狀形成為圓形。
接著,如第1V圖所示,以遮罩材料層7a至7j作為遮罩而蝕刻i層6,於N+層3與P+層4上形成Si柱6a、6b、6c、6d、6e、6f、6h、6i、6j(三維形狀半導體層)。
接著,以FCVD法被覆SiO2層(未圖示),其後藉由CMP法進行研磨至表面位置成為遮罩材料層7a至7j之頂部位置。並且,藉由光刻法及RIE蝕刻法來去除遮罩材料層7b、7i、及Si柱6b、6i。並且,去除以FCVD法所形成的SiO2層。藉此,如第1W圖所示,於N+層3與P+層4、5i之上形成Si柱6a、6c、6d、6e、6f、6h、6j。
接著,如第1X圖所示,形成將遮罩材料層7a至7j(未有遮罩材料層7b、7i)的側面包圍的遮罩材料層30a、30b、30c、30d、及將Si柱6a至6j(未有Si柱6b、6i)的側面包圍的遮罩材料層31a、31b、31c、31d(未圖示)。並且,利用FCVD法於全面被覆SiO2層(未圖示),其後藉由CMP法進行研磨至表面位置成為遮罩材料層7a至7j(無遮罩材料層7b、7i)的頂部位置。並且,於此平滑面上形成俯視下連接Si柱6a、6c、6d、6e之例如由SiO2層構成的帶狀遮罩材料層33a,以及連接Si柱6f、6g、6h、6j之例如由SiO2層構成的帶狀遮罩材料層33b。並且,以遮罩材料層30a、30b、30c、30d、7a至7j、33a、33b作為遮罩,藉由RIE法來蝕刻SiO2層、N+層3、P+層4、5、N層2、P層1。藉此,於Si柱6a、6c、6d、6e的下部且於P層1上形成N層2a、N+層3a、P+層4a。同樣地,於Si柱6f、6g、6h、6j的下部且於P層1上形成N層2b、N+層3c(未圖示)、3d(未圖示)、P+層5a。並且,於遮罩材 料層33a之下且於Si柱6a、6c之間形成SiO2層32a。同樣地,於遮罩材料層33b之下且於Si柱6h、6j之間形成SiO2層32b(未圖示)。
接著,如第1Y圖所示,將遮罩材料層33a、33b、SiO2層32a、32b、遮罩材料層30a、30b、30c、30d、31a、31b、31c、31d去除。
接著,如第1Z圖所示,於N+層3a、3b、3c、3d、P+層4a、5a、N層2a、2b的外周部及P層基板1上形成SiO2層34。並且,藉由ALD法,覆蓋全體地形成HfO2層(未圖示)、TiN層(未圖示)、SiO2層(未圖示)。此時,Si柱6c、6c、6e之間的TiN層較佳為側面彼此接觸。同樣地,Si柱6f、6g、6h之間的TiN層較佳為側面彼此接觸。並且,藉由CMP法進行研磨至HfO2層、TiN層、SiO2層的上表面位置成為遮罩材料層7a至7j的上表面位置。並且,藉由RIE法對SiO2層進行回蝕蝕刻(etch back etching)。並且,以此SiO2層作為遮罩蝕刻TiN層及HfO2層至上表面位置成為Si柱6a至6j的上部位置。並且,藉由CVD法,覆蓋整體地形成SiN層(未圖示)。並且,藉由CMP法對SiN層進行研磨至上表面位置成為遮罩材料層7a至7j的上表面位置。藉此,於Si柱6a至6j的頂部外周形成俯視下等寬的SiN層37a、37b、37c、37d(未圖示)。
接著,於遮罩材料層7a至7j的上表面形成俯視下接於Si柱6a、6d、6g、6j的遮罩材料層38a、38b、38c、38d。並且,以遮罩材料層7a至7j、37a、37b、37c、37d、38a、38b、38c、38d作為遮罩,對俯視下位於遮罩材料層37a、37b、37c、37d之外周部的SiO2層、TiN層進行蝕刻。藉此,形成連接Si柱6a之外周部的TiN層40a、連接Si柱6c、6d、6e之外周部的TiN層40b、連接Si柱6f、6g、6h之外周部的TiN層40c、以及連接Si柱6j之外周部 的TiN層40d(未圖示)。並且,去除遮罩材料層38a至38d、37a至37d、7a至7j。
接著,如第1XX圖所示,以SiO2層(未圖示)覆蓋整體,其後藉由CMP法進行研磨至SiO2層的上表面位置成為Si柱6a至6j之頂部的上表面位置。並且,藉由RIE法將SiO2層的上部蝕刻至其上表面位置成為TiN層40a至40d之頂部位置為止。並且,於Si柱6a至6j的頂部外周形成SiN層42。
接著,以SiO2層(未圖示)覆蓋Si柱6c、6h的頂部之後,藉由選擇性磊晶成長法,將含有施體雜質的N+層43a形成為包圍Si柱6a之頂部。同時,形成覆蓋Si柱6d之頂部的N+層43c、覆蓋Si柱6e之頂部的N+層43d(未圖示)、覆蓋Si柱6f之頂部的N+層43e(未圖示)、覆蓋Si柱6g之頂部的N+層43f(未圖示)、以及覆蓋Si柱6j之頂部的N+層43h(未圖示)。並且,將覆蓋在Si柱6c、6h之頂部的SiO2層去除。並且,覆蓋Si柱6a、6d、6e、6f、6g、6j而形成SiO2層(未圖示)。並且,藉由選擇性磊晶成長法,將含有受體雜質的P+層43b、43g形成為包圍Si柱6c、6h之頂部。並且,藉由熱處理,使N+層43a、43c、43d、43e、43f、43g的施體雜質擴散至Si柱6a、6d、6e、6f、6g、6j的頂部,形成N+層44a、44c、44d、44e(未圖示)、44f(未圖示)、44h(未圖示)。同時,使自P+層43b、43g擴散受體雜質,形成P+層44b、44g。
接著,如第1YY圖所示,覆蓋整體地形成上表面平坦的SiO2層46。並且,經由形成在N+層3a與P+層4a的交界面上及TiN層40b上的連接孔47a,形成連接配線金屬層C1。同時,經由形成在N+層3d與P+層5a的交界面上及TiN層40b上的連接孔47b,形成連接配線金屬層C2(未圖示)。 覆蓋整體地形成上表面平坦的SiO2層48。並且,經由形成在TiN層40a、40b上的連接孔49a、49b,形成字元配線金屬層WL。覆蓋整體地形成上表面平坦的SiO2層50。並且,經由形成在N+層43c、43d上的連接孔51a、51b,形成接地配線金屬層Vss1。同時,經由形成在N+層43e、43f上的連接孔51c、51d,形成接地配線金屬層Vss2。並且,覆蓋整體地形成上表面平坦的SiO2層52。並且,經由形成在P+層43b、43g上的連接孔53a、53b,形成電源金屬配線層Vdd。並且,覆蓋整體地形成上表面平坦的SiO2層54。並且,經由形成在N+層43a、43h上的連接孔55a、55b,形成位元輸出金屬配線層BL、反轉位元配線金屬層RBL。藉此,於P層基板1上形成SRAM單元電路。
依據第1實施形態的製造方法,可獲得以下的特徵。
1.本實施形態係如第1V圖所示,於一個SRAM單元區域形成十個Si柱6a至6j。其中,於X方向僅於用以形成一列的Si柱(6c、6h)之帶狀SiN層8a的形成時使用光刻法。其他的八個Si柱(除了6c、6h以外的6a至6j)係藉由以ALD法形成的帶狀SiGe層12aa、12ab、18a、18b、帶狀SiN層16a、16b、20a、20b所形成。以ALD法形成帶狀SiGe層12a、12b,於此帶狀SiGe層12a、12b上形成有具有使帶狀SiGe層12a、12b之頂部形狀原原本本地留存的形狀的帶狀遮罩材料層15a、15b。利用ALD法,能夠將材料層依各原子層或各分子層仔細地控制堆疊。藉此,能夠因應設計的需求,使帶狀SiGe層12a、12b的厚度俯視下高精度化且窄間距化。藉此,能夠使Si柱7a至7j之間之距離不受光刻的限制,高精度化且窄間距化。藉此,可謀求SRAM單元的高 積體化。此外,要僅於X方向以高精度且最窄間距地形成Si柱6c、6h、Si柱6b、6d、6g、6i之間的距離時,只要將帶狀SiGe層12aa、12ab、帶狀遮罩材料層15a、15b以本發明提供的製造方法來形成即可。
2.同樣地,於以ALD法形成的帶狀帶狀SiN層16A、16B,以及於此帶狀SiN層16A、16B上之具有使帶狀SiN層16A、16B之頂部形狀原原本本地留存的形狀的帶狀遮罩材料層17a、17b。藉此,能夠使Si柱7a至7j之俯視下的直徑不受光刻的限制,高精度化且縮小化。藉此,能夠消除光刻所致之對於高積體化的限制來進行單元設計。藉此,可謀求SRAM單元的高精度化且高積體化。
3.若要要朝向單元高積體化發展,則有Si柱6a至6j之俯視下的直徑,以及Si柱6a至6j之間的距離雙方的高精度化與高密度化之需求。對此,本實施形態係例如第1D圖至第1O圖所示,能夠將X方向剖面中在帶狀SiN層8a的兩側面形成的帶狀SiGe層12aa、12ab、18a、18b,以及帶狀SiN層16a、16b、20a、20b雙方,高精度且窄間距化地形成。帶狀SiN層16a、16b、20a、20b之厚度的高精度化係關聯著Si柱6a至6j之直徑的高精度化。並且,帶狀SiGe層12aa、12ab、18a、18b之厚度的高精度化關聯著Si柱6a至6j之間的距離的高精度化。藉此,可謀求SRAM單元之高精度化與高積體化。
4.藉由RIE法蝕刻SiGe層12a、12b、SiN層16A、16B時,帶狀遮罩材料層15a、15b、17a、17b係被蝕刻離子撞擊的部分為較低的蝕刻速度,但還是會被蝕刻。帶狀遮罩材料層15a、15b、17a、17b例如為底邊比頂邊長的梯形時,蝕刻中,帶狀遮罩材料層15a、15b、17a、17b的底邊部分會被蝕刻。藉此,俯視下的帶狀遮罩材料層15a、15b、17a、17b之遮罩層端會 隨著蝕刻時間變化。如此,使得帶狀SiGe層12aa、12ab、帶狀SiN層16a、16b於剖面觀看時難以形成為矩形。相對於此,本實施形態係於帶狀SiN層8a、帶狀遮罩材料層9a的兩側形成垂直方向具有相同厚度的SiGe層12a、12b、SiN層16A、16B。並且,形成使SiGe層12a、12b、SiN層16A、16B之頂部形狀原原本本地留存之帶狀遮罩材料層15a、15b、17a、17b。藉此,形成剖面為矩形的帶狀遮罩材料層15a、15b、17a、17b。而且,將剖面為矩形的帶狀遮罩材料層15a、15b、17a、17b作為遮罩來蝕刻SiGe層12a、12b、SiN層16A、16B,藉此形成剖面為矩形的帶狀SiGe層12aa、12ab、帶狀SiN層16a、16b。藉此,可謀求SRAM單元之高精度化與高積體化。
5.如第1E圖至第1I圖所示,例如,於作為帶狀SiGe層12aa、12ab之蝕刻遮罩的帶狀遮罩材料層15a、15b覆蓋帶狀SiN層8a、帶狀遮罩材料層9a,藉由ALD法使SiGe層12堆疊。並且,使SiO2層(未圖示)堆疊。並且,藉由CMP法將SiO2層及SiGe層12研磨至其上表面位置成為帶狀遮罩材料層9a之上表面位置。藉由此研磨而去除SiGe層12之上部的圓弧部分R1。藉由去除此上部的圓弧部分R1,凹部14a、14b的形狀係沿著SiGe層12a、12b之兩側面的帶狀遮罩材料層9a及SiO2層13的側面形狀,且沿著垂直方向等寬度之帶狀SiGe層12a、12b的形狀而形成。因此,凹部14a、14b的剖面形狀係形成大致矩形。藉此,帶狀遮罩材料層15a、15b的剖面形狀係垂直方向保持等寬度的形狀,整體看來,大致呈矩形。此係表示藉由RIE法,以帶狀遮罩材料層15a、15b作為遮罩蝕刻SiGe層12a而形成的帶狀SiGe層12a、12b,俯視之下、剖面視之下均能夠高精度地形成。以同樣的手法,則能夠高精度地形成帶狀SiN層16a、16b、20a、20b、帶狀SiGe層18a、18b。
6.本實施形態係如第1Z圖所示,連接Si柱7c、7d、7e、及Si柱7f、7g、7h之外周的閘極TiN層40b、40c係在Si柱7c、7d、7e之間、及Si柱7f、7g、7h之間的側面接觸。另一方面,在Si柱6a、6j,閘極TiN層40a、40d則獨立地形成。連接Si柱7c、7d、7e、及Si柱7f、7g、7h之外周的閘極TiN層40b、40c在Si柱7c、7d、7e之間、及Si柱7f、7g、7h之間的側面接觸,則表示可將Si柱7c、7d、7e之間、及Si柱7f、7g、7h之間的距離縮短至閘極HfO2層35與閘極TiN層40b、40c相加之厚度的二倍。並且,如第1W圖所示,藉由去除Si柱7b、7i,能夠將閘極TiN層40a、40c自閘極TiN層40b、40d分離而形成。此係如第1W圖所示,於俯視下,高密度地形成Si柱6a至6j之後,去除Si柱7b、7i,因而形成俯視下不具有Si柱的區域所致。藉此,能夠在俯視下去除Si柱7b、7i的區域上形成連接孔47a、47b。藉此,可謀求SRAM單元的高密度化。本實施形態不僅可應用於SRAM單元,亦可應用於具有連接閘極導體層彼此之複數個Si柱、以及鄰接於此等複數個Si柱且具有分離的閘極導體層之一個或複數個Si柱的電路。
7.本實施形態係如第1P圖至第1S圖所示,以與形成帶狀遮罩材料層8a、16a、16b、20a、20b同樣的方法來形成與沿Y方向延伸之帶狀遮罩材料層8a、16a、16b、20a、20b正交而沿X方向延伸之帶狀遮罩材料層27a、27b、28a、28b。藉此,可沿X方向、Y方向都高精度且高密度地形成Si柱6a至6j。再者,本實施形態的說明係形成帶狀遮罩材料層8a、16a、16b、28a、28b之後,形成帶狀遮罩材料層28a、28b。相對於此,即使是於形成帶狀遮罩材料層28a、28b之後形成帶狀遮罩材料層8a、16a、16b、28a、28b的步驟,也同樣地能夠高精度且高密度地形成Si柱6a至6j。此外,設計上, 於Y方向有寬裕空間時,也可不使用本方法,而於全面形成遮罩材料層之後,藉由光刻法及RIE蝕刻法直接形成帶狀遮罩材料層27a、27b、28a、28b。再者,於X方向有寬裕空間時,也可不使用本方法,而於全面形成遮罩材料層之後,藉由光刻法及RIE蝕刻法直接形成帶狀遮罩材料層8a、16a、16b、20a、20b或是帶狀遮罩材料層9a、17a、17b、21a、21b。
8.本實施形態係如第1O圖所示,形成俯視下沿Y方向延伸的五條帶狀的SiN層8a、16a、16b、20a、20b。相對於此,將帶狀的SiN層8a的材料從SiN替換成SiGe,將帶狀SiGe層12a、12b的材料替換成SiN時,能夠形成俯視下沿Y方向並行延伸的二條帶狀SiN層。藉此,俯視下,能夠於此二條帶狀SiN層的位置高密度地形成Si柱。俯視下,反覆數次進行首先形成的帶狀SiN層8a之形成、帶狀遮罩材料層9a構成之帶狀材料層的材料之形成、於此帶狀材料層之兩側並行形成的帶狀SiN層之形成、帶狀遮罩材料層的材料之形成、及帶狀SiN層或帶狀SiGe層之形成,藉此,能夠形成俯視下沿Y方向延伸的三條、四條、五條以上的帶狀SiN層。藉此,俯視下,能夠於此帶狀SiN層的位置高密度地形成Si柱。
(第2實施形態)
以下,參照第2A圖至第2D圖,針對本發明之第2實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
進行與第1A圖至第1L圖相同的步驟。此步驟中,第1A圖中的N+層3、P+層4之俯視下的配置不同,如第2A圖所示,帶狀N+層3A、 3B係形成於帶狀P+層4A的兩側。並且,於頂部上具有帶狀遮罩材料層9a之帶狀SiN層8a的兩側,形成俯視下寬度比帶狀SiGe層12aa、12ab寬的SiGe層12Aa、12Ab。並且,於帶狀SiGe層12Aa、12Ab的頂部上,形成帶狀遮罩材料層15A、15B。並且,於帶狀SiGe層12Aa、12Ab的兩側,形成與帶狀SiN層8a相同寬度之於頂部上具有帶狀遮罩材料層17A、1B的帶狀遮罩材料層16A、16B。
接著,進行與第1N圖至第1T圖相同的步驟。藉此,如第2B圖所示,於遮罩材料層7上形成頂部在俯視下具有正方形之遮罩材料層9Aa、9Ab、17Aa、17Ab、17Ba、17Bb的正方形的SiN層8Aa、8Ab、16Aa、16Ab(未圖示)、16Ba、16Bb(未圖示)。
接著,進行與第1U圖、第1V圖相同的步驟。藉此,如第2C圖所示,於N+層3A、3B上形成Si柱61a、61c、61d、61f。同時於P+層4A上形成Si柱61b、61e。
接著,進行與第1X圖至第1YY圖相同的步驟。藉此,如第2D圖所示,於Si柱61a、61b、61c之下形成N層2A、N+層3Aa、3Ba、P+層4Aa。同樣地,於Si柱61d、61e、61f之下形成N層2B、N+層3Ba(未圖示)、3Bb(未圖示)、P+層4Ba。並且,以包圍Si柱61a至61f之下部的方式形成SiO2層33。並且,以包圍Si柱61a至61f的方式形成閘極絕緣層之HfO2層63。並且,以包圍HfO2層63的方式形成閘極TiN層65a、65b、65c、65d(未圖示)、及SiO2層41。並且,於Si柱61a至61f的頂部外周形成SiN層42。並且,藉由選擇性磊晶成長法,於Si柱61a至61f的頂部上形成N+層67a、67c、67d、 67f、及P+層67b、67e。接著,進行熱處理,於Si柱61a至61f的頂部形成N+層66a、66c、67d(未圖示)、67f(未圖示)、及P+層66b、66e。
接著,於全面形成SiO2層46之後,經由形成在N+層3Aa與P+層4Aa的交界上、及閘極TiN層65c上的連接孔69a所形成的金屬層(未圖示),進行N+層3Aa、P+層4Aa及閘極TiN層65c的連接。同時,經由形成在N+層3Bb與P+層4Ba的交界上、及閘極TiN層65b上的連接孔69b所形成的金屬層(未圖示),進行N+層3Bb、P+層4Ba及閘極TiN層65b的連接。接著,於全面形成SiO2層48之後,經由形成在閘極TiN層65a上的連接孔70a、及形成在閘極TiN層65d上的連接孔70b,連接閘極TiN層65a、65d與字元配線金屬層WL。接著,於全面形成SiO2層50之後,經由形成在P+層67b、67e上的連接孔71a、71b,連接P+層67b、67e與電源配線金屬層Vdd。接著,於全面形成SiO2層52之後,經由連接孔73a,連接N+層67a與接地配線金屬層Vss1。同時,經由連接孔73b,連接N+層67f與接地配線金屬層Vss2。接著,於全面形成SiO2層54之後,經由連接孔74a,連接N+層67c與位元配線金屬層BL。同時,經由連接孔74b,連接N+層67d與反轉位元配線金屬層RBL。藉此,於P層基板1上形成SRAM單元。
依據本實施形態的製造方法,可獲得以下的特徵。
1.第1實施形態係如第1M圖所示,於遮罩材料層7上形成五條帶狀SiN層8a、16a、16b、20a、20b。相對於此,本實施形態係如第2A圖所示,形成三條帶狀SiN層8a、16A、16B而能夠形成SRAM單元。藉此,可謀求步驟的簡略化。
2.第1實施形態係如第1V圖所示,需要去除形成在SRAM區域內的Si柱6b、6i的步驟。相對於此,本實施形態不需要如此的Si柱的去除步驟,藉此,可謀求步驟的簡略化。
(第3實施形態)
以下,參照第3A圖至第3F圖,針對本發明之第3實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
如第3A圖所示,首先形成以帶狀遮罩材料層81(第一帶狀材料層)作為蝕刻遮罩而形成的帶狀SiGe層80(第二帶狀材料層),取代第1C圖所示的帶狀SiN層8a、遮罩材料層9a。
接著,進行與第1D圖至第1M圖所示同樣的步驟。藉此,如第3B圖所示,於頂部上具有帶狀遮罩材料層81之帶狀SiGe層80的兩側,形成等寬之頂部上具有帶狀遮罩材料層83a、83b(第三帶狀材料層)的帶狀SiN層82a、82b(第四帶狀材料層)。並且,於帶狀SiN層82a、82b的兩側,形成等寬之頂部具有帶狀遮罩材料層85a、85b的帶狀SiGe層84a、84b。並且,於帶狀SiGe層84a、84b的兩側,形成頂部具有帶狀遮罩材料層87a、87b的帶狀SiN層86a、86b。
接著,進行與第1N圖至第1T圖所示同樣的步驟。藉此,如第3C圖所示,於遮罩材料層7上形成頂部上在俯視下具有正方形之遮罩材料層91a、91b、91c、91d、91e、91f、91g、91h(第一遮罩材料層)的正方 形的SiN層90a、90b、90c、90d、90e(未圖示)、90f(未圖示)、90g、90h(未圖示)。
接著,進行與第1U圖、第1V圖所示同樣的步驟。藉此,如第3D圖所示,於N+層3c、P+層4c、4d上形成頂部上具有遮罩材料層92a、92b、92c、92d、92e、92f、92g、92h的Si柱93a、93b、93c、93d、93e、93f、93g、93h(三維形狀半導體層)。
接著,如第3E圖所示,去除遮罩材料層92b、92g、Si柱93b、93g。
接著,進行與第1Z圖至第1YY圖同樣的步驟。藉此,如第3F圖所示,於Si柱93a、93c、93d之下形成N層2ca、N+層3ca、3cb、P+層4ca。同樣地,於Si柱93e、93f、93g之下形成N層2cb、N+層3da(未圖式)、3db(未圖式)、P+層4cb。並且,以包圍Si柱93a至93h的方式形成閘極絕緣層之HfO2層95。並且,以包圍HfO2層95的方式形成閘極TiN層96a、96b、96c、96d(未圖示)。並且,於Si柱93a、93d、93e、93h的頂部上形成N+層98a、98c、98d(未圖示)、98f(未圖示),於Si柱93a、93d、93e、93h的頂部上形成N+層97a、97c、97d(未圖示)、97e(未圖示)。同樣地,於Si柱93c、93f的頂部上形成P+層98b、98e,並且於頂部形成P+層97b、97e。接著,經由形成在N+層3ca與P+層4ca交界上、及閘極TiN層96c上的連接孔99a所形成的金屬層(未圖示),進行N+層3ca、P+層4ca與閘極TiN層95c的連接。同時,經由形成在N+層3db與P+層4cb交界上、及閘極TiN層96b上的連接孔99b所形成的金屬層(未圖示),進行N+層3db、P+層4cb與閘極TiN層96b的連接。並且,經由形成在閘極TiN層96a上的連接孔101a、及形成 在閘極TiN層96d上的連接孔101b,連接閘極TiN層96a、96d與字元配線金屬層WL。經由形成在P+層98b、98e上的連接孔102a、102b,連接P+層98b、98e與電源配線金屬層Vdd。經由連接孔103a,連接N+層98c與接地配線金屬層Vss1。同時,經由連接孔103b,連接N+層98d與接地配線金屬層Vss2。經由連接孔104A,連接N+層98a與反轉位元配線金屬層RBL。同時,經由連接孔104B,連接N+層98f與位元配線金屬層BL。藉此,於P層基板1上形成SRAM單元。
依據本實施形態的製造方法,可獲得以下的特徵。
3.第1實施形態係如第1M圖所示,於遮罩材料層7上形成五條帶狀SiN層8a、16a、16b、20a、20b。相對於此,本實施形態係如第3B圖所示,形成四條帶狀SiN層82a、82b、86a、86b而能夠形成SRAM單元。藉此,可謀求步驟的簡略化。
4.本實施形態係與第1實施形態同樣地,連接於Si柱93c、93d、與Si柱93e、93f之外周的閘極TiN層96b、96c係在Si柱93c、93d之間、及Si柱93e、93f之間的側面接觸。另一方面,在Si柱93a、93h,閘極TiN層96a、96d則獨立地形成。如此,閘極TiN層96b、96c在Si柱93c、93d之間、及Si柱93e、93f之間的側面接觸,則表示可將Si柱93c、93d之間、及Si柱93e、93f之間的距離縮短至閘極HfO2層95與閘極TiN層96b、96c相加之厚度的二倍。藉此,可謀求SRAM單元的高積體化。
(第4實施形態)
以下,參照第4A圖、第4B圖,針對本發明之第4實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
進行第1A至第1P圖為止的步驟。並且,如第4A圖所示,藉由光刻法與RIE蝕刻,去除俯視下於第1P圖中的SiN層16a上的區域的帶狀遮罩材料層27a、28a,形成頂部上具有帶狀遮罩材料層27A、27B的帶狀遮罩材料層28A、28B。同時,去除俯視下於SiN層16b上的帶狀遮罩材料層27b、28b,形成頂部具有帶狀遮罩材料層27C、27D的帶狀遮罩材料層28C、28D(未圖示)。
接著,藉由進行第1S、1T圖所示的步驟,如第4B圖所示,於遮罩材料層7上形成俯視下具有正方形之遮罩材料層21aa、21ba、21ab、21bb、17ba、17ab、9aa、9ab、及正方形的遮罩材料層20aa、20ab、20ba(未圖示)、20bb、16ab(未圖示)、8aa、8ab。此時,並無第1S圖中的SiN層16aa、16bb、遮罩材料層17aa、17bb。並且,藉由進行第1X圖至第1YY圖的步驟,於P層基板1上形成具有與第1實施形態相同構造的SRAM單元。
依據本實施形態的製造方法,可獲得以下的特徵。
第1實施形態係於形成Si柱6b、6i、遮罩材料層7b、7i之後,將此Si柱6b、6i、遮罩材料層7b、7i去除。此時,對於垂直方向具有高度的Si柱6b、6i,必須以蝕刻終點與其他的Si柱6a、6c、6d、6e、6f、6h、6j的底部成為相同的方式,仔細地控制進行蝕刻而去除。相對於此,本實施形態係蝕刻第1實施形態中的第1P圖所示之位於最上面的遮罩材料層27a、27b、28a、 28b即可。此時,蝕刻終點係作為蝕刻阻擋層(etching stopper)的遮罩材料層7,而沒有如第1實施形態之有關蝕刻終點之控制性的問題。
(第5實施形態)
以下,參照第5A圖至第5F圖,針對本發明之第5實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
如第5A圖所示,於遮罩材料層7上,形成沿Y方向延伸之頂部上具有帶狀遮罩材料層100a、帶狀遮罩材料層100b(第六帶狀材料層、第十一帶狀材料層、第十五帶狀材料層)的帶狀SiN層101a、帶狀SiN層101b(第七帶狀材料層、第十二帶狀材料層、第十六帶狀材料層)。帶狀SiN層101a係俯視下形成於N+層3A上。並且,帶狀SiN層101b係俯視下形成於N+層3B上。此N+層3A、N+層3B係俯視下於帶狀P+層4A的兩側形成為帶狀。
接著,進行第1D圖至第1I圖的步驟。藉此,如第5B圖所示,於帶狀遮罩材料層100a與帶狀SiN層101a的兩側形成帶狀遮罩材料層102aa、102ab、及帶狀SiGe層103aa、103ab。同樣地,於帶狀遮罩材料層100b與帶狀SiN層101b的兩側形成帶狀遮罩材料層102ba、102bb(第八帶狀材料層、第十三帶狀材料層、第十七帶狀材料層)、及帶狀SiGe層103ba、103bb(第九帶狀材料層、第十四帶狀材料層、第十八帶狀材料層)。
接著,於全面被覆SiN層(未圖示)。並且,如第5C圖所示,藉由CMP法進行研磨至SiN層的上表面位置與遮罩材料層100a、100b相同而形成帶狀SiN層104a、104b、104c。
接著,如第5D圖所示,形成俯視下在SiN層104a的外側具有開口端的阻劑層105。並且,以阻劑層105、帶狀遮罩材料層102ab、102ba作為遮罩,以使SiN層104a的上表面位置成為帶狀遮罩材料層102ab、102ba之底部位置的方式進行蝕刻,形成凹部106。
接著,去除阻劑層105。並且,使用CVD法及CMP法而填埋凹部106,形成其上表面位置與帶狀遮罩材料層102ab、102ba之上表面位置相同的帶狀遮罩材料層108(第二十帶狀材料層)。並且,如第5E圖所示,以遮罩材料層100a、100b、102aa、102ab、102ba、102bb作為遮罩來蝕刻而去除SiN層104。
接著,如第5F圖所示,去除帶狀遮罩材料層102aa、102ab、102ba、102bb。並且,去除SiGe層103aa、103ab、103ba、103bb。藉此,於遮罩材料層7上形成頂部上具有遮罩材料層100a、100b、108的帶狀SiN層101a、101b、104a。並且,藉由進行第2B圖至第2D圖的步驟,而與第2實施形態同樣地,在一個單元區域形成由六個Si柱61a至61f構成的SRAM電路。
依據本實施形態的製造方法,可獲得以下的特徵。
第2實施形態係在首先形成帶狀SiN層8a之後,於此帶狀SiN層8a的外側形成二個帶狀SiN層16A、16B。此時,用以形成帶狀SiGe層12Aa、12Ab、 及帶狀SiN層16A、16B之二次的ALD膜堆積及RIE蝕刻精度係會影響帶狀SiN層16A、16B之相對於帶狀SiN層8a之X方向的位置精度。相對於此,本實施形態首先形成兩側的帶狀SiN層101a、101b,接著形成帶狀SiGe層103aa、103ab、103ba、103bb之後,形成中央的帶狀SiGe層104a。此時,僅用以形成帶狀SiGe層103aa、103ab、103ba、103bb之一次的ALD膜堆積及RIE蝕刻精度會影響帶狀SiN層101a、101b之相對於帶狀SiN層104a之X方向的位置精度。藉此,可謀求SRAM單元的高精度化。
本實施形態的說明中,係去除帶狀遮罩材料層102aa、102ab、102ba、102bb、帶狀SiGe層103aa、103ab、103ba、103bb,而使帶狀遮罩材料層100a、100b、108、SiN層101a、101b、104a殘留。相對於此,也可殘留帶狀遮罩材料層102aa、102ab、102ba、102bb、帶狀SiGe層103aa、103ab、103ba、103bb,而使帶狀遮罩材料層100a、100b、108、SiN層101a、101b、104a去除。此時,帶狀遮罩材料層102aa、102ab、102ba、102bb、帶狀SiGe層103aa、103ab、103ba、103bb則成為形成Si柱時的遮罩材料層。藉此,也可謀求SRAM單元的高精度化。
本實施形態係如第5B至第5E圖所示,以於帶狀SiGe層103ab、103ba之間形成帶狀SiN層104a、帶狀遮罩材料層108的例子進行了說明。相對於此,若在帶狀SiGe層103aa、103ab、103ba、103bb形成之後,與第1J圖至第1L圖所示的步驟同樣地形成帶狀遮罩材料層(未圖示)及帶狀SiN層(未圖示),則能夠形成於俯視下與第1N圖同樣地沿Y方向延伸的五條帶狀遮罩材料層(未圖示)及帶狀SiN層(未圖示)。藉此,能夠形成與第1實施形態同樣的由八 個SGT構成的SRAM單元。本方法能夠比第1實施形態將帶狀遮罩材料層及帶狀SiN層的形成步驟各減少一次。藉此可謀求步驟的簡易化。
(第6實施形態)
以下,參照第6圖,針對本發明之第6實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
進行第1A圖至第1E圖的步驟。此步驟中,形成Si層110a、110b取代SiGe層12a、12b。並且,形成非晶質SiOC層111。並且,在含氧環境下進行熱處理,氧化Si層110a、110b的頂部,而形成作為遮罩材料層的SiO2層112a、112b。如此,能夠藉由氧化處理而形成帶狀遮罩材料層。
依據本實施形態的製造方法,可獲得以下的特徵。
第1實施形態係於形成凹部14a、14b之後,需要藉由CMP法研磨堆疊於全面的SiN層的步驟。相對於此,本實施形態則僅藉由氧化處理就能夠形成遮罩材料層的SiO2層112a、112b。藉此,可謀求步驟的簡略化。
(第7實施形態)
以下,參照第7圖,針對本發明之第7實施形態之具有SGT之柱狀半導體裝置的製造方法進行說明。圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
進行第1A圖至第1E圖的步驟。並且,藉由氮離子植入,於SiGe層12a的頂部形成帶狀氮化SiGe層114a、114b。將此帶狀氮化SiGe層114a、114b使用作為遮罩材料層。
依據本實施形態的製造方法,可獲得以下的特徵。
第1實施形態係於形成凹部14a、14b之後,需要藉由CMP法研磨堆疊於全面的SiN層的步驟。相對於此,本實施形態則僅藉由氮離子的離子植入就能夠形成作為遮罩材料層的帶狀氮化SiGe層114a、114b。藉此,可謀求步驟的簡略化。
(第8實施形態)
以下,參照第8A圖至第8E圖,針對本發明之第8實施形態之三維半導體裝置的製造方法進行說明。該等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
如第8A圖所示,例如藉由ALD法於SiO2基板1a上形成SiGe層120a(第四材料層)。並且,藉由磊晶成長法從下依順序形成Si層121a(第一半導體層)、SiGe層120b(第四材料層)、Si層121b(第一半導體層)、SiGe層120c。於SiGe層120a(第八材料層)、120b(第八材料層),120c、Si層121a、121b、121c之Y方向的兩端形成有保持材料層(未圖示)。並且,於SiGe層120c上形成遮罩材料層122。並且,進行與第1A圖至第1L圖相同的步驟,於遮罩材料層122上形成頂部具有帶狀遮罩材料層125的帶狀SiN層124,並且形成有在帶狀遮罩材料層125、帶狀SiN層124之兩側形成之頂部具有帶 狀遮罩材料層127a、127b的帶狀SiGe層126a、126b,以及在帶狀SiGe層126a、126b、帶狀遮罩材料層127a、127b之兩側形成之頂部具有遮罩材料層129a、129b的帶狀SiN層128a、128b。
接著,如第8B圖所示,於全面被覆SiO2層(未圖示),並藉由CMP法進行研磨至上表面位置成為帶狀遮罩材料層125之上表面位置,而形成SiO2層130。並且,形成俯視下Y方向的兩端與保持材料層之端部一致的遮罩材料層131。
接著,以遮罩材料層131作為遮罩,蝕刻SiO2層130、帶狀遮罩材料層125、127a、127b、129a、129b、SiN層124、128a、128b、帶狀SiGe層126a、126b。並且,去除遮罩材料層131。並且,去除殘留的SiO2層130、遮罩材料層127a、127b、帶狀SiGe層126a、126b。並且,如第8C圖所示,以帶狀遮罩材料層125、129a、129b、SiN層124、128a、128b作為遮罩,蝕刻遮罩材料層122、SiGe層120a、120b、120c、Si層121a、121b,而於SiN層128a之下形成SiGe層120aa、120ba、120ca、Si層121aa、121ba、遮罩材料層122a。同時,於SiN層124之下形成SiGe層120ab、120bb、120ba、Si層121ab、121bb、遮罩材料層122b。同時,於SiN層128b之下形成SiGe層120ac、120bc、120cc、Si層121ac、121bc、遮罩材料層122c。
接著,如第8D圖所示,蝕刻帶狀遮罩材料層125、129a、129b、SiN層124、128a、128b、SiGe層120aa、120ab、120ac、120ba、120bb、129ba、120ca、120cb、120cc。藉此,形成以位於Y方向之兩端的保持材料層支持的帶狀Si層121aa、121ab、121ac、121ba、121bb、121bc。
接著,如第8E圖所示,以包圍帶狀Si層121aa、121ab、121ac、121ba、121bb、121bc的方式形成閘極HfO2層130aa、130ab、130ac、130ba、130bb、129bc。並且,以包圍HfO2層130aa、130ab、130ac、130ba、130bb、129bc的方式形成閘極TiN層132。並且,去除帶狀Si層121aa、121ab、121ac、121ba、121bb、121bc之兩端的保持材料層。並且,於帶狀Si層121aa、121ab、121ac、121ba、121bb、121bc的兩端形成成為源極或汲極的N+層(未圖示)或P+層(未圖示)。藉此,形成使用以帶狀Si層121aa、121ab、121ac、121ba、121bb、121bc作為通道的GAA(Gate All Around:環繞式閘極)電晶體(參照非專利文獻3)的電路。
依據本實施形態的製造方法,可獲得以下的特徵。
依據本實施形態,能夠將帶狀Si層121ab、121bb、及帶狀Si層121aa、121ba、帶狀Si層121ac、121bc之俯視下的間隔縮窄。例如,以帶狀Si層121aa、121ba作為N通道GAA電晶體的通道,以帶狀Si層121ab、121bb、帶狀Si層121ac、121bc作為P通道GAA電晶體的通道時,可形成高密度的反向器(inverter,也稱為「逆變器」)電路。
同樣地,以下段的帶狀Si層121aa、121ab、121ac作為N通道GAA電晶體的通道,以上段的帶狀Si層121ba、121bb、121bc作為P通道GAA電晶體的通道,也可形成高密度的反向器電路。此外,如本實施形態地將GAA電晶體形成為上方二段、水平方向三列的電路之外,即使是形成為上方一段及三段以上,且水平方向二列及四列的電路,也可謀求電路的高密度化。
(第9實施形態)
以下,參照第9A圖至第9C圖,針對本發明之第9實施形態之三維半導體裝置的製造方法進行說明。此等圖之(a)為平面圖,(b)為沿著(a)之X-X’線的剖面構造圖,(c)為沿著(a)之Y-Y’線的剖面構造圖。
進行了第1A圖所示的步驟之後,於遮罩材料層7上全面地形成SiGe層(未圖示)與遮罩材料層(未圖示)。並且,藉由光刻法與RIE蝕刻法,如第9A圖所示,形成俯視下沿Y方向延伸的二個帶狀遮罩材料層133a、133b。接著,以帶狀遮罩材料層133a、133b作為遮罩對SiGe層進行RIE蝕刻,而形成沿Y方向延伸的帶狀SiGe層134a、134b。
接著,藉由ALD法於全面形成SiN層(未圖示)。並且,進行第1D圖至第1I圖的步驟,如第9B圖所示,形成於帶狀遮罩材料層133a、133b之兩側所形成的帶狀遮罩材料層135aa、135ab、135ba、135bb、以及位於此帶狀遮罩材料層135aa、135ab、135ba、135bb之下且接於SiGe層134a、134b之兩側側面的帶狀SiN層136aa、136ab、136ba、136bb。帶狀遮罩材料層135ab與帶狀遮罩材料層135ba係分離地形成。同樣地,帶狀SiN層136ab與帶狀SiN層136ba係分離地形成。
接著,如第9C圖所示,去除帶狀遮罩材料層133a、133b、及帶狀SiGe層134a、134b,藉此,於遮罩材料層7上形成俯視下沿Y方向延伸的帶狀遮罩材料層135aa、135ab、135ba、135bb、及帶狀SiN層136aa、136ab、136ba、136bb。並且,藉由進行第3C圖至第3F圖的步驟,形成與第3F圖同樣的SRAM單元。
依據本實施形態的製造方法,可獲得以下的特徵。
第3實施形態係於帶狀SiGe層80的兩側反覆進行三次帶狀材料層形成步驟,而形成帶狀SiN層82a、82b、86a、86b、帶狀SiGe層84a、84b。相對於此,本實施形態係於同時形成的帶狀SiGe層134a、134b的兩側,僅進行一次的帶狀材料層形成步驟,即形成帶狀SiN層136aa、136ab、136ba、136bb。藉此,可謀求步驟的簡易化。
使俯視下二條帶狀SiN層136a、136b之間的距離比第9A圖所示的更分開,並藉由與第1I圖至第1L圖同樣的方法,於帶狀SiN層136aa、136ab、及帶狀SiN層136ba、136bb之各自的兩側,形成帶狀SiGe層、且於此帶狀SiGe層之上形成帶狀遮罩材料層(與第1I圖至第1L的材料不同)。接著,使用與第5B圖至第5E圖所示同樣的方法,於帶狀SiGe層間形成帶狀SiN層、且於此帶狀SiN層上形成帶狀遮罩材料層。藉此,與第1實施形態同樣地,能夠形成俯視下沿Y方向延伸的五條帶狀SiN層、且於此帶狀SiN層上形成帶狀遮罩材料層。藉此,可形成與第1實施形態相同的SRAM單元。第1實施形態係於帶狀SiN層8a的兩側反覆進行四次帶狀材料層形成步驟,相對於此,本方法係藉由反覆進行二次步驟而形成SRAM單元。藉此,可謀求步驟的簡易化。
此外,本發明的第1實施形態至第7實施形態中,於一個半導體柱形成一個SGT,但形成二個以上的電路的形成亦可應用本發明。
再者,第1實施形態中,遮罩材料層7係由SiO2層、氧化鋁(Al2O3)層、SiO2層所形成。並且,堆疊氮化矽(SiN)層8。並且,堆疊由SiO2層構成的遮罩材料層9。並且,堆疊由SiN層構成的遮罩材料層10。此等遮 罩材料層7、9、10、SiN層8若是符合本發明的目的之材料,也可使用由單層或複數層構成之包含有機材料或無機材料之其他的材料層,於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,如第1D圖所示,藉由ALD法全面地覆蓋帶狀遮罩材料層7、8a、9a而形成SiGe層12。此SiGe層12若是符合本發明的目的之材料,也可使用由單層或複數層構成之包含有機材料或無機材料之其他的材料層,於帶狀SiGe層18a、18b中此亦同樣。此外,帶狀SiGe層12aa、12ab、帶狀SiGe層18a、18b的材料母體也可不同。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中的帶狀遮罩材料層15a、15b、17a、17b、19a、19b、21a、21b、及帶狀遮罩材料層16a、16b、20a、20b,若是符合本發明的目的之材料,也可使用由單層或複數層構成之包含有機材料或無機材料之其他的材料層,於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,帶狀遮罩材料層9a、15a、15b、17a、17b、19a、19b、21a、21b之各者的上表面及底部的位置係形成於相同位置,若是符合本發明的目的之材料,各者的上表面及底部的位置也可在垂直方向不同,於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,帶狀遮罩材料層9a、15a、15b、17a、17b、19a、19b、21a、21b的厚度及形狀係因CMP研磨、RIE蝕刻、洗淨而變化。此變化若是在符合本發明之目的之程度內就沒有問題。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,第1Q圖至第1S圖所示的SiO2層22、SiN層24、帶狀SiGe層25、由SiN層構成的帶狀遮罩材料層26、帶狀遮罩材料層27a、27b、28a、28b,若是符合本發明的目的之材料,也可使用由單層或複數層構成之包含有機材料或無機材料之其他的材料層,於本發明之其他的實施形態中此亦相同。
再者,第1實施形態係去除了Si柱7b、6i。如此,也可配合電路設計,藉由光刻法與蝕刻法,將所形成的Si柱6a至6j之任一者去除。即使是SRAM單元電路以外的電路,也可配合電路設計,將已形成的Si柱去除。再者,如第4實施形態,能夠將帶狀遮罩材料層27a、27b、28a、28b之俯視下的任意的區域予以去除,而不形成Si柱6a至6j之任一者。本實施形態提供的方法能夠應用於SRAM單元電路以外的電路形成。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,如第1Z圖所示,使用TiN層40a、40b、40c、40d作為閘極金屬層。此TiN層40a、40b、40c、40d若是符合本發明的目的之材料,可使用由單層或複數層構成的材料層。TiN層40a、40b、40c、40d可至少由具有所希望的工作函數之單層或複數層的金屬層來形成。其外側可形成例如W層。此時,W層係進行連接閘極金屬層之金屬配線層的作用。也可於W層以外使用單層或複數層的金屬層。於本發明之其他的實施形態中此亦相同。
再者,本發明之實施形態的說明係使用了形成SRAM單元的例子。例如在微處理器電路中,SRAM電路與邏輯電路係形成在相同的晶片上。此邏輯電路形成中,依據第1W圖、第4A圖所說明的方法,能夠採用 不需要的Si柱不予形成的方法。再者,也可藉由個別的實施形態的方法來形成SRAM電路與邏輯電路。於其他的電路形成中此亦相同。
再者,第6實施形態係形成非晶質SiOC層111來取代第1實施形態中的SiO2層13。並且,在含氧環境中進行熱處理,將Si層110a、110b的頂部予以氧化,而形成作為遮罩材料層的帶狀SiO2層112a、112b。此非晶質SiOC層111、Si層110a、110b若是符合於本發明的目的之材料,亦可使用其他的材料層。
再者,第7實施形態係藉由氮離子植入而於SiGe層12a的頂部形成帶狀氮化SiGe層114a、114b。此氮離子植入、SiGe層12a若是用以形成遮罩材料層者,則也可為其他的原子的離子植入、或取代SiGe層的材料層。
再者,第1實施形態中,形成有俯視下呈圓形的遮罩材料層7a至7j。遮罩材料層7a至7j的形狀也可為橢圓形。於本發明之其他的實施形態中此亦相同。
第1實施形態係使用HfO2層35作為閘極絕緣層,使用TiN層40a、40b、40c、40d作為閘極材料層,然而,也可分別使用由單層或複數層構成的其他的材料層。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態中,如第1XX圖所示,使用選擇性磊晶成長法來形成N+層43a、43c、43d、43e、43f、43h、P+層43b、43g。並且,藉由熱擴散而於Si柱6a至6j的頂部形成N+層44a、44c、44d、44e、44f、44h、P+層44b、44g。由於藉由選擇性磊晶成長法所形成之N+層43a、43c、43d、43e、43f、43h、P+層43b、43g為單結晶層,所以即使沒有藉由熱擴 散而於Si柱6a至6j的頂部形成之N+層44a、44c、44d、44e、44f、44h、P+層44b、44g,也會成為SGT的源極或汲極。同樣地,能夠藉由選擇性磊晶成長法包圍Si柱6a至6j的外周所形成之N+層或P+層作為源極或汲極,取代作為源極或汲極之位於Si柱6a至6j的底部之N+層3a、3b、3c、3d、P+層4a、5a。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態係藉由選擇性磊晶成長法來進行如第1XX圖所示之N+層43a、43c、43d、43e、43f、43h、P+層43b、43g的形成。此等N+層43a、43c、43d、43e、43f、43h、P+層43b、43g的形成,也可進行通常的磊晶成長法,並於其後藉由光刻法與蝕刻法來形成。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態係於P層基板1上形成了SGT,惟也可使用SOI(Silicon On Insulator:矽絕緣體)基板來取P層基板1。或是只要可發揮作為基板的作用者,就可使用其他的材料基板。於本發明之其他的實施形態中此亦相同。
再者,第1實施形態係說明了於Si柱6a至6j的上下,使用具有相同極性之導電性的N+層44a、44c、44d、44f、44h、P+層44b、44g、及N+層3a、3b、3c、3d、P+層4a、5a而構成源極、汲極的SGT,惟本發明亦可應用具有極性不同之源極、汲極的通道型SGT。於本發明之其他的實施形態中此亦相同。
再者,上述各實施形態中說明了使用Si(矽)作為通道、源極、汲極等半導體區域的例子。然而,本發明不限於此,本發明的技術思想也 可應用於如SiGe等含有Si的半導體材料、或使用Si以外的半導體材料的三維半導體裝置。
再者,第1實施形態中,Si柱6a至6j係由單體的Si層所形成,惟,也可於垂直方向將不同的半導體母體構成的半導體層積層而形成SGT的通道。於本發明之其他的實施形態中此亦相同。
再者,縱型NAND型快閃記憶體電路中,以半導體柱作為通道,沿垂直方向形成複數段之由包圍該半導體柱之通道氧化層、電荷蓄積層、層間絕緣層、控制導體層構成的記憶體單元。此等記憶體單元之兩端的半導體柱係具有對應於源極的源極線雜質層及對應於汲極的位元線雜質層。此外,對於一個記憶體單元,若其兩側的記憶體單元之一側為源極,則另一側進行汲極的作用。如此,縱型NAND型快閃記憶體電路為SGT電路之一種。因此,本發明亦可應用於NAND型快閃記憶體電路。
本發明係在不脫離本發明之廣義的精神與範圍下可作各式各樣的實施形態及變化。此外,上述實施形態係用以說明本發明之一實施例,並非用以限定本發明的範圍。上述實施例及變化例可任意地組合。而且,即便是因應需要而去除上述實施形態之構成要件的一部分,也包含在本發明之技術思想的範圍內。
[產業上可利用性]
依據本發明之柱狀半導體裝置的製造方法,可獲得高密度的柱狀半導體裝置。
1:P層基板
2:N層
3:N+層
4、5:P+層
6:i層
7:遮罩材料層
8a、9a、15a、15b:帶狀遮罩材料層
12aa、12ab:帶狀SiGe層

Claims (26)

  1. 一種三維半導體裝置的製造方法,係包含:
    於位於第一基板上之至少一部分或整體由半導體層構成的第二基板上形成第一材料層的步驟;
    於前述第一材料層上,形成俯視下朝一方向延伸之頂部上具有第一帶狀材料層的第二帶狀材料層的步驟,該第一帶狀材料層具有相同的俯視形狀;
    從下起形成第二材料層與第三材料層而覆蓋整體的步驟;
    對上述覆蓋整體進行平滑化以使前述第二材料層與前述第三材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
    於平滑化後的前述第二材料層的頂部形成被夾持於平滑化後的前述第三材料層與前述第一帶狀材料層的側面的第三帶狀材料層的步驟;
    去除平滑化後的前述第三材料層的步驟;
    以前述第一帶狀材料層與前述第三帶狀材料層作為遮罩,蝕刻前述第二材料層,而形成接於前述第二帶狀材料層之兩側側面的第四帶狀材料層的步驟;
    從下起形成第四材料層與第五材料層而覆蓋整體的步驟;
    對上述覆蓋整體進行平滑化以使前述第四材料層與前述第五材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
    於平滑化後的前述第四材料層的頂部形成被夾持於平滑化後的前述第五材料層與前述第三帶狀材料層的側面的第五帶狀材料層的步驟;
    去除前述第五材料層的步驟;
    以前述第一帶狀材料層、前述第三帶狀材料層及前述第五帶狀材料層作為遮罩,蝕刻前述第四材料層,形成接於前述第四帶狀材料層的側面的第六帶狀材料層的步驟;
    去除前述第三帶狀材料層與前述第四帶狀材料層的步驟;
    於前述第一帶狀材料層之更上方或更下方,形成俯視下與前述第一帶狀材料層正交之由單層或複數層構成的第七帶狀材料層的步驟;
    至少藉由前述第一帶狀材料層與前述第五帶狀材料層、或前述第二帶狀材料層與前述第六帶狀材料層,形成俯視下位於前述第七帶狀材料層、前述第二帶狀材料層及前述第六帶狀材料層之第一重疊區域之俯視下為長方形或圓形的第一遮罩材料層的步驟;以及
    以前述第一遮罩材料層作為遮罩,蝕刻前述第二基板,於前述第一基板上形成由前述半導體層構成的三維形狀半導體層的步驟;
    且將前述三維形狀半導體層作為通道。
  2. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    形成前述第三帶狀材料層的步驟係包含:
    以前述第一帶狀材料層與平滑化後的前述第三材料層作為遮罩,蝕刻前述第二材料層的頂部,形成第一凹部的步驟;以及
    填埋前述第一凹部而形成上表面位置與前述第一帶狀材料層的上表面位置相同的前述第三帶狀材料層的步驟。
  3. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    形成前述第五帶狀材料層的步驟係包含:
    以前述第一帶狀材料層、前述第三帶狀材料層及前述第五材料層作為遮罩,蝕刻前述第四材料層的頂部,形成第二凹部的步驟;以及
    填埋前述第二凹部而形成上表面位置與前述第一帶狀材料層的上表面位置相同的前述第五帶狀材料層的步驟。
  4. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    垂直方向中,於前述第一帶狀材料層之更上方或更下方,形成頂部上具有俯視下沿一方向延伸的第八帶狀材料層且俯視下具有與前述第七帶狀材料層為相同形狀的第九帶狀材料層,
    前述第七帶狀材料層係藉由下列步驟所形成:
    從下起形成第六材料層與第七材料層而覆蓋整體的步驟;
    對上述覆蓋整體進行平滑化以使前述第六材料層與前述第七材料層的上表面位置成為前述第八帶狀材料層的上表面位置的步驟;
    以前述第八帶狀材料層與平滑化後的前述第七材料層作為遮罩,蝕刻平滑化後的前述第六材料層的頂部,形成第三凹部的步驟;
    填埋前述第三凹部而形成上表面位置與前述第八帶狀材料層的上表面位置相同的第十帶狀材料層的步驟;
    去除前述第六材料層的步驟;
    以前述第八帶狀材料層與前述第十帶狀材料層作為遮罩,蝕刻前述第六材料層,形成接於前述第九帶狀材料層之兩側側面的第十一帶狀材料層的步驟;以及
    去除前述第八帶狀材料層與前述第九帶狀材料層或者去除前述第十帶狀材料層與前述第十一帶狀材料層,將剩餘的帶狀材料層的下層或上下兩層作為前述第七帶狀材料層。
  5. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    俯視下,前述第二帶狀材料層與前述第四帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
  6. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    俯視下,前述第二帶狀材料層與前述第六帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
  7. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    前述三維形狀半導體層係於前述第一基板上沿垂直方向豎立的半導體柱。
  8. 如申請專利範圍第7項所述之三維半導體裝置的製造方法,其中,
    前述半導體柱係由沿前述一方向或與前述一方向正交的方向鄰接排列之至少第一半導體柱、第二半導體柱及第三半導體柱構成,
    且該三維半導體裝置的製造方法包含:
    包圍前述第一半導體柱、前述第二半導體柱及前述第三半導體柱的側面而形成第一閘極絕緣層的步驟;以及
    包圍前述第一閘極絕緣層而形成第一閘極導體層的步驟;
    前述第一閘極導體層係填埋前述第一半導體柱、前述第二半導體柱及前述第三半導體柱之至少兩個前述半導體柱之間而形成。
  9. 如申請專利範圍第7項所述之三維半導體裝置的製造方法,係包含去除形成於前述基板上之複數個前述半導體柱中之任一者的步驟。
  10. 如申請專利範圍第7項所述之三維半導體裝置的製造方法,係包含在形成複數個前述半導體柱之前,俯視下,不形成前述第七帶狀材料層之一部分區域的步驟,
    且俯視下,於前述第七帶狀材料層之前述一部分區域之下未形成有複數個前述半導體柱中之任一者。
  11. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,係包含:
    於前述第一材料層上,與形成頂部上具有前述第一帶狀材料層的第二帶狀材料層的步驟併行地,將頂部上具有第十二帶狀材料層的第十三帶狀材料層,沿相同前述一方向延伸而形成的步驟,該第十二帶狀材料層係頂部具有相同的俯視形狀;
    於前述第一材料層上,與形成頂部上具有前述第三帶狀材料層的第四帶狀材料層的步驟併行地,將頂部上具有第十四帶狀材料層的第十五帶狀材料層,沿相同前述一方向延伸而形成的步驟,該第十四帶狀材料層係頂部具有相同的俯視形狀;
    形成位於相對之前述第四帶狀材料層與前述第十五帶狀材料層之間且接於該第四帶狀材料層與該第十五帶狀材料層的側面,並且與前述第六帶 狀材料層為相同形狀的第十六帶狀材料層的步驟;以及
    去除前述第三帶狀材料層、前述第四帶狀材料層、前述第十四帶狀材料層及前述第十五帶狀材料層的步驟。
  12. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    將平滑後的前述第二材料層的頂部氧化,形成前述第三帶狀材料層。
  13. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,其中,
    將原子離子進行離子植入至平滑後的前述第二材料層的頂部,形成前述第三帶狀材料層。
  14. 如申請專利範圍第1項所述之三維半導體裝置的製造方法,係包含:
    俯視下,以一方向的兩端接於保持材料層,且沿垂直方向以第一半導體層與第八材料層為一組而往上方堆積複數個的構造來形成前述第二基板的步驟;
    在形成前述三維形狀半導體層之後,去除前述第八材料層的步驟;
    包圍前述三維形狀半導體層之前述第一半導體層而形成第二閘極絕緣層的步驟;
    包圍前述第二閘極絕緣層而形成第二閘極導體層的步驟;
    去除前述保持材料層的步驟;以及
    形成前述俯視下接於前述一方向的前述第一半導體層的兩端且含有施體或受體雜質的雜質層的步驟。
  15. 一種三維半導體裝置的製造方法,係包含:
    於位於第一基板上之至少一部分或整體由半導體層構成的第二基板上形成第一材料層的步驟;
    於前述第一材料層上,形成俯視下沿一方向延伸之頂部上具有第一帶狀材料層的第二帶狀材料層的步驟,該第一帶狀材料層具有相同的俯視形狀;
    從下起形成第二材料層與第三材料層而覆蓋整體的步驟;
    對上述覆蓋整體進行平滑化以使前述第二材料層與前述第三材料層的上表面位置成為前述第一帶狀材料層的上表面位置的步驟;
    於平滑化後的前述第二材料層的頂部形成被夾持於平滑化後的前述第三材料層與前述第一帶狀材料層的側面的第三帶狀材料層的步驟;
    去除平滑化後的前述第三材料層的步驟;
    以前述第一帶狀材料層與前述第三帶狀材料層作為遮罩,蝕刻前述第二材料層,形成頂部上具有前述第三帶狀材料層的第四帶狀材料層的步驟;
    去除前述第一帶狀材料層與前述第二帶狀材料層的步驟;
    於前述第三帶狀材料層之更上方或更下方,形成俯視下與前述第四帶狀材料層正交之由單層或複數層構成的第五帶狀材料層的步驟;
    至少藉由前述第一帶狀材料層與前述第五帶狀材料層、或前述第二帶狀材料層與前述第六帶狀材料層,形成俯視下位於前述第四帶狀材料層、及前述第五帶狀材料層之第一重疊區域之俯視下為長方形或圓形的第一遮罩材料層的步驟;以及
    以前述第一帶狀材料層作為遮罩,蝕刻前述第二基板,於前述基板上 形成由前述半導體層構成的三維形狀半導體層的步驟;
    且將前述三維形狀半導體層作為通道。
  16. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,其中,
    形成前述第三帶狀材料層的步驟係包含:
    以前述第一帶狀材料層與前述第三材料層作為遮罩,蝕刻前述第二材料層的頂部,形成第一凹部的步驟;以及
    形成填埋前述第一凹部且上表面位置與前述第一帶狀材料層的上表面位置相同的前述第三帶狀材料層的步驟。
  17. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,其中,
    俯視下,前述第二帶狀材料層與前述第四帶狀材料層中之任一者的寬度形成為大於另一者的寬度。
  18. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,其中,
    前述三維形狀半導體層係於前述第一基板上沿垂直方向豎立的半導體柱。
  19. 如申請專利範圍第18項所述之三維半導體裝置的製造方法,其中,
    前述半導體柱係由沿前述一方向或與前述一方向正交的方向鄰接排列之至少第一半導體柱及第二半導體柱構成,
    且該三維半導體裝置的製造方法包含:
    包圍前述第一半導體柱及前述第二半導體柱的側面而形成第一閘極絕緣層的步驟;以及
    包圍前述第一閘極絕緣層而形成第一閘極導體層的步驟;
    前述第一閘極導體層係填埋前述第一半導體柱與前述第二半導體柱之間而形成。
  20. 如申請專利範圍第18項所述之三維半導體裝置的製造方法,係包含去除形成於前述基板上之複數個前述半導體柱中之任一者的步驟。
  21. 如申請專利範圍第18項所述之三維半導體裝置的製造方法,係包含在形成複數個前述半導體柱之前,俯視下,不形成前述第七帶狀材料層之一部分區域的步驟,
    且俯視下,於前述第七帶狀材料層之前述一部分區域之下未形成有複數個前述半導體柱中之任一者。
  22. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,係包含:
    與前述第一帶狀材料層及前述第二帶狀材料層之形成同時地,形成俯視下與前述第一帶狀材料層及前述第二帶狀材料層並行且頂部具有第六帶狀材料層的第七帶狀材料層的步驟;
    與前述第三帶狀材料層及前述第四帶狀材料層之形成同時地,形成接於前述第六帶狀材料層與前述第七帶狀材料層的兩側面且頂部具有第八帶狀材料層的第九帶狀材料層的步驟;以及
    與去除前述第一帶狀材料層及前述第二帶狀材料層的步驟併行地,去 除前述第六帶狀材料層及前述第七帶狀材料層的步驟。
  23. 如申請專利範圍第22項所述之三維半導體裝置的製造方法,其中,
    前述第九帶狀材料層與前述第四帶狀材料層之俯視下的間隔係形成為與前述第二帶狀材料層或前述第七帶狀材料層之一者相同或與雙方相同。
  24. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,其中,
    將平滑化後的前述第二材料層的頂部氧化,形成前述第三帶狀材料層。
  25. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,其中,
    將原子離子進行離子植入至平滑後的前述第二材料層的頂部,形成前述第三帶狀材料層。
  26. 如申請專利範圍第15項所述之三維半導體裝置的製造方法,係包含:
    俯視下,以一方向的兩端接於保持材料層,且沿垂直方向以前述半導體層與第四材料層為一組而往上方堆積複數個的構造來形成前述第二基板的步驟;
    在形成前述三維形狀半導體層之後,去除前述第四材料層的步驟;
    包圍前述三維形狀半導體層之前述半導體層而形成第二閘極絕緣層的步驟;
    包圍前述第二閘極絕緣層而形成第二閘極導體層的步驟;
    去除前述保持材料層的步驟;以及
    形成前述俯視下接於前述一方向的前述半導體層的兩端且含有施體或受體雜質的雜質層的步驟。
TW108146218A 2018-12-21 2019-12-17 三維半導體裝置的製造方法 TWI718813B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/047245 WO2020129237A1 (ja) 2018-12-21 2018-12-21 3次元半導体装置の製造方法
WOPCT/JP2018/047245 2018-12-21

Publications (2)

Publication Number Publication Date
TW202040698A TW202040698A (zh) 2020-11-01
TWI718813B true TWI718813B (zh) 2021-02-11

Family

ID=71100717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108146218A TWI718813B (zh) 2018-12-21 2019-12-17 三維半導體裝置的製造方法

Country Status (6)

Country Link
US (1) US11862464B2 (zh)
JP (1) JP6980316B2 (zh)
KR (1) KR102535448B1 (zh)
CN (1) CN113228241A (zh)
TW (1) TWI718813B (zh)
WO (1) WO2020129237A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9652770B1 (en) 2014-04-30 2017-05-16 Wells Fargo Bank, N.A. Mobile wallet using tokenized card systems and methods
US11461766B1 (en) 2014-04-30 2022-10-04 Wells Fargo Bank, N.A. Mobile wallet using tokenized card systems and methods
US11551190B1 (en) 2019-06-03 2023-01-10 Wells Fargo Bank, N.A. Instant network cash transfer at point of sale
WO2022113187A1 (ja) * 2020-11-25 2022-06-02 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法
WO2022123633A1 (ja) * 2020-12-07 2022-06-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体メモリ装置とその製造方法
WO2023281728A1 (ja) * 2021-07-09 2023-01-12 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体素子を用いたメモリ装置
US11995621B1 (en) 2021-10-22 2024-05-28 Wells Fargo Bank, N.A. Systems and methods for native, non-native, and hybrid registration and use of tags for real-time services

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022744A1 (ja) * 2013-08-15 2015-02-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
WO2018070034A1 (ja) * 2016-10-14 2018-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2703970B2 (ja) 1989-01-17 1998-01-26 株式会社東芝 Mos型半導体装置
US6943405B2 (en) * 2003-07-01 2005-09-13 International Business Machines Corporation Integrated circuit having pairs of parallel complementary FinFETs
KR101094378B1 (ko) * 2007-12-24 2011-12-15 주식회사 하이닉스반도체 수직 채널 트랜지스터 및 그의 제조 방법
JP4372832B2 (ja) * 2008-01-29 2009-11-25 日本ユニサンティスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2013038553A1 (ja) * 2011-09-15 2013-03-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法、及び、半導体装置
JP5639317B1 (ja) * 2013-11-06 2014-12-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Sgtを有する半導体装置と、その製造方法
JP5675003B1 (ja) 2013-11-13 2015-02-25 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置、及び半導体装置の製造方法
JP5670606B1 (ja) 2013-11-22 2015-02-18 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置、及び半導体装置の製造方法
JP5657151B1 (ja) 2014-01-23 2015-01-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置、及び半導体装置の製造方法
JP5832057B1 (ja) * 2014-02-24 2015-12-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 記憶装置、半導体装置、及び記憶装置、半導体装置の製造方法
JP5838012B1 (ja) 2014-02-28 2015-12-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置、及び半導体装置の製造方法
JP5841696B1 (ja) * 2014-11-27 2016-01-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 柱状半導体装置と、その製造方法
CA2937865A1 (en) 2015-07-28 2017-01-28 Devon Canada Corporation Well injection and production methods, apparatus and systems
JP6339230B2 (ja) * 2015-10-09 2018-06-06 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置
WO2017064793A1 (ja) * 2015-10-15 2017-04-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022744A1 (ja) * 2013-08-15 2015-02-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
WO2018070034A1 (ja) * 2016-10-14 2018-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法

Also Published As

Publication number Publication date
TW202040698A (zh) 2020-11-01
JPWO2020129237A1 (ja) 2021-02-15
US11862464B2 (en) 2024-01-02
JP6980316B2 (ja) 2021-12-15
WO2020129237A1 (ja) 2020-06-25
CN113228241A (zh) 2021-08-06
KR102535448B1 (ko) 2023-05-26
KR20210091289A (ko) 2021-07-21
US20210358754A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
TWI718813B (zh) 三維半導體裝置的製造方法
TWI735197B (zh) 柱狀半導體裝置及其製造方法
TWI722916B (zh) 柱狀半導體裝置的製造方法
TWI742750B (zh) 柱狀半導體裝置及其製造方法
KR20220059541A (ko) 주상 반도체 장치와, 그 제조 방법
TWI710112B (zh) 柱狀半導體裝置的製造方法
JPWO2021005842A5 (zh)
JPWO2021005789A5 (zh)
TWI786561B (zh) 柱狀半導體裝置及其製造方法
JPWO2021176693A5 (zh)
TWI815229B (zh) 柱狀半導體記憶裝置及其製造方法
WO2022113187A1 (ja) 柱状半導体装置の製造方法
KR20200089735A (ko) 주상 반도체 장치의 제조 방법
KR20040033623A (ko) 반도체 소자의 제조 방법