TWI704236B - Molybdenum alloy target and method of preparing the same and molybdenum alloy layer - Google Patents

Molybdenum alloy target and method of preparing the same and molybdenum alloy layer Download PDF

Info

Publication number
TWI704236B
TWI704236B TW108138423A TW108138423A TWI704236B TW I704236 B TWI704236 B TW I704236B TW 108138423 A TW108138423 A TW 108138423A TW 108138423 A TW108138423 A TW 108138423A TW I704236 B TWI704236 B TW I704236B
Authority
TW
Taiwan
Prior art keywords
molybdenum alloy
alloy target
equal
molybdenum
atomic percent
Prior art date
Application number
TW108138423A
Other languages
Chinese (zh)
Other versions
TW202117033A (en
Inventor
葉欲安
王彥淳
劉宜隴
黃威智
鄭惠文
Original Assignee
光洋應用材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋應用材料科技股份有限公司 filed Critical 光洋應用材料科技股份有限公司
Priority to TW108138423A priority Critical patent/TWI704236B/en
Priority to JP2020008373A priority patent/JP6943992B2/en
Priority to SG10202000613UA priority patent/SG10202000613UA/en
Application granted granted Critical
Publication of TWI704236B publication Critical patent/TWI704236B/en
Publication of TW202117033A publication Critical patent/TW202117033A/en

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Provided are a molybdenum alloy target, a method of preparing the same, and a molybdenum alloy layer. The molybdenum alloy target includes molybdenum and a first additive metal, the first additive metal contains rhenium, ruthenium or a combination thereof; and an amount of the first additive metal ranges from 3 at% to 10 at% based on a total atomic amount of the molybdenum alloy target. By controlling the composition of the molybdenum alloy target, using a molybdenum powder with a specific oxygen content, and controlling the sintering conditions, the molybdenum alloy target having a specific composition, dual metallographic phase, a low oxygen content and high relative density can be obtained. The molybdenum alloy layer has good thermal conductivity, heat resistance and corrosion resistance, and can be used to form a heat sink layer of a heat-assisted magnetic recording media.

Description

鉬合金靶材及其製法及鉬合金層Molybdenum alloy target material and its preparation method and molybdenum alloy layer

本創作關於一種磁記錄媒體之靶材、其製法及材料層,尤指一種可適用於熱輔助垂直式磁記錄媒體的鉬合金靶材及鉬合金層。This creation is about a target material for a magnetic recording medium, its preparation method and material layer, especially a molybdenum alloy target material and a molybdenum alloy layer suitable for thermally assisted vertical magnetic recording media.

磁記錄媒體係磁性材料之其中一種應用,主要用於資料的備份與儲存。根據磁頭磁化的方向,現有技術之磁記錄媒體可區分為水平式磁記錄媒體及垂直式磁記錄媒體。其中,水平式磁記錄媒體之熱傳效果已發展至極限,故現有技術轉而投入垂直式磁記錄媒體之研究。尤其,因熱輔助垂直式磁記錄(heat-assisted magnetic recording,HAMR)媒體能加大儲存容量,故受到相關領域的關注。Magnetic recording media is one of the applications of magnetic materials, mainly used for data backup and storage. According to the direction of magnetization of the magnetic head, the prior art magnetic recording media can be divided into horizontal magnetic recording media and vertical magnetic recording media. Among them, the heat transfer effect of the horizontal magnetic recording medium has been developed to the limit, so the existing technology is turned to the research of the vertical magnetic recording medium. In particular, because heat-assisted magnetic recording (HAMR) media can increase the storage capacity, it has attracted attention from related fields.

一般熱輔助垂直式磁記錄媒體之層狀結構由下至上包含基板、附著層(adhesion layer)、軟磁層(soft under layer)、散熱層(heat sink layer)、中間層(inter layer)、記錄層(recording layer)、覆蓋層(overcoat),其中散熱層可提升磁記錄媒體之熱傳效果。Generally, the layered structure of a thermally assisted vertical magnetic recording medium includes a substrate, an adhesion layer, a soft under layer, a heat sink layer, an inter layer, and a recording layer from bottom to top. (recording layer), overcoat (overcoat), where the heat dissipation layer can improve the heat transfer effect of the magnetic recording medium.

現有技術之散熱層多半選用鉬為主要成分,且為提升散熱層的耐熱性及耐腐蝕性,現有技術多半會於散熱層中摻入如鉻之高熔點的添加金屬;然而,由於這些高熔點的添加金屬同時具有高氧化性,易與氧反應形成氧化物,從而導致所製得之鉬合金靶材會於濺鍍時產生異常微粒或放電等問題,且濺鍍後的鉬合金層也會因氧含量過高存在表面粗糙度過高之缺陷,致使難以具體提升熱輔助垂直式磁記錄媒體的熱傳效果,故目前實有必要改良及開發其他散熱層材料以改善前述問題。Most of the heat dissipation layer in the prior art uses molybdenum as the main component, and in order to improve the heat resistance and corrosion resistance of the heat dissipation layer, the prior art mostly mixes high melting point metal such as chromium into the heat dissipation layer; however, due to these high melting points The added metal also has high oxidizing properties and easily reacts with oxygen to form oxides, which may cause abnormal particles or discharge problems in the prepared molybdenum alloy target material during sputtering, and the sputtered molybdenum alloy layer will also Because the oxygen content is too high and the surface roughness is too high, it is difficult to improve the heat transfer effect of the heat-assisted vertical magnetic recording medium. Therefore, it is necessary to improve and develop other heat dissipation layer materials to improve the aforementioned problems.

有鑑於上述技術缺陷,本創作一目的在於開發一種鉬合金靶材,利用該鉬合金靶材所濺鍍而成的鉬合金層能兼具良好的導熱性、耐熱性及耐腐蝕性等特點。In view of the above technical shortcomings, one purpose of this creation is to develop a molybdenum alloy target material, the molybdenum alloy layer sputtered by the molybdenum alloy target material can have good thermal conductivity, heat resistance and corrosion resistance.

本創作另一目的在於開發一種鉬合金靶材,其所濺鍍而成的鉬合金層能適用於熱輔助垂直式磁記錄媒體中。Another purpose of this creation is to develop a molybdenum alloy target material, the sputtered molybdenum alloy layer can be applied to the thermally assisted vertical magnetic recording medium.

為達成前述目的,本創作提供一種鉬合金靶材,其包括鉬及一第一添加金屬,該第一添加金屬含有錸、釕或其組合;以該鉬合金靶材之原子總數為基準,該第一添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比;其中該鉬合金靶材之金相相數大於或等於兩相,該鉬合金靶材之氧含量小於或等於600 ppm。To achieve the foregoing objective, the present invention provides a molybdenum alloy target, which includes molybdenum and a first additive metal, the first additive metal contains rhenium, ruthenium or a combination thereof; based on the total number of atoms of the molybdenum alloy target, the The total content of the first additive metal is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent; wherein the number of metallographic phases of the molybdenum alloy target is greater than or equal to two phases, and the oxygen content of the molybdenum alloy target is less than or equal to 600 ppm.

據此,藉由控制鉬合金靶材之組成、氧含量及金相相數,本創作之鉬合金靶材所濺鍍而成的鉬合金層能兼具良好的導熱性、耐熱性及耐腐蝕性,使鉬合金層能適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。Accordingly, by controlling the composition, oxygen content and metallographic phase of the molybdenum alloy target material, the molybdenum alloy layer sputtered by the molybdenum alloy target material of this creation can have good thermal conductivity, heat resistance and corrosion resistance. The properties of the molybdenum alloy layer can be applied to heat-assisted vertical magnetic recording media as a heat dissipation layer.

除了前述第一添加金屬之外,於其中一實施態樣中,該鉬合金靶材可進一步包含有一第二添加金屬,所述第二添加金屬含有鉻(chromium,Cr)、鉭(tantalum,Ta)、鎢(tungsten,W)、鈮(niobium,Nb)、釩(vanadium,V)或其組合,但並非僅限於此。In addition to the aforementioned first additive metal, in one embodiment, the molybdenum alloy target may further include a second additive metal. The second additive metal contains chromium (Cr), tantalum (tantalum, Ta ), tungsten (W), niobium (Nb), vanadium (V) or a combination thereof, but not limited to this.

於其中一實施態樣中,以該鉬合金靶材之原子總數為基準,該第二添加金屬之總含量大於0原子百分比且小於或等於3原子百分比,該第一添加金屬及該第二添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比。In one embodiment, based on the total number of atoms of the molybdenum alloy target, the total content of the second additive metal is greater than 0 atomic percent and less than or equal to 3 atomic percent, the first additive metal and the second additive The total metal content is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent.

較佳的,以該鉬合金靶材之原子總數為基準,該第一添加金屬之含量大於或等於4原子百分比且小於或等於10原子百分比。Preferably, based on the total number of atoms of the molybdenum alloy target, the content of the first added metal is greater than or equal to 4 atomic percent and less than or equal to 10 atomic percent.

較佳的,所述鉬合金靶材的氧含量小於或等於500 ppm。Preferably, the oxygen content of the molybdenum alloy target is less than or equal to 500 ppm.

較佳的,所述鉬合金靶材之相對密度大於或等於98%;更佳的,所述鉬合金靶材之相對密度大於或等於98.5%;再更佳的,所述鉬合金靶材之相對密度大於或等於99%。據此,本創作之鉬合金靶材另有高相對密度之優點。Preferably, the relative density of the molybdenum alloy target is greater than or equal to 98%; more preferably, the relative density of the molybdenum alloy target is greater than or equal to 98.5%; even more preferably, the relative density of the molybdenum alloy target is greater than or equal to 98.5%; The relative density is greater than or equal to 99%. Accordingly, the molybdenum alloy target of this creation has the advantage of high relative density.

為達成前述目的,本創作另提供一種鉬合金靶材之製法,其包括以下步驟:混合一鉬粉及一第一添加金屬,獲得一混合粉末,其中該第一添加金屬含有錸、釕或其組合,其中該鉬粉的氧含量小於或等於1500 ppm;以該混合粉末之原子總數為基準,該第一添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比;於1000 °C至1500 °C之燒結溫度下,持續燒結該混合粉末1小時以上,以得到一燒結塊;以及以線切割及車床加工該燒結塊,以製得該鉬合金靶材。 In order to achieve the foregoing objective, this invention provides another method for preparing a molybdenum alloy target, which includes the following steps: mixing a molybdenum powder and a first additive metal to obtain a mixed powder, wherein the first additive metal contains rhenium, ruthenium or Combination, wherein the oxygen content of the molybdenum powder is less than or equal to 1500 ppm; based on the total number of atoms of the mixed powder, the total content of the first additive metal is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent; at 1000 ° Continuously sintering the mixed powder at a sintering temperature of C to 1500 ° C for more than 1 hour to obtain a sintered block; and processing the sintered block by wire cutting and lathe to obtain the molybdenum alloy target.

據此,藉由選用特定氧含量的鉬粉與控制燒結條件,本創作之鉬合金靶材能兼具特定組成、低氧含量及金相相數存在兩相以上等特點,故本創作之鉬合金靶材所濺鍍而成的鉬合金層能兼具良好的導熱性、耐熱性及耐腐蝕性,使鉬合金層能適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。Accordingly, by selecting molybdenum powder with specific oxygen content and controlling sintering conditions, the molybdenum alloy target material of this creation can have the characteristics of specific composition, low oxygen content and metallographic phase number. The molybdenum alloy layer sputtered by the alloy target material can have good thermal conductivity, heat resistance and corrosion resistance, so that the molybdenum alloy layer can be used as a heat dissipation layer in a heat-assisted vertical magnetic recording medium.

較佳的,所述混合粉末的粒徑大於或等於10微米且小於或等於100微米。Preferably, the particle size of the mixed powder is greater than or equal to 10 microns and less than or equal to 100 microns.

較佳的,所述鉬粉的氧含量大於或等於800 ppm且小於或等於1500 ppm;更佳的,所述鉬粉的氧含量大於或等於800 ppm且小於或等於1300 ppm;再更佳的,所述鉬粉的氧含量大於或等於800 ppm且小於或等於1000 ppm。Preferably, the oxygen content of the molybdenum powder is greater than or equal to 800 ppm and less than or equal to 1500 ppm; more preferably, the oxygen content of the molybdenum powder is greater than or equal to 800 ppm and less than or equal to 1300 ppm; even more preferably , The oxygen content of the molybdenum powder is greater than or equal to 800 ppm and less than or equal to 1000 ppm.

較佳的,所述燒結溫度大於或等於1050 °C且小於或等於1450 °C;較佳的,所述燒結時間大於或等於2小時且小於或等於5小時。 Preferably, the sintering temperature is greater than or equal to 1050 ° C and less than or equal to 1450 ° C; preferably, the sintering time is greater than or equal to 2 hours and less than or equal to 5 hours.

較佳的,本創作之混合粉末可選擇本領域技術人員習知的燒結方法進行燒結,例如熱壓成形法(hot press,HP)、熱均壓成型法(hot isostatic pressing,HIP)或其組合,但並非僅限於此。Preferably, the mixed powder of the present invention can be sintered by a sintering method known to those skilled in the art, such as hot press (HP), hot isostatic pressing (HIP) or a combination thereof , But not limited to this.

於其中一實施態樣中,所述混合粉末可進一步包含一第二添加金屬,該第二添加金屬含有鉻、鉭、鎢、鈮、釩或其組合,但並非僅限於此。In one embodiment, the mixed powder may further include a second additive metal, and the second additive metal contains chromium, tantalum, tungsten, niobium, vanadium or a combination thereof, but is not limited to this.

較佳的,以該混合粉末之原子總數為基準,該第二添加金屬之總含量大於0原子百分比且小於或等於3原子百分比,該第一添加金屬及該第二添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比。Preferably, based on the total number of atoms of the mixed powder, the total content of the second additive metal is greater than 0 atomic percent and less than or equal to 3 atomic percent, and the total content of the first additive metal and the second additive metal is greater than or It is equal to 3 atomic percent and less than or equal to 10 atomic percent.

較佳的,以該混合粉末之原子總數為基準,該第一添加金屬之總含量大於或等於4原子百分比且小於或等於10原子百分比。Preferably, based on the total number of atoms of the mixed powder, the total content of the first added metal is greater than or equal to 4 atomic percent and less than or equal to 10 atomic percent.

為達成前述目的,本創作另提供一種鉬合金層,其係由如前述鉬合金靶材所濺鍍而成。In order to achieve the foregoing objective, the present invention provides another molybdenum alloy layer, which is sputtered with the aforementioned molybdenum alloy target.

據此,藉由使用本創作之鉬合金靶材所濺鍍而成之鉬合金層,亦能具有類似鉬合金靶材之組成及低含氧量之特性,故本創作之鉬合金層能兼具導熱性、耐熱性及耐腐蝕性等特點,使其得以適用於熱輔助垂直式磁記錄媒體作為散熱層使用。Accordingly, the molybdenum alloy layer sputtered by using the molybdenum alloy target material of this creation can also have a composition similar to the molybdenum alloy target material and the characteristics of low oxygen content, so the molybdenum alloy layer of this creation can be both It has the characteristics of thermal conductivity, heat resistance and corrosion resistance, making it suitable for heat-assisted vertical magnetic recording media as a heat dissipation layer.

就鉬合金層之組成而言,以該鉬合金層之原子總數為基準,該第二添加金屬之總含量大於0原子百分比且小於或等於3原子百分比,該第一添加金屬及該第二添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比。With regard to the composition of the molybdenum alloy layer, based on the total number of atoms of the molybdenum alloy layer, the total content of the second additive metal is greater than 0 atomic percent and less than or equal to 3 atomic percent, the first additive metal and the second additive The total metal content is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent.

較佳的,以該鉬合金層之原子總數為基準,該第一添加金屬之總含量大於或等於4原子百分比且小於或等於10原子百分比。Preferably, based on the total number of atoms of the molybdenum alloy layer, the total content of the first additive metal is greater than or equal to 4 atomic percent and less than or equal to 10 atomic percent.

較佳的,所述鉬合金層的表面粗糙度(Ra)係小於或等於1.5奈米;更佳的,所述鉬合金層的表面粗糙度係小於或等於1.45奈米;再更佳的,所述鉬合金層的表面粗糙度係小於或等於1奈米。相較於現有技術之散熱層,本創作能具體解決以往散熱層存在表面粗糙度過高而缺乏良好導熱性之問題,從而使本創作之鉬合金層能適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。Preferably, the surface roughness (Ra) of the molybdenum alloy layer is less than or equal to 1.5 nanometers; more preferably, the surface roughness of the molybdenum alloy layer is less than or equal to 1.45 nanometers; and even more preferably, The surface roughness of the molybdenum alloy layer is less than or equal to 1 nanometer. Compared with the heat dissipation layer of the prior art, this invention can specifically solve the problem of excessive surface roughness and lack of good thermal conductivity of the previous heat dissipation layer, so that the molybdenum alloy layer of this invention can be used in thermally assisted vertical magnetic recording media. Used as a heat dissipation layer.

為驗證鉬合金靶材之組成及鉬合金靶材的製程參數對該鉬合金靶材所濺鍍而成之鉬合金層的導熱性、耐熱性及耐腐蝕性之影響,以下列舉數種具有不同組成之鉬合金靶材作為實施例,說明本創作之實施方式,另結合其他鉬合金靶材作為比較例,說明各實施例與比較例之特性差異;熟習此技藝者可經由本說明書之內容輕易地了解本創作所能達成之優點與功效,並且於不悖離本創作之精神下進行各種修飾與變更,以施行或應用本創作之內容。In order to verify the influence of the composition of the molybdenum alloy target material and the process parameters of the molybdenum alloy target material on the thermal conductivity, heat resistance and corrosion resistance of the molybdenum alloy layer sputtered by the molybdenum alloy target material, the following are several kinds of differences The composition of the molybdenum alloy target material is used as an example to illustrate the implementation of this creation. In addition, other molybdenum alloy target materials are combined as a comparative example to illustrate the difference in characteristics between each example and the comparative example; those who are familiar with this technique can easily use the content of this manual Understand the advantages and effects of this creation, and make various modifications and changes without departing from the spirit of this creation to implement or apply the content of this creation.

鉬合金靶材Molybdenum alloy target

實施例1至10、比較例1至9之鉬合金靶材係各自取用適量的第一添加金屬(例如錸、釕)及第二添加金屬(例如鉻、鉭)等原料,依如下所述之製法所製得。於下表1中,鉬合金靶材中各成分的含量單位以原子百分比(at%)表示。The molybdenum alloy target materials of Examples 1 to 10 and Comparative Examples 1 to 9 each use appropriate amounts of raw materials such as the first additive metal (for example, rhenium, ruthenium) and the second additive metal (for example, chromium, tantalum), as described below的制法制法。 In Table 1 below, the unit of content of each component in the molybdenum alloy target is expressed in atomic percentage (at%).

首先,於鉬合金靶材的製作過程中,係先依下表1所示之組成,秤取適量的鉬粉(其氧含量小於1500 ppm)、第一添加金屬粉及第二添加金屬粉,進行滾動混粉,得到混合粉末,其中該混合粉末的粒徑為25微米。First of all, during the production process of the molybdenum alloy target, the appropriate amount of molybdenum powder (with an oxygen content of less than 1500 ppm), the first additive metal powder and the second additive metal powder are weighed according to the composition shown in Table 1 below. Rolling powder is mixed to obtain mixed powder, wherein the particle size of the mixed powder is 25 microns.

接著,將混合粉末填入石墨模具中,經由熱壓成形法(hot press,HP)及熱均壓成型法(hot isostatic pressing,HIP),於1050°C至1450°C之燒結溫度、250至2000 bars之燒結壓力以及惰性氣體(如氬氣)形成之保護氣氛下持溫燒結60至300分鐘,以獲得燒結塊。Then, the mixed powder is filled into the graphite mold, and the sintering temperature is between 1050°C and 1450°C and the sintering temperature is between 1050°C and 1450°C through hot press (HP) and hot isostatic pressing (HIP). Sintering at a sintering pressure of 2000 bars and a protective atmosphere formed by an inert gas (such as argon) for 60 to 300 minutes to obtain agglomerates.

最後,將前述燒結塊進行線切割與電腦數值控制(computer numerical control,CNC)車床加工等步驟後,形成直徑165毫米以上、厚度4毫米以上的圓餅形鉬合金靶材。Finally, after the aforesaid sintered block is processed by wire cutting and computer numerical control (CNC) lathe processing, a circular molybdenum alloy target with a diameter of more than 165 mm and a thickness of more than 4 mm is formed.

於此,製作各實施例和比較例之鉬合金靶材的製程參數如下表1所示。於下表1中所列之燒結溫度係指HP和HIP二者的溫度條件,燒結時間係指HP和HIP二者的總燒結時間。Here, the manufacturing process parameters of the molybdenum alloy targets of the respective examples and comparative examples are shown in Table 1 below. The sintering temperature listed in Table 1 below refers to the temperature conditions of both HP and HIP, and the sintering time refers to the total sintering time of both HP and HIP.

試驗例Test example 11 :氧含量: Oxygen content

本試驗例係以各實施例和比較例所選用之鉬粉原料及所製得之鉬合金靶材作為待測樣品,使用氮氣分析儀(儀器型號:EMGA-620W,購自堀場股份有限公司)分析前述製備實施例1至10及比較例1至9之鉬合金靶材所用之鉬粉原料的氧含量以及實施例1至10及比較例1至9之鉬合金靶材的氧含量。This test example uses the molybdenum powder raw materials and the prepared molybdenum alloy target materials used in the examples and comparative examples as the samples to be tested, using a nitrogen analyzer (instrument model: EMGA-620W, purchased from Horiba Co., Ltd.) The oxygen content of the molybdenum powder raw materials used in the preparation of the molybdenum alloy targets of Examples 1 to 10 and Comparative Examples 1 to 9 and the oxygen content of the molybdenum alloy targets of Examples 1 to 10 and Comparative Examples 1 to 9 were analyzed.

取50至100毫克之待測樣品放置於石墨坩堝中,於持續通氦氣的氣氛下進行加熱燃燒,使前述待測樣品中的氧含量轉化為一氧化碳,最後再以非分散紅外吸收法進行檢測,得到各待測樣品的氧含量,其結果係如下表1所示。Take 50 to 100 mg of the sample to be tested and place it in a graphite crucible, and heat and burn in an atmosphere of continuous helium gas to convert the oxygen content in the sample to be tested into carbon monoxide, and finally detect it by non-dispersive infrared absorption method , The oxygen content of each sample to be tested is obtained, and the results are shown in Table 1 below.

如下表1所示,製備實施例1至10之鉬合金靶材所用的鉬粉原料的氧含量皆可控制在小於1500 ppm;反之,製備比較例2及7之鉬合金靶材所用的鉬粉原料的氧含量超出1500 ppm。As shown in Table 1 below, the oxygen content of the molybdenum powder raw materials used in the preparation of the molybdenum alloy targets of Examples 1 to 10 can be controlled to be less than 1500 ppm; on the contrary, the molybdenum powder used in the preparation of the molybdenum alloy targets of Comparative Examples 2 and 7 The oxygen content of the raw material exceeds 1500 ppm.

再比較鉬合金靶材的氧含量可見,如下表1所示,實施例1至10之鉬合金靶材相較於比較例1至9之鉬合金靶材皆具有較低的氧含量,且實施例1至10之鉬合金靶材的氧含量皆可控制在600 ppm以下。也就是說,根據氮氣分析儀的分析結果可見,藉由控制鉬合金靶材的組成、選用特定氧含量的鉬粉與控制燒結條件能有利於降低鉬合金靶材的氧含量。Comparing the oxygen content of the molybdenum alloy targets can be seen. As shown in Table 1, the molybdenum alloy targets of Examples 1 to 10 have a lower oxygen content than the molybdenum alloy targets of Comparative Examples 1 to 9. The oxygen content of the molybdenum alloy targets of Examples 1 to 10 can be controlled below 600 ppm. In other words, according to the analysis results of the nitrogen analyzer, it can be seen that by controlling the composition of the molybdenum alloy target, selecting the molybdenum powder with a specific oxygen content and controlling the sintering conditions can help reduce the oxygen content of the molybdenum alloy target.

此外,再比較實施例1至10之鉬合金靶材的氧含量可見,當鉬合金靶材中僅含有4 at%至10 at%之單獨一種的第一添加金屬(即僅含有錸或釕其中一種)且未含有第二添加金屬時,能進一步降低鉬合金靶材的氧含量,使實施例4、5、7、9、10之鉬合金靶材的氧含量降低至500 ppm以下。In addition, comparing the oxygen content of the molybdenum alloy targets of Examples 1 to 10, it can be seen that when the molybdenum alloy target contains only 4 at% to 10 at% of a single first additive metal (that is, only rhenium or ruthenium) One) and without the second additive metal, the oxygen content of the molybdenum alloy target can be further reduced, and the oxygen content of the molybdenum alloy target of Examples 4, 5, 7, 9, and 10 can be reduced to less than 500 ppm.

試驗例Test example 22 :相對密度:Relative density

於本試驗例中使用阿基米德法量測相對密度,於前述實施例1至10及比較例1至9之鉬合金靶材分別以線切割方式裁切成約20毫米×20毫米×4毫米之各待測樣品,將前述各待測樣品浸入水中,水溫設定於25°C下,量測各待測樣品之密度,並分別以各鉬合金靶材之理論密度為基準,得到各鉬合金靶材的相對密度,其結果係如下表1所示。In this test example, the Archimedes method was used to measure the relative density. The molybdenum alloy targets of the foregoing Examples 1 to 10 and Comparative Examples 1 to 9 were cut into approximately 20 mm×20 mm×4 by wire cutting. For each sample to be tested in millimeters, immerse each of the aforementioned samples to be tested in water, set the water temperature at 25°C, measure the density of each sample to be tested, and use the theoretical density of each molybdenum alloy target as a benchmark to obtain each The relative density of the molybdenum alloy target is shown in Table 1 below.

如下表1所示,實施例1至10之鉬合金靶材相較於比較例1至9之鉬合金靶材皆具有較高的相對密度,具體來說,實施例1至10之鉬合金靶材的相對密度皆可控制在98%以上,實施例1至7、9、10之鉬合金靶材的相對密度更可控制在98.5%以上,但比較例2至9之鉬合金靶材的相對密度皆未能達到98%。也就是說,控制鉬合金靶材的組成及其製程參數能有效提升鉬合金靶材的相對密度。As shown in Table 1 below, the molybdenum alloy targets of Examples 1 to 10 have a higher relative density than the molybdenum alloy targets of Comparative Examples 1 to 9. Specifically, the molybdenum alloy targets of Examples 1 to 10 The relative density of the molybdenum alloy targets can be controlled above 98%, and the relative density of the molybdenum alloy targets of Examples 1 to 7, 9, and 10 can be controlled above 98.5%, but the relative density of the molybdenum alloy targets of Comparative Examples 2 to 9 Density failed to reach 98%. In other words, controlling the composition of the molybdenum alloy target and its process parameters can effectively increase the relative density of the molybdenum alloy target.

試驗例Test example 33 :金相相數:Number of metallographic phases

於本試驗例中,先以線切割方式將前述各鉬合金靶材中取大小約10毫米×10毫米之試片,將各試片進行研磨拋光,再使用掃描式電子顯微鏡(儀器型號:JEOL S-3400N SEM)觀察各試片的金相微結構,並將各試片所觀察得到的金相相數列於下表1所示。In this test example, first take a test piece with a size of about 10 mm×10 mm from each of the aforementioned molybdenum alloy target materials by wire cutting, grind and polish each test piece, and then use a scanning electron microscope (instrument model: JEOL S-3400N SEM) observe the metallographic microstructure of each test piece, and list the metallographic number observed on each test piece in Table 1 below.

如下表1所示,實施例1至10之鉬合金靶材的金相相數皆可控制在兩相以上,相較於比較例1、2、5、9之鉬合金靶材的金相相數皆僅為一相。As shown in Table 1 below, the number of metallographic phases of the molybdenum alloy targets of Examples 1 to 10 can be controlled above two phases, which is compared with the metallographic phases of the molybdenum alloy targets of Comparative Examples 1, 2, 5 and 9. The numbers are only one phase.

此外,本說明書中另以實施例5、比較例2之鉬合金靶材分別作為實施例和比較例之代表進行示例說明,由圖1A至圖1B的比較結果可見,實施例5之鉬合金靶材的金相微結構並未觀察到有孔洞存在,反觀圖1B卻可明顯觀察到比較例2之鉬合金靶材存在孔洞,致使比較例2之鉬合金靶材的相對密度較低,僅有95.8%。 表1:實施例1至10及比較例1至9之鉬合金靶材的組成、製程參數及特性分析結果和鉬合金層的特性分析結果。   鉬合金靶材的組成 鉬合金靶材的製程參數 鉬合金靶材的特性分析 鉬合金層的特性分析   Mo (at%) 第一添加金屬 第二添加金屬 鉬粉 氧含量(ppm) 燒結 時間 (小時) 燒結 溫度 (°C) 氧含量(ppm) 相對 密度 (%) 金相 相數 耐熱性評估 耐腐蝕性評估 表面 粗糙度(奈米)   Ru (at%) Re (at%) Cr (at%) Ta (at%) 實施例1 97 3 - - - 1393 3 1050 597 98.9 2 1.48 實施例2 93 5 - 2 - 1327 3.5 1300 539 99.0 2 1.38 實施例3 90 8 - - 2 1280 2.5 1150 510 98.5 2 O O 1.45 實施例4 90 10 - - - 1244 4 1100 488 98.3 2 O O 1.30 實施例5 96 - 4 - - 1053 3 1300 398 99.6 2 O 1.12 實施例6 94 - 4 2 - 1391 3.5 1100 558 98.6 3 O 1.35 實施例7 93 - 7 - - 1402 5 1100 325 99.2 2 O O 0.82 實施例8 92 1 5 2 - 1335 2 1450 502 98.4 3 O O 0.91 實施例9 90 - 10 - - 1159 3 1200 387 98.5 2 O O 0.55 實施例10 90 1 9 - - 1310 3.5 1200 417 98.7 3 O O 0.72 比較例1 98 2 - - - 1420 5 1025 842 98.1 1 X X 2.08 比較例2 98 - - 2 - 1532 3 1000 950 96.1 1 X X 2.44 比較例3 93 5 - 2 - 1375 1 1300 784 95.5 3 X 1.58 比較例4 92 3 - 5 - 1466 1.5 1400 922 97.5 2 X 1.91 比較例5 99 - 1 - - 1349 1.5 1150 783 95.8 1 X X 2.10 比較例6 98 - 2 - - 1297 1.5 1200 631 96.3 2 X X 1.71 比較例7 88 - 4 - 8 1551 3 1025 852 96.5 3 X 2.81 比較例8 90 - 3 7 - 1447 1.5 1450 1031 97.3 2 X 2.23 比較例9 98 1 - - 1 1330 1.5 1300 679 96.4 1 X X 2.35 In addition, the molybdenum alloy targets of Example 5 and Comparative Example 2 are used as examples of the examples and comparative examples respectively in this specification. It can be seen from the comparison results of FIGS. 1A to 1B that the molybdenum alloy target of Example 5 No holes are observed in the metallographic microstructure of the material. On the other hand, it can be clearly observed that there are holes in the molybdenum alloy target of Comparative Example 2 in Fig. 1B, resulting in a relatively low relative density of the molybdenum alloy target of Comparative Example 2, only 95.8% . Table 1: The composition, process parameters and characteristic analysis results of the molybdenum alloy target materials of Examples 1 to 10 and Comparative Examples 1 to 9 and the characteristic analysis results of the molybdenum alloy layer. Composition of molybdenum alloy target Process parameters of molybdenum alloy target Characteristic analysis of molybdenum alloy target Characteristic analysis of molybdenum alloy layer Mo (at%) First addition metal Second addition metal Oxygen content of molybdenum powder (ppm) Sintering time (hour) Sintering temperature (°C) Oxygen content (ppm) Relative density(%) Metallographic phase number Heat resistance evaluation Corrosion resistance evaluation Surface roughness (nm) Ru (at%) Re (at%) Cr (at%) Ta (at%) Example 1 97 3 - - - 1393 3 1050 597 98.9 2 1.48 Example 2 93 5 - 2 - 1327 3.5 1300 539 99.0 2 1.38 Example 3 90 8 - - 2 1280 2.5 1150 510 98.5 2 O O 1.45 Example 4 90 10 - - - 1244 4 1100 488 98.3 2 O O 1.30 Example 5 96 - 4 - - 1053 3 1300 398 99.6 2 O 1.12 Example 6 94 - 4 2 - 1391 3.5 1100 558 98.6 3 O 1.35 Example 7 93 - 7 - - 1402 5 1100 325 99.2 2 O O 0.82 Example 8 92 1 5 2 - 1335 2 1450 502 98.4 3 O O 0.91 Example 9 90 - 10 - - 1159 3 1200 387 98.5 2 O O 0.55 Example 10 90 1 9 - - 1310 3.5 1200 417 98.7 3 O O 0.72 Comparative example 1 98 2 - - - 1420 5 1025 842 98.1 1 X X 2.08 Comparative example 2 98 - - 2 - 1532 3 1000 950 96.1 1 X X 2.44 Comparative example 3 93 5 - 2 - 1375 1 1300 784 95.5 3 X 1.58 Comparative example 4 92 3 - 5 - 1466 1.5 1400 922 97.5 2 X 1.91 Comparative example 5 99 - 1 - - 1349 1.5 1150 783 95.8 1 X X 2.10 Comparative example 6 98 - 2 - - 1297 1.5 1200 631 96.3 2 X X 1.71 Comparative example 7 88 - 4 - 8 1551 3 1025 852 96.5 3 X 2.81 Comparative example 8 90 - 3 7 - 1447 1.5 1450 1031 97.3 2 X 2.23 Comparative example 9 98 1 - - 1 1330 1.5 1300 679 96.4 1 X X 2.35

鉬合金層Mo alloy layer

實施例1至10及比較例1至9之鉬合金層係各自取用前述實施例1至10及比較例1至9之鉬合金靶材,依如下所述之製法所製得。The molybdenum alloy layers of Examples 1 to 10 and Comparative Examples 1 to 9 were prepared using the molybdenum alloy targets of Examples 1 to 10 and Comparative Examples 1 to 9, respectively, according to the following manufacturing method.

首先,將前述各鉬合金靶材以線切割與CNC車床加工得到直徑3英吋、厚度4毫米的待測樣品。接著,將各待測樣品放置於磁控濺鍍機台中,先進行預濺鍍,以對各待測樣品之表面進行除汙;再於持續通有30 sccm的氬氣流量、壓力為3 mtorr之環境下,設定150 W的濺鍍功率,以磁控濺鍍法分別濺鍍各待測樣品長達150秒,藉以於面積為20毫米×20毫米之多晶矽基板上濺鍍形成各實施例及各比較例之鉬合金層,其厚度為約120至140奈米。First, the aforementioned molybdenum alloy target materials are processed by wire cutting and CNC lathe to obtain a sample to be tested with a diameter of 3 inches and a thickness of 4 mm. Next, place each sample to be tested in a magnetron sputtering machine, and perform pre-sputtering to decontaminate the surface of each sample to be tested; then, a continuous flow of argon gas of 30 sccm and a pressure of 3 mtorr Under the environment, set the sputtering power of 150 W, and sputter each sample to be tested separately for 150 seconds by the magnetron sputtering method, by sputtering on a polysilicon substrate with an area of 20 mm×20 mm to form the embodiments and The thickness of the molybdenum alloy layer of each comparative example is about 120 to 140 nanometers.

試驗例Test example 44 :導熱性: Thermal conductivity

於本試驗例中,以前述各鉬合金層(大小約20毫米×20毫米)作為本試驗例的分析對象,使用原子力顯微鏡(Atomic Force Microscope,AFM;儀器型號:Veeco DI-3100;雷射光源強度:1.0 mW;雷射光源最大波長:670 nm;探針購自Nanoworld)分析各鉬合金層的表面粗糙度(Ra),使探針針尖與前述各鉬合金層的表面原子力進行交互作用,使探針針臂因此產生偏折,再使用雷射光照射探針針臂背面,藉此紀錄雷射光受到探針針臂偏移的情形;最後,將前述所分析的偏移情形,再使用電路回饋及電腦繪圖分析各鉬合金層的表面起伏,即量測得到前述各鉬合金層的表面粗糙度,其結果係如上表1所示。於此,藉由控制鉬合金層的組成,其表面粗糙度與其導熱性之間呈現負相關,即其表面粗糙度越低代表其導熱性越佳。In this test example, the aforementioned molybdenum alloy layers (approximately 20 mm×20 mm in size) are used as the analysis object of this test example, using an atomic force microscope (Atomic Force Microscope, AFM; instrument model: Veeco DI-3100; laser light source) Intensity: 1.0 mW; maximum wavelength of laser light source: 670 nm; probe purchased from Nanoworld) analyze the surface roughness (Ra) of each molybdenum alloy layer, so that the probe tip interacts with the surface atomic force of the aforementioned molybdenum alloy layer, Make the probe needle arm deflect, and then use the laser light to illuminate the back of the probe needle arm to record the deviation of the laser light by the probe needle arm; finally, use the circuit after analyzing the deviation of the aforementioned analysis The surface roughness of each molybdenum alloy layer was measured by feedback and computer graphics. The results are shown in Table 1 above. Here, by controlling the composition of the molybdenum alloy layer, there is a negative correlation between its surface roughness and its thermal conductivity, that is, the lower its surface roughness, the better its thermal conductivity.

如上表1所示,實施例1至10之鉬合金層的表面粗糙度皆小於1.5奈米,明顯低於比較例1至9之鉬合金層的表面粗糙度。由此可見,利用本創作之鉬合金靶材所濺鍍而成的鉬合金層皆能具有較低的表面粗糙度。As shown in Table 1 above, the surface roughness of the molybdenum alloy layers of Examples 1 to 10 are all less than 1.5 nm, which is significantly lower than the surface roughness of the molybdenum alloy layers of Comparative Examples 1 to 9. It can be seen that the molybdenum alloy layer sputtered by the molybdenum alloy target material of this creation can all have lower surface roughness.

由試驗例4之實驗結果證實,實施例1至10之鉬合金層皆能具有低於比較例1至9之鉬合金層的表面粗糙度,故實施例1至10之鉬合金層應能獲得良好的導熱性,使其能適用於熱輔助垂直式磁記錄媒體作為散熱層使用。The experimental results of Test Example 4 confirm that the molybdenum alloy layers of Examples 1 to 10 can all have a surface roughness lower than that of the Mo alloy layers of Comparative Examples 1 to 9, so the molybdenum alloy layers of Examples 1 to 10 should be able to obtain Good thermal conductivity makes it suitable for heat-assisted vertical magnetic recording media as a heat dissipation layer.

試驗例Test example 55 :耐熱性: Heat resistance

於本試驗例中,先將前述各鉬合金層(大小約20毫米×20毫米)放置於壓力低於10 -6torr之真空環境下,再於500°C下持溫放置2小時進行高溫測試;而後再使用原子力顯微鏡,經由如前述試驗例4所述之分析方法,得到各鉬合金層經過高溫測試後的表面粗糙度。 In this test example, the aforementioned molybdenum alloy layers (approximately 20 mm × 20 mm) are first placed in a vacuum environment with a pressure lower than 10 -6 torr, and then placed at 500°C for 2 hours for high temperature testing ; And then use the atomic force microscope to obtain the surface roughness of each molybdenum alloy layer after the high temperature test through the analysis method as described in the aforementioned Test Example 4.

本試驗例中係以高溫測試前、後的鉬合金層的表面粗糙度之增加程度作為評估鉬合金層的耐熱性之依據。當高溫測試後的鉬合金層的表面粗糙度相較於高溫測試前之鉬合金層的表面粗糙度(即,試驗例4所測得之表面粗糙度)的增加程度小於10%,表示鉬合金層的耐熱性極佳,於上表1中標示「O」;當鉬合金層的表面粗糙度相較於測試前的增加程度落在10%至20%之範圍內,表示鉬合金層的耐熱性良好,於上表1中標示「△」;當鉬合金層的表面粗糙度相較於測試前的增加程度大於20%,表示鉬合金層的耐熱性差,於上表1中標示為「X」。In this test example, the increase in the surface roughness of the molybdenum alloy layer before and after the high temperature test is used as the basis for evaluating the heat resistance of the molybdenum alloy layer. When the surface roughness of the molybdenum alloy layer after the high temperature test is increased by less than 10% compared to the surface roughness of the molybdenum alloy layer before the high temperature test (ie, the surface roughness measured in Test Example 4), it means that the molybdenum alloy The heat resistance of the layer is very good, marked "O" in Table 1 above; when the surface roughness of the molybdenum alloy layer is within the range of 10% to 20% compared to the increase before the test, it indicates the heat resistance of the molybdenum alloy layer When the surface roughness of the molybdenum alloy layer is increased by more than 20% compared with the level before the test, it indicates that the heat resistance of the molybdenum alloy layer is poor, which is marked as “X” in Table 1 above. ".

如上表1所示,實施例1至10之鉬合金層皆具有良好的耐熱性,尤其,實施例3至10之鉬合金層更具有極佳的耐熱性;相較之下,如上表1所示,比較例1、2、5、6、9之鉬合金層的耐熱性皆差,無法適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。As shown in Table 1 above, the molybdenum alloy layers of Examples 1 to 10 have good heat resistance. In particular, the molybdenum alloy layers of Examples 3 to 10 have excellent heat resistance; in comparison, as shown in Table 1 above It is shown that the molybdenum alloy layers of Comparative Examples 1, 2, 5, 6, and 9 are all poor in heat resistance, and cannot be used as a heat dissipation layer in a heat-assisted vertical magnetic recording medium.

試驗例Test example 66 :耐腐蝕性: Corrosion resistance

於本試驗例中,先將前述各鉬合金層(大小約20毫米×20毫米)放置於壓力為760 torr之一般環境下,再於濕度85%,100°C下持溫放置120小時進行測試;而後再以肉眼觀察各鉬合金層的變色面積,藉此評估鉬合金層的耐腐蝕性。In this test example, the aforementioned molybdenum alloy layers (approximately 20 mm×20 mm in size) are first placed in a general environment with a pressure of 760 torr, and then placed at a humidity of 85% and a temperature of 100°C for 120 hours for testing. ; Then visually observe the discoloration area of each molybdenum alloy layer to evaluate the corrosion resistance of the molybdenum alloy layer.

本試驗例中係以高溫高濕測試後的鉬合金層的變色面積占鉬合金層的總面積作為評估鉬合金層的耐腐蝕性之依據。當高溫高濕測試後的鉬合金層的變色面積占其總面積的比例小於20%,表示鉬合金層的耐腐蝕性極佳,於上表1中標示「O」;當鉬合金層的變色面積占其總面積的比例落在20%至50%之範圍內,表示鉬合金層的耐腐蝕性良好,於上表1中標示為「△」;當鉬合金層的變色面積占其總面積的比例大於50%,且有剝落的現象,表示鉬合金層的耐腐蝕性差,於上表1中標示為「X」。In this test example, the discoloration area of the molybdenum alloy layer after the high temperature and high humidity test accounts for the total area of the molybdenum alloy layer as the basis for evaluating the corrosion resistance of the molybdenum alloy layer. When the discoloration area of the molybdenum alloy layer after the high temperature and high humidity test accounts for less than 20% of its total area, it indicates that the molybdenum alloy layer has excellent corrosion resistance. It is marked as "O" in Table 1 above; when the molybdenum alloy layer is discolored The ratio of the area to its total area falls within the range of 20% to 50%, indicating that the molybdenum alloy layer has good corrosion resistance, which is marked as "△" in Table 1 above; when the discolored area of the molybdenum alloy layer accounts for its total area The proportion of is greater than 50%, and there is peeling phenomenon, which means that the corrosion resistance of the molybdenum alloy layer is poor, which is marked as "X" in Table 1 above.

如上表1所示,實施例1至10之鉬合金層皆具有良好的耐腐蝕性,尤其,實施例3、4、7、10之鉬合金層更具有極佳的耐腐蝕性;相較之下,比較例1至9之鉬合金層的耐腐蝕性皆差,無法適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。As shown in Table 1 above, the molybdenum alloy layers of Examples 1 to 10 have good corrosion resistance. In particular, the molybdenum alloy layers of Examples 3, 4, 7, and 10 have excellent corrosion resistance; Below, the molybdenum alloy layers of Comparative Examples 1 to 9 have poor corrosion resistance and cannot be applied as a heat dissipation layer in a thermally assisted vertical magnetic recording medium.

綜合上述試驗例1至6之分析結果,藉由控制鉬合金靶材之組成、選用特定氧含量的鉬粉與控制燒結條件,能成功製得具有特定組成、兩相以上之金相及低氧含量的鉬合金靶材;故利用此種鉬合金靶材所濺鍍而成的鉬合金層能兼具良好的導熱性、耐熱性及耐腐蝕性等特點,從而使本創作之鉬合金層能適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。Based on the analysis results of the above test examples 1 to 6, by controlling the composition of the molybdenum alloy target, selecting the molybdenum powder with a specific oxygen content and controlling the sintering conditions, a metallographic phase with a specific composition, two or more phases and low oxygen can be successfully obtained Content of molybdenum alloy target material; so the molybdenum alloy layer sputtered by this molybdenum alloy target material can have good thermal conductivity, heat resistance and corrosion resistance, so that the molybdenum alloy layer of this creation can It is suitable for use as a heat dissipation layer in thermally assisted vertical magnetic recording media.

此外,即便於鉬合金靶材中進一步添加適量的第二添加金屬,藉由控制鉬合金靶材之組成、選用特定氧含量的鉬粉與控制燒結條件,也能成功製得具有特定組成、兩相以上之金相及低氧含量的鉬合金靶材;故其所濺鍍而成的鉬合金層也能兼具良好的導熱性、耐熱性及耐腐蝕性等特點,故能適用於熱輔助垂直式磁記錄媒體中作為散熱層使用。In addition, even if an appropriate amount of the second additive metal is further added to the molybdenum alloy target, by controlling the composition of the molybdenum alloy target, selecting molybdenum powder with a specific oxygen content, and controlling the sintering conditions, it is possible to successfully produce a specific composition, two Molybdenum alloy targets with higher than phase metallography and low oxygen content; therefore, the sputtered molybdenum alloy layer can also have good thermal conductivity, heat resistance and corrosion resistance, so it can be suitable for heat assist Used as a heat dissipation layer in perpendicular magnetic recording media.

上述之實施例僅係為說明書創作之例示,並非於任何方面限制本創作主張之權利範圍。本創作所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述具體實施例。The above-mentioned embodiments are only examples of the creation of the specification, and do not limit the scope of rights of this creation in any respect. The scope of rights claimed in this creation should be subject to the scope of the patent application, not limited to the specific embodiments described above.

無。no.

圖1A至圖1B依序為實施例5之鉬合金靶材及比較例2之鉬合金靶材的掃描式電子顯微鏡影像圖。1A to 1B are scanning electron microscope images of the molybdenum alloy target of Example 5 and the molybdenum alloy target of Comparative Example 2 in sequence.

無。no.

Claims (10)

一種鉬合金靶材,其包括鉬及一第一添加金屬,該第一添加金屬含有錸、釕或其組合;以該鉬合金靶材之原子總數為基準,該第一添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比;其中該鉬合金靶材之金相相數大於或等於兩相,該鉬合金靶材之氧含量小於或等於600 ppm。A molybdenum alloy target comprising molybdenum and a first additive metal, the first additive metal contains rhenium, ruthenium or a combination thereof; based on the total number of atoms of the molybdenum alloy target, the total content of the first additive metal is greater than Or equal to 3 atomic percent and less than or equal to 10 atomic percent; wherein the number of metallographic phases of the molybdenum alloy target is greater than or equal to two phases, and the oxygen content of the molybdenum alloy target is less than or equal to 600 ppm. 如請求項1所述之鉬合金靶材,其中該鉬合金靶材包含一第二添加金屬,該第二添加金屬含有鉻、鉭、鎢、鈮、釩或其組合。The molybdenum alloy target material according to claim 1, wherein the molybdenum alloy target material comprises a second additive metal, and the second additive metal contains chromium, tantalum, tungsten, niobium, vanadium or a combination thereof. 如請求項2所述之鉬合金靶材,其中以該鉬合金靶材之原子總數為基準,該第二添加金屬之總含量大於0原子百分比且小於或等於3原子百分比,該第一添加金屬及該第二添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比。The molybdenum alloy target material according to claim 2, wherein based on the total number of atoms of the molybdenum alloy target material, the total content of the second additive metal is greater than 0 atomic percent and less than or equal to 3 atomic percent, and the first additive metal And the total content of the second added metal is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent. 如請求項3所述之鉬合金靶材,其中以該鉬合金靶材之原子總數為基準,該第一添加金屬之含量大於或等於4原子百分比且小於或等於10原子百分比。The molybdenum alloy target according to claim 3, wherein based on the total number of atoms of the molybdenum alloy target, the content of the first additive metal is greater than or equal to 4 atomic percent and less than or equal to 10 atomic percent. 如請求項1至4中任一項所述之鉬合金靶材,其中該鉬合金靶材之相對密度大於或等於98%。The molybdenum alloy target material according to any one of claims 1 to 4, wherein the relative density of the molybdenum alloy target material is greater than or equal to 98%. 一種鉬合金靶材之製法,其包括以下步驟: 混合一鉬粉及一第一添加金屬,獲得一混合粉末,其中該第一添加金屬含有錸、釕或其組合,其中該鉬粉的氧含量小於或等於1500 ppm;以該混合粉末之原子總數為基準,該第一添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比; 於1000 °C至1500 °C之燒結溫度下,持續燒結該混合粉末1小時以上,以得到一燒結塊;以及 以線切割及車床加工該燒結塊,以製得該鉬合金靶材。 A method for preparing a molybdenum alloy target material, comprising the following steps: mixing a molybdenum powder and a first additive metal to obtain a mixed powder, wherein the first additive metal contains rhenium, ruthenium or a combination thereof, and the oxygen content of the molybdenum powder Less than or equal to 1500 ppm; based on the total number of atoms of the mixed powder, the total content of the first added metal is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent; at a sintering temperature of 1000 ° C to 1500 ° C Continuously sintering the mixed powder for more than 1 hour to obtain a sintered block; and processing the sintered block by wire cutting and lathe to obtain the molybdenum alloy target. 如請求項6所述之製法,其中該混合粉末包含一第二添加金屬,該第二添加金屬含有鉻、鉭、鎢、鈮、釩或其組合。The method according to claim 6, wherein the mixed powder contains a second additive metal, and the second additive metal contains chromium, tantalum, tungsten, niobium, vanadium or a combination thereof. 如請求項7所述之製法,其中以該混合粉末之原子總數為基準,該第二添加金屬之總含量大於0原子百分比且小於或等於3原子百分比,該第一添加金屬及該第二添加金屬之總含量大於或等於3原子百分比且小於或等於10原子百分比。The method according to claim 7, wherein the total content of the second additive metal is greater than 0 atomic percent and less than or equal to 3 atomic percent based on the total number of atoms of the mixed powder, the first additive metal and the second additive The total metal content is greater than or equal to 3 atomic percent and less than or equal to 10 atomic percent. 一種鉬合金層,其係由如請求項1至5中任一項之鉬合金靶材所濺鍍而成。A molybdenum alloy layer formed by sputtering the molybdenum alloy target material according to any one of claims 1 to 5. 如請求項9所述之鉬合金層,其中該鉬合金層之表面粗糙度小於或等於1.5奈米。The molybdenum alloy layer according to claim 9, wherein the surface roughness of the molybdenum alloy layer is less than or equal to 1.5 nanometers.
TW108138423A 2019-10-24 2019-10-24 Molybdenum alloy target and method of preparing the same and molybdenum alloy layer TWI704236B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW108138423A TWI704236B (en) 2019-10-24 2019-10-24 Molybdenum alloy target and method of preparing the same and molybdenum alloy layer
JP2020008373A JP6943992B2 (en) 2019-10-24 2020-01-22 Molybdenum alloy target and its manufacturing method and molybdenum alloy layer
SG10202000613UA SG10202000613UA (en) 2019-10-24 2020-01-22 Molybdenum alloy target and method of preparing the same and molybdenum alloy layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108138423A TWI704236B (en) 2019-10-24 2019-10-24 Molybdenum alloy target and method of preparing the same and molybdenum alloy layer

Publications (2)

Publication Number Publication Date
TWI704236B true TWI704236B (en) 2020-09-11
TW202117033A TW202117033A (en) 2021-05-01

Family

ID=73644117

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108138423A TWI704236B (en) 2019-10-24 2019-10-24 Molybdenum alloy target and method of preparing the same and molybdenum alloy layer

Country Status (3)

Country Link
JP (1) JP6943992B2 (en)
SG (1) SG10202000613UA (en)
TW (1) TWI704236B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934260B (en) * 2022-05-23 2024-02-13 安泰天龙钨钼科技有限公司 Molybdenum alloy target material and preparation method and application thereof
CN114855131A (en) * 2022-05-23 2022-08-05 安泰天龙(北京)钨钼科技有限公司 Preparation method of molybdenum alloy target, molybdenum alloy target and application
CN114892134B (en) * 2022-05-23 2024-02-13 安泰天龙钨钼科技有限公司 Molybdenum alloy tube target material and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531599A (en) * 2016-10-28 2017-03-22 安泰天龙钨钼科技有限公司 Tungsten-rhenium-molybdenum alloy rotary anode target material for X-ray tube and preparation method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531599A (en) * 2016-10-28 2017-03-22 安泰天龙钨钼科技有限公司 Tungsten-rhenium-molybdenum alloy rotary anode target material for X-ray tube and preparation method thereof

Also Published As

Publication number Publication date
JP2021066950A (en) 2021-04-30
JP6943992B2 (en) 2021-10-06
TW202117033A (en) 2021-05-01
SG10202000613UA (en) 2021-05-28

Similar Documents

Publication Publication Date Title
TWI704236B (en) Molybdenum alloy target and method of preparing the same and molybdenum alloy layer
JP5497904B2 (en) Sputtering target for magnetic recording film
JP5041262B2 (en) Sputtering target for forming a magnetic recording medium film and method for producing the same
TW201413019A (en) Sputtering target for magnetic recording film
Wang et al. Growth, microstructure and mechanical properties of CoCrFeMnNi high entropy alloy films
Liu et al. Influence of copper on the compositions, microstructure and room and elevated temperature tribological properties of the molybdenum nitride film
TW201428119A (en) Fe-Pt SINTERED COMPACT SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR
JP5103462B2 (en) Ag alloy thermal diffusion control film and magnetic recording medium for thermal assist recording provided with the same
JP5024661B2 (en) Co-based sintered alloy sputtering target for magnetic recording film formation with less generation of particles
Ichimiya et al. Properties and cutting performance of (Ti, V) N coatings prepared by cathodic arc ion plating
Zhou et al. Improving the mechanical and tribological properties of TiAlSiN coatings by annealing
Li et al. Hard and tough sub-stoichiometric B1 Ta-Mo-Nx films by regulating N content
Huang et al. Characterization of the anisotropy in the microstructure and mechanical properties of laser powder bed fusion Ti6Al4V alloys
TWI770959B (en) Composite oxide target and manufacturing method thereof
Ali et al. Friction coefficient and surface roughness of TiN‐coated HSS deposited using cathodic arc evaporation PVD technique
TW201446975A (en) Sputtering target
Huang et al. Remanufacturing of the waste refractory Mo–10Nb sputtering target by spark plasma sintering technology
JP2009293102A (en) Sputtering target for depositing vertical magnetic recording medium film with low relative permeability
TWI838846B (en) Fe-pt based sputtering target and method of preparing the same
JP6876115B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
TWI555042B (en) Co-Fe Based Soft Magnetic Sputtering Target And Material
TWI716166B (en) Fe-co-based alloy target and method for producing the same
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
TWI761264B (en) Fe-pt-ag based sputtering target and method of preparing the same
TWI834072B (en) Ru-al alloy target and method of preparing the same