TWI650914B - Laser marking machine and its correction method - Google Patents

Laser marking machine and its correction method Download PDF

Info

Publication number
TWI650914B
TWI650914B TW106129443A TW106129443A TWI650914B TW I650914 B TWI650914 B TW I650914B TW 106129443 A TW106129443 A TW 106129443A TW 106129443 A TW106129443 A TW 106129443A TW I650914 B TWI650914 B TW I650914B
Authority
TW
Taiwan
Prior art keywords
laser marking
galvanometer
optical
marking machine
control card
Prior art date
Application number
TW106129443A
Other languages
Chinese (zh)
Other versions
TW201914134A (en
Inventor
游志成
Original Assignee
新代科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新代科技股份有限公司 filed Critical 新代科技股份有限公司
Priority to TW106129443A priority Critical patent/TWI650914B/en
Priority to CN201810980719.4A priority patent/CN109532244A/en
Application granted granted Critical
Publication of TWI650914B publication Critical patent/TWI650914B/en
Publication of TW201914134A publication Critical patent/TW201914134A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • B41J2/471Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light using dot sequential main scanning by means of a light deflector, e.g. a rotating polygonal mirror
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • B41J29/393Devices for controlling or analysing the entire machine ; Controlling or analysing mechanical parameters involving printing of test patterns

Landscapes

  • Laser Beam Processing (AREA)

Abstract

一種雷射打標機,包括:控制卡,用以發送參數讀取命令;振鏡模組與控制卡以串列通訊協定方式連接並接收由控制卡所發送的參數讀取命令,且振鏡模組內建儲存光學校正資訊;當雷射打標機開機之後,該控制卡讀取該振鏡模組所內建儲存之光學校正資訊以產生畸變校正表,使得雷射打標機根據該畸變校正表進行雷射打標。本發明另提供一種用於上述雷射打標機的校正方法,將光學校正資訊內建儲存於振鏡模組的記憶體內,及利用控制卡讀取光學校正資訊以產生畸變校正表,使雷射打標機根據畸變校正表進行打標。 A laser marking machine includes: a control card for sending a parameter reading command; a galvanometer module and the control card are connected in a serial communication protocol and receive a parameter reading command sent by the control card, and the galvanometer The built-in module stores optical calibration information; after the laser marking machine is powered on, the control card reads the optical calibration information stored in the galvanometer module to generate a distortion correction table, so that the laser marking machine Distortion correction table for laser marking. The present invention further provides a calibration method for the above-mentioned laser marking machine. The optical calibration information is stored in the memory of the galvanometer module, and the optical card is read by the control card to generate a distortion correction table to make the laser The laser marking machine performs marking according to the distortion correction table.

Description

雷射打標機及其校正方法 Laser marking machine and its correction method

本發明提供一種雷射打標機,特別是內建有光學校正資訊的雷射打標機。 The invention provides a laser marking machine, particularly a laser marking machine with built-in optical correction information.

雷射打標機是以雷射方式在物體表面形成文字、圖案等標記,與傳統的機械雕刻或化學蝕刻相比,具有精度高、速度快、以及產生之標記具永久性等優點,因此在工業上,特別是積體電路工業中的高精密度及高量產的IC標記之需求,雷射打標技術與裝置的改良實屬重要。 Laser marking machine uses laser to form marks on the surface of objects, patterns, etc. Compared with traditional mechanical engraving or chemical etching, it has the advantages of high accuracy, fast speed, and permanent marking. In industry, especially in the integrated circuit industry, the need for high-precision and high-volume production of IC tags requires improvements in laser marking technology and devices.

一般雷射打標機包括雷射源、光學機構與控制卡等儀器,雷射源用於發出雷射光,光學機構則是用於調整雷射光路的物理參數,控制卡則是用於發送控制指令。雷射打標機在組裝完成後,需針對因組裝造成的光學機構誤差,或是雷射光束在被加工的樣品平面上的聚焦問題,而進行所謂的光學畸變校正。一般在光學畸變校正完畢後,會將校正時所產生的資料,即所謂的「光學校正補償表」儲存於控制卡中,而每一張控制卡需要與特定的光學機構配對使用,若單獨更換雷射打標機的光學機構或是控制卡時,則需再次進行光學畸變校正及更換其他張的控制卡,對於不熟悉光學畸變校正流程及操作的雷射打標機使用者,或是上游的組裝廠而言,在校正上相當不便。 Generally laser marking machine includes laser source, optical mechanism and control card. The laser source is used to emit laser light, the optical mechanism is used to adjust the physical parameters of the laser light path, and the control card is used to send control instruction. After the laser marking machine is assembled, the so-called optical distortion correction needs to be performed for the optical mechanism error caused by the assembly, or the focus of the laser beam on the plane of the sample being processed. Generally, after the optical distortion correction is completed, the data generated during the correction, the so-called "optical correction compensation table" is stored in the control card, and each control card needs to be paired with a specific optical mechanism and used if it is replaced separately When the laser marking machine's optical mechanism or control card, you need to perform optical distortion correction again and replace the other control cards. For users of laser marking machines who are not familiar with the optical distortion correction process and operation, or upstream For assembly plants, the calibration is quite inconvenient.

再者,就光學畸變校正的方法本身,亦有多項先前技術被提出,其一是使用光學鏡頭來採集不同的光學畸變校正數據,並比較不同次數的光學 畸變校正後形成一畸變量。再針對畸變量進行非線性補償,用以抵消畸變量,以此方式校正後,光學誤差值約在5~10μm的範圍內。但該技術主要著墨於如何補償並抵銷畸變量,並未提及畸變量如何儲存,以及訊號的傳遞方式與操作流程,故對於簡化雷射打標機校正的流程較不切實際。 Furthermore, regarding the method of optical distortion correction itself, a number of previous techniques have also been proposed. One is to use optical lenses to collect different optical distortion correction data and compare different times of optical A distortion is formed after the distortion is corrected. Non-linear compensation is performed for the distortion variable to offset the distortion. After correction in this way, the optical error value is in the range of 5-10 μm. However, this technology mainly focuses on how to compensate and offset the distortion. It does not mention how the distortion is stored, and the signal transmission method and operation process. Therefore, it is impractical to simplify the process of laser marking machine calibration.

另一種校正方法,光學鏡頭擷取了打樣前樣品的影像,在此影像上形成了100個的網格,並在生成100個網格的座標後,將這些網格的座標儲存於儲存器中,再用計算模組取得實際打樣後樣品的座標值,將打樣後樣品的座標值與打樣前樣品的座標值,兩者運算後以得到補償值,再將補償值儲存於儲存器中。雖然該現有技術揭示具有儲存手段的校正法,但並未揭露所得到的補償值儲存於何處,對於儲存器的種類也未多做強調或進一步說明。 Another correction method, the optical lens captures the image of the sample before proofing, 100 grids are formed on this image, and the coordinates of these grids are stored in the memory after generating the coordinates of 100 grids Then, the calculation module is used to obtain the actual coordinate value of the sample, and the coordinate value of the sample after proofing and the coordinate value of the sample before proofing are calculated to obtain the compensation value, and then the compensation value is stored in the memory. Although this prior art discloses a correction method with a storage means, it does not disclose where the obtained compensation value is stored, and the type of storage is not emphasized or further explained.

有鑑於上述習知技術的缺失,本發明所提出一種內建光學校正資訊的雷射打標機,可以讓個別的振鏡模組只需在生產過程中進行一次光學校正,校正完畢之後將光學校正資訊立刻內建儲存於振鏡模組內,每次雷射打標機開機完畢後將光學校正資訊發送給控制卡,使控制卡不必與特定機台配對,對於使用者而言更為方便。 In view of the lack of the above-mentioned conventional technologies, a laser marking machine with built-in optical calibration information is provided by the present invention, which allows individual galvanometer modules to perform optical calibration only once during the production process. The calibration information is immediately built-in and stored in the galvanometer module. Each time the laser marking machine is turned on, the optical calibration information is sent to the control card, so that the control card does not have to be paired with a specific machine, which is more convenient for users. .

根據上述目的,本發明提供一種內建儲存光學校正資訊的雷射打標機,包括:控制卡,用以發送參數讀取命令;以及振鏡模組與控制卡以串列通訊協定方式連接並接收由控制卡所發送的參數讀取命令,且振鏡模組內建儲存光學校正資訊,控制卡讀取光學校正資訊以產生畸變校正表;藉此於雷射打標機開機之後,控制卡從振鏡模組讀取光學校正資訊以產生畸變校正表,使得雷射打標機根據畸變校正表進行雷射打標。 According to the above object, the present invention provides a laser marking machine with built-in optical calibration information, including: a control card for sending parameter reading commands; and a galvanometer module and the control card connected in serial communication protocol and Receives the parameter reading command sent by the control card, and the built-in optical correction information is stored in the galvanometer module. The control card reads the optical correction information to generate a distortion correction table. After the laser marking machine is powered on, the control card The optical correction information is read from the galvanometer module to generate a distortion correction table, so that the laser marking machine performs laser marking according to the distortion correction table.

於本發明的較佳實施例中,振鏡模組包括光學鏡片、振鏡電機、振鏡驅動電路及記憶體。 In a preferred embodiment of the present invention, the galvanometer module includes an optical lens, a galvanometer motor, a galvanometer driving circuit, and a memory.

於本發明的較佳實施例中,光學校正資訊內建儲存在振鏡模組中的記憶體。 In a preferred embodiment of the present invention, the optical correction information is built into a memory stored in the galvanometer module.

於本發明的較佳實施例中,記憶體還可儲存馬達控制參數及行程極限。 In a preferred embodiment of the present invention, the memory can also store motor control parameters and stroke limits.

於本發明的較佳實施例中,記憶體為非揮發性記憶體。 In a preferred embodiment of the present invention, the memory is a non-volatile memory.

於本發明的較佳實施例中,記憶體為EPROM、EEPROM、Flash其中一種或是上述三者的組合。 In a preferred embodiment of the present invention, the memory is one of EPROM, EEPROM, and Flash, or a combination of the three.

本發明更提出一種雷射打標機之振鏡模組內建儲存光學校正資訊的校正方法,該雷射打標機包括控制卡、振鏡模組及雷射源,其中振鏡模組包括光學鏡片、記憶體、振鏡電機及振鏡驅動電路,該控制卡包括監控元件、運算元件以及儲存元件,該方法包括:利用振鏡電機帶動光學鏡片,藉由光學鏡片將雷射源的雷射光束導向樣品的加工平面,以控制卡之監控元件量測加工後樣品的距離誤差;將距離誤差輸入控制卡,控制卡根據該距離誤差運算得到振鏡模組的光學校正資訊;控制卡發送該光學校正資訊及參數儲存命令至振鏡驅動電路以將該光學校正資訊內建儲存在振鏡模組的記憶體中。 The present invention further provides a calibration method for storing optical correction information built in a galvanometer module of a laser marking machine. The laser marking machine includes a control card, a galvanometer module, and a laser source. The galvanometer module includes An optical lens, a memory, a galvanometer motor, and a galvanometer driving circuit. The control card includes a monitoring element, a computing element, and a storage element. The method includes: using the galvanometer motor to drive the optical lens, and using the optical lens to drive the laser of the laser source. The beam is directed to the processing plane of the sample, and the distance error of the processed sample is measured by the monitoring element of the control card; the distance error is input into the control card, and the control card calculates the optical correction information of the galvanometer module according to the distance error calculation; the control card sends The optical correction information and the parameter storage command are stored in the galvanometer driving circuit to store the optical correction information in the memory of the galvanometer module.

於本發明的較佳實施例中,當雷射打標機開機完成後,利用控制卡發送參數讀取命令至振鏡模組以讀取振鏡模組所內建儲存之光學校正資訊以產生畸變校正表,使得雷射打標機根據畸變校正表進行雷射打標。 In the preferred embodiment of the present invention, after the laser marking machine is powered on, the control card sends a parameter reading command to the galvanometer module to read the optical correction information stored in the galvanometer module to generate The distortion correction table enables the laser marking machine to perform laser marking according to the distortion correction table.

於本發明的較佳實施例中,振鏡驅動電路將光學校正資訊內建儲存在記憶體內是利用串列通訊協定方式。 In a preferred embodiment of the present invention, the galvanometer driving circuit stores the optical correction information in the memory by using a serial communication protocol.

於本發明的較佳實施例中,控制卡將該光學校正資訊及參數儲存命令發送給振鏡驅動電路是利用串列通訊協定方式。 In a preferred embodiment of the present invention, the control card sends the optical correction information and the parameter storage command to the galvanometer driving circuit by using a serial communication protocol.

於本發明的較佳實施例中,控制卡與振鏡模組利用串列通訊協定方式連接。 In a preferred embodiment of the present invention, the control card and the galvanometer module are connected by a serial communication protocol.

藉由本發明所提出內建儲存光學校正資訊的雷射打標機及其校正方法,可以單獨的更換此雷射打標機的振鏡模組及控制卡,不須再次進行光學畸變校正,讓不熟悉光學畸變校正流程及操作的雷射打標機使用者輕易更換雷射打標機的內部構件,更詳細敘述了雷射打標機內部的校正流程及儲存設備,故具實用性與方便性。 With the laser marking machine and the calibration method for storing the optical calibration information provided by the present invention, the galvanometer module and the control card of the laser marking machine can be replaced separately, and the optical distortion correction is not required, so that Laser marking machine users who are not familiar with the optical distortion correction process and operation can easily replace the internal components of the laser marking machine, and describe the calibration process and storage equipment in the laser marking machine in more detail, so it is practical and convenient. Sex.

L‧‧‧雷射打標機 L‧‧‧laser marking machine

A‧‧‧校正片 A‧‧‧correction sheet

S‧‧‧樣品 S‧‧‧sample

1‧‧‧振鏡模組 1‧‧‧ Galvanometer Module

11‧‧‧光學鏡片 11‧‧‧ Optical Lenses

12‧‧‧振鏡電機 12‧‧‧ Galvanometer Motor

13‧‧‧振鏡驅動電路 13‧‧‧ galvanometer driving circuit

14‧‧‧記憶體 14‧‧‧Memory

2‧‧‧雷射源 2‧‧‧ laser source

21‧‧‧雷射二極體 21‧‧‧laser diode

22‧‧‧雷射控制電路 22‧‧‧laser control circuit

3‧‧‧控制卡 3‧‧‧Control Card

31‧‧‧監控元件 31‧‧‧Monitoring element

32‧‧‧運算元件 32‧‧‧ Computing Elements

33‧‧‧儲存元件 33‧‧‧Storage components

S1-S7‧‧‧校正方法在雷射打標機處於校正模式下實施流程 S1-S7‧‧‧calibration method implementation process when laser marking machine is in calibration mode

T1-T4‧‧‧校正方法在雷射打標機處於一般模式下實施流程 T1-T4‧‧‧calibration method implementation process when laser marking machine is in general mode

W1-W4‧‧‧校正方法在雷射打標機處於一般模式下實施流程 W1-W4‧‧‧ Calibration method implementation process when the laser marking machine is in general mode

圖1為根據本發明所揭露的技術,表示雷射打標機內部構件之示意圖;圖2為根據本發明所揭露的技術,表示雷射打標機在校正模式下,內部構件訊號傳遞之示意圖;圖3為根據本發明所揭露的技術,表示雷射打標機在一般模式下,內部構件訊號傳遞之示意圖;圖4為根據本發明所揭露的技術,表示本發明提供之校正方法,在雷射打標機處於校正模式下實施流程圖;圖5為根據本發明所揭露的技術,表示本發明提供之校正方法,在雷射打標機處於校正模式下,另一實施例的實施流程圖;以及圖6為根據本發明所揭露的技術,表示本發明提供之校正方法,在雷射打標機處於一般模式下實施流程圖。 Fig. 1 is a schematic diagram showing the internal components of a laser marking machine according to the technology disclosed in the present invention; Fig. 2 is a schematic diagram showing the internal signal transmission of a laser marking machine in a calibration mode according to the disclosed technology; Figure 3 is a schematic diagram showing the signal transmission of the internal components of the laser marking machine in a general mode according to the technology disclosed in the present invention; Figure 4 is a diagram showing the calibration method provided by the present invention in accordance with the technology disclosed in the present invention. Figure 5 is a flowchart of the implementation of the laser marking machine in the calibration mode; Figure 5 shows the calibration method provided by the invention according to the technology disclosed in the present invention. In the laser marking machine is in the calibration mode, the implementation process of another embodiment 6; and FIG. 6 is a flowchart illustrating a calibration method provided by the present invention in accordance with the technology disclosed in the present invention when the laser marking machine is in a general mode.

為使貴審查委員對於本發明之結構目的和功效有更進一步之了解與認同,茲配合圖示詳細說明如後。以下將參照圖式來描述為達成本發明目的所使用的技術手段與功效,而以下圖式所列舉之實施例僅為輔助說明,以利貴審查委員瞭解,但本案之技術手段並不限於所列舉圖式。 In order to allow your reviewers to further understand and agree on the structural purpose and effect of the present invention, the detailed description is given below in conjunction with the illustrations. The following will describe the technical means and effects used to achieve the purpose of the present invention with reference to the drawings, and the examples listed in the following drawings are only for the purpose of explanation, for the benefit of the review members, but the technical means in this case are not limited to the listed Schema.

請參考圖1,圖1為根據本發明所揭露的技術,表示雷射打標機L內部構件之示意圖。在圖1中,雷射打標機L包括振鏡模組1、雷射源2以及控制卡3。雷射打標機L是藉由雷射源2發出雷射光到振鏡模組1的光學鏡片11後,經由控制卡3控制振鏡電機12帶動光學鏡片11,使雷射光在樣品S的表面形成焦點後,以在樣品S的表面刻畫出操作者想要的圖案或是線條。 Please refer to FIG. 1, which is a schematic diagram showing the internal components of the laser marking machine L according to the technology disclosed in the present invention. In FIG. 1, the laser marking machine L includes a galvanometer module 1, a laser source 2, and a control card 3. The laser marking machine L sends the laser light to the optical lens 11 of the galvanometer module 1 through the laser source 2 and controls the galvanometer motor 12 to drive the optical lens 11 through the control card 3 so that the laser light is on the surface of the sample S After the focal point is formed, a pattern or a line desired by the operator is drawn on the surface of the sample S.

本發明所提供的雷射打標機L開機之後,雷射打標機L的控制卡3會從振鏡模組1讀取光學校正資訊以產生畸變校正表(未在圖1表示),使得雷射打標機L的控制卡3可以根據畸變校正表進行雷射打標命令修正。其中,振鏡模組1包括光學鏡片11、振鏡電機12、振鏡驅動電路13以及記憶體14。振鏡模組1與控制卡3以串列通訊協定方式連接並接收由控制卡3所發送的參數讀取命令,且振鏡模組1內建儲存有光學校正資訊,控制卡3讀取振鏡模組1所內建儲存之光學校正資訊以產生畸變校正表(未在圖1表示)。在本發明中,光學鏡片11是透鏡或是面鏡所構成的組合,振鏡驅動電路13會發出驅動指令給振鏡電機12,透過振鏡電機12帶動此光學鏡片11旋轉或是移動,讓雷射光在此樣品S的表面形成焦點。在本發明的一個實施例中,光學鏡片11是由一個聚焦鏡片及兩個反射面鏡所構成,其中聚焦鏡片可以是凸透鏡,反射面鏡可以是平面鏡。 After the laser marking machine L provided by the present invention is turned on, the control card 3 of the laser marking machine L reads the optical correction information from the galvanometer module 1 to generate a distortion correction table (not shown in FIG. 1), so that The control card 3 of the laser marking machine L can perform laser marking command correction according to the distortion correction table. The galvanometer module 1 includes an optical lens 11, a galvanometer motor 12, a galvanometer driving circuit 13, and a memory 14. The galvanometer module 1 and the control card 3 are connected in a serial communication protocol and receive a parameter reading command sent by the control card 3. The galvanometer module 1 has built-in optical calibration information stored therein, and the control card 3 reads the vibration. The optical correction information stored in the mirror module 1 is used to generate a distortion correction table (not shown in FIG. 1). In the present invention, the optical lens 11 is a combination of a lens or a mirror. The galvanometer driving circuit 13 sends a driving instruction to the galvanometer motor 12, and the galvanometer motor 12 drives the optical lens 11 to rotate or move. The laser light forms a focus on the surface of this sample S. In an embodiment of the present invention, the optical lens 11 is composed of a focusing lens and two reflecting mirrors, wherein the focusing lens may be a convex lens and the reflecting mirror may be a flat mirror.

在本發明的實施例中,雷射源2發出的雷射光,在光學鏡片11中的光路為:雷射光先經由光學鏡片11的兩個反射面鏡後,將雷射光導至聚焦鏡片(未在圖中表示)。振鏡驅動電路13會發出電壓命令給振鏡電機12, 接著,振鏡電機12帶動兩個反射面鏡旋轉,以調整雷射光在樣品S上的聚焦點。 In the embodiment of the present invention, the optical path of the laser light emitted by the laser source 2 in the optical lens 11 is: after the laser light passes through the two reflecting mirrors of the optical lens 11, the laser light is guided to the focusing lens (not Represented in the figure). The galvanometer driving circuit 13 will send a voltage command to the galvanometer motor 12, Next, the galvanometer motor 12 drives the two reflecting mirrors to rotate to adjust the focal point of the laser light on the sample S.

此外,振鏡模組1更包含一個記憶體14,此記憶體14是用以儲存光學校正資訊及其他校正資訊。其中,其他校正資訊的內容包括馬達控制參數以及行程極限。振鏡模組1中的振鏡電機12包含多個伺服馬達(未在圖1中表示),伺服馬達在接受回饋的過程中會一併產生共振,若是共振的振幅太大,伺服馬達運轉時會產生極大的噪音,故需要馬達控制參數,以抑制伺服馬達在共振時產生的振動。此外,馬達控制參數亦包含迴路增益、低通濾波器參數、共振抑制濾波器參數、相位領先補償器參數等,設計此些控制參數目的在於滿足使用者對於雷射打標機L高頻響應的需求。另外,振鏡電機12包含多個線性馬達(未在圖1中表示),於線性馬達延伸時,因為所帶動的滑台(未在圖1中表示)會有允許最大延伸量,在此,允許最大延伸量又定義為行程極限,故在線性馬達移動時需要設有行程極限,避免馬達或是滑台損壞。在本發明的實施例中,記憶體14是由非揮發性記憶體元件所組成的陣列,非揮發性記憶體例如是EPROM、EEPROM或是Flash元件。在本發明中,為了確保光學校正資訊在雷射打標機L斷電後能夠儲存於記憶體14內,並且可以提供系統下次開機時予以讀取,本發明所使用的記憶體14為非揮發性記憶體。 In addition, the galvanometer module 1 further includes a memory 14 for storing optical correction information and other correction information. Among them, the content of other calibration information includes motor control parameters and stroke limits. The galvo motor 12 in the galvanometer module 1 includes multiple servo motors (not shown in Figure 1). The servo motor will generate resonance during the process of receiving feedback. If the amplitude of the resonance is too large, the servo motor runs. It will produce great noise, so motor control parameters are needed to suppress the vibration generated by the servo motor when it resonates. In addition, the motor control parameters also include loop gain, low-pass filter parameters, resonance suppression filter parameters, phase lead compensator parameters, etc. These control parameters are designed to meet the user's requirements for the high frequency response of the laser marking machine L demand. In addition, the galvanometer motor 12 includes a plurality of linear motors (not shown in FIG. 1). When the linear motors are extended, the driven slide table (not shown in FIG. 1) will have a maximum allowable extension amount. Here, The maximum allowable extension is also defined as the stroke limit, so it is necessary to set a stroke limit when the linear motor moves to avoid damage to the motor or the slide. In the embodiment of the present invention, the memory 14 is an array composed of non-volatile memory elements, and the non-volatile memory is, for example, an EPROM, an EEPROM, or a Flash element. In the present invention, in order to ensure that the optical calibration information can be stored in the memory 14 after the laser marking machine L is powered off, and to provide the system to read it when the system is next turned on, the memory 14 used in the present invention is non-compliant. Volatile memory.

請繼續參考圖1。雷射打標機L中的雷射源2,包括雷射二極體21及雷射控制電路22。雷射二極體21用來發出雷射光,雷射光的波長、能量及發射訊號的頻率並不在本發明的限制範圍中,僅要使用者所需即可從雷射控制電路22自行調整。雷射打標機L中的控制卡3至少包括監控元件31、運算元件32及儲存元件33。監控元件31通常是影像擷取裝置,例如攝影器、或照相機,以拍攝校正片A或是樣品S的影像。在本發明的實施例中,先利 用監控元件31與儲存元件33記下校正片A上的目標點座標值,透過雷射打標機L在樣品S上打出對應試打網格後,再透過監控元件31與運算元件32估算此試打點的試打點座標值與此目標點座標值,以形成距離誤差,控制卡3利用此距離誤差計算生成光學校正資訊。 Please continue to refer to Figure 1. The laser source 2 in the laser marking machine L includes a laser diode 21 and a laser control circuit 22. The laser diode 21 is used to emit laser light. The wavelength, energy, and frequency of the emitted signal of the laser light are not within the limits of the present invention. The laser control circuit 22 can adjust the laser light only if the user needs it. The control card 3 in the laser marking machine L includes at least a monitoring element 31, a computing element 32 and a storage element 33. The monitoring element 31 is usually an image capturing device, such as a camera or a camera, to capture an image of the calibration sheet A or the sample S. In the embodiment of the present invention, Use the monitoring element 31 and the storage element 33 to record the coordinate values of the target point on the calibration sheet A, and use the laser marking machine L to mark the corresponding test grid on the sample S, and then use the monitoring element 31 and the computing element 32 to estimate the test hit. The coordinates of the trial point of the point and the coordinates of the target point form a distance error. The control card 3 uses this distance error to calculate and generate optical correction information.

後續將說明此雷射打標機L的詳細運作,請參考圖2及圖3。此雷射打標機L具有校正模式與一般模式。在雷射打標機L上具有兩個按鈕(未在圖2與圖3中表示),一個是校正模式,另一個是一般模式。其中,校正模式僅在生產過程中使用,正常情況下的預設狀態為一般模式。 The detailed operation of this laser marking machine L will be described later, please refer to FIG. 2 and FIG. 3. This laser marking machine L has a correction mode and a normal mode. The laser marking machine L has two buttons (not shown in FIG. 2 and FIG. 3), one is a correction mode, and the other is a general mode. Among them, the correction mode is only used in the production process, and the preset state under normal circumstances is the general mode.

首先請參考圖2,圖2表示雷射打標機L在校正模式下,內部構件訊號傳遞之示意圖。使用者在雷射打標機L中放入校正片A後,使用者即按下校正模式的按鈕以開始進行校正模式。首先,監控元件31會個別擷取校正片A上的目標點座標值並儲存於儲存元件33,接著將樣品S放入機台並進行網格試打,監控元件31擷取樣品S網格影像並形成試打點座標值,將目標點座標值與試打點座標值送入運算元件32進行運算後,於控制卡3生成光學校正資訊,控制卡3再將參數儲存命令與光學校正資訊發送給振鏡驅動電路13,並由振鏡驅動電路13將光學校正資訊透過串列通訊方式於記憶體14儲存。 First, please refer to FIG. 2, which illustrates a schematic diagram of signal transmission of internal components of the laser marking machine L in a calibration mode. After the user puts the calibration sheet A in the laser marking machine L, the user presses the button of the calibration mode to start the calibration mode. First, the monitoring element 31 will separately capture the target point coordinate values on the calibration sheet A and store them in the storage element 33. Then, the sample S is placed in the machine and the grid is tested. The monitoring element 31 captures the grid image of the sample S and Form the test point coordinate value, send the target point coordinate value and the test point coordinate value to the computing element 32 for calculation, then generate the optical correction information on the control card 3, and the control card 3 sends the parameter storage command and the optical correction information to the galvanometer The driving circuit 13 stores the optical correction information in the memory 14 through a serial communication method by the galvanometer driving circuit 13.

另外,雷射打標機L的校正模式是在第一時間下進行,通常校正模式是在設備供應商製造雷射打標機L時進行。完成校正模式後的雷射打標機L就可以實際賣給客戶端,例如晶圓製造工廠或是焊接工廠,以使客戶端對於樣品S進行實際雷射打標。 In addition, the calibration mode of the laser marking machine L is performed at the first time, and usually the calibration mode is performed when the equipment supplier manufactures the laser marking machine L. After the calibration mode is completed, the laser marking machine L can be actually sold to a client, such as a wafer manufacturing factory or a soldering factory, so that the client performs actual laser marking on the sample S.

請繼續參考圖3,圖3是表示雷射打標機在一般模式下,內部構件訊號傳遞之示意圖。其中,在一般模式下,控制卡3會在開機後發送一個參數讀取命令,振鏡驅動電路13接收該參數讀取命令後,會向記憶體14讀取 光學校正資訊,再將讀取到的光學校正資訊發送給控制卡3。控制卡3對光學校正資訊進行運算後,會形成畸變校正表,在實際打標時,此畸變校正表係用以修正因光學或機構組裝而產生的雷射光在樣品S表面的聚焦點的誤差。 Please continue to refer to FIG. 3. FIG. 3 is a schematic diagram showing signal transmission of internal components of the laser marking machine in a general mode. Among them, in the general mode, the control card 3 will send a parameter reading command after booting, and the galvanometer driving circuit 13 will read the parameter reading to the memory 14 after receiving the parameter reading command. The optical correction information is sent to the control card 3. After the control card 3 calculates the optical correction information, a distortion correction table will be formed. In actual marking, this distortion correction table is used to correct the error of the focal point of the laser light on the surface of the sample S caused by the optical or mechanism assembly. .

在本發明的實施例中,設備供應商對雷射打標機L在進行校正模式後,對雷射打標機予以關機,再由客戶端開啟雷射打標機L以對雷射打標機L進行一般模式。另一實施例是客戶端對雷射打標機L進行校正模式後,客戶端將雷射打標機L維持在開啟狀態下,接續對雷射打標機進行一般模式的操作。在此要說明的是,對於雷射打標機的校正模式與一般模式可以由客戶端或是設備供應商來操作,在本發明中並沒有多加限制。 In the embodiment of the present invention, after the laser marking machine L is calibrated by the equipment supplier, the laser marking machine is turned off, and the laser marking machine L is turned on by the client to mark the laser. Machine L performs normal mode. In another embodiment, after the client performs the correction mode on the laser marking machine L, the client maintains the laser marking machine L in an on state, and then performs the general mode operation on the laser marking machine. It should be noted here that the calibration mode and the general mode of the laser marking machine can be operated by the client or the equipment supplier, and there is no restriction in the present invention.

本發明所提出的雷射打標機L,可以單獨的更換雷射打標機L的振鏡模組及控制卡3,而不需再次進行光學畸變校正,讓不熟悉光學畸變校正流程及操作的雷射打標機L使用者能夠輕易更換雷射打標機L的內部構件,故具實用性與方便性。 The laser marking machine L provided by the present invention can separately replace the galvanometer module and the control card 3 of the laser marking machine L without the need to perform optical distortion correction again, so that unfamiliar with the optical distortion correction process and operation The user of the laser marking machine L can easily replace the internal components of the laser marking machine L, so it is practical and convenient.

本發明另提出了一種校正方法,利用上述的雷射打標機L進行。校正方法應用於雷射打標機L,是在振鏡模組1內建儲存光學校正資訊的方法,雷射打標機L包括控制卡3、由光學鏡片11、記憶體14、振鏡電機12及振鏡驅動電路13所組成的振鏡模組1及雷射源2組成,其中振鏡模組1內建儲存有光學校正資訊。詳細的校正流程請參考圖4至圖6。 The present invention further provides a calibration method, which is performed by using the laser marking machine L described above. The calibration method is applied to the laser marking machine L, which is a method for storing optical calibration information in the galvanometer module 1. The laser marking machine L includes a control card 3, an optical lens 11, a memory 14, and a galvanometer motor. 12 and the galvanometer driving circuit 13 are composed of a galvanometer module 1 and a laser source 2, wherein the galvanometer module 1 stores optical correction information built-in. Please refer to Figure 4 to Figure 6 for the detailed calibration process.

首先請參考圖4,圖4表示本發明提供之校正方法,在雷射打標機L處於校正模式下實施流程圖,其中有S1至S7共七個步驟。以下分別詳述各步驟執行的要點: First, please refer to FIG. 4. FIG. 4 shows a calibration method provided by the present invention. The flowchart is implemented when the laser marking machine L is in a calibration mode, and there are seven steps from S1 to S7. The details of each step are as follows:

步驟S1:監控元件31中的攝影器擷取校正片A上的一個校正片網格影像,該校正片網格影像由複數條直線與複數條橫線所構成。為了定位方便,將 每一個直線與橫線的交會點稱為目標點,以定位某一個格點的座標。每一個目標點皆具有一個座標值,且目標點座標值是定位在XY座標系下。在本具體實施方式中,光學鏡片11一開始是處於原點(預設狀態),振鏡電機12帶動光學鏡片11以接受由校正片A反射的光線,使監控元件31的攝影器(圖4未示)得以記錄校正片A上的每個目標點座標值。 Step S1: The camera in the monitoring element 31 captures a grid image of the calibration sheet on the calibration sheet A. The grid image of the calibration sheet is composed of a plurality of straight lines and a plurality of horizontal lines. For easy positioning, The intersection point of each straight line and horizontal line is called the target point to locate the coordinates of a certain grid point. Each target point has a coordinate value, and the target point coordinate value is positioned under the XY coordinate system. In this specific embodiment, the optical lens 11 is initially at the origin (preset state), and the galvanometer motor 12 drives the optical lens 11 to receive the light reflected by the correction sheet A, so that the camera of the monitoring element 31 (FIG. 4) (Not shown) The coordinates of each target point on the calibration sheet A can be recorded.

步驟S2:監控元件31將每個目標點座標值傳遞給儲存元件33,以供後續與試打點座標值進行比較用。 Step S2: The monitoring element 31 transmits the coordinate values of each target point to the storage element 33 for comparison with the coordinate values of the test points.

步驟S3:雷射二極體21產生雷射光於樣品S進行加工,雷射光加工時將光學鏡片11對準目標點座標值。光學鏡片11的位置由振鏡電機12控制,雷射光則由雷射二極體21產生,如此即可對樣品S進行加工。 Step S3: The laser diode 21 generates laser light and processes it on the sample S. During the laser light processing, the optical lens 11 is aligned with the coordinate value of the target point. The position of the optical lens 11 is controlled by the galvanometer motor 12, and the laser light is generated by the laser diode 21, so that the sample S can be processed.

步驟S4:監控元件31中的攝影器量測加工後樣品S之樣品S網格影像,形成試打點座標值並儲存於儲存元件33。在本具體實施方式中,樣品S網格影像的偵測與擷取是在所有試打點形成後,亦即試打程序完成後。 Step S4: The camera in the monitoring element 31 measures the grid image of the sample S of the processed sample S to form the coordinate values of the trial dots and stores them in the storage element 33. In this embodiment, the detection and acquisition of the S-grid image of the sample is performed after all the test points are formed, that is, after the test process is completed.

步驟S5:運算元件32估算試打點座標值與目標點座標值並生成距離誤差後,控制卡3根據距離誤差生成光學校正資訊。 Step S5: After the computing element 32 estimates the coordinates of the trial point and the target point and generates a distance error, the control card 3 generates optical correction information according to the distance error.

步驟S6:控制卡3生成參數儲存命令,並同時將參數儲存命令與光學校正資訊發送至振鏡模組1中的振鏡驅動電路13。控制卡3與振鏡模組1是利用串列通訊協定方式連接。在本實施方式中,控制卡3與振鏡模組1所在的電路板連接。本具體實施例中,為了防止傳輸路徑較長造成的訊號流失及線路複雜的干擾問題,故使用串列通訊協定方式連接控制卡3與振鏡模組1,串列通訊協定方式在處理資料時一次只處理一個位元,故減少訊號流失的發生。 Step S6: The control card 3 generates a parameter storage command, and sends the parameter storage command and optical correction information to the galvanometer driving circuit 13 in the galvanometer module 1 at the same time. The control card 3 and the galvanometer module 1 are connected by a serial communication protocol. In the present embodiment, the control card 3 is connected to a circuit board on which the galvanometer module 1 is located. In this specific embodiment, in order to prevent signal loss caused by a long transmission path and complex interference problems, a serial communication protocol is used to connect the control card 3 and the galvanometer module 1. The serial communication protocol is used when processing data. Only one bit is processed at a time, thus reducing the occurrence of signal loss.

步驟S7:振鏡模組1中的振鏡驅動電路13在第一時間接收參數儲存命令後,於第二時間發送標準串列I2C或SPI通訊封包給記憶體14,以內建儲 存光學校正資訊,記憶體14可以是非揮發性記憶體單元所構成的記憶體陣列,例如EPROM、EEPROM、FLASH或是其組合,以供儲存在記憶體14中的光學校正資訊在斷電時依然保持,此些資訊不會流失與「揮發」。在此不對記憶體14的種類予以限制。在本實施例中,時間的順序由先到後分別是第一時間與第二時間。第一時間與第二時間的間隔是微秒(μs)等級。參數儲存命令係用於指定光學校正資訊內建儲存在記憶體14陣列中的位址與儲存順序。在記憶體14中,行解碼器、列解碼器與緩衝器的設計並非在本發明所限制的實施例中。另外,控制卡3發送一次光學校正資訊給振鏡驅動電路13,寫入次數記錄為一次。在本實施例中使用的記憶體14,若是非揮發性記憶體中的PROM(可程式化唯讀記憶體)時,光學校正資訊僅能寫入一次光學校正資訊。在本發明的另一實施例中,若記憶體14是採用如EPROM、EEPROM或是FLASH等非揮發性記憶體時,光學校正資訊可以多次的、不同方式的寫入。步驟S7完成後,隨即結束此校正流程。 Step S7: After the galvanometer driving circuit 13 in the galvanometer module 1 receives the parameter storage command at the first time, it sends a standard serial I 2 C or SPI communication packet to the memory 14 at the second time, with the built-in storage optics Calibration information. The memory 14 may be a memory array composed of non-volatile memory units, such as EPROM, EEPROM, FLASH, or a combination thereof, so that the optical calibration information stored in the memory 14 is maintained even when the power is off. Such information will not be lost or "volatilized". The type of the memory 14 is not limited here. In this embodiment, the order of time is first time and second time, respectively. The interval between the first time and the second time is on the order of microseconds (μs). The parameter storage command is used to specify the address and storage order of the optical calibration information built-in stored in the memory 14 array. The design of the row decoder, the column decoder, and the buffer in the memory 14 is not in the limited embodiment of the present invention. In addition, the control card 3 sends optical correction information to the galvanometer drive circuit 13 once, and the number of writes is recorded as one. When the memory 14 used in this embodiment is a PROM (programmable read-only memory) in a non-volatile memory, the optical correction information can be written only once. In another embodiment of the present invention, if the memory 14 is a non-volatile memory such as EPROM, EEPROM, or FLASH, the optical correction information may be written multiple times and in different ways. After step S7 is completed, the calibration process ends immediately.

在圖4的校正流程中,步驟S1至S5是稱為格點法。格點法係將影像以格點形成呈現並計算座標差異,以提供控制卡3運算補償量(光學校正資訊)。格點法使用於高精密度的打標,例如在晶圓上形成刻痕,但格點法進行時相當耗時。若是要快速進行低精度的打標,則可使用如圖5所揭露的校正流程。如圖5所示,其中步驟T1為輸入光學與機構參數,包含光學鏡片11的焦距以及縮放係數等參數。其中光學鏡片11的焦距為鏡片的光學參數,縮放係數則是用來補償在組裝過程中產生的組裝誤差。後續進行步驟T2。進行步驟T2時,控制卡3中的運算元件32利用光學與機構參數生成光學校正資訊。傳遞介面與通訊協定是同於圖4步驟S6與S7的說明。後續步驟T3與T4是同於圖4步驟S6至S7的順序與說明。圖5所揭露的校正流程與圖4所揭露的校正流程,最大差異是在,圖5中所揭露的「光學校正資訊產生方法」 是根據振鏡模組1所包含的光學鏡片11的光學參數與用來補償振鏡模組1因組裝時產生的誤差而須調整的縮放係數所得到,但是圖4是根據試打點的位置運算所得。圖5所揭露的校正法又稱為理論校正法,因為校正內容不需要參考校正片A,校正過程快速又方便,故適用於需要快速校正且需求的精度不高的場合。 In the calibration flow of FIG. 4, steps S1 to S5 are referred to as a lattice method. The grid method is to present the image as grid points and calculate the coordinate difference to provide the control card 3 operation compensation amount (optical correction information). The grid method is used for high-precision marking, such as forming a score on a wafer, but the grid method is time-consuming. If low-precision marking is to be performed quickly, a calibration process as disclosed in FIG. 5 may be used. As shown in FIG. 5, step T1 is input optical and mechanical parameters, including parameters such as the focal length and zoom factor of the optical lens 11. The focal length of the optical lens 11 is an optical parameter of the lens, and the zoom factor is used to compensate an assembly error generated during the assembly process. Followed by step T2. When step T2 is performed, the computing element 32 in the control card 3 generates optical correction information by using optical and mechanical parameters. The transmission interface and communication protocol are the same as those described in steps S6 and S7 in FIG. 4. The subsequent steps T3 and T4 are the same as the sequence and description of steps S6 to S7 in FIG. 4. The biggest difference between the calibration process disclosed in FIG. 5 and the calibration process disclosed in FIG. 4 is the “optical correction information generation method” disclosed in FIG. 5 It is obtained based on the optical parameters of the optical lens 11 included in the galvanometer module 1 and the zoom factor used to compensate the galvanometer module 1 due to errors generated during assembly, but FIG. 4 is calculated based on the position of the test point Income. The correction method disclosed in FIG. 5 is also called the theoretical correction method, because the correction content does not need to refer to the correction sheet A, and the correction process is fast and convenient, so it is suitable for occasions that require rapid correction and the required accuracy is not high.

最後請參考圖6,圖6為根據本發明所揭露的技術,表示本發明提供之校正方法,在雷射打標機L處於一般模式下實施流程圖,其中圖6揭示了四個步驟,分別為W1~W4,以下分別詳述步驟的執行內容: Finally, please refer to FIG. 6. FIG. 6 is a flowchart illustrating a calibration method provided by the present invention according to the technology disclosed in the present invention. The flowchart is implemented when the laser marking machine L is in a general mode. FIG. 6 shows four steps, respectively. For W1 ~ W4, the details of the steps are as follows:

步驟W1:雷射打標機L處於一般模式時,在系統就緒後控制卡3以串列通訊方式發送參數讀取命令給振鏡驅動電路13,在本實施例中,控制卡3發送參數讀取命令給振鏡驅動電路13的方式與前述相同,於此不再多加贅述。使用者/客戶端在使用雷射打標機L時,預設的模式即為一般模式。 Step W1: When the laser marking machine L is in the general mode, after the system is ready, the control card 3 sends a parameter reading command to the galvanometer driving circuit 13 in serial communication. In this embodiment, the control card 3 sends the parameter reading The manner of obtaining the command to the galvanometer driving circuit 13 is the same as that described above, and will not be described in detail here. When the user / client uses the laser marking machine L, the default mode is the general mode.

步驟W2:振鏡驅動電路13在第三時間接收參數讀取命令,在第四時間向記憶體14讀取光學校正資訊,並在第四時間將在第二時間內建儲存的光學校正資訊傳送給控制卡3。在本實施例中,時間的順序由先到後分別是第二時間、第三時間與第四時間。振鏡驅動電路13在第三時間接收參數讀取命令後,振鏡驅動電路13會依照指定的位址向記憶體14讀取該位址的資訊,並以串列的方式讀取。可以讀取全部在第二時間所內建儲存的光學校正資訊,或是部分的光學校正資訊。記憶體14發送一次光學校正資訊給振鏡驅動電路13,讀取次數記為一次。在本實施例中使用的記憶體14,若是非揮發性記憶體中的PROM(可程式化唯讀記憶體)時,光學校正資訊的全部或是部分可以被控制卡3讀取至少一千次,儲存在PROM的光學校正資訊被讀取後仍然全部保留在記憶體14中。在本發明的另一實施例中,當使用的記憶體14如EPROM、EEPROM或是FLASH等非揮發性記憶體時,光 學校正資訊的全部或是部分可以被控制卡3讀取至少一萬次。故為了提高讀取次數,在本發明較佳的實施例中,記憶體14可以採用如EPROM、EEPROM或是FLASH等非揮發性記憶體。 Step W2: The galvanometer driving circuit 13 receives the parameter reading command at the third time, reads the optical correction information from the memory 14 at the fourth time, and transmits the stored optical correction information at the fourth time. Give the control card 3. In this embodiment, the order of time is first time, second time, third time, and fourth time. After the galvanometer driving circuit 13 receives the parameter reading command at the third time, the galvanometer driving circuit 13 reads the information of the address from the memory 14 according to the specified address, and reads the information in a serial manner. You can read all the optical calibration information stored in the second time, or part of the optical calibration information. The memory 14 sends the optical correction information to the galvanometer driving circuit 13 once, and the number of readings is recorded as one. If the memory 14 used in this embodiment is a PROM (programmable read-only memory) in non-volatile memory, all or part of the optical correction information can be read by the control card 3 at least one thousand times. After being read, the optical correction information stored in the PROM is still retained in the memory 14. In another embodiment of the present invention, when the memory 14 used is a non-volatile memory such as EPROM, EEPROM or FLASH, the All or part of the school information can be read at least 10,000 times by the control card 3. Therefore, in order to improve the reading times, in a preferred embodiment of the present invention, the memory 14 may be a non-volatile memory such as EPROM, EEPROM, or FLASH.

步驟W3:控制卡3運算第二時間內建儲存的光學校正資訊,並形成畸變校正表。振鏡模組1中的振鏡驅動電路13會向記憶體14讀取此光學校正資訊並將此光學校正資訊發送至控制卡3,以使控制卡3產生畸變校正表。 Step W3: The control card 3 calculates the optical correction information stored in the second time and forms a distortion correction table. The galvanometer driving circuit 13 in the galvanometer module 1 reads the optical correction information from the memory 14 and sends the optical correction information to the control card 3 so that the control card 3 generates a distortion correction table.

步驟W4:控制卡3根據畸變校正表修正發送至振鏡驅動電路13的打標命令,打標命令傳遞的方式係標準XY-100通訊,可藉由電線,以電訊號傳遞給振鏡模組1。控制卡3根據畸變校正表補償打標命令,使雷射源2產生的雷射光可以準確聚焦於樣品S上。打標完成後此流程即結束。 Step W4: The control card 3 corrects the marking command sent to the galvanometer driving circuit 13 according to the distortion correction table. The method of transmitting the marking command is standard XY-100 communication, which can be transmitted to the galvanometer module by an electrical signal through a wire. 1. The control card 3 compensates the marking command according to the distortion correction table, so that the laser light generated by the laser source 2 can be accurately focused on the sample S. This process ends when marking is complete.

利用本發明所提出的校正方法,分成校正模式與一般模式,不僅可以在雷射打標機L斷電時保留光學校正資訊,且可重複地寫入以及讀取光學校正資訊,並且在每次雷射打標機L開機完成後且位於一般模式時,自動發送參數讀取命令,以使控制卡3讀取振鏡模組1內建儲存之光學校正資訊,控制卡3根據該光學校正資訊生成畸變校正表,雷射打標機L根據此畸變校正表進行雷射打標。且可以根據不同的精度的需求,選擇不同的校正方法,故具實用性與方便性。 The correction method proposed by the present invention is divided into a correction mode and a general mode. Not only can the optical correction information be retained when the laser marking machine L is powered off, but also the optical correction information can be repeatedly written and read. After the laser marking machine L is turned on and is in the normal mode, it automatically sends a parameter reading command so that the control card 3 reads the optical correction information stored in the galvanometer module 1, and the control card 3 according to the optical correction information A distortion correction table is generated, and the laser marking machine L performs laser marking according to the distortion correction table. In addition, different correction methods can be selected according to the requirements of different accuracy, so it is practical and convenient.

雖然本創作以前述之較佳實施例揭露如上,然其並非用以限定本創作,任何熟習本領域技藝者,在不脫離本創作之精神和範圍內,當可作些許之更動與潤飾,因此本創作之專利保護範圍須視本說明書所附之申請專利範圍所界定者為準。 Although the above-mentioned preferred embodiment is disclosed as above, it is not intended to limit the creation. Any person skilled in the art can make some changes and decorations without departing from the spirit and scope of the creation. The scope of patent protection of this creation shall be determined by the scope of the patent application attached to this specification.

Claims (9)

一種雷射打標機,包括:一控制卡,用以發送一參數讀取命令;以及一振鏡模組,接收該參數讀取命令,且該振鏡模組內建儲存一光學校正資訊;其中該控制卡讀取該光學校正資訊以產生一畸變校正表,使得該雷射打標機根據該畸變校正表進行一雷射打標。A laser marking machine includes: a control card to send a parameter reading command; and a galvanometer module to receive the parameter reading command, and the galvanometer module stores an optical correction information built-in; The control card reads the optical correction information to generate a distortion correction table, so that the laser marking machine performs a laser marking according to the distortion correction table. 如申請專利範圍第1項所述之雷射打標機,其中該振鏡模組包含一記憶體,用以內建儲存該光學校正資訊。The laser marking machine according to item 1 of the scope of patent application, wherein the galvanometer module includes a memory for storing the optical correction information built-in. 如申請專利範圍第2項所述之雷射打標機,其中該記憶體為非揮發性記憶體。The laser marking machine according to item 2 of the patent application scope, wherein the memory is a non-volatile memory. 如申請專利範圍第2項所述的雷射打標機,其中該振鏡模組更包括一光學鏡片、一振鏡電機及一振鏡驅動電路。According to the laser marking machine described in item 2 of the patent application scope, the galvanometer module further includes an optical lens, a galvanometer motor, and a galvanometer driving circuit. 如申請專利範圍第2項所述之雷射打標機,其中該記憶體更儲存一馬達控制參數或一行程極限,其中該馬達控制參數係由迴路增益、共振抑制濾波器參數、低通濾波器參數或相位領先補償器參數所構成。The laser marking machine according to item 2 of the patent application scope, wherein the memory further stores a motor control parameter or a stroke limit, wherein the motor control parameter is composed of a loop gain, a resonance suppression filter parameter, and a low-pass filter. It can be composed of the parameters of the amplifier or the phase leading compensator. 如申請專利範圍第1項之雷射打標機,其中該控制卡包括一監控元件、一運算元件以及一儲存元件。For example, the laser marking machine according to the first patent application scope, wherein the control card includes a monitoring element, a computing element, and a storage element. 如申請專利範圍第1項之雷射打標機,其中該控制卡與該振鏡模組係透過串列通訊協定方式進行發送與接收。For example, the laser marking machine of the first patent application scope, wherein the control card and the galvanometer module are sent and received through a serial communication protocol. 一種應用於雷射打標機,在一振鏡模組內建光學校正資訊的方法,該雷射打標機包括一控制卡、該振鏡模組及一雷射源,其中該振鏡模組包括一光學鏡片、一記憶體、一振鏡電機及一振鏡驅動電路,該控制卡包括一監控元件、一運算元件以及一儲存元件,該校正方法包含:利用該振鏡電機帶動該光學鏡片,藉由該光學鏡片將該雷射源的一雷射光束導向一物件的一加工平面,以該控制卡之該監控元件量測加工後的該物件的一距離誤差;將該距離誤差輸入該控制卡,該控制卡根據該距離誤差運算得到該振鏡模組的該光學校正資訊;該控制卡將該光學校正資訊及一參數儲存命令發送給該振鏡驅動電路;該振鏡驅動電路將該光學校正資訊內建儲存在該振鏡模組的該記憶體;以及該控制卡發送一參數讀取命令至該振鏡模組,並讀取該振鏡模組所內建儲存之該光學校正資訊以產生一畸變校正表,使得該雷射打標機根據該畸變校正表進行一雷射打標。A method applied to a laser marking machine with built-in optical correction information in a galvanometer module. The laser marking machine includes a control card, the galvanometer module and a laser source, wherein the galvanometer module The set includes an optical lens, a memory, a galvanometer motor and a galvanometer driving circuit. The control card includes a monitoring element, a computing element and a storage element. The correction method includes: using the galvanometer motor to drive the optical A lens, which directs a laser beam of a laser source to a processing plane of an object through the optical lens, and measures a distance error of the processed object with the monitoring element of the control card; and inputs the distance error The control card, which obtains the optical correction information of the galvanometer module according to the distance error calculation; the control card sends the optical correction information and a parameter storage command to the galvanometer driving circuit; the galvanometer driving circuit The optical correction information is stored in the memory of the galvanometer module; and the control card sends a parameter reading command to the galvanometer module, and reads the parameter stored in the galvanometer module. School information to generate a positive distortion correction table so that the laser marking a laser marking machine according to the distortion correction table. 如申請專利範圍第8項之所述之校正方法,其中該光學校正資訊係透過理論校正法取得,該理論校正法包含:於該控制卡輸入一光學參數與一機構參數;運算該光學參數與該機構參數;以及生成該光學校正資訊;其中該光學參數為該振鏡模組之鏡片的焦距,該機構參數為縮放參數。The correction method according to item 8 of the scope of patent application, wherein the optical correction information is obtained through a theoretical correction method, which includes: inputting an optical parameter and a mechanism parameter into the control card; calculating the optical parameter and The mechanism parameter; and generating the optical correction information; wherein the optical parameter is a focal length of a lens of the galvanometer module, and the mechanism parameter is a zoom parameter.
TW106129443A 2017-08-30 2017-08-30 Laser marking machine and its correction method TWI650914B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106129443A TWI650914B (en) 2017-08-30 2017-08-30 Laser marking machine and its correction method
CN201810980719.4A CN109532244A (en) 2017-08-30 2018-08-27 Laser marking machine and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106129443A TWI650914B (en) 2017-08-30 2017-08-30 Laser marking machine and its correction method

Publications (2)

Publication Number Publication Date
TWI650914B true TWI650914B (en) 2019-02-11
TW201914134A TW201914134A (en) 2019-04-01

Family

ID=65841217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106129443A TWI650914B (en) 2017-08-30 2017-08-30 Laser marking machine and its correction method

Country Status (2)

Country Link
CN (1) CN109532244A (en)
TW (1) TWI650914B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125548A (en) * 2019-04-26 2019-08-16 北京金橙子科技股份有限公司 A kind of laser digital communications protocol
CN114289858B (en) * 2021-11-18 2023-07-07 富联裕展科技(深圳)有限公司 Debugging and monitoring method, device, equipment and computer readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804521A (en) * 2010-04-15 2010-08-18 中国电子科技集团公司第四十五研究所 Galvanometer system correction device and correction method thereof
TW201325792A (en) * 2011-12-16 2013-07-01 Ind Tech Res Inst Method and processor for laser processing error calibration
CN205219744U (en) * 2015-09-18 2016-05-11 广东汉邦激光科技有限公司 Laser 3D printer and galvanometer scanning calbiration system thereof
TWM526226U (en) * 2016-03-18 2016-07-21 Eastern Logic Inc Laser marking controller
TW201714695A (en) * 2015-10-28 2017-05-01 新代科技股份有限公司 Flying laser marking system with real-time 3D modeling and method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276461A (en) * 1989-04-18 1994-01-04 Tokyo Electric Co., Ltd. Electrophotographic printing device
JPH10142546A (en) * 1996-11-06 1998-05-29 Fuji Xerox Co Ltd Focusing adjustment method, optical beam optical device used in the method and picture forming device using the method
US7271824B2 (en) * 2001-09-28 2007-09-18 Ricoh Company, Ltd. Pixel clock generating apparatus, optical writing apparatus using a pixel clock, imaging apparatus, and method for generating pixel clocks
CN101685488B (en) * 2008-09-22 2012-10-03 深圳市大族激光科技股份有限公司 Accuracy correcting method of laser marking machine
CN101508055B (en) * 2009-03-10 2012-04-25 深圳众为兴技术股份有限公司 Laser process correction method
JP5643788B2 (en) * 2012-07-20 2014-12-17 キヤノン株式会社 Imaging apparatus, control method therefor, and lens unit
CN106181024A (en) * 2016-08-25 2016-12-07 关键应用科技股份有限公司 Radium-shine bearing calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804521A (en) * 2010-04-15 2010-08-18 中国电子科技集团公司第四十五研究所 Galvanometer system correction device and correction method thereof
TW201325792A (en) * 2011-12-16 2013-07-01 Ind Tech Res Inst Method and processor for laser processing error calibration
CN205219744U (en) * 2015-09-18 2016-05-11 广东汉邦激光科技有限公司 Laser 3D printer and galvanometer scanning calbiration system thereof
TW201714695A (en) * 2015-10-28 2017-05-01 新代科技股份有限公司 Flying laser marking system with real-time 3D modeling and method thereof
TWM526226U (en) * 2016-03-18 2016-07-21 Eastern Logic Inc Laser marking controller

Also Published As

Publication number Publication date
CN109532244A (en) 2019-03-29
TW201914134A (en) 2019-04-01

Similar Documents

Publication Publication Date Title
US10764487B2 (en) Distance image acquisition apparatus and application thereof
CN103744271B (en) A kind of laser direct writing system and photoetching method
KR100540541B1 (en) Laser beam positioning device for laser machining, apparatus
JP2004532740A (en) Method for calibrating the optics of a laser device for processing electronic circuit boards
CN103900532A (en) Depth image capturing device, and calibration method and measurement method thereof
KR20060131849A (en) System and method for virtual laser marking
TWI650914B (en) Laser marking machine and its correction method
CN108072973B (en) Laser galvanometer device comprising correction system and correction method
CN111009013B (en) Vibrating mirror calibration method for dicing saw
WO2018012199A1 (en) Substrate measurement device and laser processing system
CN204771159U (en) Laser machining device
CN210451366U (en) Galvanometer correction system
CN108681209A (en) Detection device and method, patterning device, acquisition methods and manufacturing method
KR20180137071A (en) Apparatus for 3D laser patterning
TW201408410A (en) A laser apparatus and a method of directing laser to a workpiece surface
CN108701678B (en) Mark position correction device and method
JP2010274267A (en) Laser beam machine
KR101470150B1 (en) A laser marking system having laser scanner with camera
CN107931860A (en) A kind of laser cutting device and its cutting method
JP4197340B2 (en) 3D shape measuring device
JP6045174B2 (en) High-precision alignment method and high-precision alignment apparatus for optical components
JP2020020990A (en) Joining device and joining method
US11000917B2 (en) Laser marking system and method for laser marking a workpiece
JP6920035B2 (en) Alignment method and alignment device
KR20150005765A (en) Method and apparatus for calibrating a laser marking system