TWI646170B - 發光元件、發光裝置、電子裝置、及照明裝置 - Google Patents

發光元件、發光裝置、電子裝置、及照明裝置 Download PDF

Info

Publication number
TWI646170B
TWI646170B TW102127432A TW102127432A TWI646170B TW I646170 B TWI646170 B TW I646170B TW 102127432 A TW102127432 A TW 102127432A TW 102127432 A TW102127432 A TW 102127432A TW I646170 B TWI646170 B TW I646170B
Authority
TW
Taiwan
Prior art keywords
light
emitting element
emitting
organic compound
layer
Prior art date
Application number
TW102127432A
Other languages
English (en)
Other versions
TW201412936A (zh
Inventor
瀬尾広美
瀬尾哲史
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201412936A publication Critical patent/TW201412936A/zh
Application granted granted Critical
Publication of TWI646170B publication Critical patent/TWI646170B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • H10K50/121OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants for assisting energy transfer, e.g. sensitization
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/30Organic light-emitting transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本發明提供一種能夠藉由將發光元件的發光層中的單重激發態(S1)的生成機率設定為理論值(25%)以上而提高發光效率的發光元件。在發光元件的發光層中,由第一有機化合物和第二有機化合物形成激態錯合物(exciplex),與形成激態錯合物之前的各物質(第一有機化合物及第二有機化合物)相比,形成的激態錯合物的S1能階和T1能階非常接近。由此,激態錯合物的T1中的能量的一部分易於遷移到S1。因此,得到高於理論上的生成機率(25%)的生成機率,而可以提高利用來自S1的能量的發光元件的發光效率。

Description

發光元件、發光裝置、電子裝置、及照明裝置
本發明的一實施方式係關於一種藉由施加電場來得到發光的有機化合物被夾在一對電極之間的發光元件。另外,本發明的一實施方式還係關於一種具有這種發光元件的發光裝置、電子裝置及照明裝置。
具有薄型輕量、高速回應性及直流低電壓驅動等的特徵的有機化合物用作發光體的發光元件被期待應用於下一代平板顯示器。尤其是,將發光元件配置為矩陣狀的顯示裝置與習知的液晶顯示裝置相比具有視角寬且可見度優異的優點。
發光元件的發光機制是如下:藉由在一對電極之間夾著包含發光物質的EL層並對該一對電極之間施加電壓,從陰極注入的電子和從陽極注入的電洞在EL層的發光中心再結合而形成分子激子,當該分子激子返回到基態時釋放出能量而發光。作為將有機化合物用於發光物質時的激 發態的種類,可以舉出單重激發態和三重激發態,其中來自單重激發態(S1)的發光和來自三重激發態(T1)的發光分別被稱為螢光和磷光。在發光元件中,單重激發態和三重激發態的統計學上的生成比率被認為是S1:T1=1:3。
因此,為了提高元件特性,已在進行藉由對上述發光元件添加新的摻雜劑而得到不僅利用螢光發光而且還利用磷光發光的元件結構等的研究開發(例如,參照專利文獻1)。
[專利文獻]
[專利文獻1]日本專利申請公開第2010-182699號公報
與如上所述那樣藉由對上述發光元件添加新的摻雜劑而得到磷光發光以提高發光元件的發光效率的方法不同,本發明的一實施方式提供一種能夠藉由使發光元件的發光層中的單重激發態(S1)的生成機率為理論值(25%)以上而提高發光效率的發光元件。另外,本發明的一實施方式還提供一種長壽命發光元件。
本發明的一實施方式具有如下結構:在發光元件的發光層中,由第一有機化合物和第二有機化合物形成激態錯合物(exciplex),與形成激態錯合物之前的各物質(第一有機化合物和第二有機化合物)中的S1能階與T1能階 之間的差異相比,形成的激態錯合物的S1能階和T1能階非常接近。再者,因為激態錯合物的T1的激發壽命長,所以激態錯合物的T1中的能量的一部分不伴隨熱失活而易於遷移到S1。就是說,即使載子剛再結合之後的S1的理論上的生成機率為25%,也經上述步驟而最終生成更多的S1。因此,本發明的一實施方式的特徵在於提高利用來自S1的發光的發光元件的發光效率。
本發明的一實施方式是一種發光元件,包括:一對電極之間的層,該層包含具有電子傳輸性的第一有機化合物和具有對苯二胺骨架的第二有機化合物,其中具有電子傳輸性的第一有機化合物和具有對苯二胺骨架的第二有機化合物的組合為形成激態錯合物的組合。
本發明的一實施方式是一種發光元件,包括:一對電極之間的層,該層包含具有電子傳輸性的第一有機化合物和具有4-(9H-咔唑-9-基)苯胺骨架的第二有機化合物,其中具有電子傳輸性的第一有機化合物和具有4-(9H-咔唑-9-基)苯胺骨架的第二有機化合物的組合為形成激態錯合物的組合。
本發明的一實施方式是一種發光元件,包括:一對電極之間的層,該層包含具有電子傳輸性的第一有機化合物和具有9-芳基-9H-咔唑-3-胺骨架的第二有機化合物,其中具有電子傳輸性的第一有機化合物和具有9-芳基-9H-咔唑-3-胺骨架的第二有機化合物的組合為形成激態錯合物的組合。
本發明的一實施方式是一種發光元件,包括:一對電極之間的層,該層包含具有電子傳輸性的第一有機化合物和具有由以下通式(G1)表示的骨架的第二有機化合物,其中具有電子傳輸性的第一有機化合物和具有由以下通式(G1)表示的骨架的第二有機化合物的組合為形成激態錯合物的組合。
其中,R1至R10各自獨立表示氫、碳原子數為1至4的烷基、苯基以及聯苯基中的任何一種,而R21至R24各自獨立表示氫和碳原子數為1至4的烷基中的任何一種。Ar1和Ar2各自獨立表示取代或未取代的苯基、聯苯基、茀基、螺茀基以及咔唑基中的任何一種,在該Ar1和該Ar2具有取代基的情況下,該取代基各自獨立表示碳原子數為1至4的烷基、苯基、聯苯基、碳原子數為18至30的9-芳基咔唑基以及碳原子數為12至60的二芳基胺基中的任何一種。另外,R1和R24、R5和R6、R10和R21、R22和Ar1以及Ar2和R23中的任何一種或多種也可以形成單鍵。
本發明的一實施方式是一種發光元件,包括:一對電極之間的層,該層包含具有電子傳輸性的第一有機化合物 和具有由以下通式(G2)表示的骨架的第二有機化合物,其中具有電子傳輸性的第一有機化合物和具有由以下通式(G2)表示的骨架的第二有機化合物的組合為形成激態錯合物的組合。
其中,R1至R9各自獨立表示氫、碳原子數為1至4的烷基、苯基以及聯苯基中的任何一種,而R22至R24各自獨立表示氫和碳原子數為1至4的烷基中的任何一種。 Ar1和Ar2各自獨立表示取代或未取代的苯基、聯苯基、茀基、螺茀基以及咔唑基中的任何一種,在該Ar1和該Ar2具有取代基的情況下,該取代基各自獨立表示碳原子數為1至4的烷基、苯基、聯苯基、碳原子數為18至30的9-芳基咔唑基以及碳原子數為12至60的二芳基胺基中的任何一種。另外,R1和R24、R5和R6、R22和Ar1以及Ar2和R23中的任何一種或多種也可以形成單鍵。
在上述各結構中,由具有電子傳輸性的第一有機化合物和具有對苯二胺骨架、4-(9H-咔唑-9-基)苯胺骨架、9-芳基-9H-咔唑-3-胺骨架、由以上通式(G1)表示的骨架以及由以上通式(G2)表示的骨架中的任一種的第二有機 化合物形成的激態錯合物的單重激發態(S1)的生成機率為理論值(25%)以上。
因此,本發明的一實施方式的發光元件能夠藉由在一對電極之間的發光層中形成激態錯合物而實現發光效率高的發光元件。
如上所述,在發光層中形成的激態錯合物的S1能階與T1能階非常接近。因此,在對發光層新添加將三重態激發能轉換成發光的發光物質的情況下,激態錯合物的發射光譜與將三重態激發能轉換成發光的發光物質的吸收光譜在更大部分中重疊,從而可以提高從激態錯合物的T1到將三重態激發能轉換成發光的發光物質的能量轉移效率,來可以實現發光效率高的發光元件。
在上述結構中,具有電子傳輸性的第一有機化合物主要是電子遷移率為10-6cm2/Vs以上的電子傳輸材料,明確而言,是缺π電子雜環芳香化合物。
本發明的一實施方式不僅包括具有發光元件的發光裝置,而且還包括具有發光裝置的電子裝置及照明裝置。因此,本說明書中的發光裝置是指影像顯示裝置或光源(包括照明裝置)。另外,發光裝置還包括如下模組:在發光裝置中安裝有連接器諸如FPC(Flexible printed circuit:撓性印刷電路)或TCP(Tape Carrier Package:載帶封裝)的模組;在TCP端部中設置有印刷線路板的模組;或者IC(積體電路)藉由COG(Chip On Glass:玻璃上晶片)方式直接安裝在發光元件上的模組。
在本發明的一實施方式中,因為在發光元件的發光層中可以形成激態錯合物(exciplex),該激態錯合物的S1的生成機率為理論值(25%)以上,所以可以實現發光效率高的發光元件。
10‧‧‧激態錯合物
101‧‧‧陽極
102‧‧‧陰極
103‧‧‧EL層
104‧‧‧發光層
105‧‧‧具有電子傳輸性的第一有機化合物
106‧‧‧具有由通式(G1)表示的骨架的第二有機化合物
201‧‧‧第一電極(陽極)
202‧‧‧第二電極(陰極)
203‧‧‧EL層
204‧‧‧電洞注入層
205‧‧‧電洞傳輸層
206‧‧‧發光層
207‧‧‧電子傳輸層
208‧‧‧電子注入層
209‧‧‧具有電子傳輸性的第一有機化合物
210‧‧‧具有由通式(G1)表示的骨架的第二有機化合物
301‧‧‧第一電極
302(1)‧‧‧第一EL層
302(2)‧‧‧第二EL層
302(n-1)‧‧‧第(n-1)EL層
302(n)‧‧‧第(n)EL層
304‧‧‧第二電極
305‧‧‧電荷產生層
305(1)‧‧‧第一電荷產生層
305(2)‧‧‧第二電荷產生層
305(n-2)‧‧‧第(n-2)電荷產生層
305(n-1)‧‧‧第(n-1)電荷產生層
501‧‧‧元件基板
502‧‧‧像素部
503‧‧‧驅動電路部(源極線驅動電路)
504a、504b‧‧‧驅動電路部(閘極線驅動電路)
505‧‧‧密封材料
506‧‧‧密封基板
507‧‧‧佈線
508‧‧‧FPC(軟性印刷電路)
509‧‧‧n通道型TFT
510‧‧‧p通道型TFT
511‧‧‧開關用TFT
512‧‧‧電流控制用TFT
513‧‧‧第一電極(陽極)
514‧‧‧絕緣物
515‧‧‧EL層
516‧‧‧第二電極(陰極)
517‧‧‧發光元件
518‧‧‧空間
1100‧‧‧基板
1101‧‧‧第一電極
1102‧‧‧EL層
1103‧‧‧第二電極
1111‧‧‧電洞注入層
1112‧‧‧電洞傳輸層
1113‧‧‧發光層
1114‧‧‧電子傳輸層
1115‧‧‧電子注入層
7100‧‧‧電視機
7101‧‧‧外殼
7103‧‧‧顯示部
7105‧‧‧支架
7107‧‧‧顯示部
7109‧‧‧操作鍵
7110‧‧‧遙控器
7201‧‧‧主體
7202‧‧‧外殼
7203‧‧‧顯示部
7204‧‧‧鍵盤
7205‧‧‧外部連接埠
7206‧‧‧指向裝置
7301‧‧‧外殼
7302‧‧‧外殼
7303‧‧‧連接部
7304‧‧‧顯示部
7305‧‧‧顯示部
7306‧‧‧揚聲器部
7307‧‧‧儲存介質***部
7308‧‧‧LED燈
7309‧‧‧操作鍵
7310‧‧‧連接端子
7311‧‧‧感測器
7312‧‧‧麥克風
7400‧‧‧行動電話機
7401‧‧‧外殼
7402‧‧‧顯示部
7403‧‧‧操作按鈕
7404‧‧‧外部連接埠
7405‧‧‧揚聲器
7406‧‧‧麥克風
8001‧‧‧照明裝置
8002‧‧‧照明裝置
8003‧‧‧照明裝置
8004‧‧‧照明裝置
9033‧‧‧夾子
9034‧‧‧顯示模式切換開關
9035‧‧‧電源開關
9036‧‧‧省電模式切換開關
9038‧‧‧操作開關
9630‧‧‧外殼
9631‧‧‧顯示部
9631a‧‧‧顯示部
9631b‧‧‧顯示部
9632a‧‧‧觸摸屏的區域
9632b‧‧‧觸摸屏的區域
9633‧‧‧太陽能電池
9634‧‧‧充放電控制電路
9635‧‧‧電池
9636‧‧‧DCDC轉換器
9637‧‧‧操作鍵
9638‧‧‧轉換器
9639‧‧‧按鈕
在圖式中:圖1是說明本發明的一實施方式的概念的圖;圖2是說明發光元件的結構的圖;圖3是說明發光元件的結構的圖;圖4A和4B是說明發光元件的結構的圖;圖5A和5B是說明發光裝置的圖;圖6A至圖6D是說明電子裝置的圖;圖7A至圖7C是說明電子裝置的圖;圖8是說明照明裝置的圖;圖9是說明發光元件的結構的圖;圖10是示出發光元件1及發光元件2的亮度-電壓特性的圖;圖11是示出發光元件1及發光元件2的亮度-外部量子效率特性的圖;圖12是示出發光元件1及發光元件2的發射光譜的圖;圖13是示出發光元件3及發光元件4的亮度-電壓特性的圖; 圖14是示出發光元件3及發光元件4的亮度-外部量子效率特性的圖;圖15是示出發光元件3及發光元件4的發射光譜的圖;圖16是示出發光元件5及發光元件6的亮度-電壓特性的圖;圖17是示出發光元件5及發光元件6的亮度-外部量子效率特性的圖;圖18是示出發光元件5及發光元件6的發射光譜的圖;圖19是示出發光元件6的可靠性的圖;圖20是示出發光元件7、發光元件8以及發光元件9的亮度-電壓特性的圖;圖21是示出發光元件7、發光元件8以及發光元件9的亮度-外部量子效率特性的圖;圖22是示出發光元件7、發光元件8以及發光元件9的發射光譜的圖。
下面,參照圖式詳細地說明本發明的實施方式。但是,本發明不侷限於以下說明的內容,其方式及詳細內容在不脫離本發明的宗旨及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在下面所示的實施方式所記載的內容中。
實施方式1
在本實施方式中,對構成本發明的一實施方式的利用激態錯合物(exciplex)的發光元件時的概念及發光元件的具體結構進行說明。
本發明的一實施方式的發光元件在一對電極之間夾有發光層,該發光層包含具有電子傳輸性的第一有機化合物和具有對苯二胺骨架的第二有機化合物。
此時,具有電子傳輸性的第一有機化合物和具有對苯二胺骨架的第二有機化合物的組合為在激發狀態下形成激態錯合物的組合。
另外,本發明的一實施方式的發光元件在一對電極之間夾有發光層,該發光層包含具有電子傳輸性的第一有機化合物和具有4-(9H-咔唑-9-基)苯胺骨架的第二有機化合物。
此時,具有電子傳輸性的第一有機化合物和具有4-(9H-咔唑-9-基)苯胺骨架的第二有機化合物的組合為在激發狀態下形成激態錯合物的組合。
另外,本發明的一實施方式的發光元件在一對電極之間夾有發光層,該發光層包含具有電子傳輸性的第一有機化合物和具有9-芳基-9H-咔唑-3-胺骨架的第二有機化合物。
此時,具有電子傳輸性的第一有機化合物和具有9-芳基-9H-咔唑-3-胺骨架的第二有機化合物的組合為在激發狀 態下形成激態錯合物的組合。注意,在本實施方式中的發光元件的元件結構中,因為使用具有9-芳基-9H-咔唑-3-胺骨架的材料作為第二有機化合物的結構得到最高外部量子效率,所以更佳為使用該材料。
另外,本發明的一實施方式的發光元件在一對電極之間夾有發光層,該發光層包含具有電子傳輸性的第一有機化合物和具有由以下通式(G1)表示的骨架的第二有機化合物。
此時,包含在發光層中的具有電子傳輸性的第一有機化合物和具有由以下通式(G1)表示的骨架的第二有機化合物的組合為在激發狀態下形成激態錯合物的組合。
其中,R1至R10各自獨立表示氫、碳原子數為1至4的烷基、苯基以及聯苯基中的任何一種,而R21至R24各自獨立表示氫和碳原子數為1至4的烷基中的任何一種。 Ar1和Ar2各自獨立表示取代或未取代的苯基、聯苯基、茀基、螺茀基以及咔唑基中的任何一種,在該Ar1和該Ar2具有取代基的情況下,該取代基各自獨立表示碳原子數為1至4的烷基、苯基、聯苯基、碳原子數為18至30的9-芳基咔唑基以及碳原子數為12至60的二芳基胺基中 的任何一種。另外,R1和R24、R5和R6、R10和R21、R22和Ar1以及Ar2和R23中的任何一種或多種也可以形成單鍵。
這裏,說明本發明的一實施方式中的激態錯合物的形成過程。作為形成過程,可以舉出以下兩個過程。
第一形成過程是:具有電子傳輸性的第一有機化合物(例如,主體材料)和具有由以上通式(G1)表示的骨架的第二有機化合物由具有載子的狀態(陽離子或陰離子)形成激態錯合物的形成過程。在經過該形成過程的情況下,可以抑制來自第一有機化合物及第二有機化合物的單重態激子的形成,從而可以實現使用壽命長的發光元件。
第二形成過程是:在具有電子傳輸性的第一有機化合物(例如,主體材料)和具有由以上通式(G1)表示的骨架的第二有機化合物中的一方形成單重態激子之後,其與處於基態的另一方相互作用而形成激態錯合物的單元過程。在此情況下,暫時生成第一有機化合物或第二有機化合物的單重激發態,但是由於該單重激發態迅速地變換為激態錯合物,所以在此情況下也可以抑制單重激發態能的失活或來自單重激發態的反應等,而可以實現使用壽命長的發光元件。
注意,本發明的發光元件還包括經上述兩種形成過程的任一種而形成的激態錯合物。
接著,圖1示出經上述形成過程而形成的激態錯合物的能階的形成以至於發光的過程。就是說,如圖1所示, 至於在發光元件的發光層中形成的激態錯合物10,與形成激態錯合物之前的各物質(第一有機化合物和第二有機化合物)中的S1能階與T1能階之間的差異相比,激態錯合物的S1能階和T1能階非常接近。因此,激態錯合物10的T1的能量的一部分易於以熱能量轉移到S1。再者,因為激態錯合物10的T1的激發壽命長,所以激態錯合物10的T1中的能量的一部分不伴隨熱失活而易於遷移到S1。因此,即使載子剛再結合之後的S1的理論上的生成機率為25%,也經上述步驟而最終生成更多的S1。另外,如上所述那樣進行了從T1到S1的逆系間跨越的激子也有助於來自於激態錯合物10的S1的發光,從而可以得到理論上的外部量子效率5%(S1的生成機率(25%)×光取出效率(20%))以上的外部量子效率。換言之,也可以超過使用螢光材料的元件中的內部量子效率的理論界限的25%。
接著,參照圖2說明本發明的一實施方式的發光元件的元件結構。
如圖2所示,本發明的一實施方式的發光元件在一對電極(陽極101和陰極102)之間夾有包含第一有機化合物及第二有機化合物的發光層104。發光層104為構成接觸於一對電極的EL層103的功能層的一部分。在EL層103中,除了發光層104以外,還可以適當地選擇電洞注入層、電洞傳輸層、電子傳輸層以及電子注入層等來將它們形成在所希望的位置。注意,發光層104包含具有電子 傳輸性的第一有機化合物105和具有由以上通式(G1)表示的骨架的第二有機化合物106。
作為具有電子傳輸性的第一有機化合物105,主要可以使用其電子遷移率為10-6cm2/Vs以上的電子傳輸材料,明確而言,較佳為使用缺π電子雜環芳香化合物諸如含氮雜環芳香化合物,例如可以舉出:具有多唑骨架的雜環化合物如2-(4-聯苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、3-(4-聯苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-***(簡稱:TAZ)、1,3-雙[5-(對叔丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)-苯基]-9H-咔唑(簡稱:CO11)、2,2’,2”-(1,3,5-苯三基)三(1-苯基-1H-苯並咪唑)(簡稱:TPBI)以及2-[3-(二苯並噻吩-4-基)苯基]-1-苯基-1H-苯並咪唑(簡稱:mDBTBIm-Ⅱ)等;具有喹喔啉骨架或二苯並喹喔啉骨架的雜環化合物如2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-Ⅱ)、7-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:7mDBTPDBq-Ⅱ)和6-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:6mDBTPDBq-Ⅱ)、2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-Ⅱ)以及2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mCzBPDBq)等;具有二嗪骨架(嘧啶骨架或吡嗪骨架)的雜環化合物如4,6-雙[3-(菲-9-基)苯基]嘧啶(簡 稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯並噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-Ⅱ)以及4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)等;以及具有吡啶骨架的雜環化合物如3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶基)苯基]苯(簡稱:TmPyPB)以及3,3’,5,5’-四[(間-吡啶基)-3-苯基]聯苯基(簡稱:BP4mPy)等。尤其是,具有喹喔啉骨架或二苯並喹喔啉骨架的雜環化合物、具有二嗪骨架的雜環化合物或具有吡啶骨架的雜環化合物的可靠性高,所以是較佳的。除了上述以外,還可以舉出:三芳基氧化膦如苯基-二(1-芘基)氧化膦(簡稱:POPy2)、螺環-9,9’-二茀-2-基-二苯基氧化膦(簡稱:SPPO1)、2,8-雙(二苯基氧化膦)二苯並[b,d]噻吩(簡稱:PPT)、3-(二苯基氧化膦)-9-[4-(二苯基氧化膦)苯基]-9H-咔唑(簡稱:PPO21)等;以及三芳基硼烷如三[2,4,6-三甲基-3-(3-吡啶基)苯基]硼烷(簡稱:3TPYMB)等。
另外,作為具有由以上通式(G1)表示的骨架的第二有機化合物106,具有由以下通式(G2)表示的骨架的有機化合物是特別佳的。具有由以下通式(G2)表示的骨架的有機化合物因具有9-芳基-9H-咔唑-3-胺骨架而在用於第二有機化合物時得到特別高的外部量子效率。就是說,該骨架是在具有由通式(G1)表示的骨架的有機化合物中有特徵的。
其中,R1至R9各自獨立表示氫、碳原子數為1至4的烷基、苯基以及聯苯基中的任何一種,而R22至R24各自獨立表示氫和碳原子數為1至4的烷基中的任何一種。 Ar1和Ar2各自獨立表示取代或未取代的苯基、聯苯基、茀基、螺茀基以及咔唑基中的任何一種,在該Ar1和該Ar2具有取代基的情況下,該取代基各自獨立表示碳原子數為1至4的烷基、苯基、聯苯基、碳原子數為18至30的9-芳基咔唑基以及碳原子數為12至60的二芳基胺基中的任何一種。另外,R1和R24、R5和R6、R22和Ar1以及Ar2和R23中的任何一種或多種也可以形成單鍵。
作為由通式(G2)表示的物質的具體例子,可以使用2-[N-(9-苯基咔唑-3-基)-N-苯基氨基]螺-9,9’-聯茀(簡稱:PCASF)(結構式100)、N,N’-雙(9-苯基-9H-咔唑-3-基)-N,N’-二苯基-螺-9,9’-聯茀-2,7-二胺(簡稱:PCA2SF)(結構式101)等。
以下,除了上述PCASF(簡稱)及PCA2SF(簡稱)以外,還示出由上述通式(G1)及上述通式(G2)表示的物質的具體例子。
上述具有電子傳輸性的第一有機化合物105及具有由通式(G1)表示的骨架的第二有機化合物不侷限於上述物質,只要是能夠形成激態錯合物且激態錯合物的T1中的能量的一部分容易遷移到S1的組合,即可。
在本實施方式中,因為在發光元件的發光層中可以形成激態錯合物(exciplex),該激態錯合物的S1的生成機率為理論值(25%)以上,所以可以實現發光效率高的發光元件。
實施方式2
在本實施方式中,參照圖3對本發明的一實施方式的發光元件的一個例子進行說明。
在本實施方式所示的發光元件中,如圖3所示,在一對電極(第一電極(陽極)201和第二電極(陰極)202)之間夾著包括發光層206的EL層203,EL層203除了具有發光層206之外,還包括電洞注入層204、電洞傳輸層205、電子傳輸層207、電子注入層208等。
與在實施方式1中描述的發光元件同樣,發光層206包含具有電子傳輸性的第一有機化合物和具有由以上通式(G1)表示的骨架的第二有機化合物。具有電子傳輸性的第一有機化合物及具有由以上通式(G1)表示的骨架的第二有機化合物可以使用與實施方式1相同的物質,所以省略其說明。
其中,R1至R10各自獨立表示氫、碳原子數為1至4的烷基、苯基以及聯苯基中的任何一種,而R21至R24各自獨立表示氫和碳原子數為1至4的烷基中的任何一種。Ar1和Ar2各自獨立表示取代或未取代的苯基、聯苯基、 茀基、螺茀基以及咔唑基中的任何一種,在該Ar1和該Ar2具有取代基的情況下,該取代基各自獨立表示碳原子數為1至4的烷基、苯基、聯苯基、碳原子數為18至30的9-芳基咔唑基以及碳原子數為12至60的二芳基胺基中的任何一種。另外,R1和R24、R5和R6、R10和R21、R22和Ar1以及Ar2和R23中的任何一種或多種也可以形成單鍵。
發光層206還可以採用如下結構:除了包含形成激態錯合物的第一有機化合物及第二有機化合物以外,還包含能夠將來自形成在發光層206中的激態錯合物的T1的能量轉換成發光的發光物質(將三重態激發能轉換成發光的發光物質)。
本發明的一實施方式的激態錯合物的特徵在於:S1能階和T1能階的能量差非常小。因此,藉由增大在發光層206中形成的激態錯合物的發射光譜與將三重態激發能轉換成發光的發光物質的吸收光譜重疊的部分,除了在激態錯合物中產生的T1以外還可以將S1的能量高效地遷移到將三重態激發能轉換成發光的發光物質。其結果,可以大幅度提高發光元件的發光效率。在採用該結構的情況下,藉由將激態錯合物的發射峰波長與將三重態激發能轉換成發光的發光物質的發射峰波長的差值設定為0.1eV以內的範圍,可以在實現高發光效率的同時實現比現有發光元件低的發光開始電壓。該結構的特徵在於:即使激態錯合物的發射峰波長與將三重態激發能轉換成發光的發光物 質的發射峰波長相等或者比將三重態激發能轉換成發光的發光物質的發射峰波長更長,也可以實現低電壓化而不損失效率。
作為將三重態激發能轉換為發光的發光物質,較佳為使用磷光化合物(有機金屬錯合物等)、熱活化延遲螢光(TADF)材料等。
另外,作為上述有機金屬錯合物,例如可以舉出:雙[2-(4’,6’-二氟苯基)吡啶-N,C2’]銥(Ⅲ)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶-N,C2’]銥(Ⅲ)吡啶甲酸鹽(簡稱:FIrpic)、雙[2-(3’,5’-雙三氟甲基苯基)吡啶-N,C2’]銥(Ⅲ)吡啶甲酸鹽(簡稱:Ir(CF3ppy)2(pic))、雙[2-(4’,6’-二氟苯基)吡啶-N,C2’]乙醯丙酮銥(Ⅲ)(簡稱:FIracac)、三(2-苯基吡啶)銥(Ⅲ)(簡稱:Ir(ppy)3)、雙(2-苯基吡啶)乙醯丙酮銥(Ⅲ)(簡稱:Ir(ppy)2(acac))、雙(苯並[h]喹啉)乙醯丙酮銥(Ⅲ)(簡稱:Ir(bzq)2(acac))、雙(2,4-二苯基-1,3-噁唑-N,C2’)乙醯丙酮銥(Ⅲ)(簡稱:Ir(dpo)2(acac))、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’}乙醯丙酮銥(Ⅲ)(簡稱:Ir(p-PF-ph)2(acac))、雙(2-苯基苯並噻唑-N,C2’)乙醯丙酮銥(Ⅲ)(簡稱:Ir(bt)2(acac))、雙[2-(2’-苯並[4,5-α]噻吩基)吡啶-N,C3’]乙醯丙酮銥(Ⅲ)(簡稱:Ir(btp)2(acac))、雙(1-苯基異喹啉-N,C2’)乙醯丙酮銥(Ⅲ)(簡稱:Ir(piq)2(acac))、(乙醯基丙酮)雙[2,3-雙(4-氟苯基) 喹喔啉]銥(Ⅲ)(簡稱:Ir(Fdpq)2(acac))、(乙醯丙酮)雙(2,3,5-三苯基吡嗪根)合銥(Ⅲ)(簡稱:Ir(tppr)2(acac))、2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉合鉑(Ⅱ)(簡稱:PtOEP)、三(乙醯丙酮)(一啡啉)鋱(Ⅲ)(簡稱:Tb(acac)3(Phen))、三(1,3-二苯基-1,3-丙二酮)(一啡啉)銪(Ⅲ)(簡稱:Eu(DBM)3(Phen))、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](一啡啉)銪(Ⅲ)(簡稱:Eu(TTA)3(Phen))等。
下面,對製造本實施方式所示的發光元件時的具體例子進行說明。
作為第一電極(陽極)201及第二電極(陰極)202,可以使用金屬、合金、導電化合物及它們的混合物。明確而言,除了氧化銦-氧化錫(ITO:Indium Tin Oxide)、包含矽或氧化矽的氧化銦-氧化錫、氧化銦-氧化鋅(Indium Zinc Oxide)、包含氧化鎢及氧化鋅的氧化銦、金(Au)、鉑(Pt)、鎳(Ni)、鎢(W)、鉻(Cr)、鉬(Mo)、鐵(Fe)、鈷(Co)、銅(Cu)、鈀(Pd)、鈦(Ti)之外,還可以使用屬於元素週期表中第1族或第2族的元素,即鹼金屬諸如鋰(Li)和銫(Cs)等、鹼土金屬諸如鎂(Mg)、鈣(Ca)和鍶(Sr)等、包含它們的合金(MgAg、AlLi)、稀土金屬諸如銪(Eu)和鐿(Yb)等、包含它們的合金及石墨烯等。另外,第一電極(陽極)201及第二電極(陰極)202可以藉由濺射法或蒸鍍法(包括真空蒸鍍法)等來形 成。
作為用於電洞注入層204及電洞傳輸層205的電洞傳輸性高的物質,例如可以舉出4,4’-雙[N-(1-萘基)-N-苯胺]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(簡稱:TCTA)、4,4’,4”-三(N,N-二苯胺)三苯胺(簡稱:TDATA)、4,4’,4”-三[N-(3-甲基苯基)-N-苯胺]三苯胺(簡稱:MTDATA)、4,4’-雙[N-(螺-9,9’-二茀-2-基)-N-苯胺]聯苯(簡稱:BSPB)等芳香胺化合物;3-[N-(9-苯基咔唑-3-基)-N-苯胺]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯胺]-9-苯基咔唑(簡稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(簡稱:PCzPCN1)等。除上述以外,還可以使用4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)等的咔唑衍生物等。在此所述的物質主要是電洞遷移率為10-6cm2/Vs以上的物質。但是,只要是電洞傳輸性比電子傳輸性高的物質,就可以使用上述物質之外的物質。
再者,還可以使用聚(N-乙烯咔唑)(簡稱:PVK)、聚(4-乙烯三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯胺)苯基]苯基-N’-苯胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯 基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等高分子化合物。
另外,作為能夠用於電洞注入層204的受體物質,可以舉出過渡金屬氧化物或屬於元素週期表中第4族至第8族的金屬的氧化物。明確而言,氧化鉬是特別佳的。
如上所述,發光層206包含具有電子傳輸性的第一有機化合物209和具有由以上通式(G1)表示的骨架的第二有機化合物210(還可以包含將三重態激發能轉換成發光的發光物質)。
作為接觸於發光層206的電洞傳輸層205,較佳為使用與第二有機化合物同樣的化合物,即具有對苯二胺骨架的有機化合物、具有4-(9H-咔唑-9-基)苯胺骨架的有機化合物以及具有9-芳基-9H-咔唑-3-胺骨架的有機化合物中的任何一種。更明確地說,較佳為使用由上述通式(G1)或(G2)表示的有機化合物。藉由採用該結構,可以降低電洞傳輸層205與發光層206之間的電洞注入勢壘,從而不僅可以提高發光效率,而且還可以降低驅動電壓。就是說,得到即使在高亮度下也很少發生由電壓損失導致的發光效率下降的發光元件。從電洞注入勢壘的觀點來看,特別較佳為採用電洞傳輸層205包含與第二有機化合物相同的有機化合物的結構。
電子傳輸層207是包含電子傳輸性高的物質的層。作為電子傳輸層207,可以使用金屬錯合物諸如Alq3、三(4-甲基-8-羥基喹啉)合鋁(簡稱:Almq3)、雙(10-羥 基苯並[h]-喹啉)合鈹(簡稱:BeBq2)、BAlq、Zn(BOX)2或雙[2-(2-羥基苯基)-苯並噻唑]鋅(簡稱:Zn(BTZ)2)等。此外,也可以使用雜環芳香化合物諸如2-(4-聯苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(簡稱:PBD)、1,3-雙[5-(對叔丁基苯基)-1,3,4-噁二唑-2-基]苯(簡稱:OXD-7)、3-(4-叔丁基苯基)-4-苯基-5-(4-聯苯基)-1,2,4-***(簡稱:TAZ)、3-(4-叔丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4-***(簡稱:p-EtTAZ)、紅啡啉(簡稱:BPhen)、浴銅靈(簡稱:BCP)、4,4’-雙(5-甲基苯並噁唑-2-基)二苯乙烯(簡稱:BzOs)等。另外,還可以使用高分子化合物諸如聚(2,5-吡啶-二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)。在此所述的物質主要是電子遷移率為10-6cm2/Vs以上的物質。另外,只要是電子傳輸性比電洞傳輸性高的物質,就可以將上述物質之外的物質用作電子傳輸層207。
另外,作為電子傳輸層207,不僅可以採用單層,而且可以採用由上述物質構成的層的兩層以上的疊層。
電子注入層208是包含電子注入性高的物質的層。作為電子注入層208,可以使用氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)及鋰氧化物(LiOx)等鹼金屬、鹼土金屬或它們的化合物。此外,可以使用氟化鉺 (ErF3)等稀土金屬化合物。另外,也可以使用上述構成電子傳輸層207的物質。
或者,也可以將有機化合物與電子給體(施體)混合而成的複合材料用於電子注入層208。這種複合材料的電子注入性及電子傳輸性高,因為電子給體使得電子產生在有機化合物中。在此情況下,有機化合物較佳是在傳輸所產生的電子方面性能優異的材料。明確而言,例如,可以使用如上所述的構成電子傳輸層207的物質(金屬錯合物和雜環芳香化合物等)。作為電子給體,只要使用對有機化合物呈現電子給體性的物質,即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鐿等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,例如可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,可以使用氧化鎂等路易士鹼。或者,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
另外,上述電洞注入層204、電洞傳輸層205、發光層206、電子傳輸層207、電子注入層208分別可以藉由蒸鍍法(包括真空蒸鍍法)、噴墨法、塗敷法等的方法形成。
在上述發光元件的發光層206中得到的發光穿過第一電極201和第二電極202中的任一者或兩者取出到外部。因此,本實施方式中的第一電極201和第二電極202中的任一者或兩者為具有透光性的電極。
在本實施方式中,因為在發光元件的發光層中可以形 成激態錯合物(exciplex),該激態錯合物的S1的生成機率為理論值(25%)以上,所以可以實現發光效率高的發光元件。
另外,本實施方式所示的發光元件是本發明的一實施方式,尤其是其特徵在於發光層的結構。因此,藉由應用本實施方式所示的結構,可以製造被動矩陣型發光裝置和主動矩陣型發光裝置等,上述發光裝置都包括在本發明中。
另外,在主動矩陣型發光裝置的情況下,對TFT的結構沒有特別的限制。例如,可以適當地使用交錯型TFT或反交錯型TFT。此外,形成在TFT基板上的驅動電路可以由N型TFT和P型TFT中的一者或兩者形成。並且,對用於TFT的半導體膜的結晶性也沒有特別的限制。例如,可以使用非晶半導體膜、結晶半導體膜和氧化物半導體膜等。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式3
在本實施方式中,作為本發明的一實施方式,對隔著電荷產生層具有多個EL層的結構的發光元件(以下,稱為串聯型發光元件)進行說明。
本實施方式所示的發光元件是如圖4A所示那樣的在一對電極(第一電極301與第二電極304)之間具有多個 EL層(第一EL層302(1)和第二EL層302(2))的串聯型發光元件。
在本實施方式中,第一電極301是用作陽極的電極,第二電極304是用作陰極的電極。另外,作為第一電極301及第二電極304,可以採用與實施方式1相同的結構。此外,多個EL層(第一EL層302(1)和第二EL層302(2))中的任一者或全部可以具有與實施方式1或實施方式2所示的EL層相同的結構。換言之,第一EL層302(1)和第二EL層302(2)既可以具有相同結構,又可以具有不同的結構,作為其結構,可以應用與實施方式1或實施方式2相同的結構。
另外,在多個EL層(第一EL層302(1)和第二EL層302(2))之間設置有電荷產生層305。電荷產生層305具有如下功能:當對第一電極301與第二電極304之間施加電壓時,將電子注入到一方的EL層中,且將電洞注入到另一方的EL層中。在本實施方式中,當以第一電極301的電位高於第二電極304的電位的方式施加電壓時,電子從電荷產生層305被注入到第一EL層302(1)中,且電洞被注入到第二EL層302(2)中。
另外,從光提取效率的觀點來看,電荷產生層305較佳為具有透射可見光的性質(明確而言,電荷產生層305所具有的可見光的透射率為40%以上)。另外,電荷產生層305即使在其電導率小於第一電極301或第二電極304時也發揮作用。
電荷產生層305既可以具有對電洞傳輸性高的有機化合物添加了電子受體(受體)的結構,又可以具有對電子傳輸性高的有機化合物添加了電子給體(施體)的結構。或者,也可以層疊有這兩種結構。
在採用對電洞傳輸性高的有機化合物添加了電子受體的結構的情況下,作為電洞傳輸性高的有機化合物,例如可以使用芳族胺化合物諸如NPB、TPD、TDATA、MTDATA或4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基氨基]聯苯(簡稱:BSPB)等。在此所述的物質主要是電洞遷移率為10-6cm2/Vs以上的物質。但是,只要是電洞傳輸性比電子傳輸性高的有機化合物,就可以使用上述物質之外的物質。
另外,作為電子受體,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟喹啉並二甲烷(簡稱:F4-TCNQ)、氯醌等鹵素化合物、吡嗪並[2,3-f][1,10]啡啉-2,3-二甲腈(簡稱:PPDN)、二吡嗪並[2,3-f:2’,3’-h]喹喔啉-2,3,6,7,10,11-六甲腈(簡稱:HAT-CN)等氰基化合物等。另外,還可以舉出過渡金屬氧化物。另外,可以舉出屬於元素週期表中第4族至第8族的金屬的氧化物。明確而言,較佳為使用氧化釩、氧化鈮、氧化鉭、氧化鉻、氧化鉬、氧化鎢、氧化錳和氧化錸,這是因為它們具有高電子接受性。尤其,較佳為使用氧化鉬,因為氧化鉬在大氣中穩定、其吸濕性低,並且容易進行處理。
另一方面,在採用對電子傳輸性高的有機化合物添加 了電子給體的結構的情況下,作為電子傳輸性高的有機化合物,例如可以使用具有喹啉骨架或苯並喹啉骨架的金屬錯合物等諸如Alq、Almq3、BeBq2或BAlq等。此外,除此之外,還可以使用具有噁唑基配體或噻唑基配體的金屬錯合物等諸如Zn(BOX)2或Zn(BTZ)2等。再者,除了金屬錯合物之外,還可以使用PBD、OXD-7、TAZ、BPhen、BCP等。在此所述的物質主要是電子遷移率為10-6cm2/Vs以上的物質。另外,只要是電子傳輸性比電洞傳輸性高的有機化合物,就可以使用上述物質之外的物質。
另外,作為電子給體,可以使用鹼金屬、鹼土金屬、稀土金屬、屬於元素週期表中第13族的金屬及它們的氧化物和碳酸鹽。明確而言,較佳為使用鋰(Li)、銫(Cs)、鎂(Mg)、鈣(Ca)、鐿(Yb)、銦(In)、氧化鋰、碳酸銫等。此外,也可以將如四硫萘並萘(tetrathianaphthacene)的有機化合物用作電子給體。
另外,藉由使用上述材料形成電荷產生層305,可以抑制層疊EL層造成的驅動電壓的增大。
雖然在本實施方式中,對具有兩個EL層的發光元件進行說明,但是,如圖4B所示那樣,可以同樣地應用於層疊n個(注意,n是3以上)EL層的發光元件。如根據本實施方式的發光元件那樣,當在一對電極之間具有多個EL層時,藉由將電荷產生層設置在EL層與EL層之間,可以在保持低電流密度的同時實現高亮度區域中的發光。因為可以保持低電流密度,所以可以實現長壽命元件。另 外,當作為應用例子採用照明時,因為可以減少由於電極材料的電阻導致的電壓下降,所以可以實現大面積的均勻發光。此外,可以實現能夠進行低電壓驅動且耗電量低的發光裝置。
此外,藉由使各EL層發射互不相同顏色的光,可以使發光元件整體發射所需顏色的光。例如,在具有兩個EL層的發光元件中,使第一EL層的發光顏色和第二EL層的發光顏色處於補色關係,因此作為整體發光元件可以得到發射白色發光的發光元件。注意,詞語“補色關係”表示當顏色混合時得到非彩色的顏色關係。也就是說,藉由將從發射具有補色關係的顏色的光的物質得到的光混合,可以得到白色發光。
另外,具有三個EL層的發光元件的情況也與此同樣,例如,當第一EL層的發光顏色是紅色,第二EL層的發光顏色是綠色,第三EL層的發光顏色是藍色時,發光元件作為整體可以得到白色發光。
再者,除了本實施方式所示的EL層隔著電荷產生層層疊的結構以外,還可以採用藉由將電極(第一電極301及第二電極304)之間的距離設定為所希望的距離而利用光的共振效應的光學微共振器(micro optical resonator)(微腔)結構。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式4
在本實施方式中,對具有本發明的一實施方式的發光元件的發光裝置進行說明。
此外,可以將其他實施方式所說明的發光元件用作發光元件。另外,發光裝置既可以是被動矩陣型發光裝置,又可以是主動矩陣型發光裝置。在本實施方式中,參照圖5A和圖5B對主動矩陣型發光裝置進行說明。
另外,圖5A是示出發光裝置的俯視圖,圖5B是沿圖5A中的虛線A-A’切割的剖面圖。根據本實施方式的主動矩陣型發光裝置具有設置在元件基板501上的像素部502、驅動電路部(源極線驅動電路)503以及驅動電路部(閘極線驅動電路)504a及504b。將像素部502、驅動電路部503及驅動電路部504a及504b由密封材料505密封在元件基板501與密封基板506之間。
此外,在元件基板501上設置用來連接對驅動電路部503及驅動電路部504a及504b傳達來自外部的信號(例如,視頻信號、時脈信號、起始信號或重設信號等)或電位的外部輸入端子的引導佈線507。在此,示出作為外部輸入端子設置FPC(軟性印刷電路)508的例子。另外,雖然在此只圖示FPC,但是該FPC也可以安裝有印刷線路板(PWB)。本說明書中的發光裝置不僅包括發光裝置主體,而且還包括安裝有FPC或PWB的發光裝置。
接著,參照圖5B說明剖面結構。在元件基板501上形成有驅動電路部及像素部,但是在此示出源極線驅動電 路的驅動電路部503及像素部502。
驅動電路部503示出形成有組合n通道型TFT509和p通道型TFT510的CMOS電路的例子。另外,形成驅動電路部的電路也可以使用各種CMOS電路、PMOS電路或NMOS電路形成。此外,在本實施方式中,雖然示出將驅動電路形成在基板上的驅動器一體型,但是不一定必需要如此,也可以將驅動電路形成在外部而不形成在基板上。
此外,像素部502由包括開關用TFT511、電流控制用TFT512及與電流控制用TFT512的佈線(源極電極或汲極電極)電連接的第一電極(陽極)513的多個像素形成。另外,以覆蓋第一電極(陽極)513的端部的方式形成有絕緣物514。在此,使用正型的光敏丙烯酸樹脂形成絕緣物514。
另外,為了提高層疊在絕緣物514上的膜的覆蓋性,較佳為在絕緣物514的上端部或下端部形成具有曲率的曲面。例如,在作為絕緣物514的材料使用正型的光敏丙烯酸樹脂的情況下,較佳為使絕緣物514的上端部具備具有曲率半徑(0.2μm至3μm)的曲面。此外,作為絕緣物514,可以使用負型光敏樹脂或正型光敏樹脂,不侷限於有機化合物,而還可以使用無機化合物諸如氧化矽、氧氮化矽等。
在第一電極(陽極)513上層疊有EL層515及第二電極(陰極)516,以形成發光元件517。在EL層515中至少設置有實施方式1所示的發光層。另外,在EL層 515中,除了發光層之外,可以適當地設置電洞注入層、電洞傳輸層、電子傳輸層、電子注入層、電荷產生層等。
作為用於第一電極(陽極)513、EL層515及第二電極(陰極)516的材料,可以使用實施方式2所示的材料。此外,雖然在此未圖示,但是第二電極(陰極)516與作為外部輸入端子的FPC508電連接。
此外,雖然在圖5B所示的剖面圖中僅示出一個發光元件517,但是,在像素部502中以矩陣形狀配置有多個發光元件。在像素部502中分別選擇性地形成能夠得到三種(R、G、B)發光的發光元件,以可以形成能夠進行全彩色顯示的發光裝置。此外,也可以藉由與濾色片組合來實現能夠進行全彩色顯示的發光裝置。
再者,藉由利用密封材料505將密封基板506與元件基板501貼合在一起,得到在由元件基板501、密封基板506及密封材料505圍繞的空間518中具備有發光元件517的結構。另外,除了空間518填充有惰性氣體(氮、氬等)的結構以外,還有空間518填充有密封材料505的結構。
另外,作為密封材料505,較佳為使用環氧類樹脂。另外,這些材料較佳是儘量不透過水分、氧的材料。此外,作為用於密封基板506的材料,除了玻璃基板、石英基板之外,還可以使用由FRP(Fiberglass-Reinforced Plastics:玻璃纖維強化塑膠)、PVF(聚氟乙烯)、聚酯或丙烯酸樹脂等構成的塑膠基板。
藉由上述,可以得到主動矩陣型的發光裝置。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式5
在本實施方式中,參照圖6A至圖7C對使用應用本發明的一實施方式的發光元件來製造的發光裝置完成的各種各樣的電子裝置的一個例子進行說明。
作為應用發光裝置的電子裝置,例如可以舉出電視機(也稱為電視或電視接收機)、用於電腦等的顯示器、數位相機、數位攝影機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、可攜式資訊終端、音頻再現裝置、彈珠機等的大型遊戲機等。圖6A至圖6D示出這些電子裝置的具體例子。
圖6A示出電視機的一個例子。在電視機7100中,在外殼7101中組裝有顯示部7103。由顯示部7103能夠顯示影像,並可以將發光裝置用於顯示部7103。此外,在此示出利用支架7105支撐外殼7101的結構。
可以藉由利用外殼7101所具備的操作開關、另外提供的遙控器7110進行電視機7100的操作。藉由利用遙控器7110所具備的操作鍵7109,可以進行頻道及音量的操作,並可以對在顯示部7103上顯示的影像進行操作。此外,也可以採用在遙控器7110中設置顯示從該遙控器7110輸出的資訊的顯示部7107的結構。
另外,電視機7100採用具備接收機及數據機等的結構。可以藉由利用接收機接收一般的電視廣播。再者,藉由數據機將電視機7100連接到有線或無線方式的通信網路,從而進行單向(從發送者到接收者)或雙向(發送者和接收者之間或接收者之間等)的資訊通信。
圖6B示出電腦,包括主體7201、外殼7202、顯示部7203、鍵盤7204、外部連接埠7205、指向裝置7206等。 此外,該電腦是藉由將發光裝置用於其顯示部7203來製造的。
圖6C示出可攜式遊戲機,包括外殼7301和外殼7302的兩個外殼,並且藉由連接部7303可以開閉地連接。在外殼7301中組裝有顯示部7304,而在外殼7302中組裝有顯示部7305。此外,圖6C所示的可攜式遊戲機還具備揚聲器部7306、儲存介質***部7307、LED燈7308、輸入單元(操作鍵7309、連接端子7310、感測器7311(包括測定如下因素的功能:力、位移、位置、速度、加速度、角速度、轉動數、距離、光、液、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、輻射線、流量、濕度、斜率、振動、氣味或紅外線)、麥克風7312)等。當然,可攜式遊戲機的結構不侷限於上述結構,只要在顯示部7304及顯示部7305的兩者或一方中使用發光裝置,即可。此外,還可以採用適當地設置其他輔助設備的結構。圖6C所示的可攜式遊戲機具有如下功能:讀出儲存在儲存介質中的程式或資料並將 其顯示在顯示部上;以及藉由與其他可攜式遊戲機進行無線通信而實現資訊共用。另外,圖6C所示的可攜式遊戲機的功能不侷限於此,而可以具有各種各樣的功能。
圖6D示出行動電話機的一個例子。行動電話機7400除了組裝在外殼7401中的顯示部7402之外還具備操作按鈕7403、外部連接埠7404、揚聲器7405、麥克風7406等。另外,行動電話機7400將發光裝置用於顯示部7402來製造。
圖6D所示的行動電話機7400可以用手指等觸摸顯示部7402來輸入資訊。此外,可以用手指等觸摸顯示部7402來進行打電話或製作電子郵件等的操作。
顯示部7402的螢幕主要有如下三個模式:第一是以影像顯示為主的顯示模式;第二是以文字等資訊輸入為主的輸入模式;第三是混合顯示模式與輸入模式的兩個模式的顯示及輸入模式。
例如,在打電話或製作電子郵件的情況下,將顯示部7402設定為以文字輸入為主的文字輸入模式,並進行顯示在螢幕的文字的輸入操作,即可。在此情況下,較佳的是,在顯示部7402的螢幕的大多部分上顯示鍵盤或號碼按鈕。
另外,藉由在行動電話機7400內部設置具有陀螺儀和加速度感測器等檢測傾斜度的感測器的檢測裝置,判斷行動電話機7400的方向(縱向或橫向),而可以對顯示部7402的螢幕顯示進行自動切換。
此外,藉由觸摸顯示部7402或對外殼7401的操作按鈕7403進行操作,切換螢幕模式。也可以根據顯示在顯示部7402上的影像種類切換螢幕模式。例如,當顯示在顯示部上的影像信號為動態影像的資料時,將螢幕模式切換成顯示模式,而當顯示在顯示部上的影像信號為文字資料時,將螢幕模式切換成輸入模式。
另外,當在輸入模式下藉由檢測出顯示部7402的光感測器所檢測的信號得知在一定期間內沒有顯示部7402的觸摸操作輸入時,也可以控制為將屏幕模式從輸入模式切換成顯示模式。
還可以將顯示部7402用作影像感測器。例如,藉由用手掌或手指觸摸顯示部7402,來拍攝掌紋、指紋等,而可以進行身份識別。此外,藉由在顯示部中使用發射近紅外光的背光或發射近紅外光的感測光源,也可以拍攝手指靜脈、手掌靜脈等。
圖7A和圖7B是翻蓋式平板終端。圖7A是打開的狀態,並且平板終端包括外殼9630、顯示部9631a、顯示部9631b、顯示模式切換開關9034、電源開關9035、省電模式切換開關9036、夾子9033以及操作開關9038。此外,將發光裝置用於顯示部9631a和顯示部9631b的一者或兩者來製造該平板終端。
在顯示部9631a中,可以將其一部分用作觸摸屏的區域9632a,並且可以藉由觸摸所顯示的操作鍵9637來輸入資料。此外,作為一個例子示出顯示部9631a的一半區 域只具有顯示的功能,並且另一半區域具有觸摸屏的功能的結構,但是不侷限於該結構。也可以採用使顯示部9631a的所有的區域具有觸摸屏的功能的結構。例如,可以使顯示部9631a的整個面顯示鍵盤按鈕來將其用作觸摸屏,並且將顯示部9631b用作顯示屏幕。
此外,在顯示部9631b中與顯示部9631a同樣,也可以將其一部分用作觸摸屏的區域9632b。此外,藉由使用手指或觸控筆等觸摸顯示觸摸屏上的鍵盤顯示切換按鈕9639的位置,可以在顯示部9631b上顯示鍵盤按鈕。
此外,也可以對觸摸屏的區域9632a和觸摸屏的區域9632b同時進行觸摸輸入。
另外,顯示模式切換開關9034能夠選擇切換豎屏顯示和橫屏顯示等顯示的方向以及黑白顯示和彩色顯示等。 省電模式切換開關9036可以根據平板終端所內置的光感測器所檢測的使用時的外光的光量,將顯示的亮度設定為最合適的亮度。平板終端除了光感測器以外還可以內置陀螺儀和加速度感測器等檢測傾斜度的感測器等的其他檢測裝置。
此外,圖7A示出顯示部9631b的顯示面積與顯示部9631a的顯示面積相等的例子,但是不侷限於此,可以使一方的尺寸和另一方的尺寸不同,也可以使它們的顯示品質有差異。例如可以採用顯示部9631a和9631b中的一方與另一方相比可以進行更加高精細的顯示的結構。
圖7B是合上的狀態,並且平板終端包括外殼9630、 太陽能電池9633、充放電控制電路9634、電池9635以及DCDC轉換器9636。此外,在圖7B中,作為充放電控制電路9634的一個例子示出具有電池9635和DCDC轉換器9636的結構。
此外,因為是翻蓋式平板終端,所以不使用時可以合上外殼9630。因此,可以保護顯示部9631a和顯示部9631b,而可以提供一種具有良好的耐久性且從長期使用的觀點來看具有良好的可靠性的平板終端。
此外,圖7A和圖7B所示的平板終端還可以具有如下功能:顯示各種各樣的資訊(靜態影像、動態影像、文字影像等);將日曆、日期或時間等顯示在顯示部上;對顯示在顯示部上的資訊進行觸摸輸入操作或編輯的觸摸輸入;藉由各種各樣的軟體(程式)控制處理等。
藉由利用安裝在平板終端的表面上的太陽能電池9633,可以將電力供應到觸摸屏、顯示部或影像信號處理部等。另外,可以將太陽能電池9633設置在外殼9630的單面或雙面,由此可以高效地對電池9635進行充電。另外,當作為電池9635使用鋰離子電池時,有可以實現小型化等的優點。
另外,參照圖7C所示的方塊圖對圖7B所示的充放電控制電路9634的結構和工作進行說明。圖7C示出太陽能電池9633、電池9635、DCDC轉換器9636、轉換器9638、開關SW1至SW3以及顯示部9631,電池9635、DCDC轉換器9636、轉換器9638、開關SW1至SW3對應 於圖7B所示的充放電控制電路9634。
首先,說明在利用外光使太陽能電池9633發電時的工作的例子。使用DCDC轉換器9636對太陽能電池9633所產生的電力進行升壓或降壓以使它成為用來對電池9635進行充電的電壓。並且,當利用來自太陽能電池9633的電力使顯示部9631工作時使開關SW1導通,並且,利用轉換器9638將該電力升壓或降壓到顯示部9631所需要的電壓。另外,當不進行顯示部9631中的顯示時,使開關SW1斷開且使開關SW2導通來對電池9635進行充電。
注意,作為發電單元的一個例子示出太陽能電池9633,但是不侷限於此,也可以使用壓電元件(piezoelectric element)或熱電轉換元件(珀耳帖元件(Peltier element))等其他發電單元進行電池9635的充電。例如,也可以使用以無線(不接觸)的方式能夠收發電力來進行充電的無線電力傳輸模組或組合其他充電單元進行充電。
另外,如果具備上述實施方式所說明的顯示部,則當然不侷限於圖7A至圖7C所示的電子裝置。
藉由上述,可以應用本發明的一實施方式的發光裝置而得到電子裝置。發光裝置的應用範圍極為寬,而可以應用於所有領域的電子裝置。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施方式6
在本實施方式中,參照圖8對應用包括本發明的一實施方式的發光元件的發光裝置的照明裝置的一個例子進行說明。
圖8是將發光裝置用於室內照明裝置8001的例子。 另外,因為發光裝置可以實現大面積化,所以也可以形成大面積的照明裝置。此外,也可以藉由使用具有曲面的外殼來形成發光區域具有曲面的照明裝置8002。包括在本實施方式所示的發光裝置中的發光元件為薄膜狀,外殼的設計的自由度高。因此,可以形成不同精心設計的照明裝置。再者,室內的牆面也可以具備大型的照明裝置8003。
另外,藉由將發光裝置用於桌子的表面,可以提供具有桌子的功能的照明裝置8004。此外,藉由將發光裝置用於其他傢俱的一部分,可以提供具有傢俱的功能的照明裝置。
如上所述,可以得到應用發光裝置的各種各樣的照明裝置。另外,這種照明裝置包括在本發明的一實施方式中。
注意,本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。
實施例1
在本實施例中,參照圖9對本發明的一實施方式的發光元件1及發光元件2進行說明。注意,以下示出在本實施例中使用的材料的化學式。
<<發光元件1及發光元件2的製造>>
首先,在由玻璃製造的基板1100上藉由濺射法形成 包含氧化矽的銦錫氧化物(ITSO),由此形成用作陽極的第一電極1101。注意,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。
接著,作為用來在基板1100上形成發光元件的預處理,使用水對基板表面進行洗滌,在200℃下進行1小時的焙燒,然後進行370秒鐘的UV臭氧處理。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍設備中,並在真空蒸鍍設備內的加熱室中,在170℃下進行30分鐘的真空焙燒之後,對基板1100進行30分鐘左右的冷卻。
接著,以使形成有第一電極1101的面朝下的方式將基板1100固定到設置在真空蒸鍍設備內的支架。在本實施例中,說明如下情況,即藉由真空蒸鍍法,依次形成構成EL層1102的電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。
在使真空蒸鍍設備的內部減壓到10-4Pa之後,藉由共蒸鍍1,3,5-三(二苯並噻吩-4-基)苯(簡稱:DBT3P-Ⅱ)和氧化鉬(VI)以滿足DBT3P-Ⅱ(簡稱):氧化鉬=4:2(質量比)的關係,來在第一電極1101上形成電洞注入層1111。將其厚度設定為20nm。注意,共蒸鍍是指使不同的多個物質從各不同的蒸發源同時蒸發的蒸鍍法。
接著,作為發光元件1,藉由蒸鍍20nm厚的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP),形成電洞傳輸層1112。作為發光元件2,藉由蒸鍍20nm厚的 PCASF(簡稱),形成電洞傳輸層1112。
接著,在電洞傳輸層1112上形成發光層1113。作為發光元件1,共蒸鍍2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-Ⅱ)和2-[N-(9-苯基咔唑-3-基)-N-苯基氨基]螺-9,9’-聯茀(簡稱:PCASF),以滿足2mDBTPDBq-Ⅱ(簡稱):PCASF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。作為發光元件2,共蒸鍍2mDBTPDBq-Ⅱ(簡稱)、PCASF(簡稱)以及(乙醯丙酮根)雙(6-叔丁基-4-苯基嘧啶根)銥(Ⅲ)(簡稱:[Ir(tBuppm)2(acac)]),以滿足2mDBTPDBq-Ⅱ(簡稱):PCASF(簡稱):[Ir(tBuppm)2(acac)](簡稱)=0.7:0.3:0.05(質量比)的關係,來形成20nm厚的膜,然後,繼續進行共蒸鍍,以滿足2mDBTPDBq-Ⅱ(簡稱):PCASF(簡稱):[Ir(tBuppm)2(acac)]=0.8:0.2:0.05(質量比)的關係,來形成20nm厚的膜,由此形成發光層1113。
接著,藉由在發光層1113上蒸鍍5nm厚的2mDBTPDBq-Ⅱ(簡稱)之後,蒸鍍15nm厚的紅啡啉(簡稱:BPhen),由此形成具有疊層結構的電子傳輸層1114。再者,藉由在電子傳輸層1114上蒸鍍1nm厚的氟化鋰,形成電子注入層1115。
最後,在電子注入層1115上蒸鍍200nm厚的鋁膜來形成用作陰極的第二電極1103,而得到發光元件1及發光元件2。注意,作為上述蒸鍍過程中的蒸鍍,都採用電 阻加熱法。
經上述步驟,得到發光元件1及發光元件2。表1示出發光元件1及發光元件2的元件結構。
此外,在氮氛圍的手套箱中密封所製造的發光元件1及發光元件2,以不使發光元件1及發光元件2暴露於大氣(明確而言,將密封材料塗敷在元件的周圍,並且,當密封時以80℃進行1小時的熱處理)。
<<發光元件1及發光元件2的工作特性>>
對所製造的發光元件1及發光元件2的工作特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖10和圖11分別示出發光元件1及發光元件2的電 壓-亮度特性和亮度-外部量子效率特性。
由圖11可知:本發明的一實施方式的發光元件1的外部量子效率的最大值為6.1%左右,因為在發光層中形成激態錯合物而使理論上的S1的生成機率(25%)得到提高,所以超過理論上的外部量子效率(5%)。像這樣,本發明的一實施方式的發光元件的特徵在於:即使不使用昂貴的Ir複合物作為發光材料,也可以藉由使三重態激發能的一部分有助於發光而得到比較高的發光效率。
由圖11還可知:至於具有包含將三重態激發能轉換成發光的發光物質的發光層的發光元件2,其外部量子效率的最大值為28%左右,因為在發光層中形成激態錯合物而使從激態錯合物的T1到將三重態激發能轉換成發光的發光物質的能量轉移效率得到提高,所以得到外部量子效率極高的發光元件。
以下,表2示出1000cd/m2附近的發光元件1及發光元件2的主要初期特性值。
由表2的結果可知,在本實施例中製造的發光元件1 及發光元件2具有高亮度及高電流效率。
另外,圖12示出使0.1mA的電流流過發光元件1及發光元件2時的發射光譜。由圖12可知:發光元件1的發射光譜在561nm附近具有峰值,該峰值來源於在發光層1113中由2mDBTPDBq-Ⅱ(簡稱)和PCASF(簡稱)形成的激態錯合物的發光;發光元件2的發射光譜在546nm附近具有峰值,該峰值來源於包含在發光層1113中的[Ir(tBuppm)2(acac)](簡稱)的發光。
由此可知,能夠在發光層中形成激態錯合物的本發明的一實施方式的發光元件具有高發光效率。
注意,在發光元件2中,雖然用於發光層的由2mDBTPDBq-Ⅱ(簡稱)和PCASF(簡稱)形成的激態錯合物的發射峰波長(參照發光元件1)比磷光發光物質的[Ir(tBuppm)2(acac)]的發射峰波長更長,但是它們之間的差值只在0.1eV以內的範圍。藉由採用這種結構,可以在實現高發光效率的同時實現比現有發光元件低的發光開始電壓。其結果,發光元件2得到高功率效率,其最大值為140lm/W(在32cd/m2下)。
另外,在發光元件2中,將PCASF(簡稱)不僅用於發光層而且還用於電洞傳輸層,所以可以降低電洞傳輸層與發光層之間的電洞注入勢壘。因此,實用亮度區域(例如,1000cd/m2左右)的工作電壓也相當低,即2.5V。其結果,實用亮度區域(例如,1000cd/m2左右)的功率效率為大約130lm/W,從最大值(140lm/W)幾乎不下降 (參照表2)。像這樣,藉由將與第二有機化合物同樣的化合物(尤其是同一化合物)不僅用於發光層而且還用於電洞傳輸層,可以得到即使在高亮度下也很少發生由電壓損失導致的功率效率下降的發光元件。
實施例2
在本實施例中,對本發明的一實施方式的發光元件3及發光元件4進行說明。注意,參照在實施例1中用來說明發光元件1及發光元件2的圖9說明本實施例中的發光元件3及發光元件4。以下示出在本實施例中使用的材料的化學式。
<<發光元件3及發光元件4的製造>>
首先,在由玻璃製造的基板1100上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成用作陽極的第一電極1101。注意,將其厚度設定為110nm,且將其 電極面積設定為2mm×2mm。
接著,作為用來在基板1100上形成發光元件的預處理,使用水對基板表面進行洗滌,在200℃下進行1小時的焙燒,然後進行370秒鐘的UV臭氧處理。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍設備中,並在真空蒸鍍設備內的加熱室中,在170℃下進行30分鐘的真空焙燒之後,對基板1100進行30分鐘左右的冷卻。
接著,以使形成有第一電極1101的面朝下的方式將基板1100固定到設置在真空蒸鍍設備內的支架。在本實施例中,說明如下情況,即藉由真空蒸鍍法,依次形成構成EL層1102的電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。
在使真空蒸鍍設備的內部減壓到10-4Pa之後,藉由共蒸鍍1,3,5-三(二苯並噻吩-4-基)苯(簡稱:DBT3P-Ⅱ)和氧化鉬(Ⅵ)以滿足DBT3P-Ⅱ(簡稱):氧化鉬=4:2(質量比)的關係,來在第一電極1101上形成電洞注入層1111。將其厚度設定為20nm。注意,共蒸鍍是指使不同的多個物質從各不同的蒸發源同時蒸發的蒸鍍法。
接著,作為發光元件3,藉由蒸鍍20nm厚的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP),形成電洞傳輸層1112。作為發光元件4,藉由蒸鍍20nm厚的PCASF(簡稱),形成電洞傳輸層1112。
接著,在電洞傳輸層1112上形成發光層1113。作為 發光元件3,共蒸鍍2-[3-(二苯並噻吩-4-基)苯基]二苯並[f,h]喹喔啉(簡稱:2mDBTPDBq-Ⅱ)和N,N’-雙(9-苯基-9H-咔唑-3-基)-N,N’-二苯基-螺-9,9’-聯茀-2,7-二胺(簡稱:PCA2SF),以滿足2mDBTPDBq-Ⅱ(簡稱):PCA2SF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。作為發光元件4,共蒸鍍2mDBTPDBq-Ⅱ(簡稱)、PCA2SF(簡稱)以及(乙醯丙酮根)雙(4,6-二苯基嘧啶根)銥(Ⅲ)(簡稱:[Ir(dppm)2(acac)]),以滿足2mDBTPDBq-Ⅱ(簡稱):PCA2SF(簡稱):[Ir(dppm)2(acac)](簡稱)=0.7:0.3:0.05(質量比)的關係,來形成20nm厚的膜,然後,繼續進行共蒸鍍,以滿足2mDBTPDBq-Ⅱ(簡稱):PCA2SF(簡稱):[Ir(dppm)2(acac)](簡稱)=0.8:0.2:0.05(質量比)的關係,來形成20nm厚的膜,由此形成發光層1113。
接著,藉由在發光層1113上蒸鍍20nm厚的2mDBTPDBq-Ⅱ(簡稱)之後,蒸鍍20nm厚的紅啡啉(簡稱:BPhen),由此形成具有疊層結構的電子傳輸層1114。再者,藉由在電子傳輸層1114上蒸鍍1nm厚的氟化鋰,形成電子注入層1115。
最後,在電子注入層1115上蒸鍍200nm厚的鋁膜來形成用作陰極的第二電極1103,而得到發光元件3及發光元件4。注意,作為上述蒸鍍過程中的蒸鍍,都採用電阻加熱法。
經上述步驟,得到發光元件3及發光元件4。表3示出發光元件3及發光元件4的元件結構。
此外,在氮氛圍的手套箱中密封所製造的發光元件3及發光元件4,以不使發光元件3及發光元件4暴露於大氣(明確而言,將密封材料塗敷在元件的周圍,並且,當密封時以80℃進行1小時的熱處理)。
<<發光元件3及發光元件4的工作特性>>
對所製造的發光元件3及發光元件4的工作特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖13和圖14分別示出發光元件3及發光元件4的電壓-亮度特性和亮度-外部量子效率特性。
由圖14可知:本發明的一實施方式的發光元件3的外部量子效率的最大值為10%左右,因為在發光層中形成 激態錯合物而使理論上的S1的生成機率(25%)得到提高,所以大幅度超過理論上的外部量子效率(5%)。像這樣,本發明的一實施方式的發光元件的特徵在於:即使不使用昂貴的Ir複合物作為發光材料,也可以藉由使三重態激發能的一部分有助於發光而得到比較高的發光效率。
由圖14還可知:至於具有包含將三重態激發能轉換成發光的發光物質的發光層的發光元件4,其外部量子效率的最大值為28%左右,因為在發光層中形成激態錯合物而使從激態錯合物的T1到將三重態激發能轉換成發光的發光物質的能量轉移效率得到提高,所以得到外部量子效率極高的發光元件。
以下,表4示出1000cd/m2附近的發光元件3及發光元件4的主要初期特性值。
由表4的結果可知,在本實施例中製造的發光元件3及發光元件4具有高亮度及高電流效率。
另外,圖15示出使0.1mA的電流流過發光元件3及 發光元件4時的發射光譜。由圖15可知:發光元件3的發射光譜在587nm附近具有峰值,該峰值來源於在發光層1113中由2mDBTPDBq-Ⅱ(簡稱)和PCA2SF(簡稱)形成的激態錯合物的發光;發光元件4的發射光譜在587nm附近具有峰值,該峰值來源於包含在發光層1113中的[Ir(dppm)2(acac)](簡稱)的發光。
由此可知,能夠在發光層中形成激態錯合物的本發明的一實施方式的發光元件具有高發光效率。
注意,在發光元件4中,用於發光層的由2mDBTPDBq-Ⅱ(簡稱)和PCA2SF(簡稱)形成的激態錯合物的發射峰波長(參照發光元件3)與磷光發光物質的[Ir(dppm)2(acac)](簡稱)的發射峰波長大致相等。藉由採用這種結構,可以在實現高發光效率的同時實現比現有發光元件低的發光開始電壓。其結果,得到高功率效率,其最大值為110lm/W(在12cd/m2下),是作為橙色元件極高的。
另外,在發光元件4中,將與PCA2SF(簡稱)同樣的化合物(即具有與PCA2SF相同的9-芳基-9H-咔唑-3-胺骨架)的PCASF(簡稱)用於電洞傳輸層,所以可以降低電洞傳輸層與發光層之間的電洞注入勢壘。因此,實用亮度區域(例如,1000cd/m2左右)的工作電壓也相當低,即2.5V。其結果,實用亮度區域(例如,1000cd/m2左右)的功率效率為大約96lm/W,從最大值(110lm/W)幾乎不下降(參照表4)。像這樣,藉由將與第二有機化 合物同樣的化合物不僅用於發光層而且還用於電洞傳輸層,可以得到即使在高亮度下也很少發生由電壓損失導致的功率效率下降的發光元件。
實施例3
在本實施例中,對本發明的一實施方式的發光元件5及發光元件6進行說明。注意,參照在實施例1中用來說明發光元件1及發光元件2的圖9說明本實施例中的發光元件5及發光元件6。以下示出在本實施例中使用的材料的化學式。
<<發光元件5及發光元件6的製造>>
首先,在由玻璃製造的基板1100上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成用作陽極的第一電極1101。注意,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。
接著,作為用來在基板1100上形成發光元件的預處理,使用水對基板表面進行洗滌,在200℃下進行1小時的焙燒,然後進行370秒鐘的UV臭氧處理。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍設備中,並在真空蒸鍍設備內的加熱室中,在170℃下進行30分鐘的真空焙燒之後,對基板1100進行30分鐘左右的冷卻。
接著,以使形成有第一電極1101的面朝下的方式將基板1100固定到設置在真空蒸鍍設備內的支架。在本實施例中,說明如下情況,即藉由真空蒸鍍法,依次形成構成EL層1102的電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。
在使真空蒸鍍設備的內部減壓到10-4Pa之後,藉由共蒸鍍1,3,5-三(二苯並噻吩-4-基)苯(簡稱:DBT3P-Ⅱ)和氧化鉬(Ⅵ)以滿足DBT3P-Ⅱ(簡稱):氧化鉬=4:2(質量比)的關係,來在第一電極1101上形成電洞注入層1111。將其厚度設定為20nm。注意,共蒸鍍是指使不同的多個物質從各不同的蒸發源同時蒸發的蒸鍍法。
接著,藉由蒸鍍20nm厚的4-苯基-4’-(9-苯基茀-9-基)三苯胺(簡稱:BPAFLP),形成電洞傳輸層1112。
接著,在電洞傳輸層1112上形成發光層1113。作為發光元件5,共蒸鍍2-[3’-(二苯並噻吩-4-基)聯苯-3-基]二苯並[f,h]喹喔啉(簡稱:2mDBTBPDBq-Ⅱ)和N-(4-聯苯基)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H- 咔唑-3-胺(簡稱:PCBiF),以滿足2mDBTBPDBq-Ⅱ(簡稱):PCBiF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。作為發光元件6,共蒸鍍2mDBTBPDBq-Ⅱ(簡稱)、PCBiF(簡稱)以及(乙醯丙酮根)雙(6-叔丁基-4-苯基嘧啶根)銥(Ⅲ)(簡稱:[Ir(tBuppm)2(acac)]),以滿足2mDBTBPDBq-Ⅱ(簡稱):PCBiF(簡稱):[Ir(tBuppm)2(acac)](簡稱)=0.7:0.3:0.05(質量比)的關係,來形成20nm厚的膜,然後,繼續進行共蒸鍍,以滿足2mDBTBPDBq-Ⅱ(簡稱):PCBiF(簡稱):[Ir(tBuppm)2(acac)](簡稱)=0.8:0.2:0.05(質量比)的關係,來形成20nm厚的膜,由此形成發光層1113。
接著,藉由在發光層1113上蒸鍍10nm厚的2mDBTBPDBq-Ⅱ(簡稱)之後,蒸鍍15nm厚的紅啡啉(簡稱:BPhen),由此形成具有疊層結構的電子傳輸層1114。再者,藉由在電子傳輸層1114上蒸鍍1nm厚的氟化鋰,形成電子注入層1115。
最後,在電子注入層1115上蒸鍍200nm厚的鋁膜來形成用作陰極的第二電極1103,而得到發光元件5及發光元件6。注意,作為上述蒸鍍過程中的蒸鍍,都採用電阻加熱法。
經上述步驟,得到發光元件5及發光元件6。表5示出發光元件5及發光元件6的元件結構。
此外,在氮氛圍的手套箱中密封所製造的發光元件5及發光元件6,以不使發光元件5及發光元件6暴露於大氣(明確而言,將密封材料塗敷在元件的周圍,並且,當密封時以80℃進行1小時的熱處理)。
<<發光元件5及發光元件6的工作特性>>
對所製造的發光元件5及發光元件6的工作特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖16和圖17分別示出發光元件5及發光元件6的電壓-亮度特性和亮度-外部量子效率特性。
由圖17可知:本發明的一實施方式的發光元件5的外部量子效率的最大值為6.4%左右,因為在發光層中形成激態錯合物而使理論上的S1的生成機率(25%)得到提高,所以超過理論上的外部量子效率(5%)。像這樣,本發明的一實施方式的發光元件的特徵在於:即使不 使用昂貴的Ir複合物作為發光材料,也可以藉由使三重態激發能的一部分有助於發光而得到比較高的發光效率。
由圖17還可知:至於具有包含將三重態激發能轉換成發光的發光物質的發光層的發光元件6,其外部量子效率的最大值為29%左右,因為在發光層中形成激態錯合物而使從激態錯合物的T1到將三重態激發能轉換成發光的發光物質的能量轉移效率得到提高,所以得到外部量子效率極高的發光元件。
以下,表6示出1000cd/m2附近的發光元件5及發光元件6的主要初期特性值。
由表6的結果可知,在本實施例中製造的發光元件5及發光元件6具有高亮度及高電流效率。
另外,圖18示出使0.1mA的電流流過發光元件5及發光元件6時的發射光譜。由圖18可知:發光元件5的發射光譜在550nm附近具有峰值,該峰值來源於在發光層1113中由2mDBTBPDBq-Ⅱ(簡稱)和PCBiF(簡稱) 形成的激態錯合物的發光;發光元件6的發射光譜在546nm附近具有峰值,該峰值來源於包含在發光層1113中的[Ir(tBuppm)2(acac)](簡稱)的發光。
由此可知,能夠在發光層中形成激態錯合物的本發明的一實施方式的發光元件具有高發光效率。
注意,在發光元件6中,雖然用於發光層的由2mDBTBPDBq-Ⅱ(簡稱)和PCBiF(簡稱)形成的激態錯合物的發射峰波長(參照發光元件5)比磷光發光物質的[Ir(tBuppm)2(acac)]的發射峰波長更長,但是它們之間的差值只在0.1eV以內的範圍。藉由採用這種結構,可以在實現高發光效率的同時實現比現有發光元件低的發光開始電壓。其結果,發光元件6得到高功率效率,即120lm/W(在970cd/m2下)。
另外,進行發光元件6的可靠性測試。圖19示出可靠性測試的結果。在圖19中,縱軸表示起始亮度為100%時的歸一化亮度(%),橫軸表示元件的驅動時間(h)。此外,在可靠性測試中,將起始亮度設定為1000cd/m2,並且在電流密度恆定的條件下驅動發光元件6。其結果,發光元件6的100小時後的亮度保持初始亮度的93%左右。
由此可知,發光元件6具有高可靠性。
實施例4
在本實施例中,對本發明的一實施方式的發光元件7、發光元件8以及發光元件9進行說明。注意,參照在 實施例1中用來說明發光元件1及發光元件2的圖9說明本實施例中的發光元件7、發光元件8以及發光元件9。以下示出在本實施例中使用的材料的化學式。
<<發光元件7、發光元件8以及發光元件9的製造>>
首先,在由玻璃製造的基板1100上藉由濺射法形成包含氧化矽的銦錫氧化物(ITSO),由此形成用作陽極的第一電極1101。注意,將其厚度設定為110nm,且將其電極面積設定為2mm×2mm。
接著,作為用來在基板1100上形成發光元件的預處理,使用水對基板表面進行洗滌,在200℃下進行1小時的焙燒,然後進行370秒鐘的UV臭氧處理。
然後,將基板放入到其內部被減壓到10-4Pa左右的真空蒸鍍設備中,並在真空蒸鍍設備內的加熱室中,在170℃下進行30分鐘的真空焙燒之後,對基板1100進行30分鐘左右的冷卻。
接著,以使形成有第一電極1101的面朝下的方式將基板1100固定到設置在真空蒸鍍設備內的支架。在本實施例中,說明如下情況,即藉由真空蒸鍍法,依次形成構成EL層1102的電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。
在使真空蒸鍍設備的內部減壓到10-4Pa之後,藉由共蒸鍍1,3,5-三(二苯並噻吩-4-基)苯(簡稱:DBT3P-Ⅱ)和氧化鉬(Ⅵ)以滿足DBT3P-Ⅱ(簡稱):氧化鉬=4:2(質量比)的關係,來在第一電極1101上形成電洞注入層1111。將其厚度設定為20nm。注意,共蒸鍍是指使不同的多個物質從各不同的蒸發源同時蒸發的蒸鍍法。
接著,藉由蒸鍍20nm厚的4-苯基-4’-(9-苯基茀-9- 基)三苯胺(簡稱:BPAFLP),形成電洞傳輸層1112。
接著,在電洞傳輸層1112上形成發光層1113。作為發光元件7,共蒸鍍4,6-雙[3-(4-二苯並噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-Ⅱ)和N-(4-聯苯基)-N-(9,9’-螺二[9H-茀]-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiSF),以滿足4,6mDBTP2Pm-Ⅱ(簡稱):PCBiSF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。作為發光元件8,共蒸鍍4,6mDBTP2Pm-Ⅱ(簡稱)和N-(4-聯苯基)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF),以滿足4,6mDBTP2Pm-Ⅱ(簡稱):PCBiF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。再者,作為發光元件9,共蒸鍍4,6mDBTP2Pm-Ⅱ(簡稱)和N-(3-聯苯基)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:mPCBiF),以滿足4,6mDBTP2Pm-Ⅱ(簡稱):mPCBiF(簡稱)=0.8:0.2(質量比)的關係,來形成40nm厚的發光層1113。
接著,藉由在發光層1113上蒸鍍10nm厚的4,6mDBTP2Pm-Ⅱ(簡稱)之後,蒸鍍15nm厚的紅啡啉(簡稱:BPhen),由此形成具有疊層結構的電子傳輸層1114。再者,藉由在電子傳輸層1114上蒸鍍1nm厚的氟化鋰,形成電子注入層1115。
最後,在電子注入層1115上蒸鍍200nm厚的鋁膜來形成用作陰極的第二電極1103,而得到發光元件7、發光 元件8以及發光元件9。注意,作為上述蒸鍍過程中的蒸鍍,都採用電阻加熱法。
經上述步驟,得到發光元件7、發光元件8以及發光元件9。表7示出發光元件7、發光元件8以及發光元件9的元件結構。
在氮氛圍的手套箱中密封所製造的發光元件7、發光元件8以及發光元件9,以不使發光元件7、發光元件8以及發光元件9暴露於大氣(明確而言,將密封材料塗敷在元件的周圍,並且,當密封時以80℃進行1小時的熱處理)。
<<發光元件7、發光元件8以及發光元件9的工作特性>>
對所製造的發光元件7、發光元件8以及發光元件9的工作特性進行測量。注意,在室溫(保持為25℃的氛圍)下進行測量。
圖20和圖21分別示出發光元件7、發光元件8以及發光元件9的電壓-亮度特性和亮度-外部量子效率特性。
由圖21可知:本發明的一實施方式的發光元件7的外部量子效率的最大值為11%左右,發光元件8的外部量子效率的最大值為12%左右,並且發光元件9的外部量子效率的最大值為9.9%左右,因為在發光層中形成激態錯合物而使理論上的S1的生成機率(25%)得到提高,所以超過理論上的外部量子效率(5%)。像這樣,本發明的一實施方式的發光元件的特徵在於:即使不使用昂貴的Ir複合物作為發光材料,也可以藉由使三重態激發能的一部分有助於發光而得到比較高的發光效率。
以下,表8示出1000cd/m2附近的發光元件7、發光元件8以及發光元件9的主要初期特性值。
由表8的結果可知,在本實施例中製造的發光元件7、發光元件8以及發光元件9具有高亮度及高電流效率。
另外,圖22示出使0.1mA的電流流過發光元件7、發光元件8以及發光元件9時的發射光譜。由圖22可知:發光元件7、發光元件8以及發光元件9的發射光譜都在550nm附近具有峰值,該峰值來源於在發光層1113中形成的激態錯合物的發光。
由此可知,能夠在發光層中形成激態錯合物的本發明的一實施方式的發光元件具有高發光效率。

Claims (8)

  1. 一種發光元件,其包括:一對電極;以及在該一對電極之間的發光層,其中該發光層包括第一有機化合物和第二有機化合物,而該第一有機化合物與該第二有機化合物能夠形成激態錯合物(exciplex),其中該發光層係經建構以自該激態錯合物發光,其中該第一有機化合物具有電子傳輸性,及其中該第二有機化合物具有對苯二胺骨架。
  2. 如申請專利範圍第1項之發光元件,其中該第二有機化合物具有4-(9H-咔唑-9-基)苯胺骨架。
  3. 如申請專利範圍第1項之發光元件,其中該第二有機化合物具有9-芳基-9H-咔唑-3-胺骨架。
  4. 一種發光元件,其包括:一對電極;以及在該一對電極之間的發光層,其中該發光層包括:第一有機化合物和第二有機化合物,而該第一有機化合物與該第二有機化合物能夠形成激態錯合物,以及能夠將三重態激發能轉換為發光的化合物,其中該第一有機化合物具有電子傳輸性,及其中該第二有機化合物係如下列化式中之一者表示:
    Figure TWI646170B_C0001
  5. 如申請專利範圍第4項之發光元件,其中該能夠將三重態激發能轉換為發光的化合物是有機金屬錯合物。
  6. 如申請專利範圍第4項之發光元件,其中該發光層經建構成使該激態錯合物的發射光譜與該能夠將三重態激發能轉換為發光的化合物之吸收光譜重疊。
  7. 一種照明裝置,其包括如申請專利範圍第1至4項中任一項之發光元件。
  8. 一種發光裝置,其包括:像素部,其包括:電晶體;以及如申請專利範圍第1至4項中任一項之發光元件,其中該發光元件電連接於該電晶體。
TW102127432A 2012-08-03 2013-07-31 發光元件、發光裝置、電子裝置、及照明裝置 TWI646170B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-172824 2012-08-03
JP2012172824 2012-08-03

Publications (2)

Publication Number Publication Date
TW201412936A TW201412936A (zh) 2014-04-01
TWI646170B true TWI646170B (zh) 2019-01-01

Family

ID=49944169

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106127805A TWI650400B (zh) 2012-08-03 2013-07-31 發光元件、發光裝置、電子裝置、及照明裝置
TW102127432A TWI646170B (zh) 2012-08-03 2013-07-31 發光元件、發光裝置、電子裝置、及照明裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106127805A TWI650400B (zh) 2012-08-03 2013-07-31 發光元件、發光裝置、電子裝置、及照明裝置

Country Status (6)

Country Link
US (2) US20140034932A1 (zh)
JP (4) JP6336723B2 (zh)
KR (3) KR20140018123A (zh)
CN (3) CN103579514B (zh)
DE (1) DE102013214661B4 (zh)
TW (2) TWI650400B (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104247076B (zh) 2012-04-20 2017-03-01 株式会社半导体能源研究所 发光元件、发光装置、电子设备以及照明装置
KR20210008947A (ko) 2012-04-20 2021-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
TWI720697B (zh) 2012-08-03 2021-03-01 日商半導體能源研究所股份有限公司 發光元件
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6545934B2 (ja) 2013-06-28 2019-07-17 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、及び電子機器
KR102639622B1 (ko) 2013-12-02 2024-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
WO2015125044A1 (en) 2014-02-21 2015-08-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
CN103887439B (zh) * 2014-04-08 2016-08-17 西南大学 一种具有磁效应的有机发光二极管
KR20240033152A (ko) 2014-05-30 2024-03-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 표시 장치, 및 전자 기기
TWI682563B (zh) 2014-05-30 2020-01-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
KR102353647B1 (ko) 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
CN111293226B (zh) 2014-09-30 2022-10-28 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
EP3002801B1 (en) * 2014-09-30 2018-07-18 Novaled GmbH Organic electronic device
US20160104855A1 (en) 2014-10-10 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element, Display Device, Electronic Device, and Lighting Device
KR101706752B1 (ko) * 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
TWI704706B (zh) 2015-03-09 2020-09-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設置
TWI836636B (zh) 2015-03-09 2024-03-21 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
CN110600628B (zh) 2015-05-29 2022-06-14 株式会社半导体能源研究所 发光元件、发光装置、显示装置、电子设备以及照明装置
KR102362839B1 (ko) 2015-10-28 2022-02-15 삼성디스플레이 주식회사 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
CN105810839A (zh) * 2016-03-10 2016-07-27 南京邮电大学 一种单层蓝光激基复合物有机电致发光器件及其制作方法
US10096658B2 (en) 2016-04-22 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR102488916B1 (ko) 2016-05-06 2023-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2017199163A1 (en) 2016-05-20 2017-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2018100476A1 (en) 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US11637263B2 (en) 2017-11-02 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device each including TADF organic compound
US11950497B2 (en) 2018-03-07 2024-04-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, organic compound, and lighting device
CN109378392B (zh) * 2018-09-03 2020-12-08 云谷(固安)科技有限公司 一种有机电致发光器件及显示装置
KR20210126000A (ko) 2019-02-06 2021-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치
JP7371564B2 (ja) 2019-05-06 2023-10-31 株式会社Soken 超音波センサ
JP2021077639A (ja) 2019-11-08 2021-05-20 株式会社半導体エネルギー研究所 発光装置、電子機器および照明装置
CN110911574A (zh) * 2019-11-29 2020-03-24 昆山国显光电有限公司 组合物、oled器件、oled显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129449A1 (en) * 2001-09-28 2003-07-10 Eastman Kodak Company Organic electroluminescent devices with high luminance
CN1978441A (zh) * 2004-11-29 2007-06-13 三星Sdi株式会社 基于苯基咔唑的化合物以及使用所述化合物的有机电致发光器件
CN101128559A (zh) * 2004-12-17 2008-02-20 伊斯曼柯达公司 带有激子阻挡层的磷光oled

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638770A1 (de) * 1996-09-21 1998-03-26 Philips Patentverwaltung Organisches elektrolumineszentes Bauelement mit Exciplex
JP2000133453A (ja) * 1998-10-22 2000-05-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
US6391482B1 (en) * 1999-02-04 2002-05-21 Matsushita Electric Industrial Co., Ltd. Organic material for electroluminescent device and electroluminescent device using the same
JP2001176667A (ja) * 1999-12-21 2001-06-29 Toyota Motor Corp 有機el素子
WO2005040117A1 (en) * 2003-10-27 2005-05-06 Semiconductor Energy Laboratory Co., Ltd. Carbazole derivative, light emitting element, and light emitting device
JP2005154421A (ja) * 2003-10-27 2005-06-16 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、発光素子、および発光装置
TW200541401A (en) 2004-02-13 2005-12-16 Idemitsu Kosan Co Organic electroluminescent device
KR100846586B1 (ko) * 2006-05-29 2008-07-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
JP4906048B2 (ja) * 2004-11-30 2012-03-28 株式会社半導体エネルギー研究所 発光素子、発光装置、及び電子機器
JP2006203172A (ja) * 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
US7473477B2 (en) * 2005-03-31 2009-01-06 Eastman Kodak Company Phosphorescent iridium complexes
US7768194B2 (en) * 2005-06-01 2010-08-03 The Trustees Of Princeton University Fluorescent filtered electrophosphorescence
CN101273008A (zh) * 2005-09-30 2008-09-24 株式会社半导体能源研究所 螺芴衍生物,发光元件用材料,发光元件,发光设备和电子设备
JP5019837B2 (ja) * 2005-09-30 2012-09-05 株式会社半導体エネルギー研究所 スピロフルオレン誘導体、発光素子用材料、発光素子、発光装置及び電子機器
JP2009032990A (ja) * 2007-07-27 2009-02-12 Fujifilm Corp 有機電界発光素子
EP2075860A3 (en) * 2007-12-28 2013-03-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device and electronic device
JP2010114070A (ja) * 2008-10-10 2010-05-20 Canon Inc 白色有機el素子
WO2010140549A1 (ja) 2009-06-03 2010-12-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、その駆動方法、及びこれらを含有する照明装置
WO2011030406A1 (ja) 2009-09-09 2011-03-17 株式会社 東芝 有機電界発光素子
KR101212670B1 (ko) * 2009-11-03 2012-12-14 제일모직주식회사 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치
TWI591065B (zh) * 2010-03-01 2017-07-11 半導體能源研究所股份有限公司 雜環化合物、發光元件、發光裝置、電子裝置、及照明裝置
WO2011119162A1 (en) * 2010-03-25 2011-09-29 Universal Display Corporation Solution processable doped triarylamine hole injection materials
JP5602555B2 (ja) * 2010-05-17 2014-10-08 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
US8993125B2 (en) * 2010-05-21 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Triazole derivative, and light-emitting element, light-emitting device, electronic device and lighting device using the triazole derivative
US8564001B2 (en) * 2010-05-21 2013-10-22 Universal Display Corporation Organic light emitting device lighting panel
US8673458B2 (en) * 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
JP5602056B2 (ja) 2011-02-24 2014-10-08 ゲイツ・ユニッタ・アジア株式会社 歯付きベルト
JP5694019B2 (ja) * 2011-03-17 2015-04-01 株式会社東芝 有機電界発光素子、表示装置および照明装置
KR102021273B1 (ko) * 2011-05-27 2019-09-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 카바졸 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US8994013B2 (en) * 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129449A1 (en) * 2001-09-28 2003-07-10 Eastman Kodak Company Organic electroluminescent devices with high luminance
CN1978441A (zh) * 2004-11-29 2007-06-13 三星Sdi株式会社 基于苯基咔唑的化合物以及使用所述化合物的有机电致发光器件
CN101128559A (zh) * 2004-12-17 2008-02-20 伊斯曼柯达公司 带有激子阻挡层的磷光oled

Also Published As

Publication number Publication date
KR20200024200A (ko) 2020-03-06
JP7104211B2 (ja) 2022-07-20
JP2018152578A (ja) 2018-09-27
KR20220165689A (ko) 2022-12-15
TW201412936A (zh) 2014-04-01
US20180309080A1 (en) 2018-10-25
KR20240049246A (ko) 2024-04-16
CN103579514A (zh) 2014-02-12
CN108321303B (zh) 2021-03-09
JP6877599B2 (ja) 2021-05-26
CN103579514B (zh) 2018-05-15
TW201741439A (zh) 2017-12-01
JP2021119620A (ja) 2021-08-12
CN108321303A (zh) 2018-07-24
KR20140018123A (ko) 2014-02-12
KR102261620B1 (ko) 2021-06-04
DE102013214661B4 (de) 2023-01-05
JP6336723B2 (ja) 2018-06-06
JP2014045184A (ja) 2014-03-13
KR102654534B1 (ko) 2024-04-05
JP2020074424A (ja) 2020-05-14
TWI650400B (zh) 2019-02-11
US20140034932A1 (en) 2014-02-06
DE102013214661A1 (de) 2014-02-06
CN108539032B (zh) 2020-02-21
CN108539032A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
JP7104211B2 (ja) 発光素子、発光装置、電子機器および照明装置
JP6688853B2 (ja) 発光装置、電子機器および照明装置
TWI656676B (zh) 發光元件、發光裝置、電子裝置及照明設備
TWI637543B (zh) 發光元件,發光裝置,電子裝置,及照明裝置
TWI667818B (zh) 發光元件、發光裝置、電子裝置以及照明設備
TWI670992B (zh) 發光元件、發光裝置、電子裝置及照明設備
JP7514984B2 (ja) 発光素子
KR102685095B1 (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20240113880A (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP2018182345A (ja) 発光素子、発光装置、電子機器および照明装置