TWI761264B - Fe-pt-ag based sputtering target and method of preparing the same - Google Patents

Fe-pt-ag based sputtering target and method of preparing the same Download PDF

Info

Publication number
TWI761264B
TWI761264B TW110126132A TW110126132A TWI761264B TW I761264 B TWI761264 B TW I761264B TW 110126132 A TW110126132 A TW 110126132A TW 110126132 A TW110126132 A TW 110126132A TW I761264 B TWI761264 B TW I761264B
Authority
TW
Taiwan
Prior art keywords
silver
platinum
iron
equal
raw material
Prior art date
Application number
TW110126132A
Other languages
Chinese (zh)
Other versions
TW202305151A (en
Inventor
陳俊祐
陳又菱
蔡登安
鄭惠文
Original Assignee
光洋應用材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋應用材料科技股份有限公司 filed Critical 光洋應用材料科技股份有限公司
Priority to TW110126132A priority Critical patent/TWI761264B/en
Priority to JP2021164310A priority patent/JP7245303B2/en
Application granted granted Critical
Publication of TWI761264B publication Critical patent/TWI761264B/en
Publication of TW202305151A publication Critical patent/TW202305151A/en

Links

Images

Abstract

Provided is a Fe-Pt-Ag based sputtering target and a method of preparing the same. The Fe-Pt-Ag based sputtering target includes iron, platinum, silver and nonmagnetic material. Based on the total atoms number of the Fe-Pt-Ag based sputtering target, a content of platinum is more than or equal to 5 at% and less than or equal to 40 at%, and a content of silver is more than or equal to 1 at% and less than or equal to 15 at%. Meanwhile, a content of sulfur of the Fe-Pt-Ag based sputtering target is less than 50 ppm, and a maximum area of silver phase in the metallographic microstructure of the Fe-Pt-Ag based sputtering target is less than 10 μm 2. By controlling the content of platinum, silver and sulfur of the Fe-Pt-Ag based sputtering target and limiting the maximum area of silver phase in the metallographic microstructure of the Fe-Pt-Ag based sputtering target, the Fe-Pt-Ag based sputtering target can elevate the relative density, mitigate the problem of particulate contamination of a magnetic recording layer formed by the Fe-Pt-Ag based sputtering target, and elevate the resistance to oxidation.

Description

鐵鉑銀基靶材及其製法Iron-platinum-silver-based target and preparation method thereof

本創作係關於一種鐵鉑銀基靶材及其製法,尤指一種應用於磁記錄媒體之鐵鉑銀基靶材及其製法。This creation is about an iron-platinum-silver-based target and its manufacturing method, especially an iron-platinum-silver-based target used in magnetic recording media and its manufacturing method.

隨著人們對於磁記錄媒體之資訊儲存容量的需求愈來愈高,如何提升磁記錄媒體之記錄密度已然成為相關領域關注的研究重點。With the increasing demand for the information storage capacity of magnetic recording media, how to improve the recording density of magnetic recording media has become the focus of research in related fields.

一般而言,垂直式磁記錄媒體的層狀結構由下至上包含有基板、附著層、軟磁層(soft underlayer)、晶種層(seed layer)、中間層(intermediate layer)、磁記錄層(magnetic recording layer)、覆蓋層以及潤滑層,其中,磁記錄層通常選用鈷鉻鉑基合金系統作為主要成分。然而,隨著垂直式磁記錄媒體的技術趨於成熟,鈷鉻鉑基合金系統之磁記錄層亦逐漸接近磁記錄密度極限。Generally speaking, the layered structure of a perpendicular magnetic recording medium includes a substrate, an adhesive layer, a soft underlayer, a seed layer, an intermediate layer, and a magnetic recording layer from bottom to top. recording layer), a cover layer and a lubricating layer, wherein the magnetic recording layer is usually a cobalt-chromium-platinum-based alloy system as the main component. However, as the technology of perpendicular magnetic recording media tends to mature, the magnetic recording layer of the cobalt-chromium-platinum-based alloy system is gradually approaching the limit of magnetic recording density.

為了再進一步提高垂直式磁記錄媒體的記錄密度,業界遂發展出選用鐵鉑基合金系統製作熱輔助磁記錄媒體(heat-assisted magnetic recording medium,HAMR medium)之磁記錄層,其在寫入磁場的同時以熱能的方式作用於記錄位元的磁性顆粒上,藉由磁性顆粒被加熱至居里點(Curie temperature)之上時,其磁力頑性暫時被降低而實現資料寫入之目的。In order to further increase the recording density of the perpendicular magnetic recording medium, the industry has developed a magnetic recording layer of a heat-assisted magnetic recording medium (HAMR medium) made of an iron-platinum-based alloy system. At the same time, it acts on the magnetic particles of the recording bit in the form of thermal energy. When the magnetic particles are heated to above the Curie temperature, their magnetic coercivity is temporarily reduced to achieve the purpose of data writing.

不過,以鐵鉑基合金為磁記錄層之材料形成後,需要經過高溫退火之熱處理製程,才能使磁記錄層中的鐵鉑基合金具備序化結構(ordered structure)。然而,經過高溫退火熱處理後,磁記錄層中的鐵鉑合金顆粒會發生聚集而使其粒徑變大,導致磁特性未達需求,因此,業界發展出於鐵鉑基合金系統中額外添加銀,藉此能夠降低磁記錄層獲得序化結構所需之加熱溫度。However, after the iron-platinum-based alloy is formed as the material of the magnetic recording layer, a heat treatment process of high temperature annealing is required to make the iron-platinum-based alloy in the magnetic recording layer have an ordered structure. However, after high temperature annealing and heat treatment, the iron-platinum alloy particles in the magnetic recording layer will agglomerate and their particle size will become larger, resulting in unsatisfactory magnetic properties. , thereby reducing the heating temperature required for the magnetic recording layer to obtain a sequenced structure.

然而,銀在鐵鉑基合金系統中容易析出,因此,若直接將銀添加於鐵鉑基合金靶材中,其靶材金相結構中容易存在大面積的富銀相析出,導致鐵鉑銀基靶材的密度不足;並且,此種鐵鉑銀基靶材於後續濺鍍過程中容易產生大量微粒掉落至濺鍍膜層上,進而影響到磁記錄層的品質與良率;另外,所述鐵鉑銀基靶材不具有良好的抗氧化能力,若未於適當條件下進行保存,則靶材表面極易因發生氧化而產生鏽蝕的現象,嚴重影響後續進行濺鍍所製得之磁記錄層的應用。However, silver is easily precipitated in the iron-platinum-based alloy system. Therefore, if silver is directly added to the iron-platinum-based alloy target, a large area of silver-rich phase precipitation is likely to exist in the metallographic structure of the target, resulting in iron-platinum-silver The density of the base target is insufficient; in addition, this iron-platinum-silver-based target is prone to produce a large number of particles falling on the sputtering film layer in the subsequent sputtering process, thereby affecting the quality and yield of the magnetic recording layer; The iron-platinum-silver-based target material does not have good anti-oxidation ability. If it is not stored under appropriate conditions, the surface of the target material is easily rusted due to oxidation, which seriously affects the magnetic properties obtained by subsequent sputtering. Application of the recording layer.

有鑒於現有技術所面臨的缺陷,本創作之目的在於提升鐵鉑銀基靶材的密度,並且減輕後續應用於濺鍍過程中微粒掉落的問題,同時亦提升鐵鉑銀基靶材的抗氧化能力,使本創作提供之鐵鉑銀基靶材易於保存且能夠提高濺鍍形成的磁記錄層之品質與良率。In view of the defects faced by the existing technology, the purpose of this creation is to increase the density of the iron-platinum-silver-based target, and reduce the problem of particle falling during the subsequent application in the sputtering process, and also improve the resistance of the iron-platinum-silver-based target. The oxidizing ability makes the iron-platinum-silver-based target provided by the present invention easy to store and can improve the quality and yield of the magnetic recording layer formed by sputtering.

為達成前述目的,本創作提供一種鐵鉑銀基靶材,其包含鐵(Fe)、鉑(Pt)、銀(Ag)以及非磁性成分;其中,以該鐵鉑銀基靶材整體之原子總數為基準,鉑的含量係大於或等於5原子百分比(atomic percentage,at%)且小於或等於40 at%,銀的含量係大於或等於1 at%且小於或等於15 at%;該鐵鉑銀基靶材中的硫(S)含量係小於百萬分之50 (即,50 parts per million,50 ppm),且該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於10平方微米(μm 2)。 In order to achieve the aforementioned purpose, the present invention provides an iron-platinum-silver-based target material, which comprises iron (Fe), platinum (Pt), silver (Ag) and non-magnetic components; wherein, the atoms of the iron-platinum-silver-based target material as a whole are used Based on the total number, the content of platinum is greater than or equal to 5 atomic percentage (atomic percentage, at%) and less than or equal to 40 at%, and the content of silver is greater than or equal to 1 at% and less than or equal to 15 at%; the iron platinum The sulfur (S) content in the silver-based target is less than 50 parts per million (ie, 50 parts per million, 50 ppm), and the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than 10 Square micrometer (μm 2 ).

藉由控制本創作之鐵鉑銀基靶材同時兼具以下技術特徵:(I)鉑含量大於或等於5 at%且小於或等於40 at%、(II)銀含量大於或等於1 at%且小於或等於15 at%、(III)鐵鉑銀基靶材中的硫含量小於50 ppm以及(IV)金相微結構中的最大銀相面積小於10 μm 2,能夠使銀在鐵鉑銀基靶材中均勻分布,即不會發生銀聚集析出而產生大面積的銀相,進而有效提升鐵鉑銀基靶材的密度,且確保能減輕後續於濺鍍過程中產生微粒掉落的問題,同時亦提升鐵鉑銀基靶材的抗氧化能力。 By controlling the iron-platinum-silver-based target of this creation, it also has the following technical characteristics: (I) the platinum content is greater than or equal to 5 at% and less than or equal to 40 at%, (II) the silver content is greater than or equal to 1 at% and Less than or equal to 15 at%, (III) the sulfur content in the iron-platinum-silver-based target is less than 50 ppm, and (IV) the maximum silver phase area in the metallographic microstructure is less than 10 μm 2 , which can make silver in the iron-platinum-silver-based target. Evenly distributed in the medium, that is, there will be no silver agglomeration and precipitation to produce a large area of silver phase, thereby effectively increasing the density of the iron-platinum-silver-based target, and ensuring that the problem of particle falling during the subsequent sputtering process can be alleviated. Improve the oxidation resistance of iron-platinum-silver-based targets.

依據本創作,所述最大銀相面積係指經分析獲得分散於鐵鉑銀基靶材的金相微結構中的每一個銀相面積後,取其中最大面積之銀相所具有的面積尺寸,即代表鐵鉑銀基靶材的金相微結構中的最大銀相面積。According to this creation, the maximum silver phase area refers to the area of each silver phase dispersed in the metallographic microstructure of the iron-platinum-silver-based target after analysis, and the area size of the silver phase with the largest area is taken as the representative The largest silver phase area in the metallographic microstructure of iron-platinum-silver-based targets.

依據本創作,以該鐵鉑銀基靶材整體之原子總數為基準,鐵的含量係大於或等於5 at%且小於或等於85 at%。較佳的,以該鐵鉑銀基靶材整體之原子總數為基準,鐵的含量係大於或等於20 at%且小於或等於85 at%。更佳的,以該鐵鉑銀基靶材整體之原子總數為基準,鐵的含量係大於或等於25 at%且小於或等於84 at%。According to this creation, the iron content is greater than or equal to 5 at% and less than or equal to 85 at% based on the total number of atoms of the iron-platinum-silver-based target as a whole. Preferably, the iron content is greater than or equal to 20 at% and less than or equal to 85 at% based on the total number of atoms of the iron-platinum-silver-based target as a whole. More preferably, the iron content is greater than or equal to 25 at% and less than or equal to 84 at% based on the total number of atoms of the entire iron-platinum-silver-based target.

較佳的,該鐵鉑銀基靶材中的硫含量係小於40 ppm。更佳的,該鐵鉑銀基靶材中的硫含量係小於或等於36 ppm。再更佳的,該鐵鉑銀基靶材中的硫含量係小於或等於20 ppm。Preferably, the sulfur content in the iron-platinum-silver-based target is less than 40 ppm. More preferably, the sulfur content in the iron-platinum-silver-based target is less than or equal to 36 ppm. Even more preferably, the sulfur content in the iron-platinum-silver-based target is less than or equal to 20 ppm.

於本創作的一些實施例中,該鐵鉑銀基靶材中的硫含量係大於或等於0.1 ppm且小於50 ppm;於本創作的另一些實施例中,該鐵鉑銀基靶材中的硫含量係大於或等於0.1 ppm且小於40 ppm;於本創作的另一些實施例中,該鐵鉑銀基靶材中的硫含量係大於或等於0.1 ppm且小於或等於36 ppm;於本創作的另一些實施例中,該鐵鉑銀基靶材中的硫含量係大於或等於0.1 ppm且小於或等於20 ppm。In some embodiments of the present invention, the sulfur content in the iron-platinum-silver-based target is greater than or equal to 0.1 ppm and less than 50 ppm; The sulfur content is greater than or equal to 0.1 ppm and less than 40 ppm; in other embodiments of the present invention, the sulfur content in the iron-platinum-silver-based target is greater than or equal to 0.1 ppm and less than or equal to 36 ppm; In other embodiments, the sulfur content in the iron-platinum-silver-based target is greater than or equal to 0.1 ppm and less than or equal to 20 ppm.

較佳的,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於9 μm 2。更佳的,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於或等於8.7 μm 2。再更佳的,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於或等於4 μm 2。再更佳的,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於或等於3.5 μm 2Preferably, the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than 9 μm 2 . More preferably, the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than or equal to 8.7 μm 2 . Even more preferably, the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than or equal to 4 μm 2 . Even more preferably, the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than or equal to 3.5 μm 2 .

於本創作的一些實施例中,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係大於或等於0.1 μm 2且小於10 μm 2;於本創作的另一些實施例中,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係大於或等於0.1 μm 2且小於9 μm 2;於本創作的另一些實施例中,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係大於或等於0.1 μm 2且小於或等於8.7 μm 2;於本創作的另一些實施例中,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係大於或等於0.1 μm 2且小於或等於4 μm 2;於本創作的另一些實施例中,該鐵鉑銀基靶材的金相微結構中的最大銀相面積係大於或等於0.1 μm 2且小於或等於3.5 μm 2In some embodiments of the present invention, the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is greater than or equal to 0.1 μm 2 and less than 10 μm 2 ; in other embodiments of the present invention, the iron The maximum silver phase area in the metallographic microstructure of the platinum-silver-based target is greater than or equal to 0.1 μm 2 and less than 9 μm 2 ; in other embodiments of the present invention, the largest silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is the largest The silver phase area is greater than or equal to 0.1 μm 2 and less than or equal to 8.7 μm 2 ; in other embodiments of the present invention, the maximum silver phase area in the metallographic microstructure of the iron-platinum silver-based target is greater than or equal to 0.1 μm 2 and less than or equal to 4 μm 2 ; in other embodiments of the present invention, the maximum silver phase area in the metallographic microstructure of the iron-platinum silver-based target is greater than or equal to 0.1 μm 2 and less than or equal to 3.5 μm 2 .

較佳的,以該鐵鉑銀基靶材整體之原子總數為基準,該非磁性成分的含量係大於或等於5 at%且小於或等於40 at%。Preferably, the content of the non-magnetic component is greater than or equal to 5 at% and less than or equal to 40 at% based on the total number of atoms of the entire iron-platinum-silver-based target.

較佳的,該非磁性成分可選自由碳(C)、碳化物(carbide)、氮化物(nitride)、氧化物(oxide)及其組合所組成之群組;其中,以該鐵鉑銀基靶材整體之原子總數為基準,碳的含量係大於或等於1 at%且小於或等於40 at%,碳化物的含量係大於或等於2 at%且小於或等於30 at%,氮化物的含量係大於或等於1 at%且小於或等於40 at%,氧化物的含量係大於或等於1 at%且小於或等於35 at%。更佳的,以該鐵鉑銀基靶材整體之原子總數為基準,碳的含量係大於或等於8 at%且小於或等於30 at%,碳化物的含量係大於或等於3 at%且小於或等於20 at%,氮化物的含量係大於或等於2 at%且小於或等於32 at%,氧化物的含量係大於或等於2 at%且小於或等於30 at%。Preferably, the non-magnetic component can be selected from the group consisting of carbon (C), carbide (carbide), nitride (nitride), oxide (oxide) and combinations thereof; wherein, the iron-platinum-silver-based target is used Based on the total number of atoms in the whole material, the content of carbon is greater than or equal to 1 at% and less than or equal to 40 at%, the content of carbide is greater than or equal to 2 at% and less than or equal to 30 at%, and the content of nitride is Greater than or equal to 1 at% and less than or equal to 40 at%, the oxide content is greater than or equal to 1 at% and less than or equal to 35 at%. More preferably, based on the total number of atoms of the iron-platinum-silver-based target as a whole, the content of carbon is greater than or equal to 8 at% and less than or equal to 30 at%, and the content of carbide is greater than or equal to 3 at% and less than or equal to 20 at%, the content of nitride is greater than or equal to 2 at% and less than or equal to 32 at%, and the content of oxide is greater than or equal to 2 at% and less than or equal to 30 at%.

於本創作的一些實施例中,該碳化物可為碳化矽(SiC)、碳化硼(B 4C)、碳化鈦(TiC)、碳化鎢(WC)、碳化鉭(TaC)、碳化鉿(HfC)、碳化鋯(ZrC)、碳化釩(VC)、碳化鈮(NbC)、碳化鉻(Cr 3C 2)、氮碳化鈦(TiCN)或其組合,但不限於此;於本創作的另一些實施例中,該氮化物可為氮化硼(BN)、氮化鋁(AlN)、氮化鈦(TiN)、氮化鉻(CrN)、氮化鋯(ZrN)、氮化鉭(TaN)、氮化鉿(HfN)、氮化矽(Si 3N 4)、氮碳化鈦(TiCN)、氮化鎢(WN)、氮化釩(VN)或其組合,但不限於此;於本創作的另一些實施例中,該氧化物可為二氧化矽(SiO 2)、二氧化鈦(TiO 2)、三氧化二鉻(Cr 2O 3)、五氧化二鉭(Ta 2O 5)、一氧化鈷(CoO)、三氧化二錳(Mn 2O 3)、三氧化二硼(B 2O 3)、二氧化鉿(HfO 2)、一氧化鎂(MgO)、三氧化二鋁(Al 2O 3)、二氧化鋯(ZrO 2)、五氧化二鈮(Nb 2O 5)、五氧化二釩(V 2O 5)、三氧化鎢(WO 3)、三氧化二鐵(Fe 2O 3)、一氧化鋅(ZnO)或其組合,但不限於此。 In some embodiments of the present invention, the carbide may be silicon carbide (SiC), boron carbide (B 4 C), titanium carbide (TiC), tungsten carbide (WC), tantalum carbide (TaC), hafnium carbide (HfC) ), zirconium carbide (ZrC), vanadium carbide (VC), niobium carbide (NbC), chromium carbide (Cr 3 C 2 ), titanium nitride carbide (TiCN) or a combination thereof, but not limited to; In an embodiment, the nitride can be boron nitride (BN), aluminum nitride (AlN), titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN), tantalum nitride (TaN) , Hafnium Nitride (HfN), Silicon Nitride (Si 3 N 4 ), Titanium Carbide Nitride (TiCN), Tungsten Nitride (WN), Vanadium Nitride (VN) or a combination thereof, but not limited to; In other embodiments, the oxide can be silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), chromium trioxide (Cr 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), monoxide Cobalt (CoO), manganese trioxide (Mn 2 O 3 ), boron trioxide (B 2 O 3 ), hafnium dioxide (HfO 2 ), magnesium monoxide (MgO), aluminum oxide (Al 2 O 3 ), zirconium dioxide (ZrO 2 ), niobium pentoxide (Nb 2 O 5 ), vanadium pentoxide (V 2 O 5 ), tungsten trioxide (WO 3 ), iron trioxide (Fe 2 O 3 ) ), zinc monoxide (ZnO), or a combination thereof, but not limited thereto.

較佳的,該非磁性成分包含碳、碳化矽、碳化硼、碳化鈦、碳化鎢、碳化鉭、碳化鉿、碳化鋯、碳化釩、碳化鈮、碳化鉻、氮化硼、氮化鋁、氮化鈦、氮化鉻、氮化鋯、氮化鉭、氮化鉿、氮化矽、氮碳化鈦、氮化鎢、氮化釩、二氧化矽、二氧化鈦、三氧化二鉻、五氧化二鉭、一氧化鈷、三氧化二錳、三氧化二硼、二氧化鉿、一氧化鎂、三氧化二鋁、二氧化鋯、五氧化二鈮、五氧化二釩、三氧化鎢、三氧化二鐵、一氧化鋅或其組合。Preferably, the non-magnetic component comprises carbon, silicon carbide, boron carbide, titanium carbide, tungsten carbide, tantalum carbide, hafnium carbide, zirconium carbide, vanadium carbide, niobium carbide, chromium carbide, boron nitride, aluminum nitride, nitride Titanium, Chromium Nitride, Zirconium Nitride, Tantalum Nitride, Hafnium Nitride, Silicon Nitride, Titanium Nitride, Tungsten Nitride, Vanadium Nitride, Silicon Dioxide, Titanium Dioxide, Chromium Trioxide, Tantalum Pentoxide, Cobalt monoxide, manganese trioxide, boron trioxide, hafnium dioxide, magnesium monoxide, aluminum oxide, zirconium dioxide, niobium pentoxide, vanadium pentoxide, tungsten trioxide, iron oxide, Zinc monoxide or a combination thereof.

較佳的,該鐵鉑銀基靶材之相對密度係大於或等於98%。Preferably, the relative density of the iron-platinum-silver-based target is greater than or equal to 98%.

此外,本創作另提供一種鐵鉑銀基靶材之製法,其包含以下步驟:步驟(a):使鉑原料及銀原料形成一鉑銀預合金原料,其中,該鉑原料中的硫含量係小於50 ppm;步驟(b):混合該鉑銀預合金原料、鐵原料及非磁性原料以獲得一原料混合物;步驟(c):熱處理該原料混合物,以獲得一鐵鉑銀基混合原料;以及步驟(d):燒結該鐵鉑銀基混合原料,以獲得該鐵鉑銀基靶材;其中,以該鐵鉑銀基混合原料整體之原子總數為基準,鉑原料的添加量係大於或等於5 at%且小於或等於40 at%,銀原料的添加量係大於或等於1 at%且小於或等於15 at%;該鐵鉑銀基靶材中的硫含量係小於50 ppm,且該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於10 μm 2In addition, the present invention further provides a method for producing an iron-platinum-silver-based target, which includes the following steps: step (a): forming a platinum-silver pre-alloyed raw material from a platinum raw material and a silver raw material, wherein the sulfur content in the platinum raw material is a less than 50 ppm; step (b): mixing the platinum-silver pre-alloyed raw material, iron raw material and non-magnetic raw material to obtain a raw material mixture; step (c): heat-treating the raw material mixture to obtain an iron-platinum-silver-based mixed raw material; and Step (d): sintering the iron-platinum-silver-based mixed raw material to obtain the iron-platinum-silver-based target; wherein, based on the total number of atoms of the iron-platinum-silver-based mixed raw material as a whole, the addition amount of the platinum raw material is greater than or equal to 5 at% and less than or equal to 40 at%, the added amount of silver raw material is greater than or equal to 1 at% and less than or equal to 15 at%; the sulfur content in the iron-platinum-silver-based target is less than 50 ppm, and the iron The maximum silver phase area in the metallographic microstructure of the platinum-silver-based target is less than 10 μm 2 .

藉由於鐵鉑銀基靶材製程中採用(1)控制鉑原料與銀原料的添加量範圍、(2)控制鉑原料中的硫含量範圍、(3)預先製作鉑銀預合金原料以及(4)經過熱處理後再進行燒結等技術手段,能夠使所製得之鐵鉑銀基靶材具有較低的硫含量以及銀均勻分散於靶材中而不會產生大面積的銀相的特點,不僅能夠提升鐵鉑銀基靶材的密度,進而減輕後續濺鍍過程中微粒掉落的問題,且同時亦可提升鐵鉑銀基靶材的抗氧化能力,有效解決鐵鉑銀基靶材表面易氧化而產生鏽蝕之不易保存的問題。By using (1) controlling the range of the addition amount of platinum raw materials and silver raw materials, (2) controlling the range of sulfur content in the platinum raw materials, (3) pre-producing platinum-silver pre-alloyed raw materials and (4) ) After heat treatment and then sintering and other technical means, the prepared iron-platinum-silver-based target can have a lower sulfur content and the silver is evenly dispersed in the target without producing a large area of silver phase characteristics, not only It can increase the density of the iron-platinum-silver-based target, thereby reducing the problem of particles falling off in the subsequent sputtering process, and at the same time, it can also improve the oxidation resistance of the iron-platinum-silver-based target, effectively solving the problem of the surface easy of the iron-platinum-silver-based target. Oxidation and rusting are difficult to preserve.

可以理解的是,銀原料、鐵原料或非磁性原料中的硫含量通常低於20 ppm,或者甚至低於10 ppm,而鉑原料中則通常含有較高的硫含量,故透過控制鉑原料中的硫含量小於前述50 ppm之特定範圍,即可有效控制所製得之鐵鉑銀基靶材中的硫含量小於前述50 ppm之特定範圍。It can be understood that the sulfur content of silver, iron or non-magnetic materials is usually below 20 ppm, or even below 10 ppm, while platinum raw materials usually contain higher sulfur content, so by controlling the sulfur content of platinum raw materials If the sulfur content is less than the above-mentioned specific range of 50 ppm, the sulfur content in the prepared iron-platinum-silver-based target can be effectively controlled to be less than the above-mentioned specific range of 50 ppm.

依據本創作,在該步驟(b)中,該混合步驟可選用任何能夠均勻混合原料的方式,例如該混合步驟可為將原料置於高速研磨機中研磨1小時至4小時以達到均勻混合原料之目的,但不限於此。According to the present invention, in the step (b), the mixing step can be any method that can uniformly mix the raw materials, for example, the mixing step can be placed in a high-speed grinder and ground for 1 hour to 4 hours to achieve uniform mixing of the raw materials. purpose, but not limited to.

依據本創作,於該步驟(c)中獲得該鐵鉑銀基混合原料後,可另接續進行一預壓步驟,該預壓步驟可為任何能夠將該鐵鉑銀基混合原料壓製成為具有固定形狀的手段。舉例而言,該預壓步驟可為將該鐵鉑銀基混合原料置入油壓機中並以約為100巴(bar)至200 bar之壓力進行預壓,但不限於此。According to the present invention, after the iron-platinum-silver-based mixed raw material is obtained in step (c), a pre-pressing step can be carried out. means of shape. For example, the pre-pressing step may be to put the iron-platinum-silver-based mixed raw material into an oil press and pre-press at a pressure of about 100 bar to 200 bar, but it is not limited thereto.

較佳的,以該鐵鉑銀基混合原料整體之原子總數為基準,該非磁性原料的添加量係大於或等於5 at%且小於或等於40 at%。Preferably, based on the total number of atoms of the iron-platinum-silver-based mixed raw material as a whole, the addition amount of the non-magnetic raw material is greater than or equal to 5 at% and less than or equal to 40 at%.

依據本創作,以該鐵鉑銀基混合原料整體之原子總數為基準,鐵原料的添加量係大於或等於5 at%且小於或等於85 at%。較佳的,以該鐵鉑銀基混合原料整體之原子總數為基準,鐵原料的添加量係大於或等於20 at%且小於或等於85 at%。更佳的,以該鐵鉑銀基混合原料整體之原子總數為基準,鐵原料的添加量係大於或等於25 at%且小於或等於84 at%。According to this creation, based on the total number of atoms of the iron-platinum-silver-based mixed raw material as a whole, the addition amount of the iron raw material is greater than or equal to 5 at% and less than or equal to 85 at%. Preferably, based on the total number of atoms of the entire iron-platinum-silver-based mixed raw material, the addition amount of the iron raw material is greater than or equal to 20 at% and less than or equal to 85 at%. More preferably, based on the total number of atoms of the entire iron-platinum-silver-based mixed raw material, the addition amount of the iron raw material is greater than or equal to 25 at% and less than or equal to 84 at%.

較佳的,該非磁性原料可選自由碳原料、碳化物原料、氮化物原料、氧化物原料及其組合所組成之群組;其中,碳化物原料可為碳化矽原料、碳化硼原料、碳化鈦原料、碳化鎢原料、碳化鉭原料、碳化鉿原料、碳化鋯原料、碳化釩原料、碳化鈮原料、碳化鉻原料、氮碳化鈦原料或其組合,但不限於此;氮化物原料可為氮化硼原料、氮化鋁原料、氮化鈦原料、氮化鉻原料、氮化鋯原料、氮化鉭原料、氮化鉿原料、氮化矽原料、氮碳化鈦原料、氮化鎢原料、氮化釩原料或其組合,但不限於此;氧化物原料可為二氧化矽原料、二氧化鈦原料、三氧化二鉻原料、五氧化二鉭原料、一氧化鈷原料、三氧化二錳原料、三氧化二硼原料、二氧化鉿原料、一氧化鎂原料、三氧化二鋁原料、二氧化鋯原料、五氧化二鈮原料、五氧化二釩原料、三氧化鎢原料、三氧化二鐵原料、一氧化鋅原料或其組合,但不限於此。Preferably, the non-magnetic raw materials can be selected from the group consisting of carbon raw materials, carbide raw materials, nitride raw materials, oxide raw materials and combinations thereof; wherein, the carbide raw materials can be silicon carbide raw materials, boron carbide raw materials, titanium carbide raw materials Raw materials, tungsten carbide raw materials, tantalum carbide raw materials, hafnium carbide raw materials, zirconium carbide raw materials, vanadium carbide raw materials, niobium carbide raw materials, chromium carbide raw materials, titanium nitride carbide raw materials or combinations thereof, but not limited to these; the nitride raw materials can be nitrided Boron raw material, aluminum nitride raw material, titanium nitride raw material, chromium nitride raw material, zirconium nitride raw material, tantalum nitride raw material, hafnium nitride raw material, silicon nitride raw material, titanium carbide nitride raw material, tungsten nitride raw material, nitride Vanadium raw material or its combination, but not limited to this; the oxide raw material can be silicon dioxide raw material, titanium dioxide raw material, chromium trioxide raw material, tantalum pentoxide raw material, cobalt monoxide raw material, manganese trioxide raw material, dioxide trioxide Boron raw materials, hafnium dioxide raw materials, magnesium monoxide raw materials, aluminum trioxide raw materials, zirconium dioxide raw materials, niobium pentoxide raw materials, vanadium pentoxide raw materials, tungsten trioxide raw materials, iron trioxide raw materials, zinc monoxide raw materials raw materials or combinations thereof, but not limited thereto.

較佳的,該非磁性原料包含碳原料、碳化矽原料、碳化硼原料、碳化鈦原料、碳化鎢原料、碳化鉭原料、碳化鉿原料、碳化鋯原料、碳化釩原料、碳化鈮原料、碳化鉻原料、氮化硼原料、氮化鋁原料、氮化鈦原料、氮化鉻原料、氮化鋯原料、氮化鉭原料、氮化鉿原料、氮化矽原料、氮碳化鈦原料、氮化鎢原料、氮化釩原料、二氧化矽原料、二氧化鈦原料、三氧化二鉻原料、五氧化二鉭原料、一氧化鈷原料、三氧化二錳原料、三氧化二硼原料、二氧化鉿原料、一氧化鎂原料、三氧化二鋁原料、二氧化鋯原料、五氧化二鈮原料、五氧化二釩原料、三氧化鎢原料、三氧化二鐵原料、一氧化鋅原料或其組合。Preferably, the non-magnetic raw materials include carbon raw materials, silicon carbide raw materials, boron carbide raw materials, titanium carbide raw materials, tungsten carbide raw materials, tantalum carbide raw materials, hafnium carbide raw materials, zirconium carbide raw materials, vanadium carbide raw materials, niobium carbide raw materials, and chromium carbide raw materials. , boron nitride raw materials, aluminum nitride raw materials, titanium nitride raw materials, chromium nitride raw materials, zirconium nitride raw materials, tantalum nitride raw materials, hafnium nitride raw materials, silicon nitride raw materials, titanium carbide nitride raw materials, tungsten nitride raw materials , vanadium nitride raw materials, silicon dioxide raw materials, titanium dioxide raw materials, chromium trioxide raw materials, tantalum pentoxide raw materials, cobalt monoxide raw materials, manganese trioxide raw materials, boron trioxide raw materials, hafnium dioxide raw materials, monoxide raw materials Magnesium raw material, aluminum oxide raw material, zirconium dioxide raw material, niobium pentoxide raw material, vanadium pentoxide raw material, tungsten trioxide raw material, iron trioxide raw material, zinc monoxide raw material or combination thereof.

較佳的,在該步驟(a)中,鉑原料及銀原料係藉由研磨混粉或霧化噴粉的方式形成該鉑銀預合金原料。所述研磨混粉係指通過高速研磨使不同金屬原料顆粒間反覆產生碰撞,進而使不同金屬原料顆粒中的原子擴散而形成合金化原料,舉例而言,所述鉑原料及銀原料係置於高速研磨機中研磨1小時至5小時以形成所述鉑銀預合金原料,但不限於此。所述霧化噴粉係指預先將不同金屬原料加熱至霧化溫度後進行噴粉以得到合金化原料,舉例而言,所述鉑原料及銀原料係置於氬氣氣氛環境或壓力為10 -5bar至10 -4bar的真空環境中,並加熱至1500℃至2000℃的霧化溫度後進行噴粉以得到所述鉑銀預合金原料,但不限於此。 Preferably, in the step (a), the platinum raw material and the silver raw material are formed into the platinum-silver pre-alloyed raw material by means of grinding and powder mixing or atomization. The grinding and powder mixing refers to repeated collisions between different metal raw material particles through high-speed grinding, and then the atoms in the different metal raw material particles are diffused to form alloying raw materials. For example, the platinum raw materials and silver raw materials are placed in Grinding in a high-speed grinder for 1 hour to 5 hours to form the platinum-silver pre-alloyed raw material, but not limited thereto. The atomization powder spraying refers to preheating different metal raw materials to the atomization temperature and then spraying powder to obtain alloying raw materials. For example, the platinum raw materials and silver raw materials are placed in an argon atmosphere or the pressure is 10. -5 bar to 10 -4 bar in a vacuum environment, and heated to an atomization temperature of 1500° C. to 2000° C. and then sprayed to obtain the platinum-silver pre-alloyed raw material, but not limited thereto.

較佳的,在該步驟(c)中,熱處理可於氫氣氣氛的環境中進行。舉例而言,在步驟(c)中,所述原料混合物係置於氫氣氣氛環境、溫度為600℃至800℃之條件下進行熱處理2小時至4小時,以獲得所述鐵鉑銀基混合原料,但不限於此。Preferably, in the step (c), the heat treatment can be performed in a hydrogen atmosphere. For example, in step (c), the raw material mixture is placed in a hydrogen atmosphere at a temperature of 600° C. to 800° C. for heat treatment for 2 hours to 4 hours to obtain the iron-platinum-silver-based mixed raw material , but not limited to this.

較佳的,在該步驟(d)中,燒結溫度係大於或等於600℃且小於或等於1200℃,燒結壓力係大於或等於350 bar且小於或等於1800 bar。Preferably, in this step (d), the sintering temperature is greater than or equal to 600°C and less than or equal to 1200°C, and the sintering pressure is greater than or equal to 350 bar and less than or equal to 1800 bar.

依據本創作,所述燒結步驟可為熱壓成型法(hot pressing,HP)、放電等離子體燒結法(spark plasma sintering,SPS)或熱均壓成型法(hot isostatic pressing,HIP)。舉例而言,當燒結步驟採用HP時,其燒結溫度可為800°C至1200°C,燒結壓力可為350 bar至400 bar,燒結時間可為1小時至4小時,但不限於此;當燒結步驟採用SPS時,其燒結溫度可為700°C至1200°C,燒結壓力可為1100 bar至1200 bar,燒結時間可為5分鐘至1小時,但不限於此;當燒結步驟採用HIP時,其燒結溫度可為700°C至1200°C,燒結壓力可為1700 bar至1800 bar,燒結時間可為1小時至4小時,但不限於此。According to the present invention, the sintering step may be hot pressing (HP), spark plasma sintering (SPS) or hot isostatic pressing (HIP). For example, when HP is used in the sintering step, the sintering temperature may be 800°C to 1200°C, the sintering pressure may be 350 bar to 400 bar, and the sintering time may be 1 hour to 4 hours, but not limited thereto; When the sintering step adopts SPS, the sintering temperature can be 700°C to 1200°C, the sintering pressure can be 1100 bar to 1200 bar, and the sintering time can be 5 minutes to 1 hour, but not limited thereto; when the sintering step adopts HIP , the sintering temperature may be 700°C to 1200°C, the sintering pressure may be 1700 bar to 1800 bar, and the sintering time may be 1 hour to 4 hours, but not limited thereto.

於本說明書中,由「小數值至大數值」表示的範圍,如果沒有特別指明,則表示其範圍為大於或等於該小數值且小於或等於該大數值。例如:研磨1小時至4小時,即表示研磨時間範圍為「大於或等於1小時且小於或等於4小時」。In this specification, the range represented by "a decimal value to a larger value", unless otherwise specified, means that the range is greater than or equal to the decimal value and less than or equal to the larger value. For example, grinding for 1 hour to 4 hours means that the grinding time range is "greater than or equal to 1 hour and less than or equal to 4 hours".

為驗證鐵鉑銀基靶材中組成對其金相微結構中的最大銀相面積所造成的影響,以下列舉數種鐵鉑銀基靶材作為例示,詳細說明本創作的實施方式,所屬技術領域具有通常知識者可經由本說明書之內容輕易地了解本創作所能達成之優點與功效,並且於不悖離本創作之精神下進行各種修飾與變更,以施行或應用本創作之內容。In order to verify the influence of the composition of the iron-platinum-silver-based target on the maximum silver phase area in its metallographic microstructure, several iron-platinum-silver-based targets are listed below as examples, and the embodiments of the present creation are described in detail. Usually, the knowledgeable person can easily understand the advantages and effects of this creation through the content of this manual, and make various modifications and changes without departing from the spirit of this creation to implement or apply the content of this creation.

實施例Example 11 to 1515 :鐵鉑銀基靶材: Iron-platinum-silver-based target

依據表1所列之鐵鉑銀基靶材的組成,秤取適量平均粒徑小於15微米(μm)之鉑粉末以及平均粒徑小於20 μm之銀粉末,預先製得鉑銀預合金粉末,其中,不同實施例所選用鉑粉末中的硫含量列於表1中,而所選用的銀粉末中的硫含量則皆低於10 ppm。實施例1至3、5、7至9以及13係選用研磨混粉的方式,將鉑粉末與銀粉末置於高速研磨機中,以400轉/分鐘(revolution per minute,rpm)至900 rpm之轉速、1至3之球料比研磨1小時至5小時,以獲得鉑銀預合金粉末;實施例4、6、10至12以及14至15係選用霧化噴粉的方式,將鉑粉末與銀粉末於1500°C至2000°C之霧化溫度下進行噴粉,以獲得鉑銀預合金粉末。According to the composition of the iron-platinum-silver-based target listed in Table 1, weigh an appropriate amount of platinum powder with an average particle size of less than 15 microns (μm) and silver powder with an average particle size of less than 20 μm to prepare platinum-silver pre-alloyed powder in advance. Among them, the sulfur content in the platinum powder selected in different embodiments is listed in Table 1, and the sulfur content in the selected silver powder is all less than 10 ppm. In Examples 1 to 3, 5, 7 to 9 and 13 series, the method of grinding and mixing powder was used, and the platinum powder and the silver powder were placed in a high-speed grinder, and the grinding process was carried out at a speed of 400 rpm (revolution per minute, rpm) to 900 rpm. The rotating speed and the ball-to-material ratio of 1 to 3 are ground for 1 hour to 5 hours to obtain platinum-silver pre-alloyed powder; Examples 4, 6, 10 to 12, and 14 to 15 use the method of atomization and powder spraying. The silver powder is sprayed at an atomization temperature of 1500°C to 2000°C to obtain platinum-silver pre-alloyed powder.

接著,依據表1所列之鐵鉑銀基靶材的組成,秤取適量平均粒徑小於250 μm之鐵粉末以及平均粒徑小於10 μm之非磁性粉末,其中,所選用的鐵粉末中的硫含量皆低於30 ppm、所選用的非磁性粉末中的硫含量皆低於30 ppm,接著與前述鉑銀預合金粉末一同置於高速研磨機中,以400 rpm至900 rpm之轉速、1至3之球料比研磨1小時至4小時,使其均勻混合,以得到粉末混合物;再將所述粉末混合物置於氫氣氣氛環境、溫度為700℃之條件下進行熱處理3小時以獲得鐵鉑銀基混合粉末。Next, according to the composition of the iron-platinum-silver-based target listed in Table 1, weigh an appropriate amount of iron powder with an average particle size of less than 250 μm and non-magnetic powder with an average particle size of less than 10 μm. The sulfur content is all less than 30 ppm, and the sulfur content in the selected non-magnetic powder is all less than 30 ppm, and then placed in a high-speed grinding machine together with the aforementioned platinum-silver pre-alloyed powder, at a speed of 400 rpm to 900 rpm, 1 Grind for 1 hour to 4 hours with a ball-to-material ratio of 3, and mix them uniformly to obtain a powder mixture; and then place the powder mixture in a hydrogen atmosphere at a temperature of 700 ° C for 3 hours to heat treatment to obtain iron platinum Silver based mixed powder.

隨後,將所述鐵鉑銀基混合粉末置入油壓機中並以約為103 bar之壓力進行預壓,再依據下表1所列之燒結製程以及燒結溫度進行燒結,以獲得實施例1至15之鐵鉑銀基靶材,其中,若燒結步驟採用HP,其燒結壓力約為380 bar、燒結時間為1小時至4小時;若燒結步驟採用SPS,其燒結壓力約為1188 bar、燒結時間為5分鐘至60分鐘;若燒結步驟採用HIP,其燒結壓力約為1750 bar、燒結時間為1小時至4小時。Subsequently, the iron-platinum-silver-based mixed powder was placed in an oil press and pre-pressed at a pressure of about 103 bar, and then sintered according to the sintering process and sintering temperature listed in Table 1 below, to obtain Examples 1 to 15 Among them, if HP is used in the sintering step, the sintering pressure is about 380 bar, and the sintering time is 1 hour to 4 hours; if the sintering step is SPS, the sintering pressure is about 1188 bar, and the sintering time is 5 minutes to 60 minutes; if HIP is used in the sintering step, the sintering pressure is about 1750 bar and the sintering time is 1 hour to 4 hours.

於下表1中,實施例1至15之鐵鉑銀基靶材的組成可由aFe-bPt-cAg-d1C-d2TiCN-e1Cr 3C 2-e2B 4C-e3SiC-e4TaC-e5NbC-e6WC-e7VC-e8TiC-f1BN-f2AlN-f3VN-f4ZrN-f5HfN-f6CrN-f7Si 3N 4-g1TiO 2-g2MgO-g3HfO 2-g4SiO 2-g5Cr 2O 3-g6CoO-g7Ta 2O 5-g8WO 3-g9Al 2O 3-g10B 2O 3-g11ZrO 2-g12Fe 2O 3-g13ZnO之通式所示;其中,a代表鐵相對於鐵鉑銀基靶材之原子總數的含量比例,b代表鉑相對於鐵鉑銀基靶材之原子總數的含量比例,c代表銀相對於鐵鉑銀基靶材之原子總數的含量比例,d1代表碳相對於鐵鉑銀基靶材之原子總數的含量比例,d2代表氮碳化鈦相對於鐵鉑銀基靶材之原子總數的含量比例,e1、e2、e3、e4、e5、e6、e7、e8則分別代表碳化鉻、碳化硼、碳化矽、碳化鉭、碳化鈮、碳化鎢、碳化釩以及碳化鈦相對於鐵鉑銀基靶材之原子總數的含量比例,f1、f2、f3、f4、f5、f6、f7則分別代表氮化硼、氮化鋁、氮化釩、氮化鋯、氮化鉿、氮化鉻以及氮化矽相對於鐵鉑銀基靶材之原子總數的含量比例,g1、g2、g3、g4、g5、g6、g7、g8、g9、g10、g11、g12、g13則分別代表二氧化鈦、一氧化鎂、二氧化鉿、二氧化矽、三氧化二鉻、一氧化鈷、五氧化二鉭、三氧化鎢、三氧化二鋁、三氧化二硼、二氧化鋯、三氧化二鐵以及一氧化鋅相對於鐵鉑銀基靶材之原子總數的含量比例。 In Table 1 below, the compositions of the iron-platinum-silver-based targets of Examples 1 to 15 may be aFe-bPt-cAg-d1C-d2TiCN-e1Cr3C2 - e2B4C - e3SiC - e4TaC-e5NbC-e6WC-e7VC- e8TiC-f1BN-f2AlN-f3VN-f4ZrN-f5HfN-f6CrN-f7Si3N4 - g1TiO2 - g2MgO - g3HfO2 - g4SiO2 - g5Cr2O3 - g6CoO - g7Ta2O5 - g8WO3 - g9Al2O3- The general formula of g10B 2 O 3 -g11ZrO 2 -g12Fe 2 O 3 -g13ZnO is shown in the formula; wherein, a represents the content ratio of iron relative to the total number of atoms in the iron-platinum-silver-based target, and b represents platinum relative to the iron-platinum-silver-based target The content ratio of the total number of atoms of the material, c represents the content ratio of silver to the total number of atoms of the iron-platinum-silver-based target, d1 represents the content ratio of carbon to the total number of atoms of the iron-platinum-silver-based target, and d2 represents the nitrogen carbide relative to the total number of atoms. In terms of the content ratio of the total number of atoms in the iron-platinum-silver-based target, e1, e2, e3, e4, e5, e6, e7, and e8 represent chromium carbide, boron carbide, silicon carbide, tantalum carbide, niobium carbide, tungsten carbide, The content ratio of vanadium carbide and titanium carbide to the total number of atoms in the iron-platinum-silver-based target, f1, f2, f3, f4, f5, f6, f7 represent boron nitride, aluminum nitride, vanadium nitride, nitride The content ratio of zirconium, hafnium nitride, chromium nitride and silicon nitride relative to the total number of atoms in the iron-platinum-silver-based target, g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, g11, g12 and g13 respectively represent titanium dioxide, magnesium monoxide, hafnium dioxide, silicon dioxide, chromium oxide, cobalt monoxide, tantalum pentoxide, tungsten trioxide, aluminum oxide, boron oxide, and oxide The content ratio of zirconium, ferric oxide and zinc monoxide relative to the total number of atoms in the iron-platinum-silver-based target.

比較例Comparative example 11 to 22 :鐵鉑銀基靶材: Iron-platinum-silver-based target

比較例1至2之製備方法與實施例大致相同,即依據表1所列之鐵鉑銀基靶材的組成秤取不同成分粉末,並且預先製得鉑銀預合金粉末,其中,比較例1係選用研磨混粉的方式形成鉑銀預合金粉末,比較例2則選用霧化噴粉的方式形成鉑銀預合金粉末,隨後依照與實施例相似的製備流程製得比較例1至2之鐵鉑銀基靶材。而比較例1至2與實施例之間的主要不同處在於,比較例1至2並未同時控制鉑粉末中的硫含量以及使粉末混合物進行熱處理。比較例1至2所選用鉑粉末中的硫含量、燒結製程以及燒結溫度皆列於下表1中。The preparation method of Comparative Examples 1 to 2 is roughly the same as that of the embodiment, that is, according to the composition of the iron-platinum-silver-based target listed in Table 1, the powders of different components are weighed, and the platinum-silver pre-alloyed powders are prepared in advance. Among them, Comparative Example 1 The platinum-silver pre-alloyed powder was formed by grinding and powder mixing. In Comparative Example 2, the platinum-silver pre-alloyed powder was formed by atomization and powder spraying. Then, the iron of Comparative Examples 1 to 2 was prepared according to the preparation process similar to the embodiment. Platinum silver based target. The main difference between Comparative Examples 1 to 2 and Examples is that Comparative Examples 1 to 2 do not simultaneously control the sulfur content in the platinum powder and subject the powder mixture to heat treatment. The sulfur content, the sintering process and the sintering temperature of the platinum powders selected in Comparative Examples 1 to 2 are listed in Table 1 below.

比較例Comparative example 33 to 1212 :鐵鉑銀基靶材: Iron-platinum-silver-based target

比較例3至12之製備方法與比較例1至2大致相同,其主要不同之處在於,比較例3至12沒有先製得鉑銀預合金粉末,而是將鐵粉末、鉑粉末、銀粉末以及非磁性粉末直接置於高速研磨機中一同研磨1小時至4小時均勻混合,以獲得粉末混合物,隨後依照比較例1至2的製備流程製得比較例3至12之鐵鉑銀基靶材。比較例3至12所選用鉑粉末中的硫含量、燒結製程以及燒結溫度皆列於下表1中。The preparation methods of Comparative Examples 3 to 12 are roughly the same as those of Comparative Examples 1 to 2. The main difference is that in Comparative Examples 3 to 12, the platinum-silver pre-alloyed powder was not prepared first, but iron powder, platinum powder, and silver powder were prepared. And the non-magnetic powder is directly placed in a high-speed grinder to grind together for 1 hour to 4 hours and evenly mixed to obtain a powder mixture, and then according to the preparation process of Comparative Examples 1 to 2, the iron-platinum-silver-based targets of Comparative Examples 3 to 12 were prepared . The sulfur content, sintering process and sintering temperature in the platinum powders selected in Comparative Examples 3 to 12 are listed in Table 1 below.

比較例1至12之鐵鉑銀基靶材的組成以及各成分以原子百分比記的含量皆列於下表1中,比較例1至12之鐵鉑銀基靶材亦可如同前述各實施例所載之通式表示,其成分的含量表示方式亦如同前述各實施例所載。The compositions of the iron-platinum-silver-based targets of Comparative Examples 1 to 12 and the content of each component in atomic percentage are listed in Table 1 below. The stated general formula is expressed, and the content of its components is expressed in the same manner as those stated in the foregoing examples.

於本說明書中,所述「非磁性成分的含量」係指d1、d2、e1至e8、f1至f7以及g1至g13之總和。 表1:實施例1至15以及比較例1至12之鐵鉑銀基靶材之組成、所選用鉑粉末中的硫含量、燒結製程以及燒結溫度。 組別 鐵鉑銀基靶材之組成 鉑粉末中的硫含量(ppm) 燒結製程 燒結溫度(°C) 實施例1 30Fe-25Pt-5Ag-8C-32BN 36 HIP 1000 實施例2 84Fe-5Pt-1Ag-10AlN 48 HP 1100 實施例3 25Fe-40Pt-15Ag-10TiO 2-10MgO 25 SPS 800 實施例4 55Fe-30Pt-10Ag-2HfO 2-3Cr 3C 2 低於0.6 SPS 850 實施例5 35Fe-35Pt-6Ag-24SiO 2 14 HP 950 實施例6 40Fe-30Pt-13Ag-17B 4C 12 HP 800 實施例7 33Fe-20Pt-7Ag-30Cr 2O 3-10VN 23 HIP 900 實施例8 45Fe-30Pt-5Ag-15CoO-2ZrN-3SiC 34 SPS 950 實施例9 29Fe-35Pt-1Ag-25Ta 2O 5-10TaC 47 HP 1100 實施例10 54Fe-25Pt-6Ag-10HfN-5NbC 26 HP 900 實施例11 37Fe-25Pt-13Ag-5WO 3-20BN 24 HIP 800 實施例12 40Fe-5Pt-15Ag-5Al 2O 3-5TiCN-30C 8 SPS 800 實施例13 46Fe-15Pt-4Ag-15B 2O 3-20WC 15 SPS 950 實施例14 70Fe-10Pt-12Ag-8ZrO 2 24 HIP 850 實施例15 60Fe-15Pt-2Ag-20CrN-3VC 9 HIP 1050 比較例1 40Fe-5Pt-25Ag-10Ta 2O 5-20C 180 HIP 1000 比較例2 40Fe-30Pt-5Ag-25TiO 2 161 HP 950 比較例3 30Fe-25Pt-5Ag-8C-32BN 244 HIP 950 比較例4 49.5Fe-35Pt-0.5Ag-5Al 2O 3-10ZrN 432 HP 1100 比較例5 43Fe-30Pt-17Ag-5B 2O 3-5TiC 387 HP 800 比較例6 69Fe-3Pt-8Ag-10Fe 2O 3-10BN 591 HIP 900 比較例7 40Fe-45Pt-10Ag-5ZnO 543 HIP 900 比較例8 45Fe-40Pt-12Ag-3C 468 SPS 850 比較例9 28Fe-25Pt-2Ag-25Ta 2O 5-10Si 3N 4-10Cr 3C 2 356 SPS 1000 比較例10 25Fe-30Pt-15Ag-20BN-10C 35 HIP 800 比較例11 44Fe-30Pt-1Ag-25C 103 HIP 900 比較例12 30Fe-27Pt-3Ag-40BN 169 HP 1000 In this specification, the "content of the non-magnetic component" refers to the sum of d1, d2, e1 to e8, f1 to f7, and g1 to g13. Table 1: The composition of the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12, the sulfur content in the selected platinum powder, the sintering process and the sintering temperature. group The composition of iron-platinum-silver-based target Sulfur content in platinum powder (ppm) Sintering process Sintering temperature (°C) Example 1 30Fe-25Pt-5Ag-8C-32BN 36 HIP 1000 Example 2 84Fe-5Pt-1Ag-10AlN 48 HP 1100 Example 3 25Fe-40Pt-15Ag-10TiO 2 -10MgO 25 SPS 800 Example 4 55Fe-30Pt-10Ag-2HfO 2 -3Cr 3 C 2 below 0.6 SPS 850 Example 5 35Fe-35Pt-6Ag-24SiO 2 14 HP 950 Example 6 40Fe-30Pt-13Ag-17B 4 C 12 HP 800 Example 7 33Fe-20Pt-7Ag-30Cr 2 O 3 -10VN twenty three HIP 900 Example 8 45Fe-30Pt-5Ag-15CoO-2ZrN-3SiC 34 SPS 950 Example 9 29Fe-35Pt-1Ag-25Ta 2 O 5 -10TaC 47 HP 1100 Example 10 54Fe-25Pt-6Ag-10HfN-5NbC 26 HP 900 Example 11 37Fe-25Pt-13Ag-5WO 3 -20BN twenty four HIP 800 Example 12 40Fe-5Pt-15Ag-5Al 2 O 3 -5TiCN-30C 8 SPS 800 Example 13 46Fe-15Pt-4Ag-15B 2 O 3 -20WC 15 SPS 950 Example 14 70Fe-10Pt-12Ag-8ZrO 2 twenty four HIP 850 Example 15 60Fe-15Pt-2Ag-20CrN-3VC 9 HIP 1050 Comparative Example 1 40Fe-5Pt-25Ag-10Ta 2 O 5 -20C 180 HIP 1000 Comparative Example 2 40Fe-30Pt-5Ag-25TiO 2 161 HP 950 Comparative Example 3 30Fe-25Pt-5Ag-8C-32BN 244 HIP 950 Comparative Example 4 49.5Fe-35Pt-0.5Ag-5Al 2 O 3 -10ZrN 432 HP 1100 Comparative Example 5 43Fe-30Pt-17Ag-5B 2 O 3 -5TiC 387 HP 800 Comparative Example 6 69Fe-3Pt-8Ag-10Fe 2 O 3 -10BN 591 HIP 900 Comparative Example 7 40Fe-45Pt-10Ag-5ZnO 543 HIP 900 Comparative Example 8 45Fe-40Pt-12Ag-3C 468 SPS 850 Comparative Example 9 28Fe - 25Pt - 2Ag - 25Ta2O5-10Si3N4-10Cr3C2 356 SPS 1000 Comparative Example 10 25Fe-30Pt-15Ag-20BN-10C 35 HIP 800 Comparative Example 11 44Fe-30Pt-1Ag-25C 103 HIP 900 Comparative Example 12 30Fe-27Pt-3Ag-40BN 169 HP 1000

分析analyze 11 :金相微結構中的最大銀相面積: Maximum silver phase area in the metallographic microstructure

先將實施例1至15與比較例1至12之鐵鉑銀基靶材進一步以線切割與磨床加工後,製得外徑為209毫米(mm)、厚度為6 mm的圓形靶材,再分別於靶材的中心至圓周之一半處(即,半徑的二分之一處)線切割取得10 mm × 10 mm的試片。The iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were further processed by wire cutting and grinding to obtain circular targets with an outer diameter of 209 millimeters (mm) and a thickness of 6 mm. Then, cut a test piece of 10 mm × 10 mm from the center of the target to half of the circumference (that is, half of the radius).

接著,使用掃描式電子顯微鏡(型號為Hitachi製造的SE-3400),以2000倍的放大倍率觀察實施例1至15與比較例1至12之鐵鉑銀基靶材試片的金相微結構,隨後再以元素分布分析(mapping)功能分析並獲得銀相於各組別之鐵鉑銀基靶材的金相微結構中的分布情形。接著,將前述觀察拍攝得到的掃描式電子顯微鏡影像圖,採用影像分析軟體Image J內建之「Area」功能分析得到各組別之銀相面積的多組資料,再取所述多組資料中的最大值即為鐵鉑銀基靶材的金相微結構中的最大銀相面積,實施例1至15與比較例1至12之鐵鉑銀基靶材的金相微結構中的最大銀相面積皆記載於下表2中。Next, using a scanning electron microscope (model SE-3400 manufactured by Hitachi), the metallographic microstructures of the iron-platinum-silver-based target test pieces of Examples 1 to 15 and Comparative Examples 1 to 12 were observed at a magnification of 2000 times, and then Then, the element distribution analysis (mapping) function was used to analyze and obtain the distribution of silver phase in the metallographic microstructure of each group of iron-platinum-silver-based targets. Next, use the “Area” function built in the image analysis software Image J to analyze the scanning electron microscope images obtained by the above observation to obtain multiple sets of data on the area of the silver phase of each group, and then take the data from the multiple sets of data. The maximum value is the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target, and the maximum silver-phase area in the metallographic microstructure of the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 is recorded. in Table 2 below.

此外,為了說明實施例與比較例之間的明顯差異,於此以實施例1以及比較例3之鐵鉑銀基靶材進行示範性說明,其金相微結構的拍攝結果分別如圖1及圖2所示。比較圖1與圖2的結果可明顯觀察到,實施例1之鐵鉑銀基靶材的金相微結構中並未觀察到銀聚集析出而產生大面積的銀相;反觀比較例3之鐵鉑銀基靶材的金相微結構中,則可明顯觀察到大面積的銀相,顯示在比較例3之鐵鉑銀基靶材中產生較顯著的銀聚集析出現象。In addition, in order to illustrate the obvious difference between the embodiment and the comparative example, the iron-platinum-silver-based targets of the embodiment 1 and the comparative example 3 are used for exemplary illustration, and the photographing results of the metallographic microstructure are shown in Figure 1 and Figure 2 respectively. shown. Comparing the results of Fig. 1 and Fig. 2, it can be clearly observed that in the metallographic microstructure of the iron-platinum-silver-based target of Example 1, no silver aggregation and precipitation are observed to produce a large area of silver phase; on the contrary, the iron-platinum-silver of Comparative Example 3 In the metallographic microstructure of the base target material, a large area of silver phase can be clearly observed, which shows that in the iron-platinum-silver-based target material of Comparative Example 3, a relatively significant silver aggregation and precipitation phenomenon occurs.

分析analyze 22 :靶材硫含量: Target sulfur content

將實施例1至15與比較例1至12之鐵鉑銀基靶材先以線割加工後,取得外徑為210 mm之圓形靶材樣品,接著藉由磨床加工去除各組別樣品表面的線割碳化區後,再經由剪取獲得實施例1至15與比較例1至12之鐵鉑銀基靶材試片(各組別試片重量皆大於0.2公克),隨後,將實施例1至15與比較例1至12之鐵鉑銀基靶材試片置入高頻紅外碳硫分析儀中(型號為LECO製造的CS-600)並進行硫含量的測定。實施例1至15與比較例1至12之鐵鉑銀基靶材中硫含量的測定結果列於下表2中。The iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were first processed by wire cutting to obtain circular target samples with an outer diameter of 210 mm, and then the surfaces of the samples of each group were removed by grinding. After cutting the carbonized area by wire cutting, the iron-platinum-silver-based target test pieces of Examples 1 to 15 and Comparative Examples 1 to 12 were obtained by shearing (the weight of each group of test pieces was greater than 0.2 grams). The iron-platinum-silver-based target test pieces of 1 to 15 and Comparative Examples 1 to 12 were placed in a high-frequency infrared carbon-sulfur analyzer (model CS-600 manufactured by LECO) and the sulfur content was measured. The measurement results of sulfur content in the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 are listed in Table 2 below.

分析analyze 33 :靶材相對密度: Target relative density

將實施例1至15與比較例1至12之鐵鉑銀基靶材以線切割與磨床加工,以製得外徑為209 mm、厚度為6 mm的圓形靶材,並透過阿基米德法,得到實施例1至15與比較例1至12之鐵鉑銀基靶材的相對密度,並將結果記錄於下表2中。The iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were processed by wire cutting and grinding to obtain a circular target with an outer diameter of 209 mm and a thickness of 6 mm, and penetrated through Archimedes. Using German method, the relative densities of the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were obtained, and the results were recorded in Table 2 below.

分析analyze 44 :靶材濺鍍品質: Target sputtering quality

先將實施例1至15與比較例1至12之鐵鉑銀基靶材進一步以線切割與磨床加工後,製得外徑為209 mm、厚度為6 mm的圓形靶材,接著將該靶材置於持續通有50 sccm (Standard Cubic Centimeter per Minute)之氬氣流量、0.001托耳(torr)至0.01 torr之真空度的磁控濺鍍機台(高敦科技所組裝)中,再以200瓦(W)之功率預濺鍍(pre-sputter)鐵鉑銀基靶材600秒,以清除靶材表面的髒汙,獲得可供評估其濺鍍品質的待測靶材。First, the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were further processed by wire cutting and grinding to obtain circular targets with an outer diameter of 209 mm and a thickness of 6 mm. The target was placed in a magnetron sputtering machine (assembled by Goldton Technology) with a continuous flow of 50 sccm (Standard Cubic Centimeter per Minute) and a vacuum of 0.001 torr to 0.01 torr. The iron-platinum-silver-based target was pre-sputtered with a power of 200 watts (W) for 600 seconds to remove the contamination on the surface of the target, and a target to be tested for evaluating the sputtering quality was obtained.

接著,將待測靶材置於通有50 sccm之氬氣流量、0.001 torr至0.01 torr之真空度的濺鍍環境下,以1000 W之功率持續濺鍍300秒,並監測各待測靶材在濺鍍過程中產生微粒掉落的數量。其中,微粒掉落數量係使用KLA-Tencor Surfscan 6420偵測尺寸在0.5 μm以上的掉落微粒數量,並將結果記錄於下表2中。Next, the target to be tested was placed in a sputtering environment with an argon flow rate of 50 sccm and a vacuum of 0.001 torr to 0.01 torr, and the power of 1000 W was continuously sputtered for 300 seconds, and each target to be tested was monitored. The number of particles dropped during sputtering. Among them, the number of particles dropped is the number of dropped particles with a size of more than 0.5 μm detected by KLA-Tencor Surfscan 6420, and the results are recorded in Table 2 below.

分析analyze 55 :靶材抗氧化能力: Antioxidant ability of target material

先將實施例1至15與比較例1至12之鐵鉑銀基靶材進一步以線切割與磨床加工後,製得外徑為209 mm、厚度為6 mm的圓形靶材,再透過線切割方式採樣取得實施例1至15與比較例1至12之鐵鉑銀基靶材試片,該等試片的尺寸大小皆為5公分(cm) × 5 cm。First, the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 were further processed by wire cutting and grinding to obtain circular targets with an outer diameter of 209 mm and a thickness of 6 mm. The iron-platinum-silver-based target test pieces of Examples 1 to 15 and Comparative Examples 1 to 12 were obtained by sampling by cutting, and the size of these test pieces was all 5 cm × 5 cm.

接著,將實施例1至15與比較例1至12之鐵鉑銀基靶材試片置於溫度為60℃、相對濕度為90%的高溫高濕環境中,並且每小時以目視檢驗各組別發生氧化的情況,直到試片表面出現目視明顯可見由於氧化所致的鏽蝕現象,則記錄經過的總時間,即為出現鏽蝕時間。出現鏽蝕時間愈長,代表鐵鉑銀基靶材具有良好的抗氧化能力,出現鏽蝕時間愈短,則表示鐵鉑銀基靶材的抗氧化能力較差。實施例1至15與比較例1至12之鐵鉑銀基靶材在高溫高濕環境中出現鏽蝕的時間點列於下表2中。Next, the iron-platinum-silver-based target test pieces of Examples 1 to 15 and Comparative Examples 1 to 12 were placed in a high-temperature and high-humidity environment with a temperature of 60° C. and a relative humidity of 90%, and each group was visually inspected every hour. No oxidation occurs until the surface of the test piece is visually visibly rusted due to oxidation, and the total elapsed time is recorded, which is the rusting time. The longer the corrosion time, the better the oxidation resistance of the iron-platinum-silver-based target, and the shorter the corrosion time, the poorer the oxidation resistance of the iron-platinum-silver-based target. The time points at which the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12 appeared rusted in a high-temperature and high-humidity environment are listed in Table 2 below.

此外,為了具體呈現鐵鉑銀基靶材表面因氧化而出現鏽蝕的情況,於開始抗氧化試驗前,實施例1、比較例2及比較例3之鐵鉑銀基靶材試片皆先拍攝外觀照片,如圖3A、圖5A以及圖7A所示,並且另外再藉由光學顯微鏡以100倍之放大倍率拍攝獲得表面影像圖,如圖3B、圖5B以及圖7B所示。而由圖3A、圖3B、圖5A、圖5B、圖7A以及圖7B的結果可觀察到,在開始抗氧化試驗之前,實施例1、比較例2及比較例3之鐵鉑銀基靶材試片的表面皆具有相似的情況,即沒有觀察到任何鏽蝕的現象。In addition, in order to specifically show the rust on the surface of the iron-platinum-silver-based target material due to oxidation, before starting the anti-oxidation test, the iron-platinum-silver-based target material test pieces of Example 1, Comparative Example 2 and Comparative Example 3 were all photographed first. Appearance photos are shown in FIG. 3A , FIG. 5A and FIG. 7A , and additionally, the surface images are obtained by taking an optical microscope at a magnification of 100 times, as shown in FIG. 3B , FIG. 5B and FIG. 7B . 3A, 3B, 5A, 5B, 7A and 7B, it can be observed that before the anti-oxidation test was started, the iron-platinum-silver-based targets of Example 1, Comparative Example 2 and Comparative Example 3 The surfaces of the test pieces were all in a similar situation, that is, no rust was observed.

隨後,依照前述方法進行抗氧化試驗,實施例1、比較例2以及比較例3之鐵鉑銀基靶材試片分別在經過96小時、24小時以及13小時的抗氧化試驗後,可在表面觀察到明顯的鏽蝕現象,實施例1、比較例2以及比較例3之鐵鉑銀基靶材試片的外觀拍攝照片分別如圖4A、圖6A以及圖8A所示;以光學顯微鏡拍攝的影像圖則分別如圖4B、圖6B以及圖8B所示。由此結果可知,實施例1之鐵鉑銀基靶材因氧化而出現鏽蝕現象的時間顯然遠多於比較例2以及比較例3所需的時間,也就是說,相較於比較例2以及比較例3之鐵鉑銀基靶材,實施例1之鐵鉑銀基靶材明顯具有較佳的抗氧化能力。 表2:實施例1至15與比較例1至12之鐵鉑銀基靶材的組成、最大銀相面積、靶材硫含量、相對密度、微粒掉落數量及出現鏽蝕時間。 組別 鐵鉑銀基靶材之組成 最大銀相面積 (μm 2) 靶材硫含量 (ppm) 相對密度 (%) 微粒掉落數量 (顆) 出現鏽蝕時間 (小時) 實施例1 30Fe-25Pt-5Ag-8C-32BN 4.755 18 99.14 96 96 實施例2 84Fe-5Pt-1Ag-10AlN 2.217 36 98.02 23 48 實施例3 25Fe-40Pt-15Ag-10TiO 2-10MgO 6.139 16 99.56 157 96 實施例4 55Fe-30Pt-10Ag-2HfO 2-3Cr 3C 2 4.967 5 98.81 125 123 實施例5 35Fe-35Pt-6Ag-24SiO 2 5.712 12 99.73 151 108 實施例6 40Fe-30Pt-13Ag-17B 4C 8.655 8 99.26 188 117 實施例7 33Fe-20Pt-7Ag-30Cr 2O 3-10VN 3.383 13 98.19 54 100 實施例8 45Fe-30Pt-5Ag-15CoO-2ZrN-3SiC 4.268 23 99.48 102 51 實施例9 29Fe-35Pt-1Ag-25Ta 2O 5-10TaC 2.346 31 98.37 21 52 實施例10 54Fe-25Pt-6Ag-10HfN-5NbC 5.654 17 98.62 148 98 實施例11 37Fe-25Pt-13Ag-5WO 3-20BN 7.941 7 99.95 179 120 實施例12 40Fe-5Pt-15Ag-5Al 2O 3-5TiCN-30C 7.732 4 99.66 182 143 實施例13 46Fe-15Pt-4Ag-15B 2O 3-20WC 3.921 25 98.61 83 51 實施例14 70Fe-10Pt-12Ag-8ZrO 2 7.037 10 99.81 167 115 實施例15 60Fe-15Pt-2Ag-20CrN-3VC 3.752 7 98.74 73 125 比較例1 40Fe-5Pt-25Ag-10Ta 2O 5-20C 4.826 72 96.37 140 19 比較例2 40Fe-30Pt-5Ag-25TiO 2 3.916 65 97.99 74 24 比較例3 30Fe-25Pt-5Ag-8C-32BN 14.918 99 95.92 742 13 比較例4 49.5Fe-35Pt-0.5Ag-5Al 2O 3-10ZrN 11.884 235 95.27 559 1 比較例5 43Fe-30Pt-17Ag-5B 2O 3-5TiC 24.115 209 97.83 931 2 比較例6 69Fe-3Pt-8Ag-10Fe 2O 3-10BN 16.619 462 97.62 813 1 比較例7 40Fe-45Pt-10Ag-5ZnO 19.451 357 96.43 925 1 比較例8 45Fe-40Pt-12Ag-3C 22.143 258 96.36 957 1 比較例9 28Fe-25Pt-2Ag-25Ta 2O 5-10Si 3N 4-10Cr 3C 2 13.527 126 95.10 761 5 比較例10 25Fe-30Pt-15Ag-20BN-10C 16.215 31 97.31 854 51 比較例11 44Fe-30Pt-1Ag-25C 12.013 72 97.43 569 20 比較例12 30Fe-27Pt-3Ag-40BN 4.624 106 98.72 112 11 Subsequently, the anti-oxidation test was carried out according to the aforementioned method. Obvious rust phenomenon was observed, and the photos of the appearance of the iron-platinum-silver-based target test pieces of Example 1, Comparative Example 2 and Comparative Example 3 were respectively shown in Figure 4A, Figure 6A and Figure 8A; The drawings are respectively shown in FIG. 4B , FIG. 6B and FIG. 8B . From the results, it can be seen that the time for the iron-platinum-silver-based target of Example 1 to rust due to oxidation is obviously much longer than the time required for Comparative Examples 2 and 3, that is, compared with Comparative Examples 2 and 3 The iron-platinum-silver-based target of Comparative Example 3 and the iron-platinum-silver-based target of Example 1 obviously have better antioxidant capacity. Table 2: Composition, maximum silver phase area, target sulfur content, relative density, number of particles dropped, and corrosion time of the iron-platinum-silver-based targets of Examples 1 to 15 and Comparative Examples 1 to 12. group The composition of iron-platinum-silver-based target Maximum silver phase area (μm 2 ) Target Sulfur Content (ppm) Relative density(%) Number of particles dropped (pieces) Corrosion time (hours) Example 1 30Fe-25Pt-5Ag-8C-32BN 4.755 18 99.14 96 96 Example 2 84Fe-5Pt-1Ag-10AlN 2.217 36 98.02 twenty three 48 Example 3 25Fe-40Pt-15Ag-10TiO 2 -10MgO 6.139 16 99.56 157 96 Example 4 55Fe-30Pt-10Ag-2HfO 2 -3Cr 3 C 2 4.967 5 98.81 125 123 Example 5 35Fe-35Pt-6Ag-24SiO 2 5.712 12 99.73 151 108 Example 6 40Fe-30Pt-13Ag-17B 4 C 8.655 8 99.26 188 117 Example 7 33Fe-20Pt-7Ag-30Cr 2 O 3 -10VN 3.383 13 98.19 54 100 Example 8 45Fe-30Pt-5Ag-15CoO-2ZrN-3SiC 4.268 twenty three 99.48 102 51 Example 9 29Fe-35Pt-1Ag-25Ta 2 O 5 -10TaC 2.346 31 98.37 twenty one 52 Example 10 54Fe-25Pt-6Ag-10HfN-5NbC 5.654 17 98.62 148 98 Example 11 37Fe-25Pt-13Ag-5WO 3 -20BN 7.941 7 99.95 179 120 Example 12 40Fe-5Pt-15Ag-5Al 2 O 3 -5TiCN-30C 7.732 4 99.66 182 143 Example 13 46Fe-15Pt-4Ag-15B 2 O 3 -20WC 3.921 25 98.61 83 51 Example 14 70Fe-10Pt-12Ag-8ZrO 2 7.037 10 99.81 167 115 Example 15 60Fe-15Pt-2Ag-20CrN-3VC 3.752 7 98.74 73 125 Comparative Example 1 40Fe-5Pt-25Ag-10Ta 2 O 5 -20C 4.826 72 96.37 140 19 Comparative Example 2 40Fe-30Pt-5Ag-25TiO 2 3.916 65 97.99 74 twenty four Comparative Example 3 30Fe-25Pt-5Ag-8C-32BN 14.918 99 95.92 742 13 Comparative Example 4 49.5Fe-35Pt-0.5Ag-5Al 2 O 3 -10ZrN 11.884 235 95.27 559 1 Comparative Example 5 43Fe-30Pt-17Ag-5B 2 O 3 -5TiC 24.115 209 97.83 931 2 Comparative Example 6 69Fe-3Pt-8Ag-10Fe 2 O 3 -10BN 16.619 462 97.62 813 1 Comparative Example 7 40Fe-45Pt-10Ag-5ZnO 19.451 357 96.43 925 1 Comparative Example 8 45Fe-40Pt-12Ag-3C 22.143 258 96.36 957 1 Comparative Example 9 28Fe - 25Pt - 2Ag - 25Ta2O5-10Si3N4-10Cr3C2 13.527 126 95.10 761 5 Comparative Example 10 25Fe-30Pt-15Ag-20BN-10C 16.215 31 97.31 854 51 Comparative Example 11 44Fe-30Pt-1Ag-25C 12.013 72 97.43 569 20 Comparative Example 12 30Fe-27Pt-3Ag-40BN 4.624 106 98.72 112 11

實驗結果討論Discussion of experimental results

根據各實施例的製作流程並配合表2的結果可知,藉由至少同時採用(1)控制鉑原料與銀原料的添加量範圍、(2)控制鉑原料中的硫含量範圍、(3)預先製作鉑銀預合金原料以及(4)先經過熱處理後再進行燒結等技術手段,使所製得之鐵鉑銀基靶材能同時兼具以下技術特徵:(I)鉑含量大於或等於5 at%且小於或等於40 at%、(II)銀含量大於或等於1 at%且小於或等於15 at%、(III)鐵鉑銀基靶材中的硫含量小於50 ppm以及(IV)金相微結構中的最大銀相面積小於10 μm 2。反觀各比較例並未同時採用前述技術手段(1)至(4),因此比較例1至12之鐵鉑銀基靶材也未能同時兼具前述技術特徵(I)至(IV)。據此,相較於比較例1至12,實施例1至15之鐵鉑銀基靶材不僅具有相對密度大於或等於98%之特性,且在相同的濺鍍條件下所產生的微粒掉落數量皆低於200顆,實施例1至15之鐵鉑銀基靶材出現鏽蝕的時間點也大於或等於48小時;由此可見,本創作所提供之技術手段能同時實現提升鐵鉑銀基靶材的相對密度、降低微粒掉落數量、提升抗氧化能力等有益效果。 According to the production process of each example and the results in Table 2, it can be seen that by at least simultaneously adopting (1) controlling the range of the addition amount of platinum raw materials and silver raw materials, (2) controlling the range of sulfur content in the platinum raw materials, (3) pre- Making platinum-silver pre-alloyed raw materials and (4) first after heat treatment and then carrying out technical means such as sintering, so that the prepared iron-platinum-silver-based target material can simultaneously have the following technical characteristics: (1) platinum content is greater than or equal to 5 at % and less than or equal to 40 at%, (II) silver content greater than or equal to 1 at% and less than or equal to 15 at%, (III) sulfur content in iron-platinum-silver-based targets less than 50 ppm and (IV) metallographic microstructure The maximum silver phase area in the alloy is less than 10 μm 2 . On the other hand, each comparative example does not use the aforementioned technical means (1) to (4) at the same time, so the iron-platinum-silver-based targets of comparative examples 1 to 12 cannot simultaneously have the aforementioned technical features (I) to (IV). Accordingly, compared with Comparative Examples 1 to 12, the iron-platinum-silver-based targets of Examples 1 to 15 not only have the characteristics that the relative density is greater than or equal to 98%, but also produce particles falling under the same sputtering conditions. The numbers are all less than 200, and the time point of corrosion of the iron-platinum-silver-based targets of Examples 1 to 15 is greater than or equal to 48 hours; it can be seen that the technical means provided by this creation can simultaneously improve the iron-platinum-silver-based targets. The relative density of the target material, reducing the number of particles falling, and improving the antioxidant capacity and other beneficial effects.

再進一步參看實施例1以及比較例3的組別,雖然實施例1與比較例3之鐵鉑銀基靶材具有相同組成,然而,比較例3並未控制鐵鉑銀基靶材的金相微結構中的最大銀相面積以及靶材硫含量於本創作所限定之小於10 μm 2以及小於50 ppm的特定範圍中,因此,實施例1不論在相對密度(99.14%)、減少微粒掉落(96顆)或延緩鏽蝕出現(96小時)的結果皆遠優於比較例3 (相對密度為95.92%;微粒掉落數量為742顆;出現鏽蝕時間為13小時)。由此可知,控制鐵鉑銀基靶材的金相微結構中的最大銀相面積以及硫含量於特定範圍中確實有助於提升鐵鉑銀基靶材的相對密度、減少微粒掉落數量以及提高抗氧化能力。 Further referring to the groups of Example 1 and Comparative Example 3, although the iron-platinum-silver-based targets of Example 1 and Comparative Example 3 have the same composition, Comparative Example 3 does not control the metallographic microstructure of the iron-platinum-silver-based target material. The maximum silver phase area and the sulfur content of the target material are in the specific ranges of less than 10 μm 2 and less than 50 ppm defined in this work. Therefore, Example 1 has a relative density (99.14%), reduced particle drop (96 ppm). The results of delaying the appearance of rust (96 hours) were far better than those of Comparative Example 3 (relative density was 95.92%; the number of particles dropped was 742; the corrosion time was 13 hours). It can be seen that controlling the maximum silver phase area and sulfur content in the metallographic microstructure of the iron-platinum-silver-based target within a specific range can indeed help improve the relative density of the iron-platinum-silver-based target, reduce the number of particles falling, and improve the resistance to oxidative capacity.

再進一步參看比較例2以及比較例12的組別,即便比較例2與比較例12之鐵鉑銀基靶材中的鉑含量、銀含量以及金相微結構中的最大銀相面積皆符合本創作所限定之範圍,不過,比較例2及比較例12之鐵鉑銀基靶材中的硫含量(分別為65 ppm以及106 ppm)並未控制於本創作所限定之小於50 ppm的特定範圍中,據此,比較例2及比較例12之鐵鉑銀基靶材的相對密度分別為97.99%與98.72%、微粒掉落數量分別為74顆與112以及出現鏽蝕時間分別為24小時與11小時,由此可知,即便比較例2及比較例12僅有靶材硫含量不符合本創作所限定的情況,比較例2及比較例12之鐵鉑銀基靶材仍然無同時具有相對密度大於或等於98%、微粒掉落數量小於200顆以及出現鏽蝕的時間點大於或等於48小時的功效。Further referring to the groups of Comparative Example 2 and Comparative Example 12, even though the platinum content, silver content and the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based targets of Comparative Example 2 and Comparative Example 12 are all in line with this work. However, the sulfur content (respectively 65 ppm and 106 ppm) in the iron-platinum-silver-based targets of Comparative Example 2 and Comparative Example 12 is not controlled within the specific range of less than 50 ppm defined in this creation, Accordingly, the relative densities of the iron-platinum-silver-based targets of Comparative Example 2 and Comparative Example 12 were 97.99% and 98.72%, respectively, the number of particles dropped was 74 and 112, and the corrosion time was 24 hours and 11 hours, respectively. It can be seen that even if only the sulfur content of the targets in Comparative Example 2 and Comparative Example 12 does not meet the requirements of this work, the iron-platinum-silver-based targets of Comparative Example 2 and Comparative Example 12 still do not have a relative density greater than or equal to 98%, the number of particles dropped is less than 200, and the time point of rusting is greater than or equal to 48 hours.

再進一步參看比較例10的組別,比較例10之鐵鉑銀基靶材中的鉑含量、銀含量以及硫含量皆符合本創作所限定之範圍,然而,比較例10之鐵鉑銀基靶材的金相微結構中的最大銀相面積(16.215 μm 2)顯然高於本創作所限定之小於10 μm 2的特定範圍,故比較例10之鐵鉑銀基靶材所具有的相對密度僅有97.31%,而微粒掉落數量則高達854顆,由此可知,即便比較例10只有最大銀相面積不符合本創作所限定的情況,比較例10之鐵鉑銀基靶材同樣無法兼具有較高相對密度、較低微粒掉落數量以及較佳抗氧化能力的功效。 Further referring to the group of Comparative Example 10, the platinum content, silver content and sulfur content in the iron-platinum-silver-based target of Comparative Example 10 all meet the range defined in this creation. However, the iron-platinum-silver-based target of Comparative Example 10 The maximum silver phase area (16.215 μm 2 ) in the metallographic microstructure of the material is obviously higher than the specific range of less than 10 μm 2 defined in this work, so the relative density of the iron-platinum-silver-based target of Comparative Example 10 is only 97.31 %, and the number of particles dropped is as high as 854. It can be seen that even if only the maximum silver phase area of Comparative Example 10 does not meet the conditions defined in this creation, the iron-platinum-silver-based target of Comparative Example 10 can not have the same performance. Efficacy of high relative density, lower particle drop count and better antioxidant capacity.

此外,再進一步參看比較例1及2的組別,雖然比較例1及2皆採用預先製作鉑銀預合金原料之技術手段,不過,比較例1及2沒有進一步同時控制鉑原料與銀原料的添加量、鉑原料中的硫含量以及採用先經過熱處理再進行燒結之技術手段,因此,比較例1及2之鐵鉑銀基靶材仍然無法同時兼具較高相對密度、較低微粒掉落數量以及較佳抗氧化能力的特性。In addition, further referring to the groups of Comparative Examples 1 and 2, although Comparative Examples 1 and 2 both adopted the technical means of pre-producing platinum-silver pre-alloyed raw materials, Comparative Examples 1 and 2 did not further control the ratio of platinum raw materials and silver raw materials at the same time. The addition amount, the sulfur content in the platinum raw material, and the technical means of first heat treatment and then sintering, therefore, the iron-platinum-silver-based targets of Comparative Examples 1 and 2 still cannot have high relative density and low particle drop at the same time. quantity and properties of better antioxidant capacity.

再進一步參看比較例3至12的組別,比較例3至12皆未採用預先製作鉑銀預合金原料以及先經過熱處理再進行燒結之技術手段,也沒有同時控制鉑原料與銀原料的添加量以及鉑原料中的硫含量,因此,比較例3及12之鐵鉑銀基靶材無法具有較高的相對密度,且也無法同時改善微粒掉落以及容易發生氧化產生鏽蝕的問題。Further referring to the groups of Comparative Examples 3 to 12, none of Comparative Examples 3 to 12 adopted the technical means of pre-producing platinum-silver pre-alloyed raw materials and heat treatment before sintering, and did not control the addition amount of platinum raw materials and silver raw materials at the same time. As well as the sulfur content in the platinum raw material, the iron-platinum-silver-based targets of Comparative Examples 3 and 12 cannot have higher relative densities, and cannot simultaneously improve the problems of particle falling and easy oxidation and rusting.

綜上所述,本創作藉由適當控制鐵鉑銀基靶材之鉑含量、銀含量與硫含量,並同時控制其金相微結構中的最大銀相面積於特定範圍中,進而可同時達成提升鐵鉑銀基靶材的相對密度、減輕鐵鉑銀基靶材在濺鍍過程中微粒掉落於膜層上的問題以及提高鐵鉑銀基靶材的抗氧化能力,據此,本創作提供之鐵鉑銀基靶材不僅能提升濺鍍形成的磁記錄層之膜層品質與良率,還可避免保存不當極易氧化產生鏽蝕的問題,進一步提升其於商業上的價值。To sum up, in this creation, by properly controlling the platinum content, silver content and sulfur content of the iron-platinum-silver-based target, and at the same time controlling the maximum silver phase area in its metallographic microstructure within a specific range, it can simultaneously achieve the improvement of iron. The relative density of the platinum-silver-based target, reducing the problem of particles falling on the film layer of the iron-platinum-silver-based target during the sputtering process, and improving the oxidation resistance of the iron-platinum-silver-based target. The iron-platinum-silver-based target can not only improve the film quality and yield of the magnetic recording layer formed by sputtering, but also avoid the problem of easy oxidation and rust caused by improper storage, and further enhance its commercial value.

無。none.

圖1係實施例1之鐵鉑銀基靶材以掃描式電子顯微鏡放大2000倍之金相圖; 圖2係比較例3之鐵鉑銀基靶材以掃描式電子顯微鏡放大2000倍之金相圖; 圖3A及圖3B分別係實施例1之鐵鉑銀基靶材的外觀照片以及以光學顯微鏡放大100倍的影像圖; 圖4A及圖4B分別係實施例1之鐵鉑銀基靶材經過96小時的抗氧化試驗後的外觀照片以及以光學顯微鏡放大100倍的影像圖; 圖5A及圖5B分別係比較例2之鐵鉑銀基靶材的外觀照片以及以光學顯微鏡放大100倍的影像圖; 圖6A及圖6B分別係比較例2之鐵鉑銀基靶材經過24小時的抗氧化試驗後的外觀照片以及以光學顯微鏡放大100倍的影像圖; 圖7A及圖7B分別係比較例3之鐵鉑銀基靶材的外觀照片以及以光學顯微鏡放大100倍的影像圖; 圖8A及圖8B分別係比較例3之鐵鉑銀基靶材經過13小時的抗氧化試驗後的外觀照片以及以光學顯微鏡放大100倍的影像圖。 1 is a metallographic diagram of the iron-platinum-silver-based target of Example 1 magnified 2000 times by a scanning electron microscope; Figure 2 is a metallographic image of the iron-platinum-silver-based target of Comparative Example 3 magnified by a scanning electron microscope 2000 times; FIG. 3A and FIG. 3B are respectively the appearance photos of the iron-platinum-silver-based target of Example 1 and the image diagrams magnified 100 times by an optical microscope; FIG. 4A and FIG. 4B are respectively the appearance photos of the iron-platinum-silver-based target of Example 1 after 96 hours of anti-oxidation test and the image diagrams magnified 100 times by an optical microscope; 5A and 5B are respectively the appearance photos of the iron-platinum-silver-based target of Comparative Example 2 and the image diagrams magnified 100 times by an optical microscope; FIG. 6A and FIG. 6B are respectively the appearance photos of the iron-platinum-silver-based target of Comparative Example 2 after the 24-hour anti-oxidation test and the image diagrams magnified 100 times by an optical microscope; FIG. 7A and FIG. 7B are respectively the appearance photos of the iron-platinum-silver-based target material of Comparative Example 3 and the image diagrams magnified 100 times by an optical microscope; FIG. 8A and FIG. 8B are respectively an appearance photograph of the iron-platinum-silver-based target of Comparative Example 3 after a 13-hour anti-oxidation test and an image image magnified 100 times by an optical microscope.

無。none.

Claims (11)

一種鐵鉑銀基靶材,其包含鐵、鉑、銀以及非磁性成分;其中,以該鐵鉑銀基靶材整體之原子總數為基準,鉑的含量係大於或等於5原子百分比且小於或等於40原子百分比,銀的含量係大於或等於1原子百分比且小於或等於15原子百分比;該鐵鉑銀基靶材中的硫含量係小於百萬分之50,且該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於10平方微米。An iron-platinum-silver-based target material, comprising iron, platinum, silver and non-magnetic components; wherein, based on the total number of atoms of the iron-platinum-silver-based target material as a whole, the content of platinum is greater than or equal to 5 atomic percent and less than or equal to 40 atomic percent, the silver content is greater than or equal to 1 atomic percent and less than or equal to 15 atomic percent; the sulfur content in the iron-platinum-silver-based target is less than 50 parts per million, and the iron-platinum-silver-based target The largest silver phase area in the metallographic microstructure is less than 10 square microns. 如請求項1所述之鐵鉑銀基靶材,其中,以該鐵鉑銀基靶材整體之原子總數為基準,該非磁性成分的含量係大於或等於5原子百分比且小於或等於40原子百分比。The iron-platinum-silver-based target as claimed in claim 1, wherein, based on the total number of atoms of the iron-platinum-silver-based target as a whole, the content of the non-magnetic component is greater than or equal to 5 atomic percent and less than or equal to 40 atomic percent . 如請求項1所述之鐵鉑銀基靶材,其中,該非磁性成分選自由碳、碳化物、氮化物、氧化物及其組合所組成之群組。The iron-platinum-silver-based target of claim 1, wherein the non-magnetic component is selected from the group consisting of carbon, carbide, nitride, oxide, and combinations thereof. 如請求項1所述之鐵鉑銀基靶材,其中,該非磁性成分包含碳、碳化矽、碳化硼、碳化鈦、碳化鎢、碳化鉭、碳化鉿、碳化鋯、碳化釩、碳化鈮、碳化鉻、氮化硼、氮化鋁、氮化鈦、氮化鉻、氮化鋯、氮化鉭、氮化鉿、氮化矽、氮碳化鈦、氮化鎢、氮化釩、二氧化矽、二氧化鈦、三氧化二鉻、五氧化二鉭、一氧化鈷、三氧化二錳、三氧化二硼、二氧化鉿、一氧化鎂、三氧化二鋁、二氧化鋯、五氧化二鈮、五氧化二釩、三氧化鎢、三氧化二鐵、一氧化鋅或其組合。The iron-platinum-silver-based target according to claim 1, wherein the non-magnetic component comprises carbon, silicon carbide, boron carbide, titanium carbide, tungsten carbide, tantalum carbide, hafnium carbide, zirconium carbide, vanadium carbide, niobium carbide, carbide Chromium, boron nitride, aluminum nitride, titanium nitride, chromium nitride, zirconium nitride, tantalum nitride, hafnium nitride, silicon nitride, titanium carbide nitride, tungsten nitride, vanadium nitride, silicon dioxide, Titanium dioxide, chromium trioxide, tantalum pentoxide, cobalt monoxide, manganese trioxide, boron trioxide, hafnium dioxide, magnesium monoxide, aluminum oxide, zirconium dioxide, niobium pentoxide, pentoxide Vanadium, tungsten trioxide, ferric oxide, zinc monoxide, or combinations thereof. 如請求項1至4中任一項所述之鐵鉑銀基靶材,其中,該鐵鉑銀基靶材之相對密度係大於或等於98%。The iron-platinum-silver-based target according to any one of claims 1 to 4, wherein the relative density of the iron-platinum-silver-based target is greater than or equal to 98%. 一種鐵鉑銀基靶材之製法,其包含以下步驟: 步驟(a):使鉑原料及銀原料形成一鉑銀預合金原料,其中,該鉑原料中的硫含量係小於百萬分之50; 步驟(b):混合該鉑銀預合金原料、鐵原料及非磁性原料,以獲得一原料混合物; 步驟(c):熱處理該原料混合物,以獲得一鐵鉑銀基混合原料;以及 步驟(d):燒結該鐵鉑銀基混合原料,以獲得該鐵鉑銀基靶材; 其中,以該鐵鉑銀基混合原料整體之原子總數為基準,鉑原料的添加量係大於或等於5原子百分比且小於或等於40原子百分比,銀原料的添加量係大於或等於1原子百分比且小於或等於15原子百分比; 其中,該鐵鉑銀基靶材中的硫含量係小於百萬分之50,且該鐵鉑銀基靶材的金相微結構中的最大銀相面積係小於10平方微米。 A method for preparing an iron-platinum-silver-based target, comprising the following steps: Step (a): making the platinum raw material and the silver raw material form a platinum-silver pre-alloyed raw material, wherein the sulfur content in the platinum raw material is less than 50 parts per million; Step (b): mixing the platinum-silver pre-alloyed raw materials, iron raw materials and non-magnetic raw materials to obtain a raw material mixture; Step (c): heat-treating the raw material mixture to obtain an iron-platinum-silver-based mixed raw material; and Step (d): sintering the iron-platinum-silver-based mixed raw material to obtain the iron-platinum-silver-based target; Wherein, based on the total number of atoms of the iron-platinum-silver-based mixed raw material as a whole, the addition amount of platinum raw material is greater than or equal to 5 atomic percent and less than or equal to 40 atomic percent, and the addition amount of silver raw material is greater than or equal to 1 atomic percent and less than or equal to 15 atomic percent; Wherein, the sulfur content in the iron-platinum-silver-based target is less than 50 parts per million, and the maximum silver phase area in the metallographic microstructure of the iron-platinum-silver-based target is less than 10 square microns. 如請求項6所述之製法,其中,以該鐵鉑銀基混合原料整體之原子總數為基準,該非磁性原料的添加量係大於或等於5原子百分比且小於或等於40原子百分比。The production method according to claim 6, wherein, based on the total number of atoms of the entire iron-platinum-silver-based mixed raw material, the addition amount of the non-magnetic raw material is greater than or equal to 5 atomic percent and less than or equal to 40 atomic percent. 如請求項6所述之製法,其中,該非磁性原料選自由碳原料、碳化物原料、氮化物原料、氧化物原料及其組合所組成之群組。The production method according to claim 6, wherein the non-magnetic raw material is selected from the group consisting of carbon raw material, carbide raw material, nitride raw material, oxide raw material and combinations thereof. 如請求項6所述之製法,其中,在該步驟(a)中,鉑原料及銀原料係藉由研磨混粉或霧化噴粉的方式形成該鉑銀預合金原料。The production method according to claim 6, wherein, in the step (a), the platinum raw material and the silver raw material are formed into the platinum-silver pre-alloy raw material by means of grinding and powder mixing or atomization. 如請求項6所述之製法,其中,在該步驟(c)中,熱處理係於氫氣氣氛的環境中進行。The production method according to claim 6, wherein, in the step (c), the heat treatment is performed in a hydrogen atmosphere. 如請求項6所述之製法,其中,在該步驟(d)中,燒結溫度係大於或等於600℃且小於或等於1200℃,燒結壓力係大於或等於350巴且小於或等於1800巴。The production method according to claim 6, wherein, in the step (d), the sintering temperature is greater than or equal to 600°C and less than or equal to 1200°C, and the sintering pressure is greater than or equal to 350 bar and less than or equal to 1800 bar.
TW110126132A 2021-07-15 2021-07-15 Fe-pt-ag based sputtering target and method of preparing the same TWI761264B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110126132A TWI761264B (en) 2021-07-15 2021-07-15 Fe-pt-ag based sputtering target and method of preparing the same
JP2021164310A JP7245303B2 (en) 2021-07-15 2021-10-05 Fe-Pt-Ag target and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110126132A TWI761264B (en) 2021-07-15 2021-07-15 Fe-pt-ag based sputtering target and method of preparing the same

Publications (2)

Publication Number Publication Date
TWI761264B true TWI761264B (en) 2022-04-11
TW202305151A TW202305151A (en) 2023-02-01

Family

ID=82199233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126132A TWI761264B (en) 2021-07-15 2021-07-15 Fe-pt-ag based sputtering target and method of preparing the same

Country Status (2)

Country Link
JP (1) JP7245303B2 (en)
TW (1) TWI761264B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201241218A (en) * 2011-03-30 2012-10-16 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
TW201333237A (en) * 2011-12-22 2013-08-16 Jx Nippon Mining & Metals Corp Fe-Pt-BASED SPUTTERING TARGET IN WHICH C PARTICLES ARE DISPERSED
WO2017150524A1 (en) * 2015-03-04 2017-09-08 Jx金属株式会社 Magnetic film suitable for magnetic recording medium and method for producing same
CN108699679A (en) * 2016-03-07 2018-10-23 田中贵金属工业株式会社 FePt-C base sputtering targets

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200778A (en) * 1989-01-31 1990-08-09 Daido Steel Co Ltd Sputtering target
JP2000144305A (en) 1998-11-12 2000-05-26 Japan Energy Corp High purity iron material for forming thin film and its production
US20060078457A1 (en) 2004-10-12 2006-04-13 Heraeus, Inc. Low oxygen content alloy compositions
JP5041262B2 (en) 2011-01-31 2012-10-03 三菱マテリアル株式会社 Sputtering target for forming a magnetic recording medium film and method for producing the same
JP5041261B2 (en) 2011-01-31 2012-10-03 三菱マテリアル株式会社 Sputtering target for forming a magnetic recording medium film and method for producing the same
CN103717781B (en) 2011-09-26 2016-02-24 吉坤日矿日石金属株式会社 Fe-Pt-C type sputtering target
JP2014034730A (en) 2012-08-10 2014-02-24 Mitsui Mining & Smelting Co Ltd Sintered body and sputtering target
MY174738A (en) 2013-04-15 2020-05-12 Jx Nippon Mining & Metals Corp Sputtering target
JP2016160530A (en) 2015-03-05 2016-09-05 光洋應用材料科技股▲分▼有限公司 Magnetic alloy sputtering target and recording layer for magnetic recording media

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201241218A (en) * 2011-03-30 2012-10-16 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording film
TW201333237A (en) * 2011-12-22 2013-08-16 Jx Nippon Mining & Metals Corp Fe-Pt-BASED SPUTTERING TARGET IN WHICH C PARTICLES ARE DISPERSED
WO2017150524A1 (en) * 2015-03-04 2017-09-08 Jx金属株式会社 Magnetic film suitable for magnetic recording medium and method for producing same
CN108699679A (en) * 2016-03-07 2018-10-23 田中贵金属工业株式会社 FePt-C base sputtering targets

Also Published As

Publication number Publication date
JP2023013901A (en) 2023-01-26
TW202305151A (en) 2023-02-01
JP7245303B2 (en) 2023-03-23

Similar Documents

Publication Publication Date Title
CN104411862B (en) Namagnetic substance decentralized Fe Pt based sputtering targets
JP4175829B2 (en) Sputtering target for recording medium and magnetic recording medium
CN103459656B (en) Sputtering target for magnetic recording film
JP6526837B2 (en) Ferromagnetic sputtering target
US9181617B2 (en) Sputtering target of ferromagnetic material with low generation of particles
CN104662606B (en) Fe-Pt base magnetic material sintered bodies
CN108138313B (en) Non-magnetic material dispersing type Fe-Pt base sputtering target
JP3973857B2 (en) Manufacturing method of manganese alloy sputtering target
TWI761264B (en) Fe-pt-ag based sputtering target and method of preparing the same
TWI301157B (en)
TWI593810B (en) Sputtering target
CN104126026A (en) Ferromagnetic material sputtering target containing chrome oxide
TWI752655B (en) Fe-pt based sputtering target and method of preparing the same
TWI663264B (en) Rure-containing sputtering target, rure-containing membrane, and method of preparing the same
CN104955981B (en) Magnetic recording film sputtering target and the carbon raw material for manufacturing the sputtering target
TWI727334B (en) Sputtering target and powder used for manufacturing sputtering target
JP2005097657A (en) Sputtering target for forming magnetic layer having reduced production of particle
JP6876115B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
JPH06248445A (en) Sputtering target and magnetic thin film and thin-film magnetic head formed by using the same
TWI834072B (en) Ru-al alloy target and method of preparing the same
TW202411444A (en) Fe-pt based sputtering target and method of preparing the same
TWI716166B (en) Fe-co-based alloy target and method for producing the same
TW202317790A (en) Ru-al alloy target and method of preparing the same
JP2023148386A (en) FeCo-BASED ALLOY FOR SOFT MAGNETIC LAYER OF MAGNETIC RECORDING MEDIUM
CN116134002A (en) Sputtering target, method for producing the same, and method for producing magnetic recording medium