TW201325792A - Method and processor for laser processing error calibration - Google Patents

Method and processor for laser processing error calibration Download PDF

Info

Publication number
TW201325792A
TW201325792A TW100146722A TW100146722A TW201325792A TW 201325792 A TW201325792 A TW 201325792A TW 100146722 A TW100146722 A TW 100146722A TW 100146722 A TW100146722 A TW 100146722A TW 201325792 A TW201325792 A TW 201325792A
Authority
TW
Taiwan
Prior art keywords
image
laser
visual
laser processing
workpiece
Prior art date
Application number
TW100146722A
Other languages
Chinese (zh)
Other versions
TWI438050B (en
Inventor
Shao-Chuan Liou
Kevin Lee
Sung-Ho Liu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100146722A priority Critical patent/TWI438050B/en
Priority to CN201110444913.9A priority patent/CN103157909B/en
Publication of TW201325792A publication Critical patent/TW201325792A/en
Application granted granted Critical
Publication of TWI438050B publication Critical patent/TWI438050B/en

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

A method for laser processing error calibration is provided. The method includes: performing a visual error inspection procedure, further including: sensing a standard test piece having a standard image to produce a sample image; and comparing the standard image with the sample image to record visual errors of corresponding points therebetween; performing a processing error inspection procedure, further including: processing a work piece with a test image; sensing the work piece to produce a work piece image; and comparing the work piece image with the test image to record processing errors of corresponding points therebetween; and calculating a laser operation position.

Description

雷射加工誤差校正方法及處理器Laser processing error correction method and processor

本發明係關於雷射加工誤差校正技術。The present invention relates to laser processing error correction techniques.

雷射加工係一種常見的加工手段,其以雷射光束於一工件之特定位置產生各種加工或微加工,包括記號之刻印、工件之焊接、切割或表面處理。Laser processing is a common processing method that produces various machining or micromachining at a specific position of a laser beam, including marking, marking, cutting, or surface treatment.

第1圖為習知雷射加工裝置100之結構圖。該雷射加工裝置100包括一雷射源110,用以產生一雷射光束112。分光鏡130用以將雷射光束112穿透至雷射掃描頭(scan head)140上,而雷射掃描頭140會進一步將雷射光束112導引至平台150上之一工件152。掃描頭140為一振鏡系統,其主要是由兩反射鏡142及144以及一聚焦鏡170所組成。其中,該反射鏡142及144用以將雷射光束反射至該聚焦鏡上,而該聚焦鏡170則進一步將該雷射光束聚焦在一平面上。該聚焦鏡170同時亦供可見光通過,目的在使工件152之影像得以經由聚焦鏡170以及分光鏡130可反射可見光而被視覺偵測器160偵得而讓雷射光束通過。值得注意的是,由於振鏡系統在進行影像掃描時因雷射掃描頭140組裝不精準,或因為反射鏡或聚焦鏡本身的各種光學失真等原因,使得視覺偵測器160取得之視覺影像可能因畸變而與實際影像有所不同,其間的誤差即為「視覺畸變誤差」(後文將依此定義做說明)。此外,由於雷射光與可見光位於的光譜波段不同,因此,在經聚焦鏡170聚焦後,會使得雷射光束加工的位置與視覺偵測器160所看到的位置有所不同,其間的誤差則稱為雷射/視覺光程誤差(後文將依此定義做說明)。FIG. 1 is a structural view of a conventional laser processing apparatus 100. The laser processing apparatus 100 includes a laser source 110 for generating a laser beam 112. The beam splitter 130 is used to penetrate the laser beam 112 onto a laser scan head 140, which in turn directs the laser beam 112 to a workpiece 152 on the platform 150. The scanning head 140 is a galvanometer system, which is mainly composed of two mirrors 142 and 144 and a focusing mirror 170. The mirrors 142 and 144 are used to reflect the laser beam onto the focusing mirror, and the focusing mirror 170 further focuses the laser beam on a plane. The focusing mirror 170 also serves visible light for the purpose of allowing the image of the workpiece 152 to be reflected by the focusing detector 170 and the spectroscope 130 to be reflected by the visual detector 160 to pass the laser beam. It is worth noting that the visual image obtained by the visual detector 160 may be caused by the inaccurate assembly of the laser scanning head 140 during image scanning or due to various optical distortions of the mirror or the focusing mirror itself. The distortion is different from the actual image, and the error between them is the "visual distortion error" (this will be explained later). In addition, since the laser light is different from the spectral band in which the visible light is located, after focusing by the focusing mirror 170, the position of the laser beam processing is different from that seen by the visual detector 160, and the error therebetween is It is called laser/visual optical path error (this will be explained later).

本發明目標利用同軸視覺影像技術來分離畸變誤差與雷射/視覺光程誤差,達到快速校正的目的。The object of the invention utilizes coaxial vision image technology to separate distortion error and laser/visual optical path error, and achieve the purpose of rapid correction.

本發明提供一種雷射加工誤差校正方法,包括:執行一視覺畸變誤差檢驗程序,更包括:在一加工平台上放置的一標準試片,其具有一標準圖像;對該標準試片取像以產生一取樣圖像;以及比對該標準圖像與該取樣圖像以記錄兩者各個對應點之間的視覺誤差值,以產生視覺取像位置補償表;執行一雷射/視覺光程誤差檢驗程序,更包括:以一測試圖像對一工件進行雷射試加工;對該工件取像以產生一工件圖像;以及比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值,將視覺取像位置補償表與雷射/視覺光程誤差值進行運算,以產生雷射加工位置補償表。The invention provides a laser processing error correction method, comprising: performing a visual distortion error checking program, and further comprising: a standard test piece placed on a processing platform, having a standard image; and capturing the standard test piece Generating a sampled image; and comparing the standard image with the sampled image to record visual error values between respective corresponding points to generate a visual image capture position compensation table; performing a laser/visual optical path The error checking program further comprises: performing laser trial processing on a workpiece with a test image; taking an image of the workpiece to generate a workpiece image; and comparing the workpiece image with the test image to record The laser/visual optical path error value between the points is calculated by the visual image capturing position compensation table and the laser/visual optical path error value to generate a laser processing position compensation table.

本發明另提供一種雷射加工誤差校正處理器,位於一雷射加工裝置,其中該雷射加工裝置包括至少一視覺偵測器以及一雷射掃描頭,該雷射加工誤差校正處理器包括:一視覺誤差檢驗單元,用以透過該視覺偵測器對該一標準試片取像以產生一取樣圖像;並比對該標準圖像與該取樣圖像以記錄兩者各個對應點之間的視覺誤差值,以產生視覺取像位置補償表;以及一雷射加工校正單元,用以透過該雷射掃描頭而以一測試圖像對一工件進行雷射試加工;透過該視覺偵測器對該工件取像以產生一工件圖像;並比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值,將視覺取像位置補償表與雷射/視覺光程誤差值進行運算,以產生雷射加工位置補償表。The present invention further provides a laser processing error correction processor, which is located in a laser processing apparatus, wherein the laser processing apparatus includes at least one visual detector and a laser scanning head, and the laser processing error correction processor includes: a visual error checking unit configured to image a standard test piece by the visual detector to generate a sample image; and compare the standard image with the sample image to record each corresponding point a visual error value for generating a visual image capture position compensation table; and a laser processing correction unit for performing a laser test on a workpiece through the laser scan head through the laser scan head; The image is taken by the workpiece to generate a workpiece image; and the visual image capturing position compensation table is compared with the laser/visual optical path error value between the workpiece image and the test image to record the corresponding points The laser/visual optical path error value is calculated to generate a laser machining position compensation table.

下文為介紹本發明之最佳實施例。各實施例用以說明本發明之原理,但非用以限制本發明。本發明之範圍當以後附之權利要求項為準。The following is a description of the preferred embodiment of the invention. The examples are intended to illustrate the principles of the invention, but are not intended to limit the invention. The scope of the invention is defined by the appended claims.

以下說明雷射加工誤差校正方法The following describes the laser processing error correction method

第2圖為依據本發明一實施例之雷射加工誤差校正方法流程圖。本發明之雷射加工誤差校正方法係用於雷射掃描頭結合同軸視覺偵測器的雷射加工平台,舉例而言,可應用於如第1圖之電射加工裝置100。本發明之方法在流程上可簡化為「視覺畸變誤差檢驗程序(S210)」、「雷射/視覺光程誤差」檢驗程序(S220)」與「雷射加工位置補償表計算」,下文將以一最佳實施例並配合相關圖示說明各個程序之詳細步驟。2 is a flow chart of a laser processing error correction method according to an embodiment of the invention. The laser processing error correction method of the present invention is applied to a laser processing platform in which a laser scanning head is combined with a coaxial visual detector, and can be applied, for example, to the electro-radiation processing apparatus 100 as shown in FIG. The method of the present invention can be simplified in the process as "Visual Distortion Error Test Procedure (S210)", "Laser/Visual Pathlength Error Test Procedure (S220)" and "Laser Processing Position Compensation Table Calculation", which will be A preferred embodiment and detailed illustration of the various steps of the various procedures are illustrated.

本發明之方法在執行視覺畸變誤差檢驗程序S210時,更包括執行下列步驟:在步驟S212中,在一加工平台上放置的一標準試片,其中該標準試片具有一標準圖像(舉例而言,其上有複數個標記);在步驟S214中,對該標準試片取像以產生一取樣圖像;以及在步驟S216中,比對該標準圖像與該取樣圖像以記錄兩者各個對應點間之視覺誤差值,步驟S218,則針對步驟S216的視覺誤差值進行運算,產生視覺取像位置補償表。第3圖為一實施例中標準試片上標準圖像及取樣圖像之示意圖。在此實施例中,標準試片310係放置於一雷射加工裝置300之一加工平台350上(步驟S212),其實際的圖像即稱為標準圖像352。其中,該標準圖像352可預先記錄或儲存於雷射加工裝置之處理單元(圖未示)。在一實施例中,標準圖像352具有複數個標記,例如圖中所示之標記點P1~P9。視覺偵測器360會對該標準試片310(或標準圖像352)進行取像(步驟S214)。然而,如前文所述,由於雷射掃描器組裝定位以及聚焦鏡的失真問題,造成視覺偵測器360經過雷射加工裝置300擷取到的影像(即本文所簡稱的「取樣圖像」)將會與實際的標準圖像352有所不同。在第3圖的實施例中,標準圖像352中各標記點的虛框(例如虛框3522)為視覺偵測器360在每一次進行影像偵測時所能擷取到的影像範圍,而此實施例中,每次擷取的影像範圍中包括至少一標記點(例如虛框3522中的標記點P1),其中,取樣圖像352’中之各個標記點P1’~P9’分別對應至標準圖像352之各個標記點P1~P9,但各標記點皆可能偏離其原有位置,因此,將偏離中心點的標記點P1’~P9’分別校正至中心點,再存入電射加工裝置100。此外,假設視覺畸變誤差皆由雷射掃描定位時的不精確所造成,則標準圖像352中兩標記點皆可能偏離原位置,導致兩標記點間的距離被放大或縮小、相對方向被旋轉。因此,在其他實施例中,標記點不限於一個,藉由在一影像範圍中設定兩個或兩個以上的標記點,該影像範圍被縮放的比例、偏移的位置、以及旋轉的角度即可被輕易識別,而上述兩標記點在標準圖像352及取樣圖像352’間的各種變化(包括距離比例、偏移位置以及角度)皆各該影像範圍中各個對應標記點之間的「視覺畸變誤差值」,而步驟S216目的即在紀錄各個對應點之間的視覺誤差值,經由步驟S218運算產生視覺取像位置補償表後將偏離的影像區域中心位置與標記點對正,再存入電射加工裝置100。在一實施例中,集合標準圖像及取樣圖像兩者所有對應點的視覺誤差值運算即可建立一「視覺取像位置補償表」。When the method of the present invention performs the visual distortion error checking program S210, the method further includes the following steps: in step S212, a standard test piece placed on a processing platform, wherein the standard test piece has a standard image (for example a plurality of marks thereon; in step S214, the standard test piece is imaged to generate a sample image; and in step S216, the standard image and the sample image are compared to record both The visual error value between each corresponding point is calculated in step S218 for the visual error value of step S216 to generate a visual image capturing position compensation table. Figure 3 is a schematic diagram of a standard image and a sampled image on a standard test piece in an embodiment. In this embodiment, the standard test strip 310 is placed on a processing platform 350 of a laser processing apparatus 300 (step S212), and the actual image is referred to as a standard image 352. The standard image 352 can be pre-recorded or stored in a processing unit (not shown) of the laser processing apparatus. In one embodiment, the standard image 352 has a plurality of indicia, such as the indicia points P1 to P9 shown in the figures. The visual detector 360 will image the standard test strip 310 (or the standard image 352) (step S214). However, as described above, due to the laser scanner assembly positioning and the distortion of the focusing mirror, the image captured by the visual detector 360 through the laser processing device 300 (ie, the "sampling image" referred to herein) It will be different from the actual standard image 352. In the embodiment of FIG. 3, the virtual frame of each marker point in the standard image 352 (for example, the virtual frame 3522) is the range of images that the visual detector 360 can capture when performing image detection every time. In this embodiment, each of the captured image ranges includes at least one marker point (eg, marker point P1 in the virtual frame 3522), wherein each of the marker points P1' to P9' in the sampled image 352' corresponds to Each of the standard images 352 is marked with points P1 to P9, but each of the marked points may deviate from its original position. Therefore, the marked points P1' to P9' deviating from the center point are respectively corrected to the center point, and then stored in the electro-polishing process. Device 100. In addition, assuming that the visual distortion error is caused by the inaccuracy in the laser scanning positioning, both the marking points in the standard image 352 may deviate from the original position, causing the distance between the two marking points to be enlarged or reduced, and the relative direction being rotated. . Therefore, in other embodiments, the marker point is not limited to one, and by setting two or more marker points in an image range, the scale of the image range to be scaled, the position of the offset, and the angle of rotation are Can be easily identified, and the various changes between the two marked points between the standard image 352 and the sampled image 352' (including the distance ratio, the offset position, and the angle) are each between the corresponding points in the image range. The visual distortion error value is used, and the purpose of step S216 is to record the visual error value between the corresponding points, and the center position of the deviated image area is aligned with the mark point after the operation of the visual image capturing position compensation table is generated in step S218, and then stored. The electric radiation processing device 100 is entered. In one embodiment, a "visual image capture position compensation table" can be established by computing the visual error values of all corresponding points of the standard image and the sampled image.

本發明之方法在執行上述視覺畸變誤差檢驗程序S210後,執行雷射/視覺光程誤差檢驗程序S220時,更包括執行下列步驟:在步驟S222中,以S210產生的視覺取像位置補償表與一測試圖像對一工件進行雷射試加工;在步驟S224中,對該工件取像以產生一工件圖像;在步驟S226中,比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值,步驟S230將視覺取像位置補償表與雷射/視覺光程誤差值進行運算,產生雷射加工位置補償表。第4圖為一實施例中測試圖像及工件圖像之示意圖。值得注意的是,此處「試加工」與正式的「加工」有所不同,其目的僅在檢驗出因為雷射光與可見光間之光程差所造成的「雷射/視覺光程誤差」。在第4圖的實施例中,測試圖像為取樣圖像經校正後儲存或記錄在雷射加工裝置之處理單元中的一個圖像,為方便說明,此實施例採用如同前述步驟S214中的「取樣圖像352’」經視覺取像位置補償表校正後存在電射加工裝置100之圖像做為測試圖像353;然而,由於在其他實施例使用其他任何圖像亦可達到相同效果,故本發明中的「測試圖像」可為各種形式之圖案,熟悉本技藝人士可參照後文內容理解此原理。類似步驟S214,步驟S224可透過雷射加工裝置300中的視覺偵測器360對試加工完成後的工件310’進行取像,進而產生一工件圖像353’。值得注意的是,由於雷射光與可見光之光程差之故,工件圖像353’與測試圖像353仍或多或少存在差異,此即為「雷射/視覺光程誤差」所致,而步驟S226目的即在透過比對工件圖像353’與測試圖樣353而找出兩者之間的差異值,步驟S230將視覺取像位置補償表與雷射/視覺光程誤差值進行運算,產生雷射加工位置補償表。在第4圖的實施例中,測試圖像353中標記點的虛框(例如虛框3522)為試加工於工件上後被視覺偵測器360擷取到的影像範圍,而此實施例中,每次擷取的影像範圍中包括一個標記點(例如虛框3522中的標記點P1),其中,工件圖像353’中之各個標記點P1”~P9”分別對應至測試圖像353之各個標記點P1’~P9’分別取像後存入電射加工裝置100。更明確地說,假設雷射/視覺光程誤差係由雷射光與可見光之間的光程誤差所造成的,則測試圖像353中標記點間的位置有可能在試加工後之工件圖像353’有所不同;此外,由於雷射掃描台定位組裝與或聚焦鏡的關係,工件圖像353’之各個標記點間的距離可能被放大或縮小,而相對方向可能被旋轉。在一實施例中,藉由在一影像範圍中設定兩個或兩個以上標記點,則該影像範圍被縮放的比例值與旋轉角度即可被計算出來。此影像區的雷射/視覺光程誤差即可被計算出來。值得注意的是,本發明步驟S222中的「雷射試加工」可採用多種方法,舉例而言,可採用「雷射刻印法」,當工件係由多層材料所構成時(各層材料可相同或相異),此「雷射刻印法」會以雷射光將工件上特定標記點所在位置的最上層材料予以刻蝕去除,其速度較快。本發明亦提供另一種新的「雷射刻印法」,此方法與前述方法相反,其會保留該特定標記點之最上層材料,並將該標記點以外所有最上層材料予以蝕刻去除,其速度較慢,但可提高精確度。透過此一方法,可進一步提升視覺偵測器360辨識影像之效率。The method of the present invention, after performing the above-described visual distortion error checking program S210, when performing the laser/visual optical path error checking program S220, further includes the following steps: in step S222, the visual image capturing position compensation table generated by S210 and a test image is subjected to laser trial processing on a workpiece; in step S224, the workpiece is imaged to generate a workpiece image; in step S226, the workpiece image and the test image are compared to record both Corresponding to the laser/visual optical path error value between the points, step S230 calculates the visual image capturing position compensation table and the laser/visual optical path error value to generate a laser processing position compensation table. Figure 4 is a schematic diagram of a test image and a workpiece image in an embodiment. It is worth noting that the "trial processing" is different from the formal "processing" here. The purpose is only to detect the "laser/visual optical path error" caused by the optical path difference between the laser light and the visible light. In the embodiment of FIG. 4, the test image is an image in which the sampled image is corrected and stored or recorded in the processing unit of the laser processing apparatus. For convenience of explanation, this embodiment adopts the same as in the foregoing step S214. The "sampling image 352'" is corrected by the visual image capturing position compensation table and the image of the electro-radiation processing device 100 is used as the test image 353; however, since any other image is used in other embodiments, the same effect can be achieved. Therefore, the "test image" in the present invention can be in various forms, and those skilled in the art can understand the principle with reference to the following. Similar to step S214, step S224 can image the finished workpiece 310' through the visual detector 360 in the laser processing apparatus 300 to generate a workpiece image 353'. It is worth noting that due to the optical path difference between the laser light and the visible light, the workpiece image 353' and the test image 353 are still more or less different, which is caused by the "laser/visual optical path error". In step S226, the difference between the two is obtained by comparing the workpiece image 353' with the test pattern 353, and the step S230 calculates the visual image capturing position compensation table and the laser/visual optical path error value. A laser machining position compensation table is generated. In the embodiment of FIG. 4, the virtual frame of the marked point in the test image 353 (for example, the virtual frame 3522) is the image range captured by the visual detector 360 after being processed on the workpiece, and in this embodiment, Each of the captured image ranges includes a marker point (eg, marker point P1 in the virtual frame 3522), wherein each of the marker points P1" to P9" in the workpiece image 353' corresponds to the test image 353, respectively. Each of the marker points P1' to P9' is imaged and stored in the electro-radiation processing apparatus 100. More specifically, assuming that the laser/visual optical path error is caused by the optical path error between the laser light and the visible light, the position between the marked points in the test image 353 may be the workpiece image after the trial processing. 353' is different; in addition, due to the relationship between the laser scanning table positioning assembly and the focusing mirror, the distance between the respective marking points of the workpiece image 353' may be enlarged or reduced, and the relative direction may be rotated. In one embodiment, by setting two or more points in an image range, the scaled value and the angle of rotation of the image range can be calculated. The laser/visual optical path error of this image area can be calculated. It should be noted that the "laser trial processing" in the step S222 of the present invention can adopt various methods. For example, "laser marking" can be used. When the workpiece is composed of multiple layers of materials (the materials of the layers can be the same or Differently, this "laser marking method" will etch away the uppermost material of the workpiece at a specific marking point by laser light, which is faster. The present invention also provides another new "laser marking method" which, contrary to the foregoing method, retains the topmost material of the particular marking point and etches away all of the uppermost material outside the marking point at a rate Slower, but can improve accuracy. Through this method, the efficiency of the visual detector 360 for recognizing the image can be further improved.

最後,本發明之方法經由執行步驟S230將視覺取像位置補償表與雷射/視覺光程誤差值進行運算,產生雷射加工位置補償表,得到正確的「雷射加工位置」。此時,雷射加工機(300)因為雷射光與可見光的光程誤差以被消除,所以,只需將雷射加工位置補償表輸入至雷射加工裝置(例如第3圖之雷射加工裝置300)即可進行正式加工。熟悉本技藝者從本文應可了解到,在經過前述步驟S210~S230後,即便雷射加工機在進行雷射掃描時並未搭配使用視覺偵測器,但因為已由前述步驟預先取得正確的「加工位置」,故仍可讓雷射掃描頭達到理想的加工結果。值得注意的是,雖然前述實施例中諸如標準圖像、取樣圖像、測試圖像或工件圖像皆以具有陣列排列的標記點的圖案為例,然而,此僅為方便說明,其他實施例中亦可採用任何可被視覺偵測器(360)識別的各種圖形,並包括各種數量之標記點數量(至少一個)。Finally, the method of the present invention calculates the laser image processing position compensation table and the laser/visual optical path error value by performing step S230 to generate a laser processing position compensation table, and obtains a correct "laser processing position". At this time, since the laser processing machine (300) is eliminated due to the optical path error of the laser light and the visible light, it is only necessary to input the laser processing position compensation table to the laser processing device (for example, the laser processing device of FIG. 3) 300) can be formally processed. Those skilled in the art should understand from this paper that after the above steps S210~S230, even if the laser processing machine does not use the visual detector when performing laser scanning, it has been obtained in advance by the aforementioned steps. "Processing position", so the laser scanning head can still achieve the desired processing result. It should be noted that although the standard image, the sampled image, the test image, or the workpiece image in the foregoing embodiment is exemplified by a pattern having marked dots arranged in an array, this is merely for convenience of description, and other embodiments. Any of a variety of graphics that can be recognized by the visual detector (360) can be used, and includes a number (at least one) of various numbers of points.

以下說明雷射加工誤差校正處理器The following describes the laser processing error correction processor

除了前述的雷射加工誤差校正方法,本發明另提供一雷射加工誤差校正處理器。第5圖為依據本發明一實施例之雷射加工誤差校正處理器示意圖。而該雷射加工誤差校正處理器至少包括一視覺偵測器560以及一雷射掃描頭540。該雷射加工誤差校正處理器更包括一視覺誤差檢驗單元502、雷射加工校正單元504以及一雷射加工位置計算單元506。該視覺誤差檢驗單元502可透過該視覺偵測器560對該一標準試片取像以產生一取樣圖像;並比對該標準圖像與該取樣圖像以記錄兩者各個對應點之間的視覺誤差值。該雷射加工校正單元504可透過該雷射掃描頭540而以前述步驟S214中的「取樣圖像352’」經視覺取像位置補償表校正後存在電射加工裝置100之測試圖像353,掃描頭控制器508控制雷射及一雷射掃描頭540,對一工件進行雷射試加工,之後,透過該視覺偵測器560對該工件取像以產生一工件圖像,並比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值。該雷射加工位置計算單元506可計算一加工位置點,透過加工校正單元504補償加工計算單元的位置點,使計算單元計算出的位置點與雷射加工的位置點相同。由於雷射加工誤差校正處理器500係用以執行前述雷射加工誤差校正方法,而該方法之相關實施例已詳述於前文,故本文不再對該雷射加工誤差校正處理器500之細節另行贅述。In addition to the aforementioned laser processing error correction method, the present invention further provides a laser processing error correction processor. FIG. 5 is a schematic diagram of a laser processing error correction processor according to an embodiment of the invention. The laser processing error correction processor includes at least a visual detector 560 and a laser scanning head 540. The laser processing error correction processor further includes a visual error checking unit 502, a laser processing correcting unit 504, and a laser processing position calculating unit 506. The visual error checking unit 502 can image the standard test piece by the visual detector 560 to generate a sample image; and compare the standard image with the sample image to record the corresponding points between the two. Visual error value. The laser processing correction unit 504 can pass the laser scanning head 540 to correct the test image 353 of the electro-radiation processing device 100 after the "sampling image 352'" in the foregoing step S214 is corrected by the visual image capturing position compensation table. The scan head controller 508 controls the laser and a laser scan head 540 to perform laser trial processing on a workpiece, and then images the workpiece through the visual detector 560 to generate a workpiece image, and compares The workpiece image and the test image are used to record a laser/visual optical path error value between the corresponding points. The laser machining position calculation unit 506 can calculate a machining position point, and the machining correction unit 504 compensates the position point of the machining calculation unit so that the calculation position calculated by the calculation unit is the same as the laser processing position point. Since the laser processing error correction processor 500 is used to perform the aforementioned laser processing error correction method, and the related embodiment of the method has been described in detail above, the details of the laser processing error correction processor 500 are not further described herein. Will be described separately.

本發明雖以較佳實施例揭露如上,然其並非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the present invention, and the invention may be modified and modified without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...雷射加工裝置100. . . Laser processing device

110...雷射源110. . . Laser source

112...雷射光束112. . . Laser beam

130...分光鏡130. . . Beam splitter

140...雷射掃描頭140. . . Laser scan head

150...平台150. . . platform

152...工件152. . . Workpiece

142、144...反射鏡142, 144. . . Reflector

170...聚焦鏡170. . . Focusing mirror

160...視覺偵測器160. . . Visual detector

300...雷射加工裝置300. . . Laser processing device

310...標準試片310. . . Standard test piece

310’...工件310’. . . Workpiece

350...加工平台350. . . Processing platform

360...視覺偵測器360. . . Visual detector

352...標準圖像352. . . Standard image

352’...取樣圖像352’. . . Sampled image

353...測試圖像353. . . Test image

353’...工件圖像353’. . . Workpiece image

P1~P9、P1'~P9'、P1”~P9”...標記點P1~P9, P1'~P9', P1"~P9". . . Marking point

500...雷射加工誤差校正處理器500. . . Laser processing error correction processor

502...視覺誤差檢驗單元502. . . Visual error test unit

504...雷射加工校正單元504. . . Laser processing correction unit

506...雷射加工位置計算單元506. . . Laser processing position calculation unit

508...掃描頭控制器508. . . Scan head controller

540...雷射掃描頭540. . . Laser scan head

560...視覺偵測器560. . . Visual detector

S210~S230...步驟S210~S230. . . step

第1圖為習知雷射加工裝置100之結構圖。FIG. 1 is a structural view of a conventional laser processing apparatus 100.

第2圖為依據本發明一實施例之雷射加工誤差校正方法流程圖。2 is a flow chart of a laser processing error correction method according to an embodiment of the invention.

第3圖為一實施例中標準試片、標準圖像及取樣圖像之示意圖。Figure 3 is a schematic diagram of a standard test piece, a standard image, and a sampled image in an embodiment.

第4圖為一實施例中測試圖像及工件圖像之示意圖。Figure 4 is a schematic diagram of a test image and a workpiece image in an embodiment.

第5圖為依據本發明一實施例之雷射加工誤差校正處理器示意圖。FIG. 5 is a schematic diagram of a laser processing error correction processor according to an embodiment of the invention.

S210~S230...步驟S210~S230. . . step

Claims (21)

一種雷射加工誤差校正方法,包括:(一) 執行一視覺畸變誤差檢驗程序,更包括:在一加工平台上放置的一標準試片,其具有一標準圖像;對該標準試片取像以產生一取樣圖像;以及比對該標準圖像與該取樣圖像以記錄兩者各個對應點之間的視覺誤差值,以產生視覺取像位置補償表;(二) 執行一雷射/視覺光程誤差檢驗程序,更包括:以視覺取像位置補償表與一測試圖像對一工件進行雷射試加工;對該工件取像以產生一工件圖像;以及比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值;(三) 利用視覺取像位置補償表與雷射/視覺光程誤差值計算出雷射加工位置補償表。A laser processing error correction method includes: (1) performing a visual distortion error checking procedure, and further comprising: a standard test piece placed on a processing platform, having a standard image; and capturing the standard test piece To generate a sample image; and compare the visual error value between the standard image and the sample image to record respective corresponding points of the two to generate a visual image capturing position compensation table; (2) performing a laser/ The visual optical path error checking program further comprises: performing laser trial processing on a workpiece with a visual image capturing position compensation table and a test image; taking an image of the workpiece to generate a workpiece image; and comparing the workpiece image And the test image to record the laser/visual optical path error value between the corresponding points; (3) using the visual image capturing position compensation table and the laser/visual optical path error value to calculate the laser processing position compensation table . 如申請專利範圍第1項所述之雷射加工誤差校正方法,其中,每一次對該標準試片進行取像時所能擷取之範圍中包括至少一標記點。The laser processing error correction method according to claim 1, wherein each of the ranges that can be captured by the standard test piece includes at least one marked point. 如申請專利範圍第1項所述之雷射加工誤差校正方法,其中,測試圖像為取樣圖像經校正後儲存或記錄在雷射加工裝置之處理單元中的一個圖像。The laser processing error correction method according to claim 1, wherein the test image is an image in which the sampled image is corrected and stored or recorded in a processing unit of the laser processing apparatus. 如申請專利範圍第1項所述之雷射加工誤差校正方法,其中,每一次對以該測試圖像試加工所產生的該工件進行取像時所能擷取之範圍中包括至少一標記點。The laser processing error correction method of claim 1, wherein each of the ranges that can be captured by the workpiece produced by the test image trial processing includes at least one marking point. . 如申請專利範圍第1項所述之雷射加工誤差校正方法,更包括:預先定義該標準試片中至少一標記點間之角度與距離。The method for correcting laser processing error according to claim 1, further comprising: predefining an angle and a distance between at least one of the marked points in the standard test piece. 如申請專利範圍第5項所述之雷射加工誤差校正方法,更包括:透過標準試片的至少一標記點之角度與距離,進一步算出該標準圖像與該取樣圖像中所有對應點間之旋轉角度與影像解析度。The laser processing error correction method according to claim 5, further comprising: calculating the angle between the standard image and the at least one marked point of the standard test piece to further calculate the standard image and all corresponding points in the sampled image. The angle of rotation and image resolution. 如申請專利範圍第1項所述之雷射加工誤差校正方法,更包括雷射加工位置補償表輸入至雷射加工裝置,即可進行正式加工。For example, the laser processing error correction method described in claim 1 of the patent application, including the laser processing position compensation table input to the laser processing device, can be formally processed. 如申請專利範圍第1項所述之雷射加工誤差校正方法,更包括將該標準圖像與該取樣圖像中所有對應點之間的視覺誤差值紀錄成一視覺誤差表。The laser processing error correction method according to claim 1, further comprising recording the visual error value between the standard image and all corresponding points in the sampled image as a visual error table. 如申請專利範圍第1項所述之雷射加工誤差校正方法,更包括將該工件圖像與該測試圖像中所有對應點之間的雷射/視覺光程誤差值紀錄成一加工誤差表。The laser processing error correction method according to claim 1, further comprising recording the laser/visual optical path error value between the workpiece image and all corresponding points in the test image as a processing error table. 如申請專利範圍第1項所述之雷射加工誤差校正方法,其中,當該工件係由複數層材料所構成時,該雷射試加工的方法更包括:保留該特定標記點之最上層材料,並將該標記點以外所有最上層材料予以蝕刻去除。The laser processing error correction method according to claim 1, wherein when the workpiece is composed of a plurality of layers of materials, the method of laser trial processing further comprises: retaining an uppermost material of the specific marking point And etch away all the topmost materials except the mark. 如申請專利範圍第10項所述之雷射加工誤差校正方法,其中,該雷射試加工的方法更包括:或以雷射光將工件上特定標記點所在位置的最上層材料予以刻蝕去除。The laser processing error correction method according to claim 10, wherein the laser trial processing method further comprises: etching or removing the uppermost material at a position of the specific marking point on the workpiece by laser light. 一種雷射加工誤差校正處理器,位於一雷射加工裝置,其中該雷射加工裝置包括至少一視覺偵測器以及一雷射掃描頭,該雷射加工誤差校正處理器包括:一視覺誤差檢驗單元,用以透過該視覺偵測器對該一標準試片取像以產生一取樣圖像;並比對該標準圖像與該取樣圖像以記錄兩者各個對應點之間的視覺誤差值;以及一雷射加工校正單元,用以透過該雷射掃描頭而以視覺取像位置補償表將取樣圖像校正後,存在電射加工裝置之測試圖像,對一工件進行雷射試加工;透過該視覺偵測器對該工件取像以產生一工件圖像;並比對該工件圖像與該測試圖像以記錄兩者對應點之間的雷射/視覺光程誤差值,計算出雷射加工位置補償表。A laser processing error correction processor is disposed in a laser processing apparatus, wherein the laser processing apparatus includes at least one visual detector and a laser scanning head, the laser processing error correction processor includes: a visual error check a unit for taking an image of the standard test piece by the visual detector to generate a sample image; and comparing the standard image with the sample image to record a visual error value between each corresponding point And a laser processing correction unit for correcting the sampled image by the visual image capturing position compensation table through the laser scanning head, and having a test image of the electro-radiation processing device, performing laser trial processing on a workpiece Obtaining an image of the workpiece through the visual detector to generate a workpiece image; and calculating a laser/visual optical path error value between the workpiece image and the test image to record a corresponding point between the two Laser processing position compensation table. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中,該視覺誤差檢驗單元每一次對該標準試片進行取像時所能擷取之範圍中包括至少一標記點。The laser processing error correction processor of claim 12, wherein the visual error checking unit includes at least one marker point in each of the ranges that can be captured when the standard test strip is imaged. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中,該視覺誤差檢驗單元每一次對以該測試圖像試加工所產生的該工件進行取像時所能擷取之範圍中包括至少一標記點。The laser processing error correction processor according to claim 12, wherein the visual error checking unit can capture the range of the workpiece generated by the trial processing of the test image each time. Include at least one marker point. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中該標準試片中至少一標記點間之角度與距離已預先定義。The laser processing error correction processor of claim 12, wherein an angle and a distance between at least one of the marked points in the standard test piece are predefined. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中該視覺誤差檢驗單元透過標準試片的至少一標記點之角度與距離,進一步算出該標準圖像與該取樣圖像中所有對應點間之旋轉角度與影像解析度。The laser processing error correction processor of claim 12, wherein the visual error checking unit further calculates the standard image and the sampled image by using an angle and a distance of at least one marked point of the standard test strip. The rotation angle and image resolution of all corresponding points. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,更包括一掃描頭控制器,控制雷射及一雷射掃描頭,對一工件進行雷射試加工。The laser processing error correction processor according to claim 12, further comprising a scanning head controller for controlling the laser and a laser scanning head to perform laser trial processing on a workpiece. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中該視覺誤差檢驗單元更用以將該標準圖像與該取樣圖像中所有對應點之間的視覺誤差值紀錄成一視覺誤差表。The laser processing error correction processor of claim 12, wherein the visual error checking unit is further configured to record a visual error value between the standard image and all corresponding points in the sampled image as a visual Error table. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中該雷射加工校正單元更用以將該工件圖像與該測試圖像中所有對應點之間的雷射/視覺光程誤差值與視覺取像位置補償表運算產生一雷射加工位置補償表。The laser processing error correction processor of claim 12, wherein the laser processing correction unit is further configured to use the laser/visual light between the workpiece image and all corresponding points in the test image. The process error value and the visual image capture position compensation table operate to generate a laser machining position compensation table. 如申請專利範圍第12項所述之雷射加工誤差校正處理器,其中,該工件係由複數層材料所構成;當該雷射加工校正單元進行雷射試加工時,一掃描頭控制器將保留該特定標記點之最上層材料,並以雷射光將該標記點以外所有最上層材料予以蝕刻去除。The laser processing error correction processor according to claim 12, wherein the workpiece is composed of a plurality of layers of materials; when the laser processing correction unit performs laser trial processing, a scan head controller The topmost material of the particular mark is retained and all of the uppermost material except the mark is etched away by laser light. 如申請專利範圍第20項所述之雷射加工誤差校正處理器,其中,該工件係由複數層材料所構成;當該雷射加工校正單元進行雷射試加工時,或以雷射光將工件上特定標記點所在位置的最上層材料予以刻蝕去除。The laser processing error correction processor according to claim 20, wherein the workpiece is composed of a plurality of layers of materials; when the laser processing correction unit performs laser trial processing, or the workpiece is irradiated with laser light The uppermost material on the location where the specific mark is located is etched away.
TW100146722A 2011-12-16 2011-12-16 Method and processor for laser processing error calibration TWI438050B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100146722A TWI438050B (en) 2011-12-16 2011-12-16 Method and processor for laser processing error calibration
CN201110444913.9A CN103157909B (en) 2011-12-16 2011-12-27 Laser processing error correction method and processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100146722A TWI438050B (en) 2011-12-16 2011-12-16 Method and processor for laser processing error calibration

Publications (2)

Publication Number Publication Date
TW201325792A true TW201325792A (en) 2013-07-01
TWI438050B TWI438050B (en) 2014-05-21

Family

ID=48581726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100146722A TWI438050B (en) 2011-12-16 2011-12-16 Method and processor for laser processing error calibration

Country Status (2)

Country Link
CN (1) CN103157909B (en)
TW (1) TWI438050B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423248B2 (en) 2013-05-10 2016-08-23 Industrial Technology Research Institute Visual error calibration method
TWI650914B (en) * 2017-08-30 2019-02-11 新代科技股份有限公司 Laser marking machine and its correction method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106141460B (en) * 2015-04-03 2018-03-30 宝山钢铁股份有限公司 Welding machine laser beam optical mode detecting system and method
CN105205806B (en) * 2015-08-19 2018-03-02 广东科杰机械自动化有限公司 A kind of precision compensation method based on machine vision
CN106925997B (en) * 2015-12-29 2024-01-23 上海发那科机器人有限公司 Automatic drilling and milling system and method and drilling and milling production line
CN106934791B (en) * 2015-12-30 2020-10-27 希姆通信息技术(上海)有限公司 Visual detection method and control equipment for FPC (Flexible printed Circuit) on mobile terminal
CN106871784A (en) * 2017-03-01 2017-06-20 苏州光照精密仪器有限公司 A kind of laser measurement method, device and system
JP6469167B2 (en) 2017-05-16 2019-02-13 ファナック株式会社 Laser processing equipment
CN107234341A (en) * 2017-06-24 2017-10-10 江苏瑞伯特视觉科技股份有限公司 A kind of heavy compartment matts laser vision Intelligent welding system
CN109277695A (en) * 2018-08-01 2019-01-29 普聚智能***(苏州)有限公司 A kind of laser coaxial vision system suitable for stereochemical structure workpiece
TWI678342B (en) 2018-11-09 2019-12-01 財團法人工業技術研究院 Cutting method for forming chamfered corners
CN109570750B (en) * 2018-12-12 2021-01-08 武汉帝尔激光科技股份有限公司 Laser galvanometer precision online correction system and method
CN110193673B (en) * 2019-06-21 2020-11-03 上海理工大学 Grid regional compensation method for galvanometer type laser processing
CN110470220B (en) * 2019-08-22 2021-07-09 普聚智能***(苏州)有限公司 Numerical correction method for coaxial visual deviation in flight light path
CN112809215B (en) * 2021-02-01 2024-07-05 深圳泰德激光技术股份有限公司 Laser processing precision correction method and laser device
CN114295056B (en) * 2021-12-31 2024-06-18 普聚智能***(苏州)有限公司 Rapid correction method and application of visual positioning system of laser processing equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4437284A1 (en) * 1994-10-18 1996-04-25 Eos Electro Optical Syst Method for calibrating a controller to deflect a laser beam
JP2002316276A (en) * 2001-04-18 2002-10-29 Nec Corp Device for correcting marking deformation and method for correcting marking in laser marking apparatus
DE10206183A1 (en) * 2002-02-14 2003-08-28 Siemens Ag Process for determining the accuracy of machine tools
SG152090A1 (en) * 2007-10-23 2009-05-29 Hypertronics Pte Ltd Scan head calibration system and method
TWI335252B (en) * 2007-11-30 2011-01-01 Ind Tech Res Inst Calibration strip and the laser calibration system using thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9423248B2 (en) 2013-05-10 2016-08-23 Industrial Technology Research Institute Visual error calibration method
TWI650914B (en) * 2017-08-30 2019-02-11 新代科技股份有限公司 Laser marking machine and its correction method

Also Published As

Publication number Publication date
TWI438050B (en) 2014-05-21
CN103157909B (en) 2016-01-20
CN103157909A (en) 2013-06-19

Similar Documents

Publication Publication Date Title
TWI438050B (en) Method and processor for laser processing error calibration
TWI510756B (en) A shape measuring device, a shape measuring method, a manufacturing method and a program for a structure
JP5373676B2 (en) Tire shape measuring method and shape measuring apparatus
JP5288297B2 (en) Method for measuring the end shape of a threaded tube
JP2007263611A (en) Distortion measuring instrument and method
RU2478489C1 (en) Device to measure current collector height
JP5923054B2 (en) Shape inspection device
EP2828615A1 (en) Lasergrammetry system and methods
TWI388797B (en) Three - dimensional model reconstruction method and its system
JP2008014700A (en) Workpiece inspection method and workpiece inspection device
JP4412180B2 (en) Laser ultrasonic inspection method and laser ultrasonic inspection device
JP4477980B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
JP2007192594A (en) Apparatus and method for acquiring pattern image
KR101110848B1 (en) Method and apparatus for edge position measurement of a curved surface using Laser Vision System
US11000917B2 (en) Laser marking system and method for laser marking a workpiece
JP2012198069A (en) Flatness detection apparatus and flatness detection method
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JP6543170B2 (en) Measuring device and measuring method
JP2011117766A (en) Interference measuring method
JP5411866B2 (en) Pattern measuring apparatus and pattern measuring method
JP7337637B2 (en) Laser probe and optical adjustment method
JP6389759B2 (en) Non-contact edge shape measuring method and apparatus
TW201321742A (en) Optical system
JP7017916B2 (en) Board inspection equipment
CN110598343B (en) Method and device for acquiring welding angle deformation value of T-shaped joint and electronic equipment