TWI668047B - Polymeric filtration material and method of forming the same - Google Patents

Polymeric filtration material and method of forming the same Download PDF

Info

Publication number
TWI668047B
TWI668047B TW107138240A TW107138240A TWI668047B TW I668047 B TWI668047 B TW I668047B TW 107138240 A TW107138240 A TW 107138240A TW 107138240 A TW107138240 A TW 107138240A TW I668047 B TWI668047 B TW I668047B
Authority
TW
Taiwan
Prior art keywords
filter material
polymer
producing
material according
substrate
Prior art date
Application number
TW107138240A
Other languages
Chinese (zh)
Other versions
TW201943447A (en
Inventor
丁志明
陳冠年
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Application granted granted Critical
Publication of TWI668047B publication Critical patent/TWI668047B/en
Publication of TW201943447A publication Critical patent/TW201943447A/en

Links

Abstract

本發明提供一種高分子過濾材料的製造方法,其係以靜電紡織,使大粒徑的介孔洞二氧化鈦珠與聚合物共同形成過濾纖維於基材上,以製得高分子過濾材料。此高分子過濾材料具有平整表面、良好的微粒吸附率、紫外線吸收率、光降解率以及抗菌力。 The invention provides a method for manufacturing a polymer filter material, which is characterized by electrospinning, wherein a large-diameter mesoporous titania bead and a polymer form a filter fiber on a substrate to obtain a polymer filter material. The polymer filter material has a flat surface, good particle adsorption rate, ultraviolet absorption rate, photodegradation rate, and antibacterial force.

Description

高分子過濾材料及其製造方法 Polymer filter material and method of manufacturing same

本發明是有關於一種高分子過濾材料及其製造方法,且特別是有關於一種使用大粒徑介孔洞二氧化鈦珠及聚合物所製得的高分子過濾材料及其製造方法。上述高分子過濾材料具有均勻度、良好的微粒吸附率、光降解率、紫外線吸收率及抗菌力。 The present invention relates to a polymer filter material and a method for producing the same, and more particularly to a polymer filter material obtained by using a large particle size mesoporous titania bead and a polymer, and a method for producing the same. The above polymer filter material has uniformity, good particle adsorption rate, photodegradation rate, ultraviolet absorption rate, and antibacterial force.

近年來,空氣汙染和暴露於過高的紫外線指數下等對人體造成的傷害,逐漸受到重視。同時,如何避免此些傷害也是當前的重要議題。 In recent years, air pollution and exposure to excessive ultraviolet index have caused more harm to the human body. At the same time, how to avoid such damage is also an important issue at present.

一種方法係製造具有良好微粒吸附率的纖維材料,此種纖維材料也具有吸收紫外線的功效。目前已知有一種方法係將小粒徑(例如小於100nm)的二氧化鈦珠,形成於聚合物材料中,並共同形成纖維材料。所述二氧化鈦部份地從聚合物所形成的纖維基底暴露出來,以增加紫外線吸收率。 One method is to produce a fibrous material having a good particle adsorption rate, and the fibrous material also has an ultraviolet absorbing effect. One method is known to form small particle size (e.g., less than 100 nm) titania beads formed in a polymeric material and together form a fibrous material. The titanium dioxide is partially exposed from the fibrous substrate formed by the polymer to increase the ultraviolet absorption rate.

然而,上述方法在製造過程中易阻塞設備,造 成所形成的纖維表面不平整(即不具均勻度)。此外,上述的纖維材料之微粒吸附率、紫外線吸收率、光降解能力及抗菌力尚嫌不足。 However, the above method is easy to block the device during the manufacturing process, The resulting fiber surface is not flat (ie, has no uniformity). In addition, the above-mentioned fibrous materials have insufficient particle adsorption ratio, ultraviolet absorption rate, photodegradability and antibacterial power.

鑒於上述種種問題,目前亟需提出一種高分子過濾材料及其製造方法,其可製得具有平整表面的過濾纖維,且此種過濾纖維具有良好的微粒吸附率、紫外光吸收率、光降解率以及抗菌能力。 In view of the above various problems, it is urgent to provide a polymer filter material and a method for producing the same, which can produce a filter fiber having a flat surface, and the filter fiber has good particle adsorption rate, ultraviolet light absorption rate, and light degradation rate. And antibacterial ability.

本發明的一個態樣在於提出一種高分子過濾材料的製造方法。上述製造方法係使用特定含量及特定尺寸的二氧化鈦珠及聚合物來進行。 One aspect of the present invention is to provide a method of producing a polymeric filter material. The above manufacturing method is carried out using titanium dioxide beads and a polymer having a specific content and a specific size.

本發明的又一個態樣在於提出一種高分子過濾材料,其係藉由上述的製造方法而製得。 Still another aspect of the present invention is to provide a polymeric filter material which is produced by the above-described production method.

根據本發明的一些實施例,提出一種高分子過濾材料的製造方法。在一些實施例中,首先提供基材。接著,製備前驅物混合物。所述前驅物混合物係由4重量百分比(wt.%)至8wt.%的聚合物(A)、0.5wt.%至2wt.%的介孔洞二氧化鈦珠(B)以及餘量的溶劑(C)所組成。所述介孔洞二氧化鈦珠具有200nm至400nm之平均粒徑。然後,對所述前驅物混合物進行靜電紡織步驟,以形成過濾纖維於基材上。 According to some embodiments of the present invention, a method of manufacturing a polymeric filter material is presented. In some embodiments, a substrate is first provided. Next, a precursor mixture is prepared. The precursor mixture is from 4 weight percent (wt.%) to 8 wt.% of polymer (A), 0.5 wt.% to 2 wt.% of mesoporous titania beads (B), and the balance of solvent (C) Composed of. The mesoporous titania beads have an average particle diameter of 200 nm to 400 nm. The precursor mixture is then subjected to an electrospinning step to form filter fibers on the substrate.

依據本發明的一些實施例,所述靜電紡織步驟使用15kV至25kV的電壓進行。 According to some embodiments of the invention, the electrospinning step is performed using a voltage of 15 kV to 25 kV.

依據本發明的一些實施例,所述基材包含不織布。 According to some embodiments of the invention, the substrate comprises a nonwoven fabric.

依據本發明的一些實施例,所述聚合物(A)的重複單元包含含氮側鏈。 According to some embodiments of the invention, the repeating unit of the polymer (A) comprises a nitrogen-containing side chain.

依據本發明的一些實施例,所述聚合物(A)包含聚丙烯腈、聚乙烯吡咯烷酮或上述之組合。 According to some embodiments of the invention, the polymer (A) comprises polyacrylonitrile, polyvinylpyrrolidone or a combination thereof.

依據本發明的一些實施例,所述聚合物(A)的重量平均分子量為100000kDa至250000kDa。 According to some embodiments of the invention, the polymer (A) has a weight average molecular weight of from 100,000 kDa to 250,000 kDa.

依據本發明的一些實施例,所述介孔洞二氧化鈦珠(B)為銳鈦相二氧化鈦。 According to some embodiments of the invention, the mesoporous titania beads (B) are anatase titanium dioxide.

依據本發明的一些實施例,所述溶劑(C)為二甲基甲醯胺。 According to some embodiments of the invention, the solvent (C) is dimethylformamide.

依據本發明的一些實施例,所述過濾纖維之平均截面直徑為180nm至350nm。 According to some embodiments of the invention, the filter fibers have an average cross-sectional diameter of from 180 nm to 350 nm.

依據本發明的一些實施例,所述製備前驅物混合物的步驟包含於25℃至70℃下攪拌前驅物混合物達2小時至24小時。 According to some embodiments of the invention, the step of preparing the precursor mixture comprises agitating the precursor mixture at 25 ° C to 70 ° C for 2 hours to 24 hours.

依據本發明的一些實施例,所述靜電紡織步驟係以0.3ml/hr.至1ml/hr.之流速進行。 According to some embodiments of the invention, the electrospinning step is carried out at a flow rate of from 0.3 ml/hr. to 1 ml/hr.

依據本發明的一些實施例,所述靜電紡織步驟之噴嘴與基材之間的距離為15公分。 According to some embodiments of the invention, the distance between the nozzle of the electrospinning step and the substrate is 15 cm.

根據本發明的一些實施例,提出一種高分子過濾材料,其係由前述之高分子過濾材料的製造方法所製得。所述高分子過濾材料包含基材以及設置於基材上的過濾纖 維層。 According to some embodiments of the present invention, a polymeric filter material is proposed which is produced by the above-described method for producing a polymeric filter material. The polymeric filter material comprises a substrate and a filter fiber disposed on the substrate Dimensional layer.

100‧‧‧方法 100‧‧‧ method

110‧‧‧提供基材 110‧‧‧Providing substrate

120‧‧‧製備前驅物混合物 120‧‧‧Preparation of precursor mixtures

130‧‧‧對前驅物混合物進行靜電紡織步驟,以形成過濾纖維於基材上 130‧‧‧ Electrostatic spinning of the precursor mixture to form filter fibers on the substrate

200‧‧‧基材 200‧‧‧Substrate

210‧‧‧基材 210‧‧‧Substrate

220‧‧‧靜電紡織設備 220‧‧‧Electro-textile equipment

230‧‧‧噴嘴 230‧‧‧ nozzle

410、420、430、440‧‧‧圓圈 410, 420, 430, 440 ‧ ‧ circles

從以下結合所附圖式所做的詳細描述,可對本發明之態樣有更佳的了解。 A better understanding of the aspects of the invention can be obtained from the following detailed description taken in conjunction with the drawings.

[圖1]為根據本發明的一些實施例所述之高分子過濾材料的製造方法之示意流程圖。 Fig. 1 is a schematic flow chart showing a method of producing a polymeric filter material according to some embodiments of the present invention.

[圖2]為根據本發明的一些實施例所述之靜電紡織步驟的示意圖。 Fig. 2 is a schematic view of an electrospinning step according to some embodiments of the present invention.

[圖3A]至[圖3D]分別為本發明實施例1至4的過濾纖維的電子顯微鏡圖。 3A to 3D are electron micrographs of the filter fibers of Examples 1 to 4, respectively.

[圖4A]至[圖4D]分別為本發明比較例1至4的過濾纖維的電子顯微鏡圖。 4A to 4D are electron micrographs of the filter fibers of Comparative Examples 1 to 4, respectively.

[圖5A]為本發明實施例1至4及比較例5的微粒吸附率圖。 Fig. 5A is a graph showing the adsorption ratio of the microparticles of Examples 1 to 4 and Comparative Example 5 of the present invention.

[圖5B]為本發明比較例1至4的微粒吸附率圖。 Fig. 5B is a graph showing the adsorption ratio of the microparticles of Comparative Examples 1 to 4 of the present invention.

[圖5C]為本發明實施例1至4及比較例1至5的對粒徑為約300nm之微粒吸附率的折線圖。 Fig. 5C is a line graph showing the adsorption rates of the particles having a particle diameter of about 300 nm in Examples 1 to 4 and Comparative Examples 1 to 5 of the present invention.

[圖6]為本發明實施例1至4及比較例1至5的過濾纖維對波長為300nm至400nm之光線的吸收率折線圖。 Fig. 6 is a graph showing the absorbance of the filter fibers of Examples 1 to 4 and Comparative Examples 1 to 5 for light having a wavelength of 300 nm to 400 nm.

[圖7]為本發明實施例1至4之過濾纖維於特定時間內對甲基藍的降解率圖。 Fig. 7 is a graph showing the degradation rate of methyl blue in the filter fibers of Examples 1 to 4 of the present invention.

本發明的一個目的在於提供一種高分子過濾材料及其製造方法。所述高分子過濾材料包含基材及過濾纖維層。所述過濾纖維包含聚合物與複數個介孔洞二氧化鈦珠,此些介孔洞二氧化鈦珠係均勻地分散並包覆於聚合物中。上述過濾纖維係藉由調控前驅物混合物的特定比例,以及前驅物混合物中特定粒徑的介孔洞二氧化鈦珠所製得。上述過濾纖維及高分子過濾材料可具有均勻度、高微粒吸附率、良好的抗菌力、光降解能力以及紫外光(UV)吸收率。 It is an object of the present invention to provide a polymeric filter material and a method of producing the same. The polymeric filter material comprises a substrate and a filter fiber layer. The filter fiber comprises a polymer and a plurality of mesoporous titania beads, and the mesoporous titania beads are uniformly dispersed and coated in the polymer. The filter fibers are prepared by adjusting a specific ratio of the precursor mixture and mesoporous titania beads of a specific particle size in the precursor mixture. The filter fiber and the polymer filter material may have uniformity, high particle adsorption rate, good antibacterial force, photodegradability, and ultraviolet (UV) absorption rate.

本發明此處所稱之介孔洞二氧化鈦珠係指表面分佈有複數個介孔洞之二氧化鈦珠。 The mesoporous titanium dioxide beads referred to herein are the titanium dioxide beads having a plurality of mesopores distributed on the surface.

本發明此處所稱之均勻度係指過濾纖維的表面平整度。 The term "uniformity" as used herein refers to the surface flatness of the filter fibers.

以下利用圖1和圖2說明本發明的高分子過濾材料的製造方法。圖1為根據本發明的一些實施例所述之高分子過濾材料的製造方法之示意流程圖。圖2為根據本發明的一些實施例所述之靜電紡織步驟的示意圖。 Hereinafter, a method for producing the polymer filter material of the present invention will be described with reference to Figs. 1 and 2 . 1 is a schematic flow chart of a method of manufacturing a polymeric filter material according to some embodiments of the present invention. 2 is a schematic illustration of an electrospinning step in accordance with some embodiments of the present invention.

在方法100中,首先,如步驟110所示,提供基材200。在一些實施例中,所述基材200可為不織布。所述基材200用以支撐高分子過濾纖維層,並提高高分子過濾材料整體的機械強度和加工強度,以使本發明的高分子過濾材料可應用於各種過濾微粒的領域。所述過濾微粒的領域可包括但不限於口罩、空氣清淨機之替芯材料或其他適合的應用。 In method 100, first, as shown in step 110, substrate 200 is provided. In some embodiments, the substrate 200 can be a nonwoven fabric. The substrate 200 is used to support the polymer filter fiber layer and improve the mechanical strength and processing strength of the polymer filter material as a whole, so that the polymer filter material of the present invention can be applied to various fields of filter particles. The field of filter particles can include, but is not limited to, a mask, a core material for an air cleaner, or other suitable application.

接下來,如步驟120所示,製備前驅物混合物。 所述前驅物混合物係由聚合物(A)、介孔洞二氧化鈦珠(B)和溶劑(C)所組成。以下分別說明前驅物混合物的各個成分。 Next, as shown in step 120, a precursor mixture is prepared. The precursor mixture is composed of a polymer (A), mesoporous titania beads (B), and a solvent (C). The individual components of the precursor mixture are separately described below.

在一些實施例中,聚合物(A)的重複單元(即單體)可包含含氮側鏈。具有含氮側鏈的重複單元之聚合物(A)之偶極矩較大,利於微粒之吸附。在一些實施例中,聚合物(A)可為聚丙烯腈、聚乙烯吡咯烷酮或上述之組合。較佳地,聚合物(A)可為聚丙烯腈。 In some embodiments, the repeating unit (ie, monomer) of polymer (A) can comprise a nitrogen-containing side chain. The polymer (A) having a repeating unit containing a nitrogen-containing side chain has a larger dipole moment, which is advantageous for adsorption of the particles. In some embodiments, the polymer (A) can be polyacrylonitrile, polyvinylpyrrolidone, or a combination thereof. Preferably, the polymer (A) may be polyacrylonitrile.

在一些實施例中,聚合物(A)的重量平均分子量為100000kDa至250000kDa。若聚合物(A)的重量平均分子量過低,則難以形成過濾纖維。然而,若聚合物(A)的重量平均分子量過高,使得前驅物混合物的黏度過大,易使堵塞靜電紡織設備的噴嘴及/或產生均勻度低的過濾纖維。 In some embodiments, the polymer (A) has a weight average molecular weight of from 100,000 kDa to 250,000 kDa. If the weight average molecular weight of the polymer (A) is too low, it is difficult to form a filter fiber. However, if the weight average molecular weight of the polymer (A) is too high, the viscosity of the precursor mixture is too large, which may easily block the nozzle of the electrospinning apparatus and/or produce filter fibers having low uniformity.

在一些實施例中,聚合物(A)的使用量為4重量百分比(wt.%)至8wt.%。聚合物(A)的使用量係為配合特定粒徑之介孔洞二氧化鈦珠而調整,倘若聚合物(A)的使用量過低,造成介孔洞二氧化鈦珠(B)無法被包覆於聚合物(A)中,從而影響高分子過濾材料的吸附效率。另一方面,倘若聚合物(A)的使用量過高,使得聚合物(A)和介孔洞二氧化鈦珠(B)不易於溶劑(C)中分散,所製得的過濾纖維表面不均勻,且也可能阻塞靜電紡織設備的噴嘴。 In some embodiments, the polymer (A) is used in an amount of from 4 weight percent (wt.%) to 8 wt.%. The amount of the polymer (A) used is adjusted to match the mesoporous titania beads of a specific particle size, and if the amount of the polymer (A) used is too low, the mesoporous titania beads (B) cannot be coated with the polymer ( In A), thereby affecting the adsorption efficiency of the polymeric filter material. On the other hand, if the amount of the polymer (A) used is too high, the polymer (A) and the mesoporous titania beads (B) are not easily dispersed in the solvent (C), and the surface of the produced filter fiber is not uniform, and It is also possible to block the nozzle of the electrospinning device.

在一些實施例中,介孔洞二氧化鈦珠(B)為銳鈦相二氧化鈦。在一些實施例中,介孔洞二氧化鈦珠(B)的平均粒徑為200nm至400nm。由於大粒徑的介孔洞二氧化鈦 珠(B)於溶劑(C)中的分散性較佳,不易聚集,所製得的過濾纖維均勻度高,聚合物(A)也可完整包覆介孔洞二氧化鈦珠(B),增加微粒吸附率。使用特定尺寸的介孔洞二氧化鈦珠(B)也有利於提升高分子過濾材料的紫外光吸收率、光降解率和抗菌效果。 In some embodiments, the mesoporous titania beads (B) are anatase titanium dioxide. In some embodiments, the mesoporous titania beads (B) have an average particle size of from 200 nm to 400 nm. Due to the large particle size of mesoporous titanium dioxide The bead (B) has better dispersibility in the solvent (C), is less likely to aggregate, and has a high uniformity of the obtained filter fibers, and the polymer (A) can also completely cover the mesoporous titanium dioxide beads (B) to increase the adsorption of the particles. rate. The use of a specific size of mesoporous titanium dioxide beads (B) is also beneficial to enhance the ultraviolet light absorption rate, photodegradation rate and antibacterial effect of the polymeric filter material.

在一些實施例中,介孔洞二氧化鈦珠(B)的表面積可為50m2/g至150m2/g。在一些實施例中,介孔洞二氧化鈦珠(B)的孔隙率可為40%-60%。在一些實施例中,介孔洞二氧化鈦珠(B)的孔徑可為5nm至20nm。在一些實施例中,孔洞體積可例如為0.2cm3/g至0.3cm3/g。當介孔洞二氧化鈦珠(B)包含上述性質時,可進一步改善微粒吸附效率。 In some embodiments, the mesoporous titania beads (B) may have a surface area of from 50 m 2 /g to 150 m 2 /g. In some embodiments, the mesoporous titania beads (B) may have a porosity of from 40% to 60%. In some embodiments, the mesoporous titania beads (B) may have a pore diameter of 5 nm to 20 nm. In some embodiments, the pore volume can be, for example, from 0.2 cm 3 /g to 0.3 cm 3 /g. When the mesoporous titania beads (B) contain the above properties, the particle adsorption efficiency can be further improved.

在一些實施例中,介孔洞二氧化鈦珠(B)的使用量可例如為0.5wt.%至2wt.%。倘若介孔洞二氧化鈦珠(B)的使用量過少,則高分子過濾材料的截面直徑不足,從而影響微粒吸附效率。另一方面,倘若介孔洞二氧化鈦珠(B)的使用量過多,介孔洞二氧化鈦珠(B)不易於溶劑(C)中分散,聚集的介孔洞二氧化鈦珠(B)造成高分子過濾纖維不均勻,也易阻塞靜電紡織設備的噴嘴。 In some embodiments, the mesoporous titania beads (B) can be used in an amount of, for example, 0.5 wt.% to 2 wt.%. If the amount of the mesoporous titania beads (B) used is too small, the cross-sectional diameter of the polymeric filter material is insufficient, thereby affecting the particle adsorption efficiency. On the other hand, if the amount of the mesoporous titania beads (B) is too large, the mesoporous titania beads (B) are not easily dispersed in the solvent (C), and the aggregated mesoporous titania beads (B) cause the polymer filter fibers to be uneven. It is also easy to block the nozzle of the electrospinning equipment.

在一些實施例中,介孔洞二氧化鈦珠(B)可例如以下述方法製得。於室溫下混合含氮化合物、鹽類、含鈦化合物和乙醇達18至24小時,以獲得非晶相二氧化鈦。之後,將上述非晶相二氧化鈦加入去離子水中,藉由水熱法,於120℃至200℃下反應達15分鐘至1小時,以獲得介孔洞 二氧化鈦珠(B)。反應時間過長會導致二氧化鈦珠的粒徑過大,無法達到良好的吸附率。可進一步以去離子水清洗並乾燥所得產物。在一些實施例中,所述水熱法可藉由微波輔助,以增強反應效能。 In some embodiments, the mesoporous titania beads (B) can be made, for example, in the following manner. The nitrogen-containing compound, the salt, the titanium-containing compound, and the ethanol are mixed at room temperature for 18 to 24 hours to obtain amorphous phase titanium oxide. Thereafter, the amorphous phase titanium dioxide is added to deionized water, and the reaction is carried out at 120 ° C to 200 ° C for 15 minutes to 1 hour by hydrothermal method to obtain mesopores. Titanium dioxide beads (B). Excessive reaction time will cause the particle size of the titanium dioxide beads to be too large to achieve a good adsorption rate. The resulting product can be further washed with deionized water and dried. In some embodiments, the hydrothermal method can be assisted by microwaves to enhance reaction efficiency.

在一些實施例中,所述含氮化合物包含六甲基四胺、三甲胺、喹啉、異喹啉或甲基二乙基胺(CH3N(CH2CH3))。在一些實施例中,所述鹽類包括KCl、LiCl、NaCl、KCl、LiF、NaF、KF、LiBr、NaBr、KBr、LiI、NaI、KI、CsCl、CsI、CsBr或KNO3。在一些實施例中,所述含鈦化合物包含四異丙烷氧化鈦、四氯化鈦、三氯化鈦、正鈦酸乙酯或Ti(OC4H8)4。在一些實施例中,含氮化合物、含鈦化合物和乙醇的莫耳比可例如為0.1至1:1:200至300。 In some embodiments, the nitrogen-containing compound comprises hexamethylenetetramine, trimethylamine, quinoline, isoquinoline or diethyl methyl amine (CH 3 N (CH 2 CH 3)). In some embodiments, the salts include KCl, LiCl, NaCl, KCl, LiF, NaF, KF, LiBr, NaBr, KBr, LiI, NaI, KI, CsCl, CsI, CsBr, or KNO 3 . In some embodiments, the titanium-containing compound comprises titanium tetraisopropoxide, titanium tetrachloride, titanium trichloride, ethyl orthotitanate or Ti(OC 4 H 8 ) 4 . In some embodiments, the molar ratio of the nitrogen-containing compound, the titanium-containing compound, and the ethanol may be, for example, from 0.1 to 1:1:200 to 300.

在一些實施例中,溶劑(C)為二甲基甲醯胺。特別說明的是,本發明選用特定的溶劑(C),使聚合物(A)可溶解於此溶劑(C)中,並使介孔洞二氧化鈦珠(B)可良好分散。因此,本發明的溶劑(C)排除添加水或其他非本發明所提之溶劑,以避免影響聚合物(A)的溶解度和介孔洞二氧化鈦珠(B)的分散性。在一些實施例中,溶劑(C)的使用量為扣除聚合物(A)和介孔洞二氧化鈦珠(B)的餘量。倘若溶劑(C)的使用量過少,聚合物(A)的溶解度和介孔洞二氧化鈦珠(B)的分散性不佳,容易造成靜電紡織設備的噴嘴阻塞。反之,溶劑(C)的使用量過多會造成過濾纖維不易成形。 In some embodiments, the solvent (C) is dimethylformamide. Specifically, the present invention selects a specific solvent (C) so that the polymer (A) can be dissolved in the solvent (C), and the mesoporous titania beads (B) can be well dispersed. Therefore, the solvent (C) of the present invention excludes the addition of water or other solvent other than the present invention to avoid affecting the solubility of the polymer (A) and the dispersibility of the mesoporous titania beads (B). In some embodiments, the solvent (C) is used in an amount to subtract the balance of the polymer (A) and the mesoporous titania beads (B). If the amount of the solvent (C) used is too small, the solubility of the polymer (A) and the dispersibility of the mesoporous titania beads (B) are poor, which tends to cause nozzle clogging of the electrospinning apparatus. Conversely, excessive use of the solvent (C) may cause the filter fibers to be less likely to form.

請再參考圖1和圖2,接下來,如步驟130所示, 對前驅物混合物進行靜電紡織步驟,以形成過濾纖維210於基材200上。在一些實施例中,過濾纖維210的截面直徑可例如為180nm至350nm。在一些實施例中,所述靜電紡織步驟係使用靜電紡織設備220進行,此靜電紡織設備220可為直立式或水平式的靜電紡織設備。在一些例子中,靜電紡織設備220的噴嘴230之開口直徑可例如為19g至22g。倘若開口直徑過小,容易造成噴嘴230阻塞或是所製造的過濾纖維210不均勻(或稱不連續)。 Please refer to FIG. 1 and FIG. 2 again. Next, as shown in step 130, The precursor mixture is subjected to an electrospinning step to form filter fibers 210 on the substrate 200. In some embodiments, the cross-sectional diameter of the filter fibers 210 can be, for example, from 180 nm to 350 nm. In some embodiments, the electrospinning step is performed using an electrospinning device 220, which may be an upright or horizontal electrospinning device. In some examples, the opening diameter of the nozzle 230 of the electrospinning device 220 can be, for example, 19 g to 22 g. If the opening diameter is too small, the nozzle 230 is likely to be clogged or the filter fiber 210 produced is not uniform (or discontinuous).

在一些實施例中,靜電紡織步驟使用15kV至25kV的電壓進行。若上述電壓過大,易造成噴嘴230阻塞;而若電壓過小,則過濾纖維210無法成形。在一些實施例中,靜電紡織步驟係以0.3ml/hr.至1ml/hr.之流速進行。在一些實施例中,靜電紡織步驟之噴嘴230與基材200之間的距離可例如為15公分。若採用水平式靜電紡織設備220,當此距離超過15公分,則無法於基材200上形成過濾纖維210。 In some embodiments, the electrospinning step is performed using a voltage of 15 kV to 25 kV. If the voltage is too large, the nozzle 230 is likely to be blocked; and if the voltage is too small, the filter fiber 210 cannot be formed. In some embodiments, the electrospinning step is carried out at a flow rate of from 0.3 ml/hr. to 1 ml/hr. In some embodiments, the distance between the nozzle 230 of the electrospinning step and the substrate 200 can be, for example, 15 cm. If the horizontal electrospinning apparatus 220 is employed, when the distance exceeds 15 cm, the filter fibers 210 cannot be formed on the substrate 200.

在一些實施例中,步驟130包含在靜電紡織步驟前,於25℃至70℃下攪拌前驅物混合物達2小時至24小時,以利聚合物(A)的溶解和介孔洞二氧化鈦珠(B)的分散。 In some embodiments, step 130 comprises agitating the precursor mixture at 25 ° C to 70 ° C for 2 hours to 24 hours prior to the electrospinning step to facilitate dissolution of the polymer (A) and mesoporous titania beads (B) Dispersed.

以下提供複數個實施例與比較例,說明本發明之高分子過濾材料及其製造方法。 Hereinafter, a plurality of examples and comparative examples will be provided to explain the polymer filter material of the present invention and a method for producing the same.

製備介孔洞二氧化鈦珠(B)Preparation of mesoporous titanium dioxide beads (B)

製備例1Preparation Example 1

於室溫下,將0.5克的己胺(hexamine)加入 200ml的乙醇中,並加入1ml的氯化鉀(濃度為0.1M)和4.4ml的異丙醇鈦(濃度為>98wt.%),持續攪拌達24小時,以獲得非晶相二氧化鈦。之後,將0.4克之非晶相二氧化鈦加入去25ml的去離子水中,藉由水熱法,於200℃下反應達15分鐘,以獲得粗產物。然後,以去離子水清洗並於60℃下乾燥所得粗產物,以製得介孔洞二氧化鈦珠(B),其為銳鈦相並具有301±90nm之平均粒徑以及150m2/g的比表面積。 0.5 g of hexamine was added to 200 ml of ethanol at room temperature, and 1 ml of potassium chloride (concentration of 0.1 M) and 4.4 ml of titanium isopropoxide (concentration of >98 wt.%) were added. Stirring was continued for 24 hours to obtain amorphous phase titanium dioxide. Thereafter, 0.4 g of amorphous phase titanium dioxide was added to 25 ml of deionized water, and reacted at 200 ° C for 15 minutes by hydrothermal method to obtain a crude product. Then, the obtained crude product was washed with deionized water and dried at 60 ° C to obtain mesoporous titania beads (B) which were anatase phase and had an average particle diameter of 301 ± 90 nm and a specific surface area of 150 m 2 /g. .

製備過濾纖維Preparation of filter fibers

實施例1Example 1

於70℃下,攪拌包含6wt.%聚丙烯腈(重量平均分子量為150,000kDa)、0.5%製備例1的介孔洞二氧化鈦珠以及93.5wt.%的二甲基甲醯胺達2小時,以製備前驅物混合物。之後將前驅物混合物置入靜電紡織設備中,以0.5ml/hr.的流速及25kV的電壓,形成過濾纖維於不織布上,以製得實施例1之高分子過濾材料。關於實施例1的製程條件、規格及評價結果悉如表1及圖3A所示。 The mixture contained 6 wt.% of polyacrylonitrile (weight average molecular weight of 150,000 kDa), 0.5% of mesoporous titania beads of Preparation Example 1, and 93.5 wt.% of dimethylformamide at 70 ° C for 2 hours. Precursor mixture. Thereafter, the precursor mixture was placed in an electrospinning apparatus, and a filter fiber was formed on the nonwoven fabric at a flow rate of 0.5 ml/hr. and a voltage of 25 kV to prepare the polymer filter material of Example 1. The process conditions, specifications, and evaluation results of Example 1 are shown in Table 1 and FIG. 3A.

實施例2至4及比較例1至5Examples 2 to 4 and Comparative Examples 1 to 5

實施例2至4及比較例1至5係使用與實施例1相同的方法進行。不同的是,實施例2至4及比較例1至5改變前驅物混合物之組成種類或使用量。關於實施例2至4及比較例1至5的製程條件、規格及結果悉如表1、圖3B至圖3D及圖4A至圖4D所示。 Examples 2 to 4 and Comparative Examples 1 to 5 were carried out in the same manner as in Example 1. The difference was that Examples 2 to 4 and Comparative Examples 1 to 5 changed the composition type or usage amount of the precursor mixture. The process conditions, specifications, and results for Examples 2 to 4 and Comparative Examples 1 to 5 are shown in Table 1, Figure 3B to Figure 3D, and Figures 4A to 4D.

P25:市售二氧化鈦珠,平均粒徑約為25nm,混合有金紅石相與銳太相二氧化鈦。 P25: Commercially available titanium dioxide beads having an average particle diameter of about 25 nm mixed with rutile phase and sharp titanium dioxide.

評價方式Evaluation method

1. 均勻度Uniformity

本發明此處所稱之均勻度代表過濾纖維表面的平整度。均勻度的評價係將過濾纖維形成於鋁箔上,再將所形成的過濾纖維層撕下後,進行電子顯微鏡的拍攝,其結果如圖3A至圖4D所示。 The degree of uniformity referred to herein as the present invention represents the flatness of the surface of the filter fiber. The evaluation of the uniformity was carried out by forming a filter fiber on an aluminum foil, and then peeling off the formed filter fiber layer, followed by electron microscopy, and the results are shown in Figs. 3A to 4D.

2. 微粒吸附率2. Particle adsorption rate

本發明之微粒吸附率主要是測量14nm至400nm的氣膠,通過高分子過濾材料的量。通過量越少代表微粒吸附率越佳,其結果如圖5A至圖5C所示。 The particle adsorption rate of the present invention is mainly measured by measuring the amount of the gas filter from 14 nm to 400 nm through the polymer filter material. The smaller the amount of the passage, the better the adsorption rate of the particles, and the results are shown in Figs. 5A to 5C.

3. UV吸收率3. UV absorption rate

本發明此處所稱之UV吸收率係藉由將過濾纖維層照射波長為300nm至800nm之光線,並測量其在紫外光區段(例如300nm至400nm)的吸收率,其結果如圖6所示。過濾纖維層的形成方式如均勻度之測試所示。 The UV absorption rate referred to herein is by irradiating the filter fiber layer with light having a wavelength of from 300 nm to 800 nm, and measuring the absorption rate thereof in the ultraviolet light section (for example, 300 nm to 400 nm), and the result is shown in Fig. 6. . The formation of the filter fiber layer is shown as a test for uniformity.

4. 光降解能力4. Photodegradability

本發明此處所稱之光降解能力係將所得的過濾纖維層浸泡於甲基藍(Methylene blue;MB)溶液中並照射紫外光,並測量在特定時間內甲基藍的降解率,其結果如圖7所示。過濾纖維層的形成方式如均勻度之測試所示。 The photodegradability of the present invention is as follows. The obtained filter fiber layer is immersed in a methyl blue (MB) solution and irradiated with ultraviolet light, and the degradation rate of methyl blue in a specific time is measured, and the result is as follows. Figure 7 shows. The formation of the filter fiber layer is shown as a test for uniformity.

5. 抗菌力5. Antibacterial power

本發明此處所稱之抗菌力係以菌液吸收法定量測試,其中菌種為金黃色葡萄球菌。將本發明之實施例1至4及比較例5的每一者分別進行下述實驗,以獲得抗菌力之評比。具體而言,準備6組對照檢體(鋁箔紙)當作基準,以及6組樣品檢體(實施例1至4和比較例5的一者),一組檢體為0.4公克。以1/20肉汁培養基(Nutrient broth;NB)調製濃度為1×105至3×105CFU/ml的試驗菌液(菌落形成單位(Colony-Forming Unit;CFU)為一種計算細菌數量的方法,其值越高表示樣品中所含的細菌越多)。取0.2ml的試驗菌液均勻地接種於各檢體上。將已接種菌液的3個對照檢體和3個樣品檢體,於接種後立即進行沖刷處理,其他3個對照檢體和3個樣品檢體則以35±2℃培養18±1小時後,再進行沖刷處理。以20ml之沖刷液進行沖刷處理,將沖出的菌液進行10倍系列稀釋,各取1ml稀釋液至無菌培養皿中,然後倒入15~20ml的營養(洋菜)培養基(Nutrient Agar;NA)培養基混合均勻,靜置待冷卻凝固後,放入35±2℃培養箱中培養24至48小時。計數各培養皿的菌落數,乘上其稀釋倍率,再乘上20,計算出生菌數。稀釋倍率為100 之菌落數若為0,生菌數記錄為<20。以式(1-1)計算對照檢體細菌增殖值(F),結果1.0時試驗成立。試驗成立時,以式(1-2)計算樣品檢體細菌增殖值(G),接著利用式(1-3)計算抗菌活性值(A),其中抗菌活性值(A)越大,代表抗菌效果越佳。關於實施例1至4及比較例5的抗菌力結果悉如表2所示。 The antibacterial force referred to in the present invention is quantitatively tested by the bacterial liquid absorption method, wherein the strain is Staphylococcus aureus. Each of Examples 1 to 4 and Comparative Example 5 of the present invention was subjected to the following experiment to obtain an evaluation of the antimicrobial force. Specifically, six sets of control samples (aluminum foil paper) were prepared as a reference, and six sets of sample samples (one of Examples 1 to 4 and Comparative Example 5) were prepared, and one set of samples was 0.4 gram. A test bacterial solution having a concentration of 1×10 5 to 3×10 5 CFU/ml was prepared in 1/20 broth medium (Nutrient broth; NB) (Colony-Forming Unit (CFU) is a method for calculating the number of bacteria. The higher the value, the more bacteria are contained in the sample). 0.2 ml of the test bacterial solution was uniformly inoculated on each sample. Three control samples and three sample samples that have been inoculated with the bacterial liquid are washed immediately after inoculation, and the other three control samples and three sample samples are cultured at 35 ± 2 ° C for 18 ± 1 hour. , then scouring. The scouring solution was washed with 20 ml of the scouring solution, and the sterilized broth was serially diluted 10 times, and each 1 ml of the diluted solution was taken into a sterile culture dish, and then 15 to 20 ml of nutrient (agar) medium (Nutrient Agar; NA) was poured. The medium is uniformly mixed, allowed to stand for cooling and solidified, and then cultured in a 35±2 ° C incubator for 24 to 48 hours. Count the number of colonies in each dish, multiply the dilution ratio, and multiply by 20 to calculate the number of birth bacteria. If the number of colonies with a dilution ratio of 100 is 0, the number of bacteria is recorded as <20. Calculate the bacterial proliferation value (F) of the control sample by the formula (1-1), and the result The test was established at 1.0. When the test is established, the bacterial growth value (G) of the sample is calculated by the formula (1-2), and then the antibacterial activity value (A) is calculated by the formula (1-3), wherein the larger the antibacterial activity value (A), represents the antibacterial The better the effect. The antibacterial power results of Examples 1 to 4 and Comparative Example 5 are shown in Table 2.

F=Mb-Ma (1-1) F=M b -M a (1-1)

G=Mc-M0 (1-2) G=M c -M 0 (1-2)

A=F-G (1-3) A=F-G (1-3)

其中F為對照檢體細菌增殖值,Mb為對照檢體培養後之平均生菌數的對數值,Ma為對照檢體立即沖刷之平均生菌數的對數值,G為樣品檢體細菌增殖值,Mc為樣品檢體培養後之平均生菌數的對數值,M0為樣品檢體立即沖刷之平均生菌數的對數值,A為抗菌活性值。 Wherein F is the proliferation of the bacteria value control subject, M b for the value of the number average after birth of the control sample cultured bacteria, M a for the value of the number of control specimen flush Instant average endophyte, G is the specimen bacteria The proliferation value, M c is the logarithm of the average number of bacteria after the sample culture, M 0 is the logarithm of the average number of bacteria immediately washed by the sample, and A is the antibacterial activity value.

請先參考圖3A至圖3D,其分別為本發明實施例1至4的過濾纖維層的電子顯微鏡圖。如圖3A至圖3D所示,實施例1至4的過濾纖維之表面平整均勻,代表實施例1至4之前驅物混合物各組成均勻分散,且不易造成靜電紡織設備的噴嘴堵塞。接著,請參考圖4A至圖4D,其分別為本發明比較例1至4的過濾纖維層的電子顯微鏡圖。如圖4A至 圖4D的圓圈410、圓圈420、圓圈430以及圓圈440所示,使用P25之小粒徑二氧化鈦珠所形成的過濾纖維表面不平整(或稱不連續)。其原因在於,小粒徑二氧化鈦珠不易分散,不規則聚集的二氧化鈦珠造成粒徑分布不均的團簇,從而形成具有不平整表面的過濾纖維。 Please refer to FIG. 3A to FIG. 3D, which are respectively electron micrographs of the filter fiber layers of Examples 1 to 4 of the present invention. As shown in Figs. 3A to 3D, the surfaces of the filter fibers of Examples 1 to 4 were even and uniform, and the compositions of the drive mixture before the examples 1 to 4 were uniformly dispersed, and the nozzle of the electrospinning apparatus was not easily clogged. Next, please refer to FIGS. 4A to 4D, which are electron micrographs of the filter fiber layers of Comparative Examples 1 to 4, respectively. As shown in Figure 4A As shown by circle 410, circle 420, circle 430, and circle 440 of FIG. 4D, the surface of the filter fiber formed using the small particle size titanium dioxide beads of P25 is uneven (or discontinuous). The reason for this is that small-sized titanium dioxide beads are not easily dispersed, and irregularly aggregated titanium oxide beads cause clusters having uneven particle size distribution, thereby forming filter fibers having uneven surfaces.

接著請參考圖5A至圖5C。圖5A為本發明實施例1至4及比較例5的微粒吸附率圖。圖5B為本發明比較例1至4的微粒吸附率圖。圖5C為本發明實施例1至4及比較例1至5對粒徑為約300nm之微粒的吸附率折線圖。如圖5A至圖5C所示,相較於使用小粒徑二氧化鈦珠(P25),使用本發明之製備例1所得之大粒徑的介孔洞二氧化鈦珠所製得之高分子過濾材料,可具有較佳的微粒吸附率。此外,微粒吸附率也隨介孔洞二氧化鈦珠的含量增加而增加。 Next, please refer to FIG. 5A to FIG. 5C. Fig. 5A is a graph showing the adsorption ratio of the microparticles of Examples 1 to 4 and Comparative Example 5 of the present invention. Fig. 5B is a graph showing the adsorption ratio of the microparticles of Comparative Examples 1 to 4 of the present invention. Fig. 5C is a graph showing the adsorption rate of the particles having a particle diameter of about 300 nm in Examples 1 to 4 and Comparative Examples 1 to 5 of the present invention. As shown in FIG. 5A to FIG. 5C, the polymer filter material obtained by using the large-diameter mesoporous titania beads obtained in Preparation Example 1 of the present invention may have a polymer filter material as compared with the use of the small-diameter titania beads (P25). Preferred particle adsorption rate. In addition, the particle adsorption rate also increases as the content of mesoporous titania beads increases.

圖6為本發明實施例1至4及比較例1至5的過濾纖維對波長為300nm至400nm之光線的吸收率折線圖。如圖6所示,本發明實施例1至4的含有介孔洞二氧化鈦珠之過濾纖維層,可吸收波長為300nm至400nm的光線。此外,介孔洞二氧化鈦珠的含量越高時,吸收率越高。再者,使用較大粒徑之介孔洞二氧化鈦珠的實施例1至4可具有與使用小粒徑的P25的比較例1至4相當的紫外線吸收率。 Figure 6 is a graph showing the absorbance of the filter fibers of Examples 1 to 4 and Comparative Examples 1 to 5 for light having a wavelength of 300 nm to 400 nm. As shown in Fig. 6, the filter fiber layers containing mesoporous titania beads of Examples 1 to 4 of the present invention can absorb light having a wavelength of 300 nm to 400 nm. Further, the higher the content of the mesoporous titania beads, the higher the absorption rate. Further, Examples 1 to 4 using mesoporous titania beads having a larger particle diameter may have an ultraviolet absorptivity comparable to Comparative Examples 1 to 4 using P25 having a small particle diameter.

圖7為本發明實施例1至4之過濾纖維層於特定時間內對甲基藍的降解率圖。如圖7所示,本發明的過濾纖維層於90分鐘內對甲基藍有良好的降解率。此外,如表2所示,相較於不含介孔洞二氧化鈦珠的比較例5,實施例1至4 的高分子過濾材料具有更好的抗菌力。 Figure 7 is a graph showing the degradation rate of methylcellulose in a filter fiber layer of Examples 1 to 4 in a specific time. As shown in Figure 7, the filter fiber layer of the present invention has a good degradation rate for methyl blue in 90 minutes. Further, as shown in Table 2, Examples 1 to 4 were compared to Comparative Example 5 which did not contain mesoporous titania beads. The polymer filter material has better antibacterial power.

本發明的高分子過濾材料的製造方法係藉由前驅物混合物的特定組成及其使用量,特別是介孔洞二氧化鈦珠的規格和介孔洞二氧化鈦珠及聚合物的使用量,可製得具有均勻度、良好微粒吸附率、UV吸收率、光降解能力和抗菌力的高分子過濾材料。 The method for producing the polymer filter material of the present invention can be made uniform by the specific composition of the precursor mixture and the amount thereof used, in particular, the size of the mesoporous titania beads and the amount of the mesoporous titania beads and the polymer. High-molecular filter material with good particle adsorption rate, UV absorption rate, photodegradability and antibacterial force.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

Claims (12)

一種高分子過濾材料的製造方法,包含:提供一基材;製備一前驅物混合物,其中該前驅物混合物係由下述成分所組成:4重量百分比(wt.%)至8wt.%的一聚合物(A),其中該聚合物(A)的一重量平均分子量為100000kDa至250000kDa;0.5wt.%至2wt.%的介孔洞二氧化鈦珠(B),其中該介孔洞二氧化鈦珠具有200nm至400nm之一平均粒徑;以及餘量的一溶劑(C);以及對該前驅物混合物進行一靜電紡織步驟,以形成一過濾纖維於該基材上。 A method for producing a polymeric filter material, comprising: providing a substrate; preparing a precursor mixture, wherein the precursor mixture is composed of the following components: 4 weight percent (wt.%) to 8 wt.% of a polymerization And (A), wherein the polymer (A) has a weight average molecular weight of 100000 kDa to 250,000 kDa; 0.5 wt.% to 2 wt.% of mesoporous titania beads (B), wherein the mesoporous titania beads have a thickness of 200 nm to 400 nm An average particle size; and a balance of a solvent (C); and an electrospinning step of the precursor mixture to form a filter fiber on the substrate. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該靜電紡織步驟使用15kV至25kV的一電壓進行。 The method for producing a polymeric filter material according to claim 1, wherein the electrospinning step is carried out using a voltage of 15 kV to 25 kV. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該基材包含不織布。 The method for producing a polymeric filter material according to claim 1, wherein the substrate comprises a nonwoven fabric. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該聚合物(A)的一重複單元包含含氮側鏈。 The method for producing a polymeric filter material according to claim 1, wherein the repeating unit of the polymer (A) comprises a nitrogen-containing side chain. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該聚合物(A)包含聚丙烯腈、聚乙烯吡咯烷酮或上述之組合。 The method for producing a polymeric filter material according to claim 1, wherein the polymer (A) comprises polyacrylonitrile, polyvinylpyrrolidone or a combination thereof. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該介孔洞二氧化鈦珠(B)為銳鈦相二氧化鈦。 The method for producing a polymeric filter material according to claim 1, wherein the mesoporous titanium dioxide beads (B) are anatase titanium dioxide. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該溶劑(C)為二甲基甲醯胺。 The method for producing a polymeric filter material according to claim 1, wherein the solvent (C) is dimethylformamide. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該過濾纖維之一平均截面直徑為180nm至350nm。 The method for producing a polymeric filter material according to claim 1, wherein the filter fiber has an average cross-sectional diameter of from 180 nm to 350 nm. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中製備該前驅物混合物的步驟包含於25℃至70℃下攪拌該前驅物混合物達2小時至24小時。 The method for producing a polymeric filter material according to claim 1, wherein the step of preparing the precursor mixture comprises stirring the precursor mixture at 25 ° C to 70 ° C for 2 hours to 24 hours. 如申請專利範圍第1項所述之高分子過濾材料的製造方法,其中該靜電紡織步驟係以0.3ml/hr.至1ml/hr.之一流速進行。 The method for producing a polymeric filter material according to claim 1, wherein the electrospinning step is carried out at a flow rate of from 0.3 ml/hr. to 1 ml/hr. 如申請專利範圍第1項所述之高分子過 濾材料的製造方法,其中該靜電紡織步驟之一噴嘴與該基材之間的距離為15公分。 If the polymer mentioned in the first paragraph of the patent application is A method of producing a filter material, wherein a distance between a nozzle of the electrospinning step and the substrate is 15 cm. 一種高分子過濾材料,其係由如申請專利範圍第1至11項之任一項所述之高分子過濾材料的製造方法所製得,其中該高分子過濾材料包含:一基材;以及一過濾纖維層,設置於該基材上。 A polymer filter material obtained by the method for producing a polymer filter material according to any one of claims 1 to 11, wherein the polymer filter material comprises: a substrate; The fibrous layer is filtered and placed on the substrate.
TW107138240A 2018-04-23 2018-10-29 Polymeric filtration material and method of forming the same TWI668047B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862661097P 2018-04-23 2018-04-23
US62/661,097 2018-04-23

Publications (2)

Publication Number Publication Date
TWI668047B true TWI668047B (en) 2019-08-11
TW201943447A TW201943447A (en) 2019-11-16

Family

ID=68316213

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138240A TWI668047B (en) 2018-04-23 2018-10-29 Polymeric filtration material and method of forming the same

Country Status (1)

Country Link
TW (1) TWI668047B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307408B (en) * 2022-01-21 2023-08-29 山东华业无纺布有限公司 Preparation method of high-strength low-resistance mildew-proof filter material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021676A (en) * 2010-11-11 2011-04-20 东华大学 Preparation method of titanium dioxide/active carbon composite nanofibrous membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021676A (en) * 2010-11-11 2011-04-20 东华大学 Preparation method of titanium dioxide/active carbon composite nanofibrous membrane

Also Published As

Publication number Publication date
TW201943447A (en) 2019-11-16

Similar Documents

Publication Publication Date Title
Svetlichnyi et al. ZnO nanoparticles obtained by pulsed laser ablation and their composite with cotton fabric: Preparation and study of antibacterial activity
Anitha et al. Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO
US9005540B2 (en) Conjugated polyelectrolyte capsules: light activated antimicrobials
Shan et al. Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria
Su et al. In situ deposition of MOF199 onto hierarchical structures of bamboo and wood and their antibacterial properties
TWI668047B (en) Polymeric filtration material and method of forming the same
CN110773002A (en) Antibacterial composite nanofiber membrane and preparation method and application thereof
Zhang et al. High antibacterial performance of electrospinning silk fibroin/gelatin film modified with graphene oxide‐sliver nanoparticles
EP2938582B1 (en) Transparent substrate, in particular a glass substrate, coated with at least one at least bifunctional porous layer, manufacturing method and uses thereof
CN103007912A (en) One-dimensional nanometer titania photocatalyst with mica serving as support and preparation method thereof
TWI666270B (en) An antibacterial composite and method for preparing the same
CN106380970B (en) A kind of preparation method of the net aldehyde water nano emulsion paint of antibacterial
Zhang et al. Hollow TiO2 containing multilayer nanofibers with enhanced photocatalytic activity
Zhang et al. Photodegradation property and antimicrobial activity of zinc oxide nanorod-coated polypropylene nonwoven fabric
Kim et al. Incorporation of silver-loaded ZnO rods into electrospun nylon-6 spider-web-like nanofibrous mat using hydrothermal process
CN107051208A (en) Three-dimensional structure nano-complex blending doping Kynoar mixed-matrix milipore filter and its preparation
Zhang et al. Influences of acids on morphology and properties of TiO2 grown on electrospun PVDF fibers
CN109535421A (en) A kind of piperazine base carbon nitrogen polymer, Its Preparation Method And Use
Ma et al. Large-scale preparation of strawberry-like, AgNP-doped SiO2 microspheres using the electrospraying method
CN115155664A (en) Bonded polyurethane-based antibacterial fiber film and preparation method and application thereof
CN114680106B (en) Antibacterial liquid, preparation method and application thereof, and antibacterial product
CN111167690B (en) Preparation method of titanium dioxide photocatalytic coating and coating prepared by preparation method
CN111167493B (en) Nano-cellulose carbon nitride composite membrane and preparation method and application thereof
JPH07196424A (en) Antimicrobial agent consisting of complex particle or hollow particle
CN104194403A (en) Preparation method of rutile titanium oxide/diatomite composite material