TWI687369B - 用於光伏打吸收膜之核殼奈米顆粒 - Google Patents

用於光伏打吸收膜之核殼奈米顆粒 Download PDF

Info

Publication number
TWI687369B
TWI687369B TW103142488A TW103142488A TWI687369B TW I687369 B TWI687369 B TW I687369B TW 103142488 A TW103142488 A TW 103142488A TW 103142488 A TW103142488 A TW 103142488A TW I687369 B TWI687369 B TW I687369B
Authority
TW
Taiwan
Prior art keywords
core
shell
layer
nanoparticles
photovoltaic device
Prior art date
Application number
TW103142488A
Other languages
English (en)
Other versions
TW201524892A (zh
Inventor
克里斯多福 紐曼
Original Assignee
納諾柯技術有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 納諾柯技術有限公司 filed Critical 納諾柯技術有限公司
Publication of TW201524892A publication Critical patent/TW201524892A/zh
Application granted granted Critical
Publication of TWI687369B publication Critical patent/TWI687369B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

本發明係關於一種製造CIGS型核殼奈米顆粒之方法,該方法製造可包含四元或三元金屬硫族化物核的核殼奈米顆粒。該核可大體上被二元金屬硫族化物殼包圍。核殼奈米顆粒可經溶液相沉積(solution-phase deposition)而沉積於PV電池接觸(例如鉬電極)上。然後可使該等沉積顆粒熔化或熔融成吸收薄膜以用於光伏打裝置。

Description

用於光伏打吸收膜之核殼奈米顆粒 相關申請案之交叉參考
本申請案主張2013年12月6日申請之美國臨時申請案第61/912,916號之權利。
對聯邦政府資助之研究或發展的申明:不適用
1.技術領域
本發明通常係關於半導體奈米顆粒。更特定言之,其係關於製造用於基於銅銦鎵二硒化物/二硫化物-(CIGS)之薄膜光伏打裝置中之核殼奈米顆粒的方法。
2.相關技術之包含於37 CFR 1.97及1.98下所揭示之資訊之描述
為獲得廣泛接受性,光伏打電池(「PV電池」,亦稱為太陽能電池或PV裝置)通常需要以可與使用化石燃料發電成本競爭的成本發電。太陽能電池較佳應具有低材料及製造成本且具有增加之光電轉換效率。因為在薄(~2-4μm)活性層內之材料的量小,所以本質上薄膜具有低材料成本。因此,對開發高效薄膜太陽能電池已作出相當大之努力。在各種研究之薄膜材料中,基於黃銅礦之裝置(Cu(In及/或Ga)(Se及視情況係S)2,本文統稱為「CIGS」)已顯示巨大前景且已受到大量關注。因為CuInS2(1.5eV)及CuInSe2(1.1eV)之能帶隙可很好 地與太陽光譜相匹配,所以基於CIGS材料之光伏打裝置係有效。
雖然CIGS材料廉價,但是用於CIGS薄膜的習知製造方法涉及昂貴的氣相或蒸發技術。一種降低成本之解決方案係藉由使用溶液相沉積技術將CIGS組分之顆粒沉積在基板上及然後使該等顆粒熔化或熔融成薄膜以形成薄膜。理想地,奈米顆粒聚結以形成大顆粒薄膜。可使用金屬組分之氧化物顆粒來完成溶液相沉積,接著與H2進行還原反應及與含硒氣體(例如,H2Se)進行反應性燒結。或者,可使用預製之CIGS顆粒完成溶液相沉積。
CIGS型顆粒(即,CIGS或相似材料)較佳具有某些允許其等形成大顆粒薄膜之性質。例如,奈米顆粒較佳係較小且具有不同於相同材料之較大顆粒的物理、電子及光學性質。此種較小顆粒通常擠壓更緊密,從而在熔化時促進顆粒之聚結。另外,奈米顆粒較佳具有窄尺寸分佈。因為奈米顆粒熔點與顆粒尺寸直接相關,所以窄尺寸分佈促進均勻之熔化溫度。均勻熔化會產生均勻且高質量的(優良電性)膜。
雖然CIGS之溶液相沉積係製造薄膜之廉價解決方案,但其仍有缺點。例如,薄膜通常係在背側PV電池接觸(例如鉬電極)上生長。在顆粒生長期間,鎵顆粒傾向於向膜一側遷移,從而導致不均勻之鎵分佈。因此,最終之薄膜可具有向背側PV電池接觸增大及向膜頂部減小之鎵濃度梯度。在膜頂部附近之鎵濃度不足會降低通過能帶隙擴展獲得所需電壓之能力。該技術之另一個問題係與銅濃度有關。富銅環境為顆粒生長提供最佳條件,同時富In+Ga環境導致最佳電子性能。解決此困境之一個方案係用富銅材料生長大顆粒及然後藉由以KCN溶液蝕刻膜來移除不需要之銅副產物。但是,此蝕刻技術在移除不需要之銅時既耗時亦低效。此外,KCN係一種劇毒化合物。另一個缺點係為出眾之顆粒生長而需要硒化沉積之奈米顆粒以獲得足夠的體積膨脹。可藉由使相對較小(離子半徑)之硫化物與較大之硒化物反應(例 如,使硫化物與硒氣反應)實現體積膨脹。此方法苛刻且昂貴,且其可導致無意間硒化PV電池接觸,從而妨礙其電子性能。
因此,在此項技術中需要改進CIGS奈米顆粒之溶液相沉積。更特定言之,在此項技術中需要製造將會生長大顆粒並形成富In+Ga的薄膜之CIGS奈米顆粒。在此項技術中亦需要將在顆粒生長期間防止鎵遷移且不需要苛刻的硒化製程以達成體積膨脹之CIGS奈米顆粒。
本發明大體上係關於CIGS型核殼奈米顆粒之製造。在一實施例中,該等核殼奈米顆粒包含四元或三元金屬硫族化物核。在另一實施例中,該核可大體上被二元金屬硫族化物殼包圍。在又一實施例中,核殼奈米顆粒可經由溶液相沉積而沉積在PV電池接觸(例如鉬電極)上。隨後可使該等沉積顆粒熔化或熔融成吸收薄膜。
101‧‧‧核殼奈米顆粒
102‧‧‧核
103‧‧‧金屬硫族化物殼
200‧‧‧示例性PV裝置
201‧‧‧載體
202‧‧‧基板層
203‧‧‧衍生自核殼奈米顆粒之吸收層
204‧‧‧硫化鎘層
205‧‧‧氧化鋁鋅層
206‧‧‧鋁接觸層
301‧‧‧塗覆
302‧‧‧退火/燒結步驟
303‧‧‧退火/燒結步驟
304‧‧‧冷卻
305‧‧‧反應性燒結(硒化)
401‧‧‧油墨組合物
402‧‧‧CuInGaSe/CuS核殼奈米顆粒
403‧‧‧CuInGaSe/InS核殼奈米顆粒
404‧‧‧沉積
405‧‧‧PV電池接觸
406‧‧‧熱/含硒氣體
407‧‧‧CIGS層
408‧‧‧CuInGaSe晶體
409‧‧‧CuInSSe基質
當結合附圖閱讀時,可更好地理解前述之發明內容,及下述之實施方式。圖式中所示之某些實施例僅用於說明之目的。但是,應瞭解,本文所揭示之發明概念不限於該等圖式所示之明確的配置及工具。
圖1係根據本發明之一實施例之核殼奈米顆粒的示意性橫截面圖。
圖2顯示根據本發明之一實施例之光伏打裝置之層。
圖3係根據本發明之一實施例之包括使用CIGS型奈米顆粒油墨在基板上形成CIGS材料層之示例性步驟的流程圖。
圖4顯示根據本發明之一實施例之加熱及硒化核殼奈米顆粒組合物以形成CIGS薄膜。
圖5係根據本發明之一實施例之無殼之CIGS奈米顆粒與CIGS/InS核殼奈米顆粒之UV-Vis光譜及光致發光光譜的比較。
圖6顯示根據本發明之一實施例之無殼之CIGS奈米顆粒與CIGS/InS核殼奈米顆粒的ICP/OES元素分析。
圖7顯示本發明之一實施例之核殼CIGS/InS奈米顆粒之XRD分析與無殼之CIGS奈米顆粒之XRD分析的比較。
在詳細說明至少一個實施例前,應瞭解本文闡述之發明概念不將其等應用侷限在下述說明中所闡述或在圖式中所闡明之結構細節或元件配置。亦應瞭解本文所用之措辭與術語僅用於敘述之目的且不應認為限制。
應進一步瞭解所描述之特徵中之任意一者可各別使用或與其他特徵組合使用。熟習此項技術者在檢視文中圖式及詳細說明後將或可瞭解其他發明之調配物、方法、特徵及優點。意欲所有該等其他調配物、方法、特徵及優點受隨附申請專利範圍保護。
本申請案中所引述之所有參考文獻之全文以引用的方式併入本申請案中。
如本文所使用,「CIGS」、「CIS」及「CIGS型」可交換使用且各指由式AB1-xB'xC2-yC'y表示之材料,其中A係Cu、Zn、Ag或Cd;B及B'獨立地係Al、In或Ga;C及C'獨立地係S、Se或Te;0
Figure 103142488-A0202-12-0004-8
x
Figure 103142488-A0202-12-0004-9
1;及0
Figure 103142488-A0202-12-0004-10
y
Figure 103142488-A0202-12-0004-11
2。實例材料包含CuInSe2、CuInxGa1-xSe2、CuGaSe2、ZnInSe2、ZnInxGa1-xSe2、ZnGaSe2、AgInSe2、AgInxGa1-xSe2、AgGaSe2、CuInSe2-ySy、CuInxGa1-xSe2-ySy、CuGaSe2-ySy、ZnInSe2-ySy、ZnInxGa1-xSe2-ySy、ZnGaSe2-ySy、AgInSe2-ySy、AgInxGa1-xSe2-ySy及AgGaSe2-ySy,其中0
Figure 103142488-A0202-12-0004-12
x
Figure 103142488-A0202-12-0004-13
1;及0
Figure 103142488-A0202-12-0004-14
y
Figure 103142488-A0202-12-0004-15
2。
本發明大體上係關於CIGS型核殼奈米顆粒之製造。在一個實施例中,該等核殼奈米顆粒包含四元或三元金屬硫族化物核。在另一實施例中,該核可大體上被二元金屬硫族化物殼包圍。在又一實施例 中,核殼奈米顆粒可經由溶液相沉積而沉積在PV電池接觸(例如鉬電極)上。隨後可使該等沉積顆粒熔化或熔融成吸收薄膜。
圖1(僅藉由實例之方式)顯示核殼奈米顆粒101之實施例的橫截面。該核殼奈米顆粒包含核102。核102可包含具有式AB1-xB'xC2-yC'y之任何金屬硫族化物,其中A係Cu、Zn、Ag或Cd;B及B'獨立地係Al、In或Ga;C及C'獨立地係S、Se或Te;0
Figure 103142488-A0202-12-0005-16
x
Figure 103142488-A0202-12-0005-17
1;及0
Figure 103142488-A0202-12-0005-18
y
Figure 103142488-A0202-12-0005-19
2。在一實施例中,奈米顆粒核102可係四元金屬硫族化物。四元金屬硫族化物核可包含但不限於CuInxGa1-xSe2、ZnInxGa1-xSe2、AgInxGa1-xSe2、CuInSe2-ySy、CuInxGa1-xSe2-ySy、CuGaSe2-ySy、ZnInSe2-ySy、ZnGaSe2-ySy、AgInSe2-ySy及AgGaSe2-ySy,其中0
Figure 103142488-A0202-12-0005-20
x
Figure 103142488-A0202-12-0005-21
1;及0
Figure 103142488-A0202-12-0005-22
y
Figure 103142488-A0202-12-0005-23
2。在另一實施例中,該四元金屬硫族化物核可包含Zn而非Ga,包含但不限於具有式CuInZnS之核。在另一實施例中,奈米顆粒核102可係三元金屬硫族化物。三元金屬硫族化物核可包含但不限於CuInSe2、CuGaSe2、ZnInSe2、ZnGaSe2、AgInSe2及AgGaSe2
在一實施例中,奈米顆粒核102大體上被金屬硫族化物殼103包圍。在一實施例中,殼103可包含具有式MxEy之二元金屬硫族化物,其中M係任何金屬及E係任何硫族元素。二元金屬硫族化物殼可包含但不限於CuxSy、InxSy及GaxSy,其中0
Figure 103142488-A0202-12-0005-24
x
Figure 103142488-A0202-12-0005-25
2;及0
Figure 103142488-A0202-12-0005-26
y
Figure 103142488-A0202-12-0005-27
3。
在一實施例中,核殼奈米顆粒101包含由Cu、In、Ga及Se製成之核102(即,「CIGSe」核)。CIGSe核102可大體上被由CuS或InS製成的殼103包圍。
在一實施例中,上述之核殼奈米顆粒可用於製造PV電池吸收薄膜。圖2(僅藉由實例之方式)顯示具有衍生自核殼奈米顆粒之吸收層之示例性PV裝置200的層。該等示例性層沉積於載體201上。該等層係:基板層202(通常係鉬)、衍生自核殼奈米顆粒之吸收層203、硫化鎘層204、氧化鋁鋅層205及鋁接觸層206。熟習此項技術者將領會基 於CIGS之PV裝置可包含比圖2中說明之更多或更少的層。
載體201可係任何類型之可支撐層202-206的剛性或半剛性材料。實例包含玻璃、矽及可捲式材料例如塑膠。基板層202係沉積於載體層201上以對PV裝置提供電接觸及促進基於核殼奈米顆粒之吸收層203對載體層之黏著。
吸收層203係衍生自上述之核殼奈米顆粒且可包含一或多個包括Cu、In及/或Ga、Se及/或S之層。該核殼奈米顆粒層可在整個層中具有統一的化學計量。或者,Cu、In及/或Ga、Se及/或S的化學計量可在整個吸收層203中變化。例如,在一實施例中,該吸收層可包含具有變化之鎵含量的層。根據一實施例,In對Ga之比率可作為該層內之深度的函數而變化。同樣地,Se對S之比率可在層內變化。在又一實施例中,基於核殼奈米顆粒之吸收層203可係p型半導體。因此可有利地在PV電池200內包含n型半導體204之層。合適之n型半導體之實例包含但不限於CdS。
頂部電極205可係透明導體,例如氧化銦錫(ITO)或氧化鋁鋅(AZO)。可藉由金屬接觸206提供與頂部電極205之接觸,金屬接觸206本質上可係任何金屬,包含但不限於鋁、鎳或其合金。
於基板上沉積CIGS層之方法係描述於2008年11月26日申請之且作為公開案第US2009/0139574號(本文指「'354申請案」)公開之美國專利申請案第12/324,354號中,該案之全部內容以引用之方式併入本文中。此等方法可用於沉積本文所述之核殼奈米顆粒。簡而言之,可藉由以下步驟在基板上形成CIGS層:在油墨組合物中分散CIGS型核殼奈米顆粒及使用該油墨組合物以在基板上形成膜。然後使該膜退火以產出CIGS材料層。圖3係說明使用CIGS型核殼奈米顆粒油墨在基板上形成CIGS材料層之示例性步驟的流程圖。首先(301),使用技術例如印刷、噴塗、旋塗、刮刀塗佈或類似技術,將含有CIGS型核殼奈 米顆粒之油墨在基板上塗覆一層膜。示例性油墨組合物描述於'354申請案中。
通常在塗覆步驟(301)之後實施一或多個退火/燒結步驟(302、303)。該(等)退火步驟可蒸發油墨之有機組分及其他有機物,例如存在於CIGS型奈米顆粒中的封蓋配位體。該(等)退火步驟亦熔化CIGS型奈米顆粒。或者或此外,沉積之油墨組合物可藉由與H2發生還原反應而熔化,隨後用含有硒之氣體如H2Se進行反應性燒結(305)。退火后,可使膜冷卻(304)以形成較佳由CIGS材料之晶體組成的CIGS層。可重複塗覆、退火及冷卻步驟(306)多次以在吸收層內形成多個層。每層可包含不同的化學計量。例如,可藉由改變用於每層之初始油墨組合物中之鎵濃度以形成具有不同鎵濃度之層。
在一實施例中,用於上述油墨組合物之CIGS材料包含一或多種文中圖1所述之核殼奈米顆粒。例如,該油墨組合物包含一或多種奈米顆粒,該等奈米顆粒包含大體上由二元金屬硫族化物包圍的四元或三元金屬硫族化物核。
在一實施例中,CIGS層係衍生自不同類型之核殼奈米顆粒的摻合物。該等核殼奈米顆粒核可在退火/燒結步驟期間起到相互孤立/惰性的作用,而殼作為影響顆粒生長之反應性材料。談及圖4,僅藉由實例之方式,油墨組合物401可包含CuInGaSe/CuS核殼奈米顆粒402及CuInGaSe/InS核殼奈米顆粒403之摻合物。該油墨組合物係沉積404於PV電池接觸405上。然後將沉積之奈米顆粒暴露於熱及含硒氣體406以驅動奈米顆粒殼402、403之間之反應。結果係在PV電池接觸405頂部形成CIGS層407。在一實施例中,最終薄膜層407包含在CuInSSe基質409內之CuInGaSe晶體408。在一替代實施例中,該沉積之油墨組合物可包含具有CuInGaSe核之CuS、InS及GaS殼以形成具有大量CuInGaSe的CuInGaSSe基質。
本文中所揭示之發明比習知的CIGS奈米顆粒之固相沉積方法提供更多優勢。首先,奈米顆粒之殼組分將其核與表面分離。所以,在薄膜處理期間殼可阻止鎵反應及因此遷移。此可導致高鎵含量,高鎵含量影響較高帶隙材料且可導致增加VOC。第二,本文揭示之核殼奈米顆粒包含二元金屬硫族化物殼。二元金屬硫族化物展現比四元或三元金屬硫族化物更優異的顆粒生長。較大顆粒生長導致電流(Jsc)增強。此外,二元金屬硫族化物僅係核殼奈米顆粒體積之一小部份。此種設計避免自二元金屬硫族化物形成含鎵材料中常見的顆粒生長控制問題。第三,在一個實施例中,該油墨組合物可包含相對於以In為主之殼過量的以Cu為主之殼及過量之負載In/Ga之核。此富銅之殼環境可在燒結期間最大化顆粒生長。另一方面,該等In/Ga核可最終導致缺銅之最終膜化學計量,從而滿足最佳電子需求。第四,在另一實施例中,該等核殼奈米顆粒之核可包含硒替代硫。此意味著不需要為體積膨脹而替換在大多數薄膜中的硫。預期若各顆粒之外部係使用S作為陰離子組成,則硒可替換硫,提供體積膨脹,其反應最易發生及其膨脹將最有益(在需要填充間隙及晶界熔融之表面)。由於使用Se作為陰離子組成核,所以不需要反應性氣體滲透深入顆粒內以替換深層的S以達成均勻性及維持所需之帶隙。此可允許較低濃度之Se試劑及/或較短處理時間及/或可能的較低處理溫度。因此,可實施不太苛刻之硒化製程,例如較低濃度之H2Se或元素硒。
實例 實例1:核殼奈米顆粒之合成
此實例描述一種合成CIGSe/InS核殼奈米顆粒之方法。但是,可使用相同或相似之方法藉由合適之比例簡單取代初始材料來製造該等實施例所述之任何其他核殼奈米顆粒。例如,核初始材料CIGSe可由任何具有式AB1-xB'xC2-yC'y之金屬硫族化物取代,其中A係Cu、Zn、 Ag或Cd;B及B'獨立地係Al、In或Ga;C及C'獨立地係S、Se或Te;0
Figure 103142488-A0202-12-0009-28
x
Figure 103142488-A0202-12-0009-29
1;及0
Figure 103142488-A0202-12-0009-31
y
Figure 103142488-A0202-12-0009-32
2。此外,殼初始材料二乙基二硫胺基甲酸銦(III)可由任何具有式MxEy之硫族化物取代。
在一實施例中,將2.68g CIGSe核奈米顆粒添加至經烘箱乾燥之250ml圓底燒瓶中及隨後配置Liebig冷凝器。用N2徹底淨化燒瓶。向燒瓶中加入30ml經脫氣之二芐醚及加熱該混合物至150℃。亦在N2下向小瓶中加入0.978g二乙基二硫胺基甲酸銦(III)、14ml經脫氣之二芐醚及6ml三辛基膦。隨後將所得小瓶懸浮液添加至CIGSe溶液中,及加熱該混合物至200℃,保持90分鐘。最後,讓該混合物冷卻至室溫。
冷卻後,將燒瓶開放至大氣壓及在2700G下旋轉混合物五分鐘。收集上層清液作為備用及將剩餘之固體分散於25ml甲苯中。在2700G下旋轉該分散系五分鐘及然後將上層清液與分散系合併。進一步將任何剩餘之固體分散於15ml甲苯中且在2700G下旋轉該混合物五分鐘。再次合併上層清液與分散系及丟棄任何剩餘之殘餘物。向合併之上層清液中加入250ml甲醇及在2700G下旋轉該混合物五分鐘。丟棄無色之上層清液並從25ml二氯甲烷/200ml甲醇中再沉澱所得固體。離心分離出沉澱且在真空下乾燥該沉澱(產量:2.218g)。
圖5(僅藉由實例之方式)比較無殼之CIGSe奈米顆粒的UV-Vis及光致發光光譜與CIGSe/InS核殼奈米顆粒的UV-Vis及光致發光光譜。在一實施例中,當CIGSe材料與二乙基二硫胺基甲酸銦(III)反應以形成InS殼時,峰值強度增加。當使用較高能帶隙材料作為殼以鈍化核奈米顆粒表面時,此係預期之結果。亦表明與單獨之奈米顆粒形成或將In及S摻入至既有CIGSe奈米顆粒中相反之殼形成。
圖6(僅藉由實例之方式)顯示無殼之CIGSe奈米顆粒之ICP/OES元素分析與CIGSe/InS核殼奈米顆粒之ICP/OES元素分析的比較。在一實 施例中,結果顯示在核殼奈米顆粒中In及S之含量增加。
圖7(僅藉由實例之方式)顯示無殼之CIGS奈米顆粒之XRD分析與核殼CIGS/InS奈米顆粒之XRD分析的比較,及來自於粉末衍射標準聯合委員會(JCPDS)之數據庫之CIS及CGS奈米顆粒之參考圖案。在一實施例中,結果顯示在殼形成後無來自其他相或材料的額外峰發展,此表明存在與摻雜或單獨成核相反之殼。
先前提出使用本發明之原理之系統的具體實施例。即使本文未明確揭示,但熟習該項技術者可設計出使用此等原理且因此在本發明之範圍內之替代物及變型。儘管已顯示及描述本發明之特定實施例,但其等無意限制本發明專利範圍。熟習該項技術者將瞭解可在不脫離藉由下述申請專利範圍照字義且等效地涵蓋之本發明的範圍的情況下做出各種變化及修改。
101‧‧‧核殼奈米顆粒
102‧‧‧核
103‧‧‧金屬硫族化物殼

Claims (11)

  1. 一種光伏打裝置,其包含:載體;該載體上之基板層;該基板層上之吸收層,其係使用核殼奈米顆粒形成,該等核殼奈米顆粒包括核,其中該核包括具有式AB1-xB'xC2-yC'y的金屬硫族化物,其中A係Cu、Zn、Ag或Cd;B及B'獨立地係Al、In或Ga;C及C'獨立地係S、Se或Te;該式具有0
    Figure 103142488-A0305-02-0014-1
    x
    Figure 103142488-A0305-02-0014-2
    1;及0
    Figure 103142488-A0305-02-0014-3
    y
    Figure 103142488-A0305-02-0014-4
    2之化學計量;及殼,其係圍繞著該核,該殼包括具有式MxEy的二元金屬硫族化物,其中M係選自週期表中第11族或第13族之金屬及E係硫族元素,其中該吸收層之化學計量隨深度變化。
  2. 如請求項1之光伏打裝置,其進一步包括在該吸收層頂部上包括硫化鎘之層。
  3. 如請求項2之光伏打裝置,其進一步包括在該硫化鎘層上包括氧化鋁鋅的層。
  4. 如請求項2之光伏打裝置,其進一步包括在該硫化鎘層上包括氧化銦錫的層。
  5. 如請求項4之光伏打裝置,其進一步包括接觸層,該接觸層包括選自由鋁、鎳、及鎳與鋁合金組成之群之金屬。
  6. 如請求項1之光伏打裝置,其中該載體係選自由玻璃、矽及有機聚合物組成之群。
  7. 如請求項1之光伏打裝置,其中該In/Ga比例隨該吸收層內之深度 而變化。
  8. 一種在具有基板之光伏打裝置內形成吸收層之方法,其包括:在該基板上塗覆油墨薄膜,該油墨含有CIGS型核殼奈米顆粒,其包括核,其中該核包括具有式AB1-xB'xC2-yC'y的金屬硫族化物,其中A係Cu、Zn、Ag或Cd;B及B'獨立地係Al、In或Ga;C及C'獨立地係S、Se或Te;0
    Figure 103142488-A0305-02-0015-5
    x
    Figure 103142488-A0305-02-0015-6
    1;及0
    Figure 103142488-A0305-02-0015-7
    y
    Figure 103142488-A0305-02-0015-8
    2;及殼,其係包圍著該核,該殼包括具有式MxEy的二元金屬硫族化物,其中M係選自週期表中第11族或第13族之金屬及E係硫族元素;經塗覆之基板在足以使有機材料自該油墨薄膜實質上蒸發之溫度及時間退火;冷卻該經塗覆之基板;及重複該等塗覆、退火及冷卻步驟以在該吸收層內形成多層,其中該吸收層中之至少一層具有與毗連層不同的化學計量。
  9. 如請求項8之方法,其中該油墨包括CuS、InS及GaS殼及CuInGaSe核以形成具有大量CuInGaSe之CuInGaSSe的基質。
  10. 如請求項8之方法,其進一步包括將該吸收層加熱及暴露於含硒氣體。
  11. 如請求項8之方法,其中該油墨具有相對於以銦為主之殼的核殼奈米顆粒過量之以銅為主之殼的核殼奈米顆粒。
TW103142488A 2013-12-06 2014-12-05 用於光伏打吸收膜之核殼奈米顆粒 TWI687369B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361912916P 2013-12-06 2013-12-06
US61/912,916 2013-12-06

Publications (2)

Publication Number Publication Date
TW201524892A TW201524892A (zh) 2015-07-01
TWI687369B true TWI687369B (zh) 2020-03-11

Family

ID=52023551

Family Applications (2)

Application Number Title Priority Date Filing Date
TW103142488A TWI687369B (zh) 2013-12-06 2014-12-05 用於光伏打吸收膜之核殼奈米顆粒
TW108134897A TW201946867A (zh) 2013-12-06 2014-12-05 用於光伏打吸收膜之核殼奈米顆粒

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108134897A TW201946867A (zh) 2013-12-06 2014-12-05 用於光伏打吸收膜之核殼奈米顆粒

Country Status (7)

Country Link
US (2) US20150162468A1 (zh)
EP (1) EP3078062B1 (zh)
JP (2) JP6450386B2 (zh)
KR (1) KR101888579B1 (zh)
CN (2) CN105794001B (zh)
TW (2) TWI687369B (zh)
WO (1) WO2015082940A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112253A1 (de) * 2013-11-07 2015-05-07 Osram Oled Gmbh Optoelektronisches Bauelement, Verfahren zum Betreiben eines optoelektronischen Bauelementes und Verfahren zum Herstellen eines optoelektronischen Bauelementes
JP6464215B2 (ja) * 2016-03-18 2019-02-06 国立大学法人大阪大学 半導体ナノ粒子およびその製造方法
US10563122B2 (en) * 2016-03-18 2020-02-18 Osaka University Semiconductor nanoparticles and method of producing semiconductor nanoparticles
US11355583B2 (en) 2016-07-28 2022-06-07 Samsung Electronics Co., Ltd. Quantum dots and devices including the same
JP6466979B2 (ja) * 2016-09-06 2019-02-06 国立大学法人名古屋大学 半導体ナノ粒子および半導体ナノ粒子の製造方法ならびに発光デバイス
WO2018159699A1 (ja) * 2017-02-28 2018-09-07 国立大学法人名古屋大学 半導体ナノ粒子およびその製造方法ならびに発光デバイス
KR102047116B1 (ko) * 2018-04-12 2019-11-20 홍익대학교 산학협력단 I-ⅲ-vi계 양자점, 이를 이용한 백색 발광 소자 및 그 제조 방법
JP7005470B2 (ja) * 2018-05-10 2022-02-10 国立大学法人東海国立大学機構 半導体ナノ粒子、その製造方法及び発光デバイス
KR102131854B1 (ko) 2018-10-12 2020-07-08 한국화학연구원 코어-쉘 구조의 칼코지나이드계 나노입자의 제조방법
CN110085757A (zh) * 2019-05-22 2019-08-02 京东方科技集团股份有限公司 量子点及其制备方法、量子点发光器件、相关装置
WO2020257510A1 (en) 2019-06-20 2020-12-24 Nanosys, Inc. Bright silver based quaternary nanostructures
US11407940B2 (en) 2020-12-22 2022-08-09 Nanosys, Inc. Films comprising bright silver based quaternary nanostructures
US11926776B2 (en) 2020-12-22 2024-03-12 Shoei Chemical Inc. Films comprising bright silver based quaternary nanostructures
US20240079518A1 (en) * 2020-12-25 2024-03-07 Ns Materials Inc. Method for manufacturing quantum dot and quantum dot
US11360250B1 (en) 2021-04-01 2022-06-14 Nanosys, Inc. Stable AIGS films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030994A (en) * 2009-02-12 2010-08-16 Nexpower Technology Corp Two sided light absorbing type solar cell
WO2012112821A1 (en) * 2011-02-16 2012-08-23 Sandia Solar Technologies Llc Solar absorbing films with enhanced electron mobility and methods of their preparation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534488B2 (en) * 2003-09-10 2009-05-19 The Regents Of The University Of California Graded core/shell semiconductor nanorods and nanorod barcodes
US20070163640A1 (en) * 2004-02-19 2007-07-19 Nanosolar, Inc. High-throughput printing of semiconductor precursor layer by use of chalcogen-rich chalcogenides
US8048477B2 (en) * 2004-02-19 2011-11-01 Nanosolar, Inc. Chalcogenide solar cells
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
US7604843B1 (en) * 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
KR101115484B1 (ko) * 2004-03-15 2012-02-27 솔로파워, 인코포레이티드 태양 전지 제작용 반도체 박층의 증착을 위한 기술 및 장치
KR100621309B1 (ko) * 2004-04-20 2006-09-14 삼성전자주식회사 황 전구체로서 싸이올 화합물을 이용한 황화 금속나노결정의 제조방법
GB0409877D0 (en) * 2004-04-30 2004-06-09 Univ Manchester Preparation of nanoparticle materials
US7405129B2 (en) * 2004-11-18 2008-07-29 International Business Machines Corporation Device comprising doped nano-component and method of forming the device
JP5352824B2 (ja) * 2007-07-20 2013-11-27 独立行政法人 宇宙航空研究開発機構 太陽電池の製造方法
US8784701B2 (en) * 2007-11-30 2014-07-22 Nanoco Technologies Ltd. Preparation of nanoparticle material
US8613973B2 (en) * 2007-12-06 2013-12-24 International Business Machines Corporation Photovoltaic device with solution-processed chalcogenide absorber layer
CN102037152A (zh) * 2008-03-26 2011-04-27 索莱克山特公司 基板太阳能电池中改进的结
US8759662B1 (en) * 2009-04-02 2014-06-24 University Of South Florida Bulk dimensional nanocomposites for thermoelectric applications
EP2430112B1 (en) * 2009-04-23 2018-09-12 The University of Chicago Materials and methods for the preparation of nanocomposites
US8067259B2 (en) * 2009-05-12 2011-11-29 Evident Technologies Method of producing high performance photovoltaic and thermoelectric nanostructured bulk and thin films
KR101519509B1 (ko) * 2010-01-28 2015-05-12 이섬 리서치 디벨러프먼트 컴파니 오브 더 히브루 유니버시티 오브 예루살렘 엘티디. 형광체-나노입자 조합물
KR101805873B1 (ko) * 2011-08-03 2018-01-10 한화케미칼 주식회사 단당류 인산 또는 그 유도체로 표면이 개질된 친수성 나노입자, 그의 콜로이드 용액 및 그 용도
US20130292800A1 (en) * 2010-12-03 2013-11-07 E I Du Pont De Nemours And Company Processes for preparing copper indium gallium sulfide/selenide films
WO2012115248A1 (ja) * 2011-02-25 2012-08-30 シャープ株式会社 太陽電池モジュールおよび太陽光発電装置
US8419980B2 (en) * 2011-04-26 2013-04-16 Toyota Motor Engineering And Manufacturing North America Ternary thermoelectric material containing nanoparticles and process for producing the same
KR101874413B1 (ko) * 2011-10-18 2018-07-05 삼성전자주식회사 무기 리간드를 갖는 양자점 및 그의 제조방법
US8834736B2 (en) * 2011-12-01 2014-09-16 Toyota Motor Engineering & Manufacturing North America, Inc. Ternary thermoelectric material containing nanoparticles and process for producing the same
KR101616086B1 (ko) * 2011-12-22 2016-04-28 (주)태광테크 저온분사장치
US8809113B2 (en) * 2012-11-10 2014-08-19 Sharp Laboratories Of America, Inc. Solution-processed metal-selenide semiconductor using selenium nanoparticles
WO2014136750A1 (ja) * 2013-03-05 2014-09-12 シャープ株式会社 コアシェル粒子、アップコンバージョン層および光電変換素子
US8894889B1 (en) * 2013-05-09 2014-11-25 Neo Solar Power Corp. Compound semiconductor precursor ink composition, method for forming a chalcogenide semiconductor film, and method for forming a photovoltaic device
KR102109500B1 (ko) * 2013-07-18 2020-05-12 에스케이이노베이션 주식회사 산화물 나노입자가 분산된 칼코겐화합물 기반 상분리 복합 열전소재
US20150036234A1 (en) * 2013-08-01 2015-02-05 Board Of Regents, The University Of Texas System Methods and compositions related to dielectric coated metal nanoparticles in thin-film opto-electronic conversion devices
KR102122962B1 (ko) * 2014-03-14 2020-06-15 삼성전자주식회사 나노입자 중합체

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201030994A (en) * 2009-02-12 2010-08-16 Nexpower Technology Corp Two sided light absorbing type solar cell
WO2012112821A1 (en) * 2011-02-16 2012-08-23 Sandia Solar Technologies Llc Solar absorbing films with enhanced electron mobility and methods of their preparation

Also Published As

Publication number Publication date
TW201524892A (zh) 2015-07-01
JP6704027B2 (ja) 2020-06-03
KR20160075711A (ko) 2016-06-29
TW201946867A (zh) 2019-12-16
US20190058069A1 (en) 2019-02-21
US20150162468A1 (en) 2015-06-11
CN105794001B (zh) 2018-12-04
JP2017501571A (ja) 2017-01-12
EP3078062A1 (en) 2016-10-12
JP2019054251A (ja) 2019-04-04
JP6450386B2 (ja) 2019-01-09
CN109599323A (zh) 2019-04-09
KR101888579B1 (ko) 2018-08-14
WO2015082940A1 (en) 2015-06-11
EP3078062B1 (en) 2020-11-25
CN105794001A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
TWI687369B (zh) 用於光伏打吸收膜之核殼奈米顆粒
Ghorpade et al. Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review
US9093190B2 (en) Synthesis of multinary chalcogenide nanoparticles comprising Cu, Zn, Sn, S, and Se
US20120115312A1 (en) Thin films for photovoltaic cells
de Souza Lucas et al. Research Update: Emerging chalcostibite absorbers for thin-film solar cells
Liu et al. Exploring the application of metastable wurtzite nanocrystals in pure-sulfide Cu 2 ZnSnS 4 solar cells by forming nearly micron-sized large grains
CN105705596A (zh) 用于薄膜光伏装置的无机盐-纳米粒子墨水及相关方法
US9893220B2 (en) CIGS nanoparticle ink formulation having a high crack-free limit
US8771555B2 (en) Ink composition
Vasekar et al. Thin film solar cells using earth-abundant materials
Saragih et al. Thin film solar cell based on p-CuSbS 2 together with Cd-free GaN/InGaN bilayer
JP2013064108A (ja) インク組成物及びその形成方法
Gu et al. Cu 2 ZnSnS 4 thin film solar cells from coated nanocrystals ink
Albalawneh et al. solution processing of CIGSe solar cells using simple thiol-amine solvents mixture: a review
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
WO2011118203A1 (ja) 化合物半導体粒子組成物、化合物半導体膜とその製造方法、光電変換素子、及び太陽電池
López-García et al. Synthesis of CuIn (S, Se) 2 quaternary alloys by screen printing and selenization-sulfurization sequential steps: Development of composition graded absorbers for low cost photovoltaic devices
TWI595680B (zh) 用於製備二硒化/二硫化銅銦鎵(cigs)奈米粒子之方法、由該方法製備之cigs奈米粒子及基於其之光伏打裝置
Londhe et al. A Novel combined thermal evaporation and solvothermal approach to produce highly crystalline and compact CIG (S1-xSex) 2 thin films
Nkuissi et al. Cu2ZnSnS4 thin-film solar cells
Babujani et al. Role of aluminum distribution on the growth of CuIn0. 75Al0. 25Se2 films and numerical simulation of p-CuIn0. 75Al0. 25Se2/n-CuAlSe2 heterojunction solar cell
US20140345693A1 (en) Photoelectric conversion device and method for producing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees