TWI713746B - 功率模組用基板 - Google Patents

功率模組用基板 Download PDF

Info

Publication number
TWI713746B
TWI713746B TW106116472A TW106116472A TWI713746B TW I713746 B TWI713746 B TW I713746B TW 106116472 A TW106116472 A TW 106116472A TW 106116472 A TW106116472 A TW 106116472A TW I713746 B TWI713746 B TW I713746B
Authority
TW
Taiwan
Prior art keywords
layer
ceramic substrate
circuit
power module
circuit layer
Prior art date
Application number
TW106116472A
Other languages
English (en)
Other versions
TW201816952A (zh
Inventor
大橋東洋
長友義幸
Original Assignee
日商三菱綜合材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60325210&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI713746(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商三菱綜合材料股份有限公司 filed Critical 日商三菱綜合材料股份有限公司
Publication of TW201816952A publication Critical patent/TW201816952A/zh
Application granted granted Critical
Publication of TWI713746B publication Critical patent/TWI713746B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/124Metallic interlayers based on copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本發明的功率模組用基板是具備:陶瓷基板,及具有電路圖案的電路層,且在前述電路層與前述陶瓷基板的界面,從前述陶瓷基板側依序層疊有Cu-Sn層及含Ti層,在前述電路層的前述電路圖案的端部的剖面形狀中,前述陶瓷基板的表面與前述Cu-Sn層的端面所成的角度θ為80°以上100°以下的範圍內,離前述Cu-Sn層或前述含Ti層的前述電路層的端面之最大突出長度L為2μm以上15μm以下的範圍內。

Description

功率模組用基板
此發明是有關具功率模組用基板,其具備:陶瓷基板,及形成於此陶瓷基板的一方的面,具有電路圖案的電路層。
本案是根據2016年5月19日在日本申請的特願2016-100615號主張優先權,且將其內容援用於此。
LED或功率模組等的半導體裝置是在由導電材料所成的電路層上接合半導體元件的構造。
在為了控制風力發電、電動汽車等的電動車輛等而被使用的大電力控制用的功率半導體元件中,因為發熱量多,所以作為予以搭載的基板,以往廣泛使用例如在由AlN(氮化鋁)等所成的陶瓷基板的一方的面接合導電性佳的金屬板作為電路層之功率模組用基板。並且,也有在陶瓷基板的另一方的面接合金屬板作為金屬層的情形。
例如,在專利文獻1所示的功率模組用基板 是藉由在陶瓷基板的一方的面接合Cu板來形成電路層的構造。此功率模組用基板是Cu-Mg-Ti硬焊料介於陶瓷基板的一方的面來配置Cu板,藉由進行加熱處理來接合Cu板。
可是,如專利文獻1所揭示般,若經由Cu-Mg-Ti硬焊料來接合陶瓷基板與Cu板,則在陶瓷基板的附近形成有含Cu、Mg或Ti的金屬間化合物。
由於被形成於此陶瓷基板附近的金屬間化合物硬,因此當冷熱循環被負荷在功率模組用基板時,在陶瓷基板產生的熱應力會變大,會有容易在陶瓷基板產生龜裂的問題。
並且,在接合陶瓷基板與電路層時,一旦硬的金屬間化合物被形成於陶瓷基板的附近,則陶瓷基板與電路層的接合率會降低,恐有無法良好地接合之虞。
於是,例如在專利文獻2,3中提案一種使用Cu-P-Sn系硬焊料及Ti材來接合陶瓷基板與成為電路層的銅板之功率模組用基板。
在該等專利文獻2,3記載的發明是在陶瓷基板側形成有Cu-Sn層,在此Cu-Sn層上形成有含Ti的金屬化合物層,硬的金屬間化合物層會被配設於陶瓷基板的附近,因此可減低在負荷冷熱循環時產生於陶瓷基板的熱應力,可抑制在陶瓷基板產生龜裂。
[先行技術文獻] [專利文獻]
[專利文獻1]日本特許第4375730號公報
[專利文獻2]日本特開2015-043392號公報
[專利文獻3]日本特開2015-065423號公報
可是,在專利文獻2,3所示的功率模組用基板中,有為了在電路層形成電路圖案而進行蝕刻處理的情形。在進行蝕刻處理時,使用適於成為電路層的銅板的蝕刻之蝕刻劑時,由於Cu-Sn層及金屬間化合物層的蝕刻速度與銅板不同,因此在電路圖案的端面(蝕刻端面)是有Cu-Sn層及金屬間化合物層殘存的情形。在此,依殘存的Cu-Sn層及金屬間化合物層的形狀,電荷會局部地集中於電路層的電路圖案的端部,恐有部分放電特性及耐電壓特性惡化之虞。
此發明是有鑑於前述的情事而研發者,以提供一種在被形成於陶瓷基板的一方的面之電路層中,藉由規定電路圖案的端部形狀,可抑制部分放電特性及耐電壓特性的惡化之功率模組用基板。
為了解決前述的課題,本發明的功率模組用 基板係具備:陶瓷基板,及被形成於此陶瓷基板的一方的面,具有電路圖案的電路層,其特徵為:前述電路層係由Cu或Cu合金所成,在此電路層與前述陶瓷基板的界面,從前述陶瓷基板側依序層疊:Sn固溶於Cu中的Cu-Sn層,及含有Ti的含Ti層,在前述電路層的前述電路圖案的端部的剖面形狀中,前述陶瓷基板的表面與前述Cu-Sn層的端面所成的角度θ為80°以上100°以下的範圍內,離前述Cu-Sn層或前述含Ti層的前述電路層的端面之最大突出長度L為2μm以上15μm以下的範圍內。
若根據本發明的功率模組用基板,則前述電路層由Cu或Cu合金所成,Cu-Sn層及含Ti層會被層疊配置於此電路層與前述陶瓷基板的界面,在前述電路層的前述電路圖案的端部的剖面形狀中,前述陶瓷基板的表面與前述Cu-Sn層的端面所成的角度θ為80°以上100°以下的範圍內,因此成為銳角形狀之處不被形成於電路圖案的端部,可抑制電荷集中。藉此,可抑制部分放電的發生。
又,由於離前述Cu-Sn層或前述含Ti層的前述電路層的端面之最大突出長度L為2μm以上15μm以下的範圍內,因此可抑制電荷集中於突出部分的前端,可抑制部分放電特性及耐電壓特性的惡化。
在此,在本發明的功率模組用基板中,在前述電路層的前述電路圖案的端部的剖面形狀中,前述含Ti 層的端面位於前述Cu-Sn層的端面的延長上為理想。
此情況,前述Cu-Sn層與前述含Ti層會被平滑地連接,可抑制電荷集中於Cu-Sn層與含Ti層的界面,更可抑制部分放電特性及耐電壓特性的惡化。
若根據本發明,則可提供一種在被形成於陶瓷基板的一方的面之電路層中,藉由規定電路圖案的端部形狀,可抑制部分放電特性及耐電壓特性的惡化之功率模組用基板。
10、110‧‧‧功率模組用基板
11‧‧‧陶瓷基板
12‧‧‧電路層
14‧‧‧Cu-Sn層
15‧‧‧含Ti層
圖1是使用本發明的實施形態的功率模組用基板的功率模組的概略說明圖。
圖2是圖1所示的功率模組用基板的電路層與陶瓷基板的接合界面的剖面的概略說明圖。
圖3是表示被形成於圖1所示的功率模組用基板的電路層之電路圖案端部的剖面形狀的具體例的概略說明圖及SEM的觀察畫像。
圖4是表示被形成於圖1所示的功率模組用基板的電路層之電路圖案端部的剖面形狀的具體例的概略說明圖。
圖5是本發明的實施形態的功率模組用基板的製造方法及功率模組的製造方法的流程圖。
圖6是本發明的實施形態的功率模組用基板的製造方法的概略說明圖。
圖7是本發明的實施形態的功率模組的製造方法的概略說明圖。
圖8是使用本發明的其他的實施形態的功率模組用基板的功率模組的概略說明圖。
以下,參照附圖說明有關本發明的實施形態。另外,在以下的說明中,「硬焊料(brazing filler material)」是非一定限於含鉛的材料。
在圖1中顯示具備本實施形態的功率模組用基板10的功率模組1。
此功率模組1是具備:配設有電路層12及金屬層13的功率模組用基板10、及經由接合層2來接合於電路層12的一方的面(在圖1中是上面)的半導體元件3、及經由接合層32來接合於功率模組用基板10的另一方側(在圖1中是下側)的散熱片(heat sink)30。
功率模組用基板10是如圖1所示般具備:陶瓷基板11、及被配設於此陶瓷基板11的一方的面(在圖1中是上面)的電路層12、及被配設於陶瓷基板11的另一方的面(在圖1中是下面)的金屬層13。
陶瓷基板11是以絕緣性高的AlN(氮化鋁)、Si3N4(氮化矽)、Al2O3(礬土)等的陶瓷所構 成。在本實施形態中,以放熱性佳的AlN(氮化鋁)所構成。並且,陶瓷基板11的厚度是被設定於0.2~1.5mm的範圍內,在本實施形態中,被設定成0.635mm。
電路層12是在陶瓷基板11的一方的面接合由具有導電性的Cu或Cu合金所成的Cu板22,藉此形成。
在本實施形態中,電路層12是如圖6所示般,在陶瓷基板11的一方的面層疊Cu-P-Sn系硬焊料24、Ti材25、由無氧銅所成的Cu板22,加熱處理,將Cu板22接合於陶瓷基板11而形成。另外,在本實施形態中,使用Cu-P-Sn-Ni硬焊料,作為Cu-P-Sn系硬焊料24。
在此,電路層12的厚度是被設定於0.1mm以上1.0mm以下的範圍內,在本實施形態中,被設定成0.3mm。
金屬層13是由Cu或Cu合金所成的Cu板23會經由Cu-P-Sn系硬焊料24來接合於陶瓷基板11的另一方的面而形成。在本實施形態中,如圖6所示般,金屬層13是在陶瓷基板11的另一方的面層疊Cu-P-Sn系硬焊料24、Ti材25、由無氧銅所成的Cu板23,加熱處理,將Cu板23接合於陶瓷基板11而形成。另外,在本實施形態中,使用Cu-P-Sn-Ni硬焊料作為Cu-P-Sn系硬焊料24。
在此,金屬層13的厚度是被設定於0.1mm以上1.0mm以下的範圍內,在本實施形態中,被設定成 0.3mm。
在圖2中顯示陶瓷基板11與電路層12(金屬層13)的接合界面的概略說明圖。在陶瓷基板11與電路層12(金屬層13)的接合界面,如圖2所示般,為層疊位於陶瓷基板11側的Cu-Sn層14與含有Ti的含Ti層15之構造。在本實施形態中,含Ti層15是層疊含有Ti及P的第1金屬間化合物層16和Ti層18與含有Cu及Ti的第2金屬間化合物層17之構造。Cu-Sn層14是Sn會固溶於Cu中。第1金屬間化合物層16是主要以Ti及P所構成,Ti層18是主要以Ti所構成,第2金屬間化合物層17是主要以Cu及Ti所構成,但該等的層是亦可含其他的元素。
半導體元件3是以Si等的半導體材料所構成。此半導體元件3與電路層12是經由接合層2來接合。
接合層2是例如為Sn-Ag系、Sn-In系、或Sn-Ag-Cu系的焊錫材。
散熱片30是用以將來自前述的功率模組用基板10的熱放散者。此散熱片30是以Cu或Cu合金所構成,本實施形態是以磷脫氧銅所構成。在此散熱片30中設有用以流動冷卻用的流體的流路31。另外,在本實施形態中,散熱片30與金屬層13會經由由焊錫材所成的接合層32來接合。
然後,在本實施形態的功率模組用基板10的 電路層12中,藉由蝕刻處理來形成有電路圖案。
在此電路層12的電路圖案的端部的剖面形狀中,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為80°以上100°以下的範圍內。並且,離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L(從電路層12的端面突出之Cu-Sn層14及含Ti層15的長度的最大值)為2μm以上15μm以下的範圍內。
在此,所謂電路圖案的端部是電路圖案中所含的配線的一端部。所謂電路圖案的端部的剖面形狀是與陶瓷基板11的表面垂直,與電路圖案的端部的配線的伸長方向平行的剖面的電路圖案的端部的形狀。求取角度θ時,把將該剖面的陶瓷基板11與Cu-Sn層14的接合端及從接合端到水平方向20μm為止的範圍內的陶瓷基板11表面的凹凸的最高點與最低點的中點連結之直線定義為陶瓷基板11的表面。最大突出長度L是從上述剖面的電路層12的端面的含Ti層15側端到自電路層12的端面突出的Cu-Sn層14的端面及含Ti層15的端面為止之與陶瓷基板11的表面平行的方向的長度的最大值。為了取得將角度θ及最大突出長度L設為上述範圍內之後述的效果,較理想是電路圖案中所含的至少1個配線的一端部,角度θ及最大突出長度L為含在上述範圍中,更理想是在兩端部中,角度θ及最大突出長度L為含在上述範圍中,更加理想是在電路圖案的所有的配線的兩端部中,角度θ及最大突出長度L為含在上述範圍中。
參照圖3及圖4來說明有關電路層12的電路圖案的端部的剖面形狀的具體例。
在圖3(a)中,在電路圖案的端部,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ大致為90°(88°≦θ≦92°),離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為15μm以內。另外,圖3(b-1)是SEM的觀察畫像,圖3(b-2)是擴大圖3(b-1)的電路圖案端部附近者。由圖3(b-2)所得知般,在從電路層12的端面突出的部分也被觀察到含Ti層15。
在圖3(c)中,在電路圖案的端部,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為超過90°,100°以下的範圍,離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為15μm以內。並且,含Ti層15的端面位於Cu-Sn層14的端面的延長上。
在圖4(a)中,在電路圖案的端部,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為超過90°,100°以下的範圍,離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為15μm以內。並且,含Ti層15的端面較Cu-Sn層14的端面更突出至外側(從電路層12的端面離開的方向)。
在圖4(b)中,在電路圖案的端部,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為80°以上90°未滿的範圍,離Cu-Sn層14或含Ti層15的電路層 12的端面之最大突出長度L為15μm以內。並且,含Ti層15的端面較Cu-Sn層14的端面更突出至外側。
在圖4(c)中,在電路圖案的端部,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為超過90°,100°以下的範圍,離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為15μm以內。並且,Cu-Sn層14的端面較含Ti層15的端面更突出至外側。
在此,圖3(a)、圖3(c)所示的形狀是含Ti層15的端面會位於Cu-Sn層14的端面的延長上,電荷難集中於該等的界面,可充分抑制部分放電特性及耐電壓特性的惡化。
另外,即使是如圖4(a)、圖4(b)、圖4(c)般的形狀,只要陶瓷基板11的表面與Cu-Sn層14的端面成為的角度θ為80°以上100°以下的範圍內,且離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為2μm以上15μm以下的範圍內,便可取得抑制部分放電特性及耐電壓特性的惡化之效果。
角度θ是85°以上95°以下為理想,88°以上92°以下更理想,但並非限於此。並且,最大突出長度L是10μm以下為理想,5μm以下更理想,但並非限於此。
其次,參照圖5及圖6來說明有關本實施形態的功率模組用基板10的製造方法。
(層疊工程S01)
首先,如圖6所示般,在陶瓷基板11的一方的面(在圖6中為上面)依序層疊Cu-P-Sn系硬焊料24,Ti材25,及成為電路層12的Cu板22,且在陶瓷基板11的另一方的面(在圖6中為下面)依序層疊Cu-P-Sn系硬焊料24,Ti材25,及成為金屬層13的Cu板23(圖6(a))。亦即,在陶瓷基板11與Cu板22及Cu板23之間,在陶瓷基板11側配置Cu-P-Sn系硬焊料24,在Cu板22,23側配置Ti材25。另外,Ti材25與Cu板22、23的接合面是預先設為平滑的面。
在本實施形態中,Cu-P-Sn系硬焊料24的組成為Cu-6.3mass%P-9.3mass%Sn-7mass%Ni,其固相線溫度(溶融開始溫度)於600℃。並且,在本實施形態中,使用箔材作為Cu-P-Sn系硬焊料24,其厚度為5μm以上150μm以下的範圍內。
並且,Ti材25的厚度為0.4μm以上5μm以下的範圍內。在此,Ti材25是厚度為0.4μm以上1μm未滿時,藉由蒸鍍或濺射來成膜為理想,厚度為1μm以上5μm以下時,使用箔材為理想。另外,Ti材25的厚度的下限是0.4μm以上為理想,0.5μm以上為更理想。Ti材25的厚度的上限是1.5μm以下為理想,0.7μm以下為更理想。在本實施形態中,使用厚度1μm、純度99.8mass%的Ti箔,作為Ti材25。
(加熱處理工程S02)
其次,將Cu板22,Ti材25,Cu-P-Sn系硬焊料24,陶瓷基板11,Cu-P-Sn系硬焊料24,Ti材25,及Cu板23加壓於層疊方向(壓力1kgf/cm2以上35kgf/cm2以下(0.10MPa以上3.43MPa以下))的狀態下,裝入真空加熱爐內而加熱(圖6(b))。在此,本實施形態中,真空加熱爐內的壓力是設定於10-6Pa以上10-3Pa以下的範圍內,加熱溫度是設定於560℃以上650℃以下的範圍內,加熱時間是設定於30分以上360分以下的範圍。
在此加熱處理工程S02中,Ti材25與Cu板22、23會藉由固相擴散接合來接合,且Cu-P-Sn系硬焊料24會溶融而形成液相,藉此液相凝固,經由Cu-P-Sn系硬焊料24來接合陶瓷基板11與Ti材25。此時,在電路層12及金屬層13與陶瓷基板11的接合界面形成有Cu-Sn層14及含Ti層15。
藉此,在陶瓷基板11的一方的面形成有電路層12,且在另一方的面形成有金屬層13。
(電路圖案形成工程S03)
其次,對電路層12進行蝕刻處理,形成電路圖案。
在本實施形態中,首先,在電路層上形成光阻膜,蝕刻由Cu或Cu合金所成的電路層12(Cu蝕刻工程S31)。在此Cu蝕刻工程S31中,例如使用含氯化鐵、氯化銅、硫酸等的蝕刻劑為理想。另外,在本實施形態中,在Cu蝕刻工程S31是使用噴霧蝕刻法(圖6 (c))。
在上述的Cu蝕刻工程S31之後,蝕刻含Ti層15(Ti蝕刻工程S32)。在此Ti蝕刻工程S32中,例如使用在過氧化氫中添加有機酸銨的蝕刻劑為理想。例如,可使用昭和電工社製“solfine”(SE-TW-10),作為蝕刻劑。
另外,蝕刻的條件,液溫是70℃~80℃,時間是5分~20分為佳。另外,在本實施形態中,在Ti蝕刻工程S32中是使用浸漬蝕刻法(圖6(d))。
而且,在Ti蝕刻工程S32之後,蝕刻Cu-Sn層14(Cu-Sn蝕刻工程S33)。在此Cu-Sn蝕刻工程S33中,例如可使用過二硫酸銨水溶液。蝕刻的條件,液溫是25℃(常溫),時間是10分~20分為佳。另外,在本實施形態中,在Cu-Sn蝕刻工程S33中是使用浸漬蝕刻法(圖6(e))。
藉由此電路圖案形成工程S03,在電路層12形成有電路圖案,且在電路圖案的端部的剖面形狀中,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為80°以上100°以下的範圍內,離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為2μm以上15μm以下的範圍內。另外,難藉由蝕刻將最大突出長度L設為未滿2μm。
藉由以上那樣的工程,製造本實施形態的功率模組用基板10。
(散熱片接合工程S04)
然後,如圖7所示般,在此功率模組用基板10的金屬層13的下面,經由作為接合層32的焊錫材來接合散熱片30(圖7(a))。
(半導體元件接合工程S05)
其次,如圖7所示般,在功率模組用基板10的電路層12的上面,經由焊錫材來接合半導體元件3(圖7(b)、(c))。
藉此,製造圖1所示的功率模組1。
若根據以上般的構成的本實施形態的功率模組用基板10,則在由Cu或Cu合金所成的電路層12形成有電路圖案,在此電路層12的電路圖案的端部的剖面形狀中,陶瓷基板11的表面與Cu-Sn層14的端面所成的角度θ為80°以上100°以下的範圍內,因此在電路圖案的端部未形成有成為銳角形狀之處,可抑制電荷集中。藉此,可抑制部分放電特性及耐電壓特性的惡化。
又,由於離Cu-Sn層14或含Ti層15的電路層12的端面之最大突出長度L為2μm以上15μm以下的範圍內,因此可抑制電荷集中於突出部分的前端,可抑制部分放電特性及耐電壓特性的惡化。
又,本實施形態是如圖3(c)所示般,在電路層12的電路圖案的端部的剖面形狀中,當含Ti層15 的端面位於Cu-Sn層14的端面的延長上時,Cu-Sn層14與含Ti層15會被平滑地連接,可抑制電荷集中於Cu-Sn層14與含Ti層15的界面,更可抑制部分放電特性及耐電壓特性的惡化。
以上,說明有關本發明的實施形態,但本發明並非限於此,亦可在不脫離其發明的技術思想的範圍適當變更。
在本實施形態中,以在陶瓷基板的另一方的面形成由Cu或Cu合金所成的金屬層者進行說明,但並非限於此,亦可不形成金屬層,亦可形成由Al或Al合金所成的金屬層。
具體而言,如圖8所示般,亦可為在陶瓷基板11的一方的面形成由Cu或Cu合金所成的電路層12,在陶瓷基板11的另一方的面形成由Al或Al合金所成的金屬層113之功率模組用基板110。在此功率模組用基板110接合具備流路131的散熱片130及半導體元件3,藉此構成圖8所示的功率模組101。
另外,在此功率模組用基板110中,可同時進行:在陶瓷基板11的一方的面利用Cu-P-Sn系硬焊料及Ti材來接合銅板而形成電路層12之工程,及在陶瓷基板11的另一方的面利用硬焊料來接合由Al或Al合金所成的Al板之工程。而且,在使用Al製的散熱片130時,將金屬層113與散熱片130硬焊的工程也可同時進行。
又,散熱片的材質或構造並非限於本實施形 態,亦可適當設計變更,亦可不具有散熱片。
又,本實施形態是說明利用焊錫材來接合功率模組用基板與散熱片的構成,但亦可為將潤滑油介於功率模組用基板與散熱片之間,藉由上螺絲等來固定之構成。
並且,在Cu蝕刻工程S31,Ti蝕刻工程S32,Cu-Sn蝕刻工程S33中,各被使用的蝕刻劑並非限於本實施形態中所例示者,依據電路層的材質及構造、含Ti層的材質及構造、Cu-Sn層的材質及構造等,選擇各適合的蝕刻劑來使用為理想。
又,上述實施形態是舉使用Cu-P-Sn系硬焊料的箔材者為例進行說明,但並非限於此,亦可使用粉末或糊劑。
又,上述實施形態是使用Cu-P-Sn-Ni硬焊料或Cu-P-Sn硬焊料作為Cu-P-Sn系硬焊料進行說明,但亦可使用其他的Cu-P-Sn系硬焊料。
在此,Cu-P-Sn系硬焊料的P的含量是3mass%以上10mass%以下為理想。
P是具有使硬焊料的溶融開始溫度降低的作用效果之元素。並且,此P是具有藉由P氧化而產生的P氧化物來覆蓋硬焊料表面,藉此防止硬焊料的氧化,且藉由流動性佳的P氧化物來覆蓋溶融後的硬焊料的表面,藉此使硬焊料的浸潤性提升的作用效果之元素。
P的含量未滿3mass%,使硬焊料的溶融開始溫度降低的效果無法取得充分,恐有硬焊料的溶融開始溫度上 昇,或硬焊料的流動性不足,或陶瓷基板與電路層的接合性降低之虞。又,P的含量超過10mass%,脆弱的金屬間化合物會被多數形成,恐有陶瓷基板與電路層的接合性或接合可靠度降低之虞。
由如此的理由,Cu-P-Sn系硬焊料中所含的P的含量是3mass%以上10mass%以下的範圍內為理想。
並且,Cu-P-Sn系硬焊料的Sn的含量是0.5mass%以上25mass%以下為理想。
Sn是具有使硬焊料的溶融開始溫度降低的作用效果之元素。Sn的含量為0.5mass%以上,可確實地使硬焊料的溶融開始溫度降低。
並且,Sn的含量為25mass%以下,可抑制硬焊料的低溫脆化,可使陶瓷基板與電路層的接合可靠度提升。
由如此的理由,Cu-P-Sn系硬焊料的Sn的含量是0.5mass%以上25mass%以下的範圍內為理想。
並且,Cu-P-Sn系硬焊料是亦可將Ni、Cr、Fe、Mn的其中任一種或兩種以上含有2mass%以上20mass%以下。
Ni、Cr、Fe、Mn是具有抑制在陶瓷基板與硬焊料的界面形成含有P的金屬間化合物的作用效果之元素。
Ni、Cr、Fe、Mn的其中任一種或兩種以上的含量為2mass%以上,可抑制在陶瓷基板與硬焊料的接合界面形成含有P的金屬間化合物,陶瓷基板與電路層的接合可靠度會提升。並且,Ni、Cr、Fe、Mn的其中任一種或兩種 以上的含量為20mass%以下,可抑制硬焊料的溶融開始溫度上昇,抑制硬焊料的流動性降低,可使陶瓷基板與電路層的接合性提升。
由如此的理由,在Cu-P-Sn系硬焊料中使含有Ni、Cr、Fe、Mn的其中任一種或兩種以上時,其含量是2mass%以上20mass%以下的範圍內為理想。
[實施例] <實施例>
以下,說明有關為了確認本發明的效果而進行的確認實驗的結果。
依據上述的實施形態說明的程序,在表1及表2所示的陶瓷基板(50mm×60mm×厚度0.635mm(AlN),50mm×60mm×厚度0.32mm(Si3N4))的一方的面及另一方的面接合表1及表2所示的Cu板(46mm×56mm×厚度0.3mm),形成電路層及金屬層。使用無氧銅(表1,2的「OFC」)或精煉銅(Tough-Pitch Copper)(表1,2的「精煉」)作為Cu板。使用厚度25μm的Cu-P-Sn系硬焊料。
然後,對電路層進行記載於上述實施形態的蝕刻處理,藉此形成配線間距離為500μm的電路圖案。詳細是在Cu蝕刻工程S31中,使用氯化鐵作為蝕刻劑,以液溫50~70℃,進行5~15分鐘噴霧蝕刻。在Ti蝕刻工程 S32中,使用昭和電工社製Solfine(SE-TW-10)作為蝕刻劑,將蝕刻劑的液溫設為70~80℃,進行5~20分鐘浸漬蝕刻。在Cu-Sn蝕刻工程S33中,使用濃度1mol/dm3的過二硫酸銨水溶液作為蝕刻劑,將蝕刻劑的液溫設為25℃,進行10~20分鐘浸漬蝕刻。
然後,針對所取得的功率模組用基板,進行電路圖案的端部的剖面觀察,測定陶瓷基板的表面與Cu-Sn層的端面所成的角度θ,離Cu-Sn層或含Ti層的電路層的端面之最大突出長度L。另外,記載於表1及表2的形態是顯示圖面之中哪個形態。
剖面觀察是使用Cross Section Polisher(日本電子株式會社製SM-09010)以離子加速電壓:5kV,加工時間:14小時,離遮蔽板的突出量:100μm來離子蝕刻電路層的剖面(與陶瓷基板的表面垂直且與電路圖案的端部的配線的伸長方向平行的剖面)後,利用掃描型電子顯微鏡(SEM)來觀察電路圖案的端部。
針對所取得的功率模組用基板,作為耐電特性的評價,將各功率模組用基板浸漬於絕緣油(3M社製“Fluorinert”FC-770),5秒,昇壓0.5kV,然後重複保持30秒的循環,以保持中放電電荷量超過10pC時的電壓作為部分放電開始電壓,評價部分放電特性。將評價結果顯示於表1及表2。
Figure 106116472-A0305-02-0024-1
Figure 106116472-A0305-02-0025-2
在使用AlN作為陶瓷基板的表1的結果中,可知陶瓷基板的表面與Cu-Sn層的端面所成的角度θ為80°以上100°以下的範圍內,且離Cu-Sn層或含Ti層的前述電路層的端面之最大突出長度L為2μm以上15μm以下的範圍內之本發明例,可取得部分放電開始電壓高,部分放電特性及耐電壓特性佳的功率模組用基板。
在使用Si3N4作為陶瓷基板的表2的結果中,與使用AlN的情況同樣。
[產業上的利用可能性]
若根據本發明,則在形成於陶瓷基板的一方的面之電路層中,可抑制部分放電的發生,且即使形成微細的電路圖案,也可抑制短路的發生,因此合適於為了控制風力發電、電動汽車等的電動車輛等而被使用的大電力控制用的功率半導體元件。
11‧‧‧陶瓷基板
12‧‧‧電路層
14‧‧‧Cu-Sn層
15‧‧‧含Ti層

Claims (2)

  1. 一種功率模組用基板,係具備:陶瓷基板,及被形成於此陶瓷基板的一方的面,具有電路圖案的電路層,其特徵為:前述電路層係由Cu或Cu合金所成,在此電路層與前述陶瓷基板的界面,從前述陶瓷基板側依序層疊:Sn被固溶於Cu中的Cu-Sn層,及含有Ti的含Ti層,在前述電路層的前述電路圖案的端部的剖面形狀中,前述陶瓷基板的表面與前述Cu-Sn層的端面所成的角度θ為80°以上100°以下的範圍內,離前述Cu-Sn層或前述含Ti層的前述電路層的端面之最大突出長度L為2μm以上15μm以下的範圍內。
  2. 如申請專利範圍第1項之功率模組用基板,其中,在前述電路層的前述電路圖案的端部的剖面形狀中,前述含Ti層的端面位於前述Cu-Sn層的端面的延長上。
TW106116472A 2016-05-19 2017-05-18 功率模組用基板 TWI713746B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016100615 2016-05-19
JP2016-100615 2016-05-19

Publications (2)

Publication Number Publication Date
TW201816952A TW201816952A (zh) 2018-05-01
TWI713746B true TWI713746B (zh) 2020-12-21

Family

ID=60325210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106116472A TWI713746B (zh) 2016-05-19 2017-05-18 功率模組用基板

Country Status (6)

Country Link
US (1) US10453783B2 (zh)
EP (1) EP3460838B1 (zh)
JP (1) JP6687109B2 (zh)
CN (1) CN109155291B (zh)
TW (1) TWI713746B (zh)
WO (1) WO2017200004A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7289910B2 (ja) * 2019-03-14 2023-06-12 日本碍子株式会社 接合基板及び接合基板の製造方法
EP3941166A4 (en) * 2019-03-14 2022-11-09 NGK Insulators, Ltd. BOUND SUBSTRATE
KR102122210B1 (ko) * 2019-10-18 2020-06-12 제엠제코(주) 방열 기판, 그 제조 방법, 그리고 이를 포함하는 반도체 패키지
JP7301732B2 (ja) * 2019-12-24 2023-07-03 株式会社東芝 ねじ止めパット部材付きセラミックス回路基板及びそれを用いた半導体装置
EP4191661A1 (en) * 2020-07-27 2023-06-07 Kabushiki Kaisha Toshiba Joined body, circuit board, semiconductor device, and method for manufacturing joined body
EP4190764A1 (en) * 2020-07-27 2023-06-07 Kabushiki Kaisha Toshiba Joining body, circuit substrate, semiconductor device, and method for manufacturing joining body
WO2022075409A1 (ja) * 2020-10-07 2022-04-14 株式会社 東芝 接合体、セラミックス回路基板、および半導体装置
EP4032870A1 (de) * 2021-01-22 2022-07-27 Heraeus Deutschland GmbH & Co. KG Verfahren zur strukturierung von metall-keramik-substraten und strukturiertes metall-keramik-substrat
WO2023120185A1 (ja) * 2021-12-24 2023-06-29 ローム株式会社 半導体装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102521A (ja) * 1999-09-29 2001-04-13 Hitachi Ltd 絶縁回路基板およびそれを用いた半導体装置
TWI455286B (zh) * 2010-10-11 2014-10-01 Delta Electronics Inc 功率模組及功率模組之製造方法
US20140291699A1 (en) * 2011-12-20 2014-10-02 Kabushiki Kaisha Toshiba Ceramic/copper circuit board and semiconductor device
JP2015065423A (ja) * 2013-08-26 2015-04-09 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
TW201614020A (en) * 2014-07-02 2016-04-16 Mitsubishi Materials Corp Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3845925B2 (ja) * 1996-02-05 2006-11-15 住友電気工業株式会社 窒化アルミニウム基材を用いた半導体装置用部材及びその製造方法
JP3449458B2 (ja) * 1997-05-26 2003-09-22 電気化学工業株式会社 回路基板
JP2004172182A (ja) * 2002-11-18 2004-06-17 Denki Kagaku Kogyo Kk 回路基板及びその製造方法
JP4375730B2 (ja) 2004-04-23 2009-12-02 本田技研工業株式会社 銅とセラミックス又は炭素基銅複合材料との接合用ろう材及び同接合方法
DE102009033029A1 (de) * 2009-07-02 2011-01-05 Electrovac Ag Elektronische Vorrichtung
CN104718615B (zh) * 2012-10-04 2018-01-02 株式会社东芝 半导体电路板及其制造方法和使用其的半导体装置
EP2991105B1 (en) * 2013-04-26 2020-09-30 Kyocera Corporation Composite laminate and electronic device
JP6079505B2 (ja) 2013-08-26 2017-02-15 三菱マテリアル株式会社 接合体及びパワーモジュール用基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102521A (ja) * 1999-09-29 2001-04-13 Hitachi Ltd 絶縁回路基板およびそれを用いた半導体装置
TWI455286B (zh) * 2010-10-11 2014-10-01 Delta Electronics Inc 功率模組及功率模組之製造方法
US20140291699A1 (en) * 2011-12-20 2014-10-02 Kabushiki Kaisha Toshiba Ceramic/copper circuit board and semiconductor device
JP2015065423A (ja) * 2013-08-26 2015-04-09 三菱マテリアル株式会社 接合体及びパワーモジュール用基板
TW201614020A (en) * 2014-07-02 2016-04-16 Mitsubishi Materials Corp Joined body manufacturing method, multilayer joined body manufacturing method, power-module substrate manufacturing method, heat sink equipped power-module substrate manufacturing method, and laminated body manufacturing device

Also Published As

Publication number Publication date
JP6687109B2 (ja) 2020-04-22
TW201816952A (zh) 2018-05-01
CN109155291B (zh) 2022-05-03
EP3460838B1 (en) 2021-02-24
CN109155291A (zh) 2019-01-04
JPWO2017200004A1 (ja) 2019-04-04
EP3460838A4 (en) 2019-12-25
US10453783B2 (en) 2019-10-22
WO2017200004A1 (ja) 2017-11-23
EP3460838A1 (en) 2019-03-27
US20190189548A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
TWI713746B (zh) 功率模組用基板
CN109417056B (zh) 铜-陶瓷接合体及绝缘电路基板
CN105189109B (zh) 接合体、功率模块用基板及自带散热器的功率模块用基板
KR102272865B1 (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
KR102154882B1 (ko) 파워 모듈
WO2011049067A1 (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
CN103733329A (zh) 功率模块用基板、自带散热器的功率模块用基板、功率模块以及功率模块用基板的制造方法
KR102154373B1 (ko) 파워 모듈
KR102154369B1 (ko) 파워 모듈
JP2012178513A (ja) パワーモジュールユニット及びパワーモジュールユニットの製造方法
KR20210046670A (ko) 구리/세라믹스 접합체, 절연 회로 기판, 및 구리/세라믹스 접합체의 제조 방법, 및 절연 회로 기판의 제조 방법
KR20170046649A (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 및 히트 싱크의 제조 방법
KR102425880B1 (ko) 히트 싱크가 형성된 파워 모듈용 기판의 제조 방법
KR20160148529A (ko) 접합체의 제조 방법, 파워 모듈용 기판의 제조 방법
US20220278019A1 (en) Bonded body, power module substrate, power module, method for manufacturing bonded body, and method for manufacturing power module substrate
JP6904094B2 (ja) 絶縁回路基板の製造方法
JP6819299B2 (ja) 接合体、パワーモジュール用基板、接合体の製造方法及びパワーモジュール用基板の製造方法
JP2007096252A (ja) 液冷式回路基板および液冷式電子装置
TWI744474B (zh) 陶瓷/鋁接合體、絕緣電路基板、led模組、陶瓷構件、陶瓷/鋁接合體之製造方法、絕緣電路基板之製造方法
TWI708754B (zh) 接合體,電源模組用基板,電源模組,接合體的製造方法及電源模組用基板的製造方法
JP2015185679A (ja) パワーモジュール用基板及びヒートシンク付パワーモジュール用基板
KR101774586B1 (ko) 히트 싱크 부착 파워 모듈용 기판의 제조 방법, 히트 싱크 부착 파워 모듈용 기판 및 파워 모듈
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP5392901B2 (ja) 窒化珪素配線基板
JP6621353B2 (ja) 耐熱性セラミックス回路基板