TWI683467B - 金屬空氣電池及金屬空氣電池之極間距離設定方法 - Google Patents

金屬空氣電池及金屬空氣電池之極間距離設定方法 Download PDF

Info

Publication number
TWI683467B
TWI683467B TW108111651A TW108111651A TWI683467B TW I683467 B TWI683467 B TW I683467B TW 108111651 A TW108111651 A TW 108111651A TW 108111651 A TW108111651 A TW 108111651A TW I683467 B TWI683467 B TW I683467B
Authority
TW
Taiwan
Prior art keywords
metal
electrode
air
distance
battery
Prior art date
Application number
TW108111651A
Other languages
English (en)
Other versions
TW201944648A (zh
Inventor
小出彩乃
松山龍次
Original Assignee
日商古河電池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商古河電池股份有限公司 filed Critical 日商古河電池股份有限公司
Publication of TW201944648A publication Critical patent/TW201944648A/zh
Application granted granted Critical
Publication of TWI683467B publication Critical patent/TWI683467B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

可以效率佳地得到高性能的金屬空氣電池。 係於具備金屬極(15),與對向於金屬極(15)之空氣極(13A), (13B)之金屬空氣電池(10),空氣極(13A), (13B)分別被配置於金屬極(15)的兩側,金屬極(15)被配置於靠近兩側的空氣極(13A), (13B)之某一方的位置;使金屬極(15)與一方之空氣極(13A)以極間距離(LA)配置的第1電池所得到的電壓,以及使金屬極(15)與另一方空氣極(13B)以極間距離(LB)配置的第2電池所得到的電壓之平均值,比將金屬極(15)配置於兩側的空氣極(13A), (13B)的中央位置的場合所得到的電壓更高。

Description

金屬空氣電池及金屬空氣電池之極間距離設定方法
本發明係關於金屬空氣電池及金屬空氣電池之極間距離設定方法。
一般而言,金屬空氣電池,正極之空氣極與負極之金屬極是成對存在的。此外,於金屬空氣電池,也提出了在金屬極(燃料極)的兩側等距離配置空氣極的構成(例如參照專利文獻1)。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2015-99740號公報
[發明所欲解決之課題]
然而,金屬空氣電池主要在空氣極與金屬極對向之面發生反應,所以空氣極只對向於金屬極的單面的構成的場合,每一胞的反應面積受到制約,電池性能的提升上受有制約。例如,電流流通時的電流密度變大,所以結果是分極容易變大。 另一方面,專利文獻1的構成,藉著使每一胞的空氣極面積增大來減少電流密度,結果分極變小。但是,市面上期待更高性能的電池,特別是防災用途的金屬空氣電池,期待著能以高電流充電的智慧型手機等之充電用途。亦即,金屬空氣電池必須要使分極更小。
在此,本發明的目的在於效率佳地得到高性能的金屬空氣電池。 [供解決課題之手段]
為了解決前述課題,本發明係於具備金屬極,與對向於前述金屬極之空氣極之金屬空氣電池;特徵為:前述空氣極,分別被配置於前述金屬極的兩側;前述金屬極,被配置於靠近兩側的前述空氣極之某一方的位置;前述金屬極與一方之前述空氣極的極間距離亦即第1距離,與前述金屬極與另一方之前述空氣極的極間距離亦即第2距離,滿足下列條件:使前述金屬極與前述一方之空氣極以前述第1距離配置的第1電池所得到的電壓,以及使前述金屬極與前述另一方之空氣極以前述第2距離配置的第2電池所得到的電壓之平均值,比將前述金屬極配置於兩側的前述空氣極的中央位置的場合所得到的電壓更高。
此外,於前述構成,前述極間距離短者為數值LA,極間距離長者為數值LB,數值(LB/LA)為2以上亦可。
此外,於前述構成,具有使前述金屬極由收容該金屬極的電槽的底板部浮起而支撐之支撐構件亦可。
此外,係具備金屬極,與對向於前述金屬極之空氣極;將前述空氣極,分別配置於前述金屬極的兩側;將前述金屬極,配置於靠近兩側的前述空氣極之某一方的位置之金屬空氣電池之極間距離設定方法,特徵為:使前述金屬極與一方之前述空氣極的極間距離亦即第1距離,以及前述金屬極與另一方之前述空氣極的極間距離亦即第2距離,設定為根據呈現極間距離與電壓之關係的非直線特性,使前述金屬極與前述一方之空氣極以前述第1距離配置的第1電池所得到的電壓,以及使前述金屬極與前述另一方之空氣極以前述第2距離配置的第2電池所得到的電壓之平均值,比將前述金屬極配置於兩側的前述空氣極的中央位置的場合所得到的電壓更高。 [發明之效果]
根據本發明,確保容量同時容易得到高電壓,可以效率佳地得到高性能的金屬空氣電池。
以下,參照圖式說明本發明之一實施型態。 圖1係關於本發明的實施型態之金屬空氣電池10之立體圖,圖2為圖1之A-A縱剖面圖。 金屬空氣電池10,係具備電槽11(亦稱為胞),於此電槽11配置二片空氣極13A, 13B與一片金屬極15,藉由對電槽11內注入電解液而開始發電之一次電池。發電時,空氣極13A, 13B作為正極發揮機能,金屬極15作為負極發揮機能。又,圖2中的符號UL,顯示被注入電槽11的電解液的上面位置。
又,前述電槽11的素材沒有特別限定,例如可以使用紙或樹脂。前述電槽11為紙的場合,使用在構成基材的紙的表面設膜之薄板材,舉具體例的話,可以使用在至少內面以熱熔接性樹脂(例如聚乙烯(PE))層疊加工之層疊紙。藉著施以前述層疊加工,可以防止電解液的漏出等。
於本說明,上下左右等各方向,對應於使用金屬空氣電池10時的方向,圖1等所示的符號X顯示前方向,符號Y顯示右方向,符號Z顯示上方向。X方向與空氣極13A、金屬極15及空氣極13B的排列方向一致。又,亦有隨使用狀況等而變更配置方向的場合。
電槽11為薄型的直方體形狀,藉由把含有紙的薄片折曲,一體地具有構成電槽11的底面之底板部21、構成前面的前壁部22、構成後面的後壁部23、構成左右側面的左右之側壁部(左壁部、右壁部)24、與構成上面的上板部25。 前壁部22及後壁部23為同一形狀之面,相互平行地配置,在電槽11中形成最大的面,具有形狀及尺寸相同的矩形的開口部22K。前壁部22的開口部22K,以矩形的空氣極13A覆蓋,後壁部23的開口部22K,以矩形的空氣極13B覆蓋。
空氣極13A, 13B,以同一形狀及同一尺寸形成,分別配置於金屬極15的兩側。各空氣極13A, 13B,係具有使外部的空氣通氣至電槽11內的通氣性以及不使電解液漏出的非透液性之構件,例如,於構成集電體的矩形狀之銅網目(亦稱為集電體)的兩面,藉由壓迫(沖壓)使構成觸媒層的觸媒薄板一體化而形成。 各空氣極13A, 13B,透過設於電槽11的開口部22K露出於電槽11內,各開口部22K內的區域實質上作為空氣極13A, 13B發揮機能。又,針對非透液性,另行設置具有非透液性的薄片來確保亦可。此外,空氣極13A, 13B不限於上述構成,可廣泛適用公知的構成。
前述集電體,為多孔質集電體,藉著使成矩形狀的銅網目(銅的網狀體),具有良好的通氣性。又,前述集電體不限於銅,亦可為鐵、鎳及黃銅等其他金屬。此外,不限定於網目(網狀體)構成的多孔構造,可以廣泛適用網目以外之具有通氣性的多孔構造。特別是銅網目於電池特性與成本這兩方面為適宜的。
前述觸媒薄板,係將導電劑與有機物結合劑以水混練之糊漿,以聚對苯二甲酸乙二酯(PET)製的膜(以下稱為PET膜)挾住,以輥壓機輥壓為薄板狀,經乾燥步驟而製作。 前述導電劑,可以使用碳粉、銅或鋁等金屬材料、或聚苯衍生物等有機導電性材料。又,碳粉,以使用科琴黑(Ketjenblack)等碳黑、石墨、活性碳、奈米碳管、奈米碳角的粉末為佳。 前述有機物結合劑為高分子分散質(dispersion),具體而言以聚四氟乙烯(PTFE),鐵氟龍(登錄商標)等氟系樹脂,或聚丙烯(PP)等聚烯烴系樹脂等熱塑性樹脂為適宜。
金屬極15,藉由左右一對支撐構件30被支撐於電槽11內,與各空氣極13A, 13B對向。於金屬極15,以鎂合金構成的金屬板形成,與各空氣極13A, 13B平行地配置。於此金屬空氣電池10的電解液,使用氯化鈉水溶液。總之,本實施型態之金屬空氣電池10為鎂空氣電池。鎂空氣電池,於電解液使用海水,或者可以使用於自來水混合鹽之液體,所以電解液的調度為容易。又,亦可於電槽11的內部,預先配置收容電解質之氯化鈉的袋體,僅僅藉著注入自來水等之水就進行發電的方式構成。電解液中的氯化鈉的質量,以對溶媒質量為4%~18%為佳。因為在未滿4%,由於電解質不足而液電阻大無法預見作為電池之性能,超過18%的話,伴隨著放電,電解液徐徐蒸發而析出食鹽成為電阻,也無法預見作為電池的性能。
金屬極15,具有往上方延伸而露出於電解液上方的左右一對耳部15A1,某一方的耳部15A1連接電氣配線52(圖3)作為配線接續部利用。 又,如圖1所示,於金屬極15的左右下端部,被形成於上方有缺口的缺口部15A2,各缺口部15A2的外形與耳部15A1的外形一致。藉此,金屬極15的上面與下面被形成為同一形狀,由一片金屬板(在本構成為鎂合金板)切出金屬極15時,可以不隔開間隙地連續切出。
在本構成,與左右一對支撐構件30一起把金屬極15***電槽11內的場合,藉由支撐構件30使金屬極15定位於電槽11。藉此,金屬極15,對向於透過開口部22K露出於內部的空氣極13A, 13B,而且空氣極13A, 13B與金屬極15之間的離間距離亦即極間距離LA, LB分別被保持一定。又,預先把支撐構件30***電槽11內,其後***金屬極15亦可。
左右一對支撐構件30以同一構件形成,更具體地說,支撐構件30,具備裝拆自由地安裝於金屬極15而延伸於上下方向(Y方向)的支撐構件本體31,及由支撐構件本體31伸出而抵接於電槽11內面的複數(4個)抵接部41。各抵接部41,具備由支撐構件本體31朝向前方(+X方向)伸出的上下一對之前側伸出部42,與由支撐構件本體31朝向後方(-X方向)伸出的上下一對之後側伸出部43。
把支撐構件30***電槽11內時,藉著支撐構件30的前側伸出部42的突出面抵接於前壁部22,後側伸出部43的突出面抵接於後壁部23,定位被支撐於支撐構件30的金屬極15的前後位置。此外,前側伸出部42,於左右外側也伸出而抵接於電槽11的側壁部24,定位金屬極15的左右位置。藉此,可以使金屬極15定位於電槽11,使極間距離LA, LB保持一定。 此外,左右一對支撐構件30,使金屬極15由電槽11的底板部21浮起而支撐著。
然而,負極活性物質之金屬極15為充分量的場合,電池容量依存於電解液的溶媒亦即水之量。在此,本案發明人等於具有相同電池容積的空氣電池,為了確保容量同時得到高的發電電壓而進行了種種檢討。在本構成,如圖2所示,藉由把金屬極15配置於靠兩側的空氣電極13A, 13B之某一方的位置,確保容量同時得到高的發電電壓。以下,說明實施例及比較例。又,實施例並不僅限定於以下之例。
圖3(A)顯示實施例1,圖3(B)顯示比較例1,圖3(C)顯示比較例2。又,圖3(A)~圖3(C)顯示相關於實施例1、比較例1及2的金屬空氣電池10之左右中央的剖面構造。於各圖,符號51顯示被連接於空氣極13A, 13B的電氣配線,符號52顯示被連接於金屬極15的電氣配線。
實施例1,為使金屬極15靠近一方的空氣極13A而配置的構成,可以表示為偏置型。對此,比較例1係把金屬極15配置於兩側空氣極13A, 13B的中央之構成,以下適宜地表示為中央配置型。此外,比較例2為實施例1除掉右側空氣極13B的構成,總之,為僅於金屬極15的單側配置空氣極13A之單側型。
圖4係顯示以下列條件進行前述3型金屬空氣電池10的定電流放電試驗的結果(容量-電壓特性)之圖。圖4及後述各圖所示的特性圖,是在內容積650cm 3,空氣極13A與空氣極13B之離間距離26mm之電槽11,利用四邊為150mm厚度為3mm的金屬極15,進行定電流放電試驗的結果。又,於前述電槽注入600cm 3程度的食鹽水作為電解液。
前述定電流放電試驗,係在常溫(25℃)環境下使相當於2A的一定電流持續流通直到電池電壓達到0V為止(金屬極15消耗直到電池壽命為止)的定電流放電試驗。又,圖4中的橫軸為電池容量[Ah],縱軸為電池電壓[V]。 如圖4所示,可知實施例1,分極比比較例1, 2更小,進而維持在分極很小的狀態直到放電末期。比較例1,與比較例2相比電壓上升,但與實施例1比較的話,電壓很低。
其次,為了確認極間距離的影響,除了採複數種類的極間距離LA, LB以外,使用與實施例1同樣的電池進行了試驗。試驗結果顯示於圖5(分極試驗)及圖6(定電流放電試驗)。 前述分極試驗,在注入電解液的狀態下,為了使電池狀態一致於同一條件同時使反應活化之目的,在放置3分鐘後,連接於放電裝置流通相當於10分鐘-2A的電流,其後為3分鐘的休止。其次,測定分別使1.0A、1.5A、2.0A、2.5A、3.0A、4.0A、5.0A、6.0A之電流各流通5分鐘時之分別的電流值之平均放電電壓。 圖5係顯示各種極間距離LA, LB的組合之電流-電壓的關係之圖,橫軸為電流[A],縱軸為平均電池電壓[V]。
如圖5所示,極間距離0.5mm、22.5mm之組合於任一電流值都得到相對高的電壓值。在此組合之外,依照極間距離5.5mm、17.5mm之組合,極間距離9.5mm、13.5mm之組合的順序,可得到良好的結果。另一方面,相當於比較例2的極間距離11.5mm、11.5mm之組合,於任一電流值都得到最低的電壓。
根據本案發明人等的檢討,極間距離短為數值LA的場合,數值(LB/LA)為2以上時,可以效率佳地提高電壓。又,數值(LB/LA)為2以上的場合,在圖5之例,為極間距離0.5mm、22.5mm之組合,以及極間距離5.5mm、17.5mm之組合。
圖6係顯示各種極間距離LA, LB的組合之定電流放電試驗的結果之圖,橫軸為電池容量[Ah],縱軸為電池電壓[V]。又,定電流放電試驗係以與實施例1同樣的方法進行的。
如圖6所示,在圖5所示的極間距離LA, LB之所有組合,電池容量大致不變。這顯示即使如前述極間距離LA, LB之各種組合那樣改變極間距離,對容量的影響很小。 但是,極間距離LA或LB過度狹窄的話,在空氣極13A, 13B與金屬極15之間反應產物堆積,招致放電容量的降低。由此可知,至少極間距離為0.5mm以上為佳,藉著使為0.5mm以上,伴隨著放電產生的反應產物幾乎不會堆積於空氣極13A, 13B與金屬極15之間,可抑制對發電的影響。
進而,針對極間距離LA, LB之值,以根據呈現極間距離[mm]-電壓[V]的關係之非直線特性進行設定為佳。以下,說明極間距離設定方法。 圖7係顯示極間距離[mm]-電壓[V]之關係的非直線特性(以下稱為特性曲線f1)之圖。此特性曲線f1,是在空氣極13A, 13B、金屬極15等決定時就獨特地決定之曲線。
藉由利用此特性曲線f1,如圖7所示,可以算出空出極間距離LA而對向配置的一對極板(金屬極15與空氣極13A)所構成的第1電池的電壓VA,以及空出極間距離LB而對向配置的一對極板(金屬極15與空氣極13B)所構成的第2電池的電壓VB。 算出的值VA, VB之和,可以視為設定於極間距離LA, LB的圖2所示的金屬空氣電池10之電壓。
此外,如圖7所示,根據特性曲線f1,算出空出中央配置型的極間距離LC而對向配置的一對極板(金屬極15與空氣極13A)所構成的電池的電壓VC。算出的電壓VC的2倍之值,可以視為中央配置型金屬空氣電池10的電壓。 接著,以下式(1)成立的方式來設定極間距離LA, LB。
Figure 02_image001
前述式(1),顯示電壓VA與電壓VB的平均值,比中央配置型的電壓VC更大。 藉由以滿足此式(1)的方式設定極間距離LA, LB,可以得到比中央配置型更高的電壓。
簡言之,極間距離LA, LB,係根據呈現極間距離-電壓的關係之特性曲線f1,以使金屬極15與空氣極13A以隔開極間距離LA配置的第1電池所得到的電壓VA,以及使金屬極15與空氣極13B以隔開極間距離LB配置的第2電池所得到的電壓VB之平均值,比將金屬極15配置於兩側的空氣極13A, 13B的中央位置的場合所得到的電壓VC更高的方式設定。藉此,對於使金屬極15靠近於兩側的空氣極13A, 13B之某一方的金屬空氣電池10,可以容易地設定可得高電壓之極間距離LA, LB。
圖8及圖9,顯示在內容積350cm 3,空氣極13A與空氣極13B之離間距離14mm之電槽11,利用四邊為150mm厚度為3mm的金屬極15之金屬空氣電池10的分極試驗及定電流放電試驗的結果。又,於前述電槽11注入330cm 3程度的食鹽水作為電解液。
圖8係顯示各種其他的極間距離LA, LB的組合之分極試驗結果之圖,顯示電流值-電壓之關係。分極試驗,與前述同樣,在放置3分鐘後,連接於放電裝置流通相當於10分鐘-2A的電流,其後為3分鐘的休止。其次,測定分別使1.0A、2.0A、3.0A、4.0A、5.0A、6.0A之電流各流通5分鐘時之分別的電流值之平均電壓。 圖9係顯示圖8所示的各種組合之定電流放電試驗的結果之圖,橫軸為電池容量[Ah],縱軸為電池電壓[V]。又,定電流放電試驗係以與實施例1同樣的方法進行的。
如圖8所示,使極間距離LA, LB的組合為極間距離0.5mm、10.5mm之組合,以及為極間距離4.5mm、6.5mm之組合的場合,依照極間距離0.5mm、10.5mm之組合,極間距離4.5mm、6.5mm之組合的順序得到高的電壓。另一方面,相當於中央配置型的極間距離5.5mm、5.5mm之組合電壓最低。
如圖9所示,在圖8所示的極間距離LA, LB之所有組合,確認電池容量大致不變。亦即,由圖8亦可知,藉由把金屬極15配置於靠兩側的空氣電極13A, 13B之某一方,可確保容量同時得到高的電壓。
如以上所說明的,本實施型態之金屬空氣電池10,因為在金屬極15的兩側配置空氣電極13A, 13B,金屬極15,被配置於靠兩側的空氣電極13A, 13B之某一方的位置,所以確保容量同時得到高的電壓變得容易。亦即,可以效率佳地得到高性能的金屬空氣電池。
此外,金屬極15與一方之空氣極13A之極間距離LA(相當於第1距離),與金屬極15與另一方之空氣極13B之極間距離LB(相當於第2距離),滿足以下的條件。該條件,係金屬極15與一方之空氣極13A以極間距離LA配置的第1電池所得到的電壓VA,與金屬極15與另一方空氣極13B以極間距離LB配置的第2電池所得到的電壓VB之平均值,比將金屬極15配置於兩側的空氣極13A, 13B的中央位置的場合所得到的電壓VC更高。藉此,可以得到比中央配置型更高的電壓。
而且,作為極間距離設定方法,使極間距離LA, LB,根據呈現極間距離-電壓的關係之特性曲線f1,以使金屬極15與空氣極13A以隔開極間距離LA配置的第1電池所得到的電壓VA,以及使金屬極15與空氣極13B以隔開極間距離LB配置的第2電池所得到的電壓VB之平均值,比將金屬極15配置於兩側的空氣極13A, 13B的中央位置的場合所得到的電壓VC更高的方式設定,所以可以容易地設定可得高電壓的極間距離LA, LB。
進而,使極間距離短者為數值LA,極間距離長者為數值LB的場合,藉由使數值(LB/LA)為2以上,可以更為容易地設定得到高電壓之極間距離LA, LB。 進而,藉由使極間距離的數值LA為0.5mm以上,伴隨著放電產生的反應產物幾乎不會堆積於空氣極13A, 13B與金屬極15之間,充分容易抑制對發電的影響。
此外,本實施型態的金屬空氣電池10,具備使金屬極15由電槽11的底板部21浮起而支撐的左右一對支撐構件30。藉此,可以抑制伴隨著放電產生的反應產物的堆積,同時可促進電解液的對流,可以有效果地抑制反應產物對電池反應之影響。
本發明並不以前述實施型態為限定,可以根據本發明的技術思想進行各種變形及變更。例如,包含空氣極13A, 13B、金屬極15的金屬空氣電池10之各部亦可適宜地變更。 此外,金屬極15不限於鎂合金,使用其他材料亦可。作為其他材料,例如可以舉出鋅、鐵、鋁等金屬,或者含有這些之任一的合金。金屬極15使用鋅的場合,電解液使用氫氧化鉀水溶液即可,金屬極15使用鐵的場合,電解液使用鹼系水溶液即可。此外,金屬極15使用鋁的場合,使用含氫氧化鈉或者氫氧化鉀的電解液即可。
10:金屬空氣電池 11:電槽 13A、13B:空氣極 15:金屬極 21:底板部 22:前壁部 22K:開口部 23:後壁部 24:側壁部 30:支撐構件 LA、LB、LC:極間距離 VA、VB、VC:電壓 f1:特性曲線(顯示極間距離-電壓之關係的非直線特性)
圖1係關於本發明的實施型態的金屬空氣電池之立體圖。 圖2為圖1之A-A縱剖面圖。 圖3(A)顯示實施例1,圖3(B)顯示比較例1,圖3(C)顯示比較例2。 圖4係顯示實施例1,比較例1及比較例2的容量試驗的結果之圖。 圖5係顯示各種極間距離LA, LB的組合之分極試驗之圖。 圖6係顯示各種極間距離LA, LB的組合之定電流放電試驗的結果之圖。 圖7係顯示極間距離[mm]-電壓[V]之關係的非直線特性之圖。 圖8係顯示各種其他的極間距離LA, LB的組合之分極試驗結果之圖。 圖9係顯示圖8所示的各組合之定電流放電試驗的結果之圖。
10:金屬空氣電池 11:電槽 13A、13B:空氣極 15:金屬極 15A1:耳部 21:底板部 22:前壁部 23:後壁部 25:上板部 31:支撐構件本體 41:抵接部 42:前側伸出部 43:後側伸出部 LA、LB:極間距離

Claims (4)

  1. 一種金屬空氣電池,係具備金屬極,與對向於前述金屬極之空氣極;其特徵為: 前述空氣極,分別被配置於前述金屬極的兩側; 前述金屬極,被配置於靠近兩側的前述空氣極之某一方的位置; 前述金屬極與一方之前述空氣極的極間距離亦即第1距離,與前述金屬極與另一方之前述空氣極的極間距離亦即第2距離,滿足下列條件: 使前述金屬極與前述一方之空氣極以前述第1距離配置的第1電池所得到的電壓,以及使前述金屬極與前述另一方之空氣極以前述第2距離配置的第2電池所得到的電壓之平均值,比將前述金屬極配置於兩側的前述空氣極的中央位置的場合所得到的電壓更高。
  2. 如申請專利範圍第1項之金屬空氣電池,其中 前述極間距離短者為數值LA,極間距離長者為數值LB,數值(LB/LA)為2以上。
  3. 如申請專利範圍第1或2項之金屬空氣電池,其中 具有使前述金屬極由收容該金屬極的電槽的底板部浮起而支撐之支撐構件。
  4. 一種金屬空氣電池之極間距離設定方法,係具備金屬極,與對向於前述金屬極之空氣極; 將前述空氣極,分別配置於前述金屬極的兩側; 將前述金屬極,配置於靠近兩側的前述空氣極之某一方的位置之金屬空氣電池之極間距離設定方法,其特徵為: 使前述金屬極與一方之前述空氣極的極間距離亦即第1距離,以及前述金屬極與另一方之前述空氣極的極間距離亦即第2距離,設定為根據呈現極間距離與電壓之關係的非直線特性,使前述金屬極與前述一方之空氣極以前述第1距離配置的第1電池所得到的電壓,以及使前述金屬極與前述另一方之空氣極以前述第2距離配置的第2電池所得到的電壓之平均值,比將前述金屬極配置於兩側的前述空氣極的中央位置的場合所得到的電壓更高。
TW108111651A 2018-04-16 2019-04-02 金屬空氣電池及金屬空氣電池之極間距離設定方法 TWI683467B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078517 2018-04-16
JP2018078517A JP6526865B1 (ja) 2018-04-16 2018-04-16 金属空気電池、及び金属空気電池の極間距離設定方法

Publications (2)

Publication Number Publication Date
TW201944648A TW201944648A (zh) 2019-11-16
TWI683467B true TWI683467B (zh) 2020-01-21

Family

ID=66730674

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108111651A TWI683467B (zh) 2018-04-16 2019-04-02 金屬空氣電池及金屬空氣電池之極間距離設定方法

Country Status (4)

Country Link
JP (1) JP6526865B1 (zh)
CN (1) CN110622350A (zh)
TW (1) TWI683467B (zh)
WO (1) WO2019202997A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018883A (ja) * 2019-07-18 2021-02-15 古河電池株式会社 空気電池、及び空気電池の製造方法
CN111679207B (zh) * 2020-05-09 2023-03-14 军事科学院***工程研究院军事新能源技术研究所 一种金属空气电池及放电测试***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149187A (ja) * 2015-02-10 2016-08-18 日産自動車株式会社 電極構造体、空気電池の単セル構造体及び空気電池のスタック構造体
US9742048B2 (en) * 2013-03-25 2017-08-22 Sharp Kabushiki Kaisha Metal-air battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495536B1 (zh) * 1969-07-25 1974-02-07
JP4905536B2 (ja) * 2009-10-29 2012-03-28 カシオ計算機株式会社 時刻情報取得装置、および、電波時計
GB0921045D0 (en) * 2009-12-01 2010-01-13 Spruce Fuel Cells Llp Electrode, fuel cell and battery
WO2015076172A1 (ja) * 2013-11-19 2015-05-28 古河電池株式会社 金属空気電池、および金属空気電池ユニット
JP5873579B1 (ja) * 2015-02-06 2016-03-01 古河電池株式会社 金属空気電池
CN108496274B (zh) * 2016-01-26 2022-09-23 藤仓橡胶工业株式会社 金属空气电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9742048B2 (en) * 2013-03-25 2017-08-22 Sharp Kabushiki Kaisha Metal-air battery
JP2016149187A (ja) * 2015-02-10 2016-08-18 日産自動車株式会社 電極構造体、空気電池の単セル構造体及び空気電池のスタック構造体

Also Published As

Publication number Publication date
JP2019186150A (ja) 2019-10-24
TW201944648A (zh) 2019-11-16
JP6526865B1 (ja) 2019-06-05
WO2019202997A1 (ja) 2019-10-24
CN110622350A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
JP6070671B2 (ja) 空気電池
JP2015207494A (ja) 電槽及び金属空気電池
KR20100084666A (ko) 재결합 하이브리드 에너지 저장 디바이스
TWI683467B (zh) 金屬空氣電池及金屬空氣電池之極間距離設定方法
WO2019151063A1 (ja) 金属空気電池用負極
JP6836603B2 (ja) 金属空気電池
US20130335884A1 (en) Carbon supercapacitor
KR20110109141A (ko) 카트리지 분리형 금속 공기 전지
JP2013093238A (ja) 非水電解液二次電池
JP5979551B2 (ja) バナジウムレドックス電池
JP6259300B2 (ja) 金属空気電池
JP2017212145A (ja) 蓄電装置
JP6239251B2 (ja) 二次電池
JP6019338B1 (ja) 空気電池
JP2015185513A (ja) 金属燃料電池
JP2009151977A (ja) コイン形二次電池
JP6474725B2 (ja) 金属電極カートリッジおよび金属空気電池
KR101555654B1 (ko) 차등적 리드 구조의 이차전지
JP6439229B2 (ja) 電極構造体、空気電池の単セル構造体及び空気電池のスタック構造体
JP6708808B2 (ja) 金属空気電池
JP6333072B2 (ja) マグネシウム金属電池
KR20150086954A (ko) 권취형 전기 에너지 저장 소자의 3전극 시스템 셀
RU128783U1 (ru) Кислородно-цинковый источник тока
US20150010850A1 (en) Electrochemical device
JP4485891B2 (ja) 空気二次電池