TWI696290B - 半導體元件、電子元件及電子元件端子結構 - Google Patents

半導體元件、電子元件及電子元件端子結構 Download PDF

Info

Publication number
TWI696290B
TWI696290B TW104139045A TW104139045A TWI696290B TW I696290 B TWI696290 B TW I696290B TW 104139045 A TW104139045 A TW 104139045A TW 104139045 A TW104139045 A TW 104139045A TW I696290 B TWI696290 B TW I696290B
Authority
TW
Taiwan
Prior art keywords
semiconductor material
alloy
semiconductor
composition
channel region
Prior art date
Application number
TW104139045A
Other languages
English (en)
Other versions
TW201631770A (zh
Inventor
豪爾赫 A. 奇特爾
玻那 喬斯 哦拉都比
羅伯特 克里斯多弗 保文
麥克 S. 羅德爾
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/942,193 external-priority patent/US9917158B2/en
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201631770A publication Critical patent/TW201631770A/zh
Application granted granted Critical
Publication of TWI696290B publication Critical patent/TWI696290B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本發明提供半導體元件、電子元件及電子元件端子結構, 其中半導體元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述元件的運作(接通狀態)期間所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包含半導體材料合金,所述半導體材料合金包含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移。

Description

半導體元件、電子元件及電子元件端子結構 【相關申請案的交叉參考】
本申請案有關於並主張於2014年11月26日在美國專利商標局(USPTO)提出申請的、標題為「使用異質接面來達成低接觸電阻的結構及方法(Structure and method to achieve low contact resistance using heterojunctions)」的美國臨時專利申請案第62/085,092號的優先權,且為於2014年3月26日在USPTO提出申請的、標題為「包含高遷移率通道材料以及在凹陷源極/汲極區中具有階變組成的材料的鰭式場效電晶體元件及形成所述元件的方法(FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME)」的美國專利申請案第14/226,518號的部分延續申請案,所述美國專利申請案主張於2013年7月30日在USPTO提出申請的、標題為「低總寄生電阻的具有凹陷且階變的源極及汲極材料的鰭式場效電晶體(FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE)」的美國 臨時專利申請案第61/859,932號的優先權,上述專利申請案的揭露內容全文併入本案供參考。
本發明大體而言是有關於積體電路元件領域,且更具體而言是有關於使用被配置成作為半導體運作的材料的積體電路元件。
隨著金屬氧化物半導體(metal oxide semiconductor,MOS)元件的尺寸持續縮減,寄生電阻可能會成為越來越突出的問題,其可使得相較於之前的節點,在每一新節點處的總電阻的百分比更高,且可成為影響此等元件的效能的因素。此外,被挑選用於例如MOS元件的通道的特定材料對於低電阻率觸點而言可能並非總是充足的或相容的。
例如在美國專利公開第2006/0202266號及第2009/0166742號中進一步論述寄生電阻,所述美國專利公開的揭露內容全文皆併入本案供參考。
根據本發明的實施例,為了低接觸電阻,可提供包含異質接面的元件接觸結構。依據該些實施例,一種半導體元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包含半導體材料合金,所述半導體材料合 金包含第二半導體材料,且至少一個異質接面位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移。
在根據本發明的某些實施例中,所述半導體材料合金可包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,即,不可能藉由使半導體材料合金自所述第一半導體材料開始連續階變而獲得所述第三半導體材料。
在根據本發明的某些實施例中,所述異質接面的所述能帶邊緣偏移可為約0.0電子伏特。
在根據本發明的某些實施例中,所述異質接面的所述能帶邊緣偏移可為小於0.2電子伏特,且所述異質接面可被摻雜有與所述多數載子的傳導性對應的摻雜劑類型。
在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成包含可在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第二半導體材料及貧乏濃度的所述第三半導體材料、並在與所述金屬觸點的界面處進展至貧乏濃度的所述第二半導體材料及富集濃度的所述第三半導體材料。
在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成可由S2xS31-x提供,其中S3是所述第三半導體材料,且S2是所述第二半導體材料。在某些實施例中,在與所述金 屬觸點的所述界面處x=0,在與所述第一半導體材料的所述界面處x=1。
在根據本發明的某些實施例中,所述半導體材料合金的所述階變組成中的遞增可被配置成防止所述階變組成中鄰接的階之間的能帶偏移大於約0.2電子伏特。
在根據本發明的某些實施例中,一種電子元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述電子元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包含材料合金,所述材料合金包含至少一種材料組分且可不含所述第一半導體材料的任一組分,以使所述材料合金在所述通道區和與所述金屬觸點的界面之間的組成階變避免在所述組成階變的遞增之間以及在其中的任一異質接面處發生能帶邊緣偏移的驟然變化。
在根據本發明的某些實施例中,所述第一半導體材料具有第一晶格結構,且所述材料合金可具有不同於所述第一晶格結構的第二晶格結構,以形成對於多數載子而言,具有小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面。
在某些實施例中,半導體元件可包括:通道區,具有第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;以及金屬觸點。源極/汲極區可包括相鄰於含有半導體材料合金的所述通道區的第一部分,所述半導體材料合金包含第二半導體材料以及所述第二半導體材料 與第三半導體材料的階變組成。源極/汲極區可包括相鄰於含有第四半導體材料的所述金屬觸點的另一部分,其中對於所述多數載子而言,所述源極/汲極的所述兩個部分之間的界面為具有小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面,且被摻雜有與所述多數載子對應的摻雜劑類型。在該些實施例中的某些中,材料可被挑選成使得在相鄰於所述通道的源極/汲極的部分與通道材料之間不形成異質接面。舉例而言,在某些實施例中,半導體材料合金被挑選成使得所述半導體材料合金可在與所述通道的界面處被階變為實質上第一半導體材料。在其他實施例中,可在半導體合金與第一半導體材料的界面處呈現對於所述多數載子而言,具有小於或等於約0.2電子伏特的能帶邊緣偏移、且摻雜有與所述多數載子對應的摻雜劑類型的第二異質接面。
在根據本發明的某些實施例中,一種電子元件端子結構可包括:金屬觸點;以及階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且在遠離所述金屬觸點處大約完全為S1,即x=1,且其中x=0與x=1之間的所述階變組成層的階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特。第三材料S3可在遠離所述金屬觸點、x=1的位置處接觸所述階變組成層,S3被選擇成與S1形成等於或小於約0.2電子伏特的異質接面,且其 中S2可被選擇成對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。
在根據本發明的某些實施例中,一種電子元件端子結構可包括:金屬觸點;以及階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的所述階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且所述階變組成層的所述階變組成在遠離所述金屬觸點處大約完全為S1,即x=1,且其中x=0與x=1之間的所述階變組成層的階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特。第三材料S3可被定位成將所述金屬觸點與所述階變組成層分離開,且可在x=0的位置處相鄰於所述階變組成層,S3被選擇成與S2形成等於或小於約0.2電子伏特的異質接面並對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。
100:通道區
101:金屬觸點
102:界面
105:金屬觸點界面部分
106:半導體材料合金
107:源極/汲極區
CBE:傳導帶邊緣
S1:第一材料/第一半導體材料
S2:第二材料/第二半導體材料
S2xS31-x:半導體材料合金
S3:第三材料/第三半導體材料
S4:第四半導體材料
S5:第五半導體材料
VBE:價帶邊緣
圖1為在根據本發明的某些實施例中,與相鄰源極/汲極區的通道區的剖面圖,所述源極/汲極區包含半導體材料合金,所述半導體材料合金具有在所述通道區與位於所述源極/汲極區的上表面處的金屬觸點之間平滑地階變組成。
圖2及圖3為在根據本發明的某些實施例中的替代通道區以 及相關聯的源極/汲極區幾何結構的剖面圖,所述源極/汲極區幾何結構各自包含在所述通道區與位於所述源極/汲極區的上表面處的金屬觸點之間平滑地發生階變的半導體材料合金。
圖4為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的線性組成階變曲線的示意圖。
圖5為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的非線性組成階變曲線的示意圖。
圖6為在根據本發明的某些實施例中,半導體材料合金在通道區材料與金屬觸點之間的階梯式組成階變曲線的示意圖。
圖7為在根據本發明的某些實施例中,半導體材料合金在通道區材料與相鄰於金屬觸點的界面材料之間的組成階變曲線的示意圖。
圖8為在根據本發明的某些實施例中,第一及第二半導體材料合金在通道區材料與金屬觸點之間的組成階變曲線的示意圖。
以下參照附圖來闡述示例性實施例。在不背離此揭露內容的精神及教示內容的條件下,可作出諸多不同形式及實施例,因此本發明不應被視為僅限於本文中所述的示例性實施例。更確切而言,提供該些示例性實施例是為了使此揭露內容透徹及完整,並向熟習此項技術者傳達本發明的範圍。在圖式中,為清晰起見,可誇大各層及區的大小及相對大小。通篇中相同的參考編號指代相同的元件。
本文中,參照剖面圖闡述發明概念的示例性實施例,所述剖面圖為理想化實施例及示例性實施例的中間結構的示意圖。因此,可預期會因例如製造技術及/或容差而偏離圖示形狀。因此,發明概念的示例性實施例不應被視為僅限於本文中所說明的特定形狀,而是包括由例如製造而引起的形狀偏差。
除非另外定義,否則本文中所用的全部用語(包括技術及科學用語)的意義皆與本發明所屬技術領域中的通常知識者所通常理解的意義相同。更應理解,用語(例如在常用字典中所定義的用語)應被解釋為具有與其在相關技術背景中的意義一致的意義,且除非本文中進行明確定義,否則不應將其解釋為具有理想化或過於正式的意義。
本文中所用術語僅用於闡述特定實施例,而並非旨在限制所述實施例。除非上下文中清楚地另外指明,否則本文中所用的單數形式「一」及「所述」旨在亦包含複數形式。更應理解,當在本說明書中使用用語「包括」及/或「包含」時,是用於指明所述特徵、整數、步驟、操作、元件、及/或組件的存在,但不排除一或多個其他特徵、整數、步驟、操作、元件、組件及/或其群組的存在或添加。
應理解,當稱一元件「耦合」至、「連接」至、「因應」於另一元件或「位於」另一元件「上」時,所述元件可直接耦合至、連接至、因應於所述另一元件,或直接位於所述另一元件上,或亦可存在中間元件。相反,當稱一元件「直接耦合」至、「直接 連接」至、「直接因應」於、或「直接位於」另一元件「上」時,則不存在中間元件。本文中所用的用語「及/或」包括相關列出項中的一或多個項的任意及所有組合。
應理解,儘管本文中可能使用用語第一、第二等來闡述各種元件,但該些元件不應受限於該些用語。該些用語僅用於區分各個元件。因此,在不背離本發明實施例的教示內容的條件下,第一元件可被稱為第二元件。
在本文中,為便於說明,可使用空間相對關係用語,例如「在…之下」、「在…下面」、「下方的」、「在…之上」、「上方的」等來闡述圖中所說明的一個元件或特徵與另一(其他)元件或特徵的關係。應理解,所述空間相對關係用語旨在除圖中所繪示取向以外亦包括所述元件在使用或操作中的不同取向。舉例而言,若圖中的所述元件被翻轉,則被描述為在其他元件或特徵「下面」或「之下」的元件此時將被取向為在其他元件或特徵「之上」。因此,示例性用語「在…下面」可既包含上方亦包含下方的取向。所述元件可具有其他取向(旋轉90度或其他取向),且因此本文中所用的空間相對關係用語可相應地進行解釋。
應理解,儘管本文中所述的諸多實施例是有關於電晶體中的半導體材料,但可以其他類型的材料來利用本發明,所述其他類型的材料可配置在電子元件中以作為半導體材料(例如,半金屬(semi-metal)材料、退化態(degenerate)半導體材料、及其組合)運作。
此外,應理解,儘管本文中所述的諸多實施例繪示鰭式場效電晶體(fin field-effect transistor,finFET)結構作為通道區,但可以其他類型的電晶體結構(例如,平面電晶體、奈米線電晶體、金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor,MOSFET)等)來利用本發明。
應理解,本文中所使用的與特定材料相關聯的用語「能帶邊緣」,根據在元件(即,pMOS元件對nMOS元件)的運作(接通狀態)期間所使用的電荷載子的導電類型,而指所提及材料的傳導帶邊緣或價帶邊緣。因此,在未指明元件的類型的情況下,可藉由參照「相關載子」而使用用語「能帶邊緣」。對於pMOS元件,所述相關載子為電洞,且能帶邊緣是指價帶邊緣。對於nMOS元件,所述相關載子為電子,且能帶邊緣是指傳導帶邊緣。
應理解,本文中所使用的用語「低接觸電阻率」或類似用語是指約為1×10-8歐姆-平方釐米(ohm-cm2)或小於1×10-8歐姆-平方釐米的界面接觸電阻率值。在某些實施例中,其可指約為1×10-7歐姆-平方釐米或小於1×10-7歐姆-平方釐米的接觸電阻率值。應理解,本文中針對與半導體材料接觸的金屬所使用的用語「低肖特基位障高度(Schottky barrier height,SBH)」或「低位障」包括約0.2電子伏特或小於0.2電子伏特的值。應理解,本文中所使用的用語「小」(或類似用語)在被用於指相關載子在兩種不同材料之間的異質接面處的能帶邊緣之間的能帶偏移時,包括約0.2電子伏特或小於0.2電子伏特的值。應理解,本文中所使用 的用語「小」(或類似用語)在被用於指藉由材料的組成階變中的遞增或階梯而形成的能帶偏移時,包括約0.2電子伏特或小於0.2電子伏特、較佳地約0.1電子伏特或小於0.1電子伏特的值。
應理解,本文中所使用的形式表達式(例如,S2xS31-x)是指兩種材料(S2及S3)以相對組成形成合金以使得每x單位的S2對應每1-x單位的S3,其中指數x可在0與1之間變化。合金S2xS31-x可包含在區(例如,源極/汲極區)中,且合金的組成物(由參數x表示)可隨著在所述區中的位置而變化。可使用用語「貧乏」或「富集」來指特定材料的比例。舉例而言,S2富集的S2xS31-x合金為x接近於1的S2xS31-x合金。舉例而言,S2貧乏的S2xS31-x合金為x接近於0的S2xS31-x合金。
本文中所使用的用語「半導體材料」可指僅包含單種元素的半導體材料,或指包含多於一種元素的半導體材料化合物。本文中所使用的用語「半導體材料合金」是指包含至少兩種不同元素的半導體材料。
如由本發明的發明者所理解,在根據本發明的某些實施例中,對於元件而言,可藉由在通道區與金屬觸點之間形成具有平滑地階變組成的半導體材料合金(以下簡稱為半導體合金或合金)(S2與S3)而向通道區中的第一半導體材料S1(以下簡稱為半導體材料S1)提供低電阻率接觸。舉例而言,半導體合金中的組成階變可為如此以使得S2及S3在所述合金中的貢獻隨著在源極/汲極區中的位置而逐漸變化。舉例而言,合金的組成階變可被 設置成使得半導體合金在靠近通道區處基本上為S2,而半導體合金在遠離通道區的金屬觸點處基本上為S3。
此外,包含於合金(S2與S3)中的半導體材料可各自被選擇成相對於通道中的半導體材料(S1)具有特定關係。舉例而言,相較於第三半導體材料S3(以下簡稱為半導體材料S3)的能帶邊緣,第二半導體材料S2(以下簡稱為半導體材料S2)可被選擇成具有相對接近於半導體材料S1的能帶邊緣的能帶邊緣(即,低能帶邊緣偏移)。然而,半導體材料S3可被選擇成具有相對於半導體材料S1相對大的能帶邊緣偏移。此外,對於相關載子而言,源極/汲極區中的半導體合金(S2與S3)的組成階變應為平滑的,以避免在源極/汲極區中的能帶邊緣中的任何驟然變化。
因此,如由本發明的發明者所理解,通道區中的半導體材料S1及半導體材料S3被選擇成使得其中的一者(例如,S3)無法藉由使用連續的組成階變而自另一者(例如,S1)獲得。換言之,半導體材料S2可被用作較接近於S1的能帶邊緣但亦可與S3一起存在於合金中的中間材料。
因此,半導體材料S1可被選擇成顯著不同於半導體材料S2但仍具有相對低的能帶邊緣偏移,且此外,半導體合金的組成階變可被用於隨著階變朝向遠離通道區的金屬觸點進展而逐漸增大S3的貢獻並減小S2的貢獻。更應理解,存在於金屬觸點處的半導體材料S3可被選擇成對相關載子提供相對低的肖特基位障高度。
如由本發明的發明者所理解,參考文獻(詹妮.胡(Jenny Hu)、H.-S.菲利普.王(H.-S.Philip Wong)及克裏希納.薩拉斯沃特(Krishna Saraswat)(2011)於材料研究學會公告(Materials Research Society Bulletin,MRS Bulletin)第36期第112-120頁發表的「用於高遷移率通道材料的新穎接觸結構(Novel contact structures for high mobility channel materials)」(可於doi:10.1557/mrs.2011.5在線獲得並併入本文供參考))的圖3以及參考文獻(長穀川秀城(Hideki Hasgawa)及赤澤政道(Masamichi Akazawa)於韓國物理社會雜誌(Journal of the Korean Physical Society)2009年9月第3期第55卷第1167-1179頁發表的「電流傳輸、費米能階釘紮、及III族氮化物肖特基位障的瞬時行為(Current transport,Fermi Level Pinning,and Transient Behavior of Group-III Nitride Schottky Barriers)」(併入本文供參考))的圖4說明可在根據本發明的元件中使用的不同半導體材料/化合物/合金的各別能帶對準(band alignment)。根據上述材料,某些半導體材料在與金屬接觸時呈現費米能階釘紮(且在某些情形中呈現強烈的費米能階釘紮);在此種情形中,在金屬半導體界面處形成的肖特基位障適度依賴或不依賴金屬的功函數。費米能階釘紮位置通常接近電荷中性位準。
仍參照胡的圖3及長穀川的圖4,表示了若干半導體材料的電荷中性位準。在某些實施例中,被選擇用來形成金屬觸點半導體材料在接近相關載子能帶邊緣的位置處具有費米能階釘紮或 強烈的費米能階釘紮,以在接觸金屬時向相關載子提供低肖特基位障高度。
更應理解,銦鎵銻(InGaSb)合金的釘紮可接近價帶邊緣。更應理解,對於銦鎵砷(InGaAs)、銦鎵氮(InGaN)及鋁鎵氮(AlGaN)合金,電荷中性位準的絕對位置可隨組成物而略有變化。在某些實施例中,砷化銦(InAs)、銦(In)富集的銦-鎵-砷(In-Ga-As)合金、氮化銦(InN)、及銦(In)富集的銦-鎵-氮(In-Ga-N)合金可適用於在nMOS元件中用於至金屬觸點的合金界面的半導體材料。由於其小的間隙,銻化銦(InSb)可適用於nMOS元件及pMOS元件。對於pMOS元件而言,鍺(Ge)、銻化銦(InSb)、銻化鎵(GaSb)及銦-鎵-銻(In-Ga-Sb)合金可適用作用於至金屬觸點的合金界面的半導體材料。
如由本發明的發明者所理解,三帝普.蒂瓦裏(Sandip Tiwari)及大衛.J.弗蘭克(David J.Frank)於應用物理學快報(Appl.Phys.Lett.)60,630(1992)發表的「對III-V合金系統中的能帶不連續性及位障高度的經驗擬合(Empirical fit to band discontinuities and barrier heights in III-V alloy systems)」(可於dx.doi.org/10.1063/1.06575在線獲得並併入本文供參考)的圖1為說明在根據本發明的某些實施例中,不同半導體材料的晶格常數及能帶邊緣位置的曲線圖。因此,蒂瓦裏的圖1可用於選擇恰當的材料組合以用於元件的通道區及源極汲極區。如更由本發明的發明者所理解,由赫蘇斯A.戴爾.阿拉莫(Jesús A.del Alamo)於 自然雜誌(Nature)479,317-323(2011年11月17日)發表的「具有III-V化合物半導體的奈米級電子元件(Nanometre-scale electronics with III-V compound semiconductors)」(可於doi:10.1038/nature10677在線獲得並併入本文供參考)的圖1為說明若干半導體材料的遷移率的曲線圖,且可用以選擇恰當的通道材料。
在源極/汲極區中的半導體材料合金的組成階變可基於被選擇用於與金屬觸點的界面的半導體材料以及將被用於通道區中的半導體材料而設置。舉例而言,在根據本發明的某些實施例中,高鍺的矽鍺合金(high Ge SiGe alloy)或用於nMOS或pMOS的鍺(Ge)、用於nMOS或pMOS的矽(Si)、用於pMOS的矽鍺(SiGe)、用於nMOS的銦-鎵-砷(In-Ga-As)合金、用於nMOS的銦-砷(In-As)合金、或用於nMOS或pMOS的銦-鎵-銻(In-Ga-Sb)合金等可用於通道區中的半導體材料。應理解,上述參數(即,用作至金屬觸點的界面的半導體材料、以及用於通道區中的半導體材料)中的每一者可被選擇成滿足以下兩個條件:(1)在通道區中使用的半導體材料無法平滑地在組成上階變以達到在至金屬觸點的界面處使用的半導體材料;以及(2)在通道區中使用的半導體材料與被選擇成位於至金屬觸點的界面處的半導體材料之間的能帶邊緣偏移(對於相關載子而言)是顯著的(即,大於約0.2電子伏特)。
鑒於以上所述,在通道區與金屬觸點之間,可使用源極/汲極區中的半導體合金的平滑組成階變而提供低電阻率接觸。在 任意一種情形中,合金中所包含的半導體材料被選擇成在源極/汲極區中有效地減少對載子傳輸的位障,而無論例如靠近金屬觸點或靠近通道區形成的異質接面存在與否。在任意一種情形中,在異質接面處提供的能帶邊緣偏移對於相關載子而言應小於0.2電子伏特。
應理解,在源極/汲極區中使用所選擇材料的外延生長(epitaxial-growth),可在外延生長過程期間使用所需的組成表達式(例如S2xS31-x)以執行平滑地階變的半導體材料合金的形成。此外,可使用在以下申請案中闡述的方法來形成平滑地階變的半導體材料合金:於2014年3月26日在USPTO提出申請的、標題為「包含高遷移率通道材料以及在凹陷源極/汲極區中具有階變組成的材料的鰭式場效電晶體元件及形成所述元件的方法(FINFET DEVICES INCLUDING HIGH MOBILITY CHANNEL MATERIALS WITH MATERIALS OF GRADED COMPOSITION IN RECESSED SOURCE/DRAIN REGIONS AND METHODS OF FORMING THE SAME)」的美國專利申請案第14/226,518號、以及於2013年7月30日在USPTO提出申請的、標題為「低總寄生電阻的具有凹陷且階變的源極及汲極材料的鰭式場效電晶體(FINFET WITH RECESSED AND GRADED SOURCE AND DRAIN MATERIAL FOR LOW TOTAL PARASITIC RESISTANCE)」的美國臨時專利申請案第61/859,932號。
圖1為具有通道區100(以下簡稱為區100)的半導體元 件的剖面圖,通道區100包括通道並包含在源極/汲極區107中與半導體材料合金106相鄰的第一半導體材料(S1)。在根據本發明的某些實施例中,半導體材料合金106亦包括至金屬觸點101的金屬觸點界面部分105。儘管圖1及相關聯的說明,指涉半導體材料的使用,但根據本發明亦可使用其他類型的材料。舉例而言,可使用任何被配置成作為半導體運作的材料,例如半金屬或退化態半導體。進一步而言,圖2及圖3示出在根據本發明的某些實施例中,區100及源極/汲極區107的替代幾何結構。因此,圖1所示元件的幾何結構是示例性的,且本發明並非僅限於此。
仍參照圖1,半導體材料合金106在源極/汲極區107中,例如自與含有通道的區100的界面102至金屬觸點界面部分105,在組成上為階變的。換言之,半導體材料合金106的組成隨著在源極/汲極區107中的位置而變化。在某些實施例中,半導體材料合金106的組成隨著在源極/汲極區107中的位置而變化,以提供與半導體材料S1的異質接面以及在金屬觸點界面部分105與金屬觸點101之間提供相對低的肖特基位障高度。具體而言,半導體材料合金106可外延生長以使得半導體材料S2基本上在界面102處被提供且隨著朝向金屬觸點界面部分105移動而逐漸減少,而半導體材料S3隨著半導體材料S2的減少而逐漸增加,以使得當半導體材料合金106的階變達到金屬觸點界面部分105時,半導體材料合金106基本上為半導體材料S3。
應理解,在某些實施例中,區100中的半導體材料S1在 界面102處與第二半導體材料S2形成異質接面。因此,半導體材料S1可實質上不同於半導體材料S2,且自S2至S1的能帶邊緣偏移可相對小(例如,小於或等於約0.2電子伏特)。亦應理解,在其中存在小的能帶偏移的實施例中,在所述異質接面處(在含有通道的區100中的半導體材料S1與半導體材料合金106中的半導體材料S2之間)可利用摻雜以使得在元件的運作期間,在異質接面界面處不會發生對載子流的顯著位障。
應理解,圖4至圖8中所示的能帶對準圖表示本文中所述半導體材料(例如S1、S2、S3等)的材料性質,而非元件在特定運作模式中的特定能帶圖。在圖4及圖6中,舉例而言,CBE指代傳導帶邊緣,且所述圖對應於針對nMOS元件說明的可能實施例。應理解,可對pMOS元件應用類似的機制(在此種情形中,所說明的能帶邊緣將對應於價帶邊緣)。在圖5、圖7及圖8中,VBE指代價帶邊緣,且所述圖對應於針對pMOS元件說明的可能實施例。應理解,可對nMOS元件應用類似的機制(在此種情形中,所說明的能帶邊緣將對應於傳導帶邊緣)。在本發明的範圍內,可具有諸多其他圖。
圖4為源極/汲極區107中的半導體材料合金106的線性組成階變曲線的示意圖。應理解,圖4所示的示意圖可應用至其中圖1所示的元件為nMOS元件的實施例中。參照圖1及圖4,x=1的位置是指通道區100與源極/汲極區107之間的界面102,在此處半導體材料合金106包含半導體材料S2但不包含半導體材料 S3。在某些實施例中,在界面102處,半導體材料合金106包含半導體材料S2以及少量的S3(即,S2富集而S3貧乏)。
如圖4所示,在半導體材料合金106內半導體材料S2與半導體材料S3的組成可隨著在源極/汲極區107中的位置而線性變化。應理解,所有半導體材料S1至S3以及由以上所示關係式所表達的所有中間材料在對元件的處理及應用中所使用的熱預算(thermal budget)內是穩定的或介穩定的(metastable)。進一步而言,半導體材料合金106可在半導體材料合金106的外延生長期間同時被摻雜。
進一步而言,存在於至金屬觸點101的金屬觸點界面部分105處的半導體材料S3被選擇成在金屬觸點101處對相關載子提供相對小的肖特基位障高度(例如,等於或小於約0.2電子伏特)。應理解,半導體材料合金106內的半導體材料的組成階變在整個源極/汲極區107中提供組成上相對小的變化。此外,在根據本發明的某些實施例中,對整個結構施加充足的摻雜以使得屏蔽(screening)可有效地減少對相關載子傳輸的任何位障,否則所述對相關載子傳輸的位障可因組成階變所引起的能帶邊緣位置的變化而升起。
應理解,上述所提及利用平滑組成階變以屏蔽對載子傳輸的位障,可藉由在源極/汲極區中將能帶邊緣中的變化保持至某一距離內某一特定水準而被提供。在根據本發明的某些實施例中,對於約1×1018cm-3的摻雜,平滑組成階變是為如此以使得對 於相關載子而言,能帶邊緣的位置在約6奈米或大於6奈米內的變化約0.1電子伏特。在某些實施例中,對於約1×1019cm-3的摻雜,平滑組成階變是為如此以使得對於相關載子而言,能帶邊緣的位置在約2奈米或大於2奈米內的變化約0.1電子伏特。在某些實施例中,對於約1×1020cm-3的摻雜,平滑組成階變是為如此以使得對於相關載子而言,能帶邊緣的位置在約0.6奈米或大於0.6奈米內的變化約0.1電子伏特。
更應理解,當摻雜被提供以使得經由組成階變而有效地屏蔽對載子傳輸的位障時,可在特定距離內在具有特定能帶邊緣變化的源極/汲極區中使用某些摻雜水準。
參照圖1,在根據本發明的某些實施例中,應理解,對金屬觸點介面部分105的摻雜可用於提供本文中所需的低金屬觸點界面電阻。舉例而言,對於具有極低肖特基位障高度的金屬觸點以及對於金屬觸點介面部分105中具有小的穿隧有效質量(tunneling effective mass)的材料而言,1×1019cm-3的若干倍的摻雜濃度可為足夠的。在某些實施例中,可在金屬觸點介面部分105中使用1×1020cm-3或高於1×1020cm-3的摻雜濃度。在大多數情形中,即使對小的肖特基位障高度而言,在金屬觸點介面部分105中較高的摻雜濃度可能導致較低的接觸電阻率,例如在與砷化銦(InAs)接觸的情形中。
因此,在某些實施例中,實際可達成的最高摻雜濃度可用於金屬觸點介面部分105中。
類似地,在具有小的能帶邊緣偏移的異質接面的情形中可使用高摻雜,其中較高的摻雜可提供較低的異質接面界面電阻。在某些實施例中,可使用大於1×1019cm-3的摻雜水準。在某些實施例中,可使用約1×1020cm-3或高於1×1020cm-3的摻雜水準。
在其中例如圖4所示的設置為nMOS元件的某些實施例中:S1可為矽(Si)、矽鍺(SiGe)合金或鍺(Ge);S2可為砷化鎵(GaAs)或銦-鎵-氮(In-Ga-N)或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金,其中銦-鎵-氮(In-Ga-N)合金或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金的組成物被挑選成使得傳導帶邊緣位於S1的傳導帶邊緣的約0.2電子伏特或小於0.2電子伏特內;以及S3可為砷化銦(InAs)、氮化銦(InN)或銦-砷-氮(In-As-N)合金或銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金(在銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金的情形中,較佳地具有銦(In)富集的組成物)。在某些實施例中,若S2為砷化鎵(GaAs),則S3實質上為砷化銦(InAs)。在某些實施例中,S3被摻雜成大於1×1019cm-3。在某些實施例中,S3的摻雜高達約1×1020cm-3或高於1×1020cm-3。在某些實施例中,金屬觸點101由耐火金屬或過渡金屬形成,因此金屬觸點101為經反應的過渡金屬-S3合金。合金的組成階變可如圖4所示為線性的,或如圖5所表示為非線性的,亦或如圖6所表示為階梯式的。
被選擇用來在金屬觸點界面部分105處接觸半導體材料 合金106的金屬(即,半導體材料S3)被選擇成為多數載子提供低的肖特基位障高度(例如,等於或小於約0.2電子伏特)。在根據本發明的某些實施例中,金屬觸點101可為經反應的金屬觸點。在根據本發明的某些實施例中,執行包含半導體材料S3的金屬觸點界面部分105以提供低的界面接觸電阻率。
應理解,圖5及圖6示出半導體材料合金106之組成階變的替代曲線。具體而言,圖5示出半導體材料合金106的非線性組成階變曲線,而圖6示出半導體材料合金106的階梯式組成階變曲線。應理解,圖4及圖6所示的示意圖意指nMOS元件。亦應理解,圖5、圖7及圖8所示的示意圖意指pMOS元件。然而,更應理解,以上參照nMOS闡述的相同原理可應用至pMOS元件,反之亦然。
在其中例如圖1所示的設置為nM0s元件的某些實施例中:S1可為矽(Si)、矽鍺(SiGe)合金或鍺(Ge);S2可為砷化鎵(GaAs)或銦-鎵-氮(In-Ga-N)或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金,其中銦-鎵-氮(In-Ga-N)合金或銦-鎵-砷-氮(In-Ga-As-N)合金或銦-鋁-鎵-砷(In-Al-Ga-As)合金或鋁-鎵-砷(Al-Ga-As)合金的組成物被挑選成使得位於S1的傳導帶邊緣的CBE約為0.2電子伏特或小於0.2電子伏特內;以及S3可為砷化銦(InAs)、氮化銦(InN)或銦-砷-氮(In-As-N)合金或銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金(在銦-鋁-砷(In-Al-As)合金或銦-鎵-砷(In-Ga-As)合金的情形 中,較佳地具有銦(In)富集的組成物)。在某些實施例中,若S2為砷化鎵(GaAs),則S3實質上為砷化銦(InAs)。在某些實施例中,S3被摻雜成大於1×1019cm-3。在某些實施例中,S3的摻雜高達約1×1020cm-3或高於1×1020cm-3。在某些實施例中,金屬觸點101由耐火金屬或過渡金屬形成,以使得金屬觸點101分別為經反應的耐火金屬-S3合金或經反應的過渡金屬-S3合金。
參照圖1及圖4至圖6,半導體材料合金106在表面處具有充足的摻雜,以使得可提供至金屬觸點101的低接觸電阻率界面。在某些實施例中,半導體材料合金106具有充足的摻雜以使得載子有效地發現在元件的接通狀態不存在位障。半導體材料合金106的階變組成的曲線亦可被調整以最佳化元件功能,例如減少向通道中的擴散等。在某些實施例中,輕度摻雜的延伸亦可被形成。在某些實施例中,一旦達到輕度摻雜的延伸(自源極/汲極朝向通道),所使用材料的能帶邊緣位置便可不發生顯著變化。換言之,組成階變可充分地包含在高度摻雜區中,且至半導體材料S1的界面亦應包含在源極/汲極區的高度摻雜區中。
圖7為在根據本發明的某些實施例中半導體材料合金106自通道區100至作為至金屬觸點101的界面的中間半導體材料的組成階變曲線的示意圖。根據圖7,半導體材料S2被選擇用於通道區100,且亦被選擇用於與半導體材料S3一起包含於半導體材料合金106中。此外,根據關係式S2xS31-x提供包含S2及S3的合金的組成階變曲線,其中在源極/汲極區107中,通道區100 與半導體材料合金106之間的界面102處x=1,且在源極/汲極區107中向所示第四半導體材料S4(以下簡稱為半導體材料S4)提供界面的中間位置處x=0。
應理解,所有的半導體材料(S2及S3)在對元件的處理及應用中所使用的熱預算內是穩定的或介穩定的。此外,在半導體材料合金106的外延生長期間,可針對pMOS或nMOS元件相應地摻雜半導體材料。應理解,儘管圖7所示的組成階變表現為非線性函數,但亦可使用其他類型的階變(例如連續階變或階梯式階變等其他類型)。
應理解,半導體材料合金106中的組成階變應被平滑地提供(即,在源極/汲極區107中,對組成物中x的值提供小的變化)並提供摻雜水準以使得屏蔽有效地減少對載子傳輸的任何位障,否則由於階變,所述對載子傳輸的位障可因整個半導體材料合金106的能帶邊緣位置中的變化而升起。
對於元件的多數載子而言,在能帶邊緣之間,半導體材料S4實質上不同於半導體材料S3以使得在二者之間形成具有相對小的偏移(即,等於或小於約0.2電子伏特)的異質接面。更應理解,在其中在異質接面處存在小的能帶偏移的情形中,可對異質接面施加充足的摻雜以屏蔽在異質接面處對載子流的任何位障。
更應理解,半導體材料S4亦被選擇成對金屬觸點101提供相對小的肖特基位障高度(例如,等於或小於約0.2電子伏特)。 在根據本發明的某些實施例中,金屬觸點101可為經反應的金屬觸點(例如,金屬或由金屬材料與半導體材料S4之間的反應產生的含金屬材料)。在根據本發明的某些實施例中,可在半導體材料S4與金屬觸點101之間的界面處施加摻雜以提供低的界面接觸電阻率。
在採用圖7中所說明的階變組成的pMOS元件的實例中,半導體材料S4可為鍺(Ge)或高鍺的矽鍺合金(high-Ge SiGe alloy),且具有至作為S3的銻化鎵(GaSb)或銻化銦鎵(InGaSb)合金的異質接面,其然後朝向通道中的另一III-V材料(S2)階變。在pMOS元件的某些實施例中,S4可為高鍺的矽鍺合金(high-Ge SiGe alloy),且具有至作為S3的砷化銦(InAs)合金的異質接面,其然後朝向通道區100中的砷化鎵銦(InGaAs)(S2)階變。
圖8為在根據本發明的某些實施例中源極/汲極區107內兩種半導體材料合金的兩種階變組成曲線的示意圖。根據圖8,第一階變組成合金(在圖8中稱為合金1)可包含半導體材料S2及半導體材料S3,且具有組成階變,所述組成階變將第一階變組成合金自在與通道區100的界面處為S2改變為在與第二階變組成合金(在圖8中稱為合金2)的界面處為半導體材料S3。第二階變組成合金位於所述通道區與所述第一階變組成合金之間的所述源極/汲極區中。如圖8所示,第二階變組成合金包含第四半導體材料S4(以下簡稱為半導體材料S4)及第五半導體材料S5(以下簡稱為半導體材料S5),且自在與半導體材料S3的界面處為半導 體材料S4過渡至半導體材料S5,以向金屬觸點101提供金屬觸點界面部分105。第五半導體材料不與所述第一半導體材料完全混溶。應理解,無論異質接面存在於圖8所示的圖中何處,異質接面處的能帶偏移為小的,較佳地小於約0.2電子伏特,且可在整個異質接面上使用摻雜。在其中S1為高鍺的矽鍺(high Ge SiGe)(例如,90%或90%以上為鍺(Ge))或鍺(Ge)的nMOS元件的某些實施例中,S2=S1,S3可為較低鍺(Ge)含量的矽鍺(SiGe)合金(例如,具有60%的鍺(Ge)的矽鍺(SiGe)),S4可為砷化鎵(GaAs),且S5可為砷化銦(InAs)。在其中S1為高鍺的矽鍺(high Ge SiGe)(例如,90%或90%以上為鍺(Ge))或鍺(Ge)的nMOS元件的某些實施例中,S2=S1,S3可為較低鍺(Ge)含量的矽鍺(SiGe)合金(例如,具有60%的鍺(Ge)的矽鍺(SiGe)),S4可為砷化鎵(GaAs),且S5可為砷化銦(InAs)。在通道中的S1及S2可為銦-鎵-銻(In-Ga-Sb)合金的pMOS元件的某些實施例中,S3可為銦-鎵-銻(In-Ga-Sb)合金,S4可為矽鍺(SiGe)合金,且S5可為高鍺的矽鍺(high Ge SiGe)合金或鍺(Ge)。
如本文中所述,在根據本發明的某些實施例中,對於元件而言,可藉由在通道區與金屬觸點之間形成具有平滑地階變組成的半導體合金(由組分S2及S3構成),而向通道區中的半導體材料(S1)提供低的電阻率接觸。舉例而言,半導體合金中的組成階變可為如此以使得合金中S2及S3的貢獻隨著在源極/汲極區內的位置而逐漸變化。舉例而言,合金的組成階變可被設置成使 得半導體合金在靠近通道區處基本上為S2,而半導體合金在遠離通道區的金屬觸點處基本上為S3。
此外,包含於合金(由組分S2及S3構成)中的半導體材料可各自被選擇為相對於通道中的半導體材料(S1)具有特定關係。舉例而言,相較於半導體材料S3的能帶邊緣,半導體材料S2可被選擇成具有相對接近於半導體材料S1的能帶邊緣的能帶邊緣(即,低能帶邊緣偏移)。然而,半導體材料S3可被選擇成具有相對於通道半導體材料S1相對大的能帶邊緣偏移。半導體材料S3可被選擇成對金屬觸點具有低接觸電阻率(較佳為10-8歐姆-平方釐米或小於10-8歐姆-平方釐米,且在某些實施例中為10-7歐姆-平方釐米或小於10-7歐姆-平方釐米)。此外,源極/汲極區中的半導體合金(由組分S2及組分S3構成)的組成階變應為平滑的以避免對於相關載子而言在源極/汲極區中的能帶邊緣的任何驟然變化。
因此,如由本發明的發明者所理解,通道區中的半導體材料S1及半導體材料S3被選擇成使得其中的一者(例如,S3)無法藉由使用連續的組成階變而自另一者(例如,S1)獲得。換言之,半導體材料S2可被用作相對接近於S1的能帶邊緣但亦可與S3一起存在於合金中的中間材料。
以上揭露的主題將被理解為是說明性的而非限制性的,且隨附申請專利範圍旨在覆蓋落於發明概念的真實精神及範圍內的所有此類潤飾、增強及其他實施例。因此,在法律所容許的最 大程度上,本發明的範圍將由對以下申請專利範圍及其等效形式的最寬泛的可允許的解釋而確定,而不應局限於或受限於以上詳細說明。
100:通道區
101:金屬觸點
102:界面
105:金屬觸點界面部分
106:半導體材料合金
107:源極/汲極區

Claims (16)

  1. 一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,以及其中所述半導體材料合金的階變組成包含在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第二半導體材料及貧乏濃度的所述第三半導體材料、並在與所述金屬觸點的界面處進展至貧乏濃度的所述第二半導體材料及富集濃度的所述第三半導體材料。
  2. 如申請專利範圍第1項所述的半導體元件,其中所述異質接面被摻雜有與所述多數載子的傳導性對應的摻雜劑類型。
  3. 如申請專利範圍第1項所述的半導體元件,其中所述半導體材料合金的所述階變組成是由S2xS31-x提供,其中S3是所述第 三半導體材料,S2是所述第二半導體材料,且在與所述金屬觸點的界面處x=0,在與所述第一半導體材料的界面處x=1。
  4. 如申請專利範圍第3項所述的半導體元件,其中所述半導體材料合金的所述階變組成中的遞增被配置成防止所述階變組成中鄰接的階之間的能帶偏移大於約0.2電子伏特。
  5. 如申請專利範圍第1項所述的半導體元件,其中所述金屬觸點及在與所述金屬觸點的界面處的所述第二半導體材料或所述半導體材料合金的各別材料被選擇成在其之間提供等於約0.2電子伏特或小於0.2電子伏特的肖特基位障高度。
  6. 如申請專利範圍第1項所述的半導體元件,其中所述階變組成是線性階變組成、非線性階變組成、階梯式階變組成、或其組合。
  7. 如申請專利範圍第1項所述的半導體元件,其中所述第一半導體材料包含至少一種IV族半導體元素,所述第二半導體材料包含III-V族半導體化合物或III-V族半導體合金,且所述半導體材料合金包含所述第三半導體材料及所述第二半導體材料。
  8. 如申請專利範圍第1項所述的半導體元件,其中所述半導體元件包含NMOS元件,且所述第一半導體材料包含Si、SiGe合金、或Ge,所述第三半導體材料包含InAs、InN、In-As-N合金、In-Al-As合金、或In-Ga-As合金,且所述第二半導體材料包含GaAs、In-Ga-N、In-Ga-As-N合金、In-Al-Ga-As合金、或Al-Ga-As合金。
  9. 一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,以及其中所述半導體材料合金的所述階變組成包含在與所述通道區的所述第一半導體材料的界面處的富集濃度的所述第一半導體材料及貧乏濃度的所述第二半導體材料,並在所述界面處進展至貧乏濃度的所述第一半導體材料及富集濃度的所述第二半導體材料,以與所述第三半導體材料形成所述至少一個異質接面,其中所述第三半導體材料不與所述第一半導體材料完全混溶。
  10. 一種半導體元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述半導體元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;源極/汲極區,包含半導體材料合金,所述半導體材料合金包 含第二半導體材料;以及至少一個異質接面,位於所述金屬觸點與所述通道區之間的所述源極/汲極區中,其中所述異質接面對於所述多數載子而言形成小於或等於約0.2電子伏特的能帶邊緣偏移,其中所述半導體材料合金包含所述第二半導體材料與第三半導體材料的階變組成,其中所述第三半導體材料不與所述第一半導體材料完全混溶,以及其中所述半導體材料合金包含所述第二半導體材料與所述第三半導體材料的第一階變組成合金,所述半導體元件更包含:第二階變組成合金,位於所述通道區與所述第一階變組成合金之間的所述源極/汲極區中,所述第二階變組成合金包含第四半導體材料與第五半導體材料的階變組成,其中所述第五半導體材料不與所述第一半導體材料完全混溶。
  11. 一種電子元件,包括:通道區,包含第一半導體材料,所述第一半導體材料用於所述電子元件的運作期間傳輸所述通道區中的多數載子;金屬觸點;以及源極/汲極區,包含材料合金,所述材料合金包含至少一種材料組分且不含所述第一半導體材料的任一組分,以使所述材料合金在所述通道區和與所述金屬觸點的界面之間的組成階變避免在所述組成階變的遞增之間以及在其中的任一異質接面處的能帶邊緣偏移的驟然變化, 其中所述第一半導體材料及處於與所述第一半導體材料的界面處的所述材料合金形成具有對於所述多數載子而言小於或等於約0.2電子伏特的能帶邊緣偏移的異質接面。
  12. 如申請專利範圍第11項所述的電子元件,其中對於所述多數載子而言,所述能帶邊緣偏移小於或等於約0.1電子伏特。
  13. 如申請專利範圍第12項所述的電子元件,其中所述材料合金被摻雜至約1×1018cm-3至約1×1020cm-3的範圍。
  14. 如申請專利範圍第13項所述的電子元件,其中所述遞增之間的所述能帶邊緣偏移介於在約6奈米內約0.1電子伏特與在約0.6奈米內約0.1電子伏特之間。
  15. 一種電子元件端子結構,包括:金屬觸點;階變組成層,包含根據由S2xS31-x所表示的所述階變組成層內的階變組成而彼此組合的第二材料(S2)與第三材料(S3),其中所述階變組成層的所述階變組成是在靠近所述金屬觸點處大約完全為S2,即x=0,且所述階變組成層的所述階變組成在遠離所述金屬觸點處大約完全為S1,即x=1,且其中在x=0與x=1之間的所述階變組成層的所述階變組成足以避免對於所述電子元件端子結構的所選載子而言所述階變組成層內的能帶邊緣偏移大於0.2電子伏特;第三材料S3,在x=1處接觸所述階變組成層,S3被選擇成與S1形成等於或小於約0.2電子伏特的異質接面;且 其中S2被選擇成對所述金屬觸點提供等於或小於約0.2電子伏特的肖特基位障高度。
  16. 如申請專利範圍第15項所述的電子元件端子結構,其中S1、S2及S3被配置成在所述電子元件端子結構中作為各別半導體材料運作。
TW104139045A 2014-11-26 2015-11-25 半導體元件、電子元件及電子元件端子結構 TWI696290B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462085092P 2014-11-26 2014-11-26
US62/085,092 2014-11-26
US14/942,193 2015-11-16
US14/942,193 US9917158B2 (en) 2013-07-30 2015-11-16 Device contact structures including heterojunctions for low contact resistance

Publications (2)

Publication Number Publication Date
TW201631770A TW201631770A (zh) 2016-09-01
TWI696290B true TWI696290B (zh) 2020-06-11

Family

ID=56047902

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139045A TWI696290B (zh) 2014-11-26 2015-11-25 半導體元件、電子元件及電子元件端子結構

Country Status (3)

Country Link
KR (1) KR102295517B1 (zh)
CN (1) CN105633165B (zh)
TW (1) TWI696290B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711211A (zh) * 2016-12-29 2017-05-24 中国科学院微电子研究所 InP基MOSHEMT结构及其制备方法
KR102371319B1 (ko) 2019-04-16 2022-03-07 한국전자통신연구원 쇼트키 장벽 다이오드 및 그의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081151A (en) * 1988-12-22 1992-01-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Method of growing hair
US20050212055A1 (en) * 2004-03-26 2005-09-29 Kabushiki Kaisha Toshiba Field effect transistor
TW201017879A (en) * 2008-10-26 2010-05-01 Kou-Cheng Wu Schottky barrier quantum well resonant tunneling transistor
TW201242022A (en) * 2010-12-21 2012-10-16 Intel Corp Transistors with high concentration of boron doped germanium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583105A (en) * 1982-12-30 1986-04-15 International Business Machines Corporation Double heterojunction FET with ohmic semiconductor gate and controllable low threshold voltage
CN85104043A (zh) * 1984-02-17 1986-11-26 斯托弗化学公司 在量子阱器件中的磷势垒和高磷多磷化合物势垒
US6844227B2 (en) 2000-12-26 2005-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor devices and method for manufacturing the same
US7325837B2 (en) 2004-07-26 2008-02-05 Ward Kraft, Inc. Self laminating specimen capture and containment assembly and recordation form combination
KR100839752B1 (ko) * 2006-09-25 2008-06-19 전북대학교산학협력단 자기정렬 에피성장층을 채널로 이용하는 반도체 소자구조의 제조방법
US7763943B2 (en) 2007-12-26 2010-07-27 Intel Corporation Reducing external resistance of a multi-gate device by incorporation of a partial metallic fin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081151A (en) * 1988-12-22 1992-01-14 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Method of growing hair
US20050212055A1 (en) * 2004-03-26 2005-09-29 Kabushiki Kaisha Toshiba Field effect transistor
TW201017879A (en) * 2008-10-26 2010-05-01 Kou-Cheng Wu Schottky barrier quantum well resonant tunneling transistor
TW201242022A (en) * 2010-12-21 2012-10-16 Intel Corp Transistors with high concentration of boron doped germanium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S Tiwari, DJ Frank, "Empirical fit to band^&rn^discontinuities and barrier heights in III–V alloy^&rn^systems", Appl. Phys. Lett.,60 (5), pp.630-632, 1992.
S Tiwari, DJ Frank, "Empirical fit to band^&rn^discontinuities and barrier heights in III–V alloy^&rn^systems", Appl. Phys. Lett.,60 (5), pp.630-632, 1992. *

Also Published As

Publication number Publication date
KR20160063280A (ko) 2016-06-03
CN105633165B (zh) 2020-08-04
TW201631770A (zh) 2016-09-01
KR102295517B1 (ko) 2021-08-31
CN105633165A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
US7435987B1 (en) Forming a type I heterostructure in a group IV semiconductor
US10269970B2 (en) Gradient ternary or quaternary multiple-gate transistor
US9741848B2 (en) Multi-gate tunnel field-effect transistor (TFET)
CN107359197B (zh) Cmos架构的隧穿场效应晶体管(tfet)以及制造n型和p型tfet的方法
US11908941B2 (en) FinFET transistor
Vandooren et al. Analysis of trap-assisted tunneling in vertical Si homo-junction and SiGe hetero-junction tunnel-FETs
Tomioka et al. Current increment of tunnel field-effect transistor using InGaAs nanowire/Si heterojunction by scaling of channel length
TWI451552B (zh) 積體電路結構
EP2064744A2 (en) Assembly of nanoscaled field effect transistors
US9431529B2 (en) Confined semi-metal field effect transistor
US9590084B2 (en) Graded heterojunction nanowire device
KR20120116167A (ko) 물리 공극을 갖는 그래핀 소자
Liu et al. Vertical GeSn nanowire MOSFETs for CMOS beyond silicon
TWI696290B (zh) 半導體元件、電子元件及電子元件端子結構
US9917158B2 (en) Device contact structures including heterojunctions for low contact resistance
Yoon et al. Bandgap engineering and strain effects of core–shell tunneling field-effect transistors
US10680088B2 (en) Tunnel field effect transistor having anisotropic effective mass channel
Chien Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach
Wernersson Narrow gap nanowires: From nanotechnology to RF-circuits on Si
KR102273935B1 (ko) 음성 트랜스 컨덕턴스 기반의 터널링 트랜지스터
Maeda et al. Scalable TaN metal source/drain & gate InGaAs/Ge n/pMOSFETs
Huang et al. Performance tuning of InGaZnO thin-film transistors with a SnInGaZnO electron barrier layer
Sakai et al. Potential for normally-off operation from GaN metal oxide semiconductor devices based upon semi-insulating GaN
CN117280475A (zh) 半导体器件及其制造方法
Cheng et al. Sub-100 nm Gate III-V MOSFET for Digital Applications