TWI613220B - Method of producing cellulose nano fiber - Google Patents

Method of producing cellulose nano fiber Download PDF

Info

Publication number
TWI613220B
TWI613220B TW105122113A TW105122113A TWI613220B TW I613220 B TWI613220 B TW I613220B TW 105122113 A TW105122113 A TW 105122113A TW 105122113 A TW105122113 A TW 105122113A TW I613220 B TWI613220 B TW I613220B
Authority
TW
Taiwan
Prior art keywords
cellulose
cellulose nanofiber
producing
fiber
solution
Prior art date
Application number
TW105122113A
Other languages
Chinese (zh)
Other versions
TW201802123A (en
Inventor
黃慶連
洪萬墩
陳博明
吳建慧
鄭雅文
温明憲
Original Assignee
臺灣塑膠工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣塑膠工業股份有限公司 filed Critical 臺灣塑膠工業股份有限公司
Priority to TW105122113A priority Critical patent/TWI613220B/en
Publication of TW201802123A publication Critical patent/TW201802123A/en
Application granted granted Critical
Publication of TWI613220B publication Critical patent/TWI613220B/en

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本發明提供一種纖維素奈米纖維的製造方法,其包含於反應溶液系統中,加入特定使用量之氧化劑,氧化纖維素材料,以製得纖維素奈米纖維,其中反應溶液系統包含pH 9至11的緩衝溶液、特定種類之烷基哌啶氧化物以及金屬鹵化物。因此,上述製造方法可有效縮短製程時間,並提高纖維素奈米纖維的產率。 The present invention provides a method for producing a cellulose nanofiber, which comprises, in a reaction solution system, adding a specific amount of an oxidizing agent, an oxidized cellulose material, to obtain a cellulose nanofiber, wherein the reaction solution system comprises pH 9 to A buffer solution of 11, a specific class of alkyl piperidine oxides, and a metal halide. Therefore, the above manufacturing method can effectively shorten the process time and increase the yield of the cellulose nanofiber.

Description

纖維素奈米纖維的製造方法 Method for producing cellulose nanofiber

本發明是有關於一種纖維素奈米纖維的製造方法,且特別是一種於特定pH值之緩衝溶液中,利用烷基哌啶氧化物、金屬鹵化物以及氧化劑,對纖維素材料進行氧化的纖維素奈米纖維的製造方法,以有效縮短纖維素奈米纖維的製程時間並提高其產率。 The invention relates to a method for producing a cellulose nanofiber, and in particular to a fiber for oxidizing a cellulose material by using an alkyl piperidine oxide, a metal halide and an oxidizing agent in a buffer solution of a specific pH. A method for producing a nanofiber to effectively shorten the processing time of the cellulose nanofiber and increase the yield thereof.

纖維素奈米纖維具有輕量且高強度的優點,其重量為碳纖維的1/6,但其具有鋼材5倍以上的機械強度。此外,纖維素奈米纖維更具有低熱膨脹率和高熱穩定性的優點,且纖維素奈米纖維之原料(後稱纖維素材料)可由木質材料萃取而得,故所製得之纖維素奈米纖維可被自然分解,因此具有環境友善性。 Cellulose nanofibers have the advantages of light weight and high strength, and their weight is 1/6 of that of carbon fibers, but they have mechanical strength of 5 times or more of steel. In addition, the cellulose nanofiber has the advantages of low thermal expansion rate and high thermal stability, and the raw material of the cellulose nanofiber (hereinafter referred to as cellulose material) can be obtained by extracting the wooden material, so that the cellulose nanoparticle obtained is obtained. Fibers are naturally decomposed and therefore environmentally friendly.

已知的纖維素奈米纖維的製造方法係利用硫酸或氫氧化鈉對纖維素材料進行化學性分離,再利用機械方法進行物理性分離,以製得纖維素奈米纖維。然而,由於纖維素奈米纖維間的氫鍵作用力強,如何製備單條且完整的纖維素奈米纖維實為產業界的挑戰之一。此外,上述方法的產率 僅30%至50%。 The known method for producing cellulose nanofibers is to chemically separate the cellulose material by using sulfuric acid or sodium hydroxide, and then physically separate by mechanical means to obtain cellulose nanofibers. However, due to the strong hydrogen bonding force between the cellulose nanofibers, how to prepare a single and complete cellulose nanofiber is one of the industrial challenges. In addition, the yield of the above method Only 30% to 50%.

目前有一方法係利用2,2,6,6-四甲基哌啶-1-氧化物(2,2,6,6-Tetramethylpiperidine-1-oxyl;TEMPO)/溴化鈉/次氯酸鈉的反應試劑系統,將纖維素材料氧化,之後再進行纖維解纖步驟,以製得單條且完整的纖維素奈米纖維。然而,上述製造方法的氧化過程中,需不斷添加鹽酸或氫氧化鈉,以維持反應試劑系統於特定的pH值,因此製程時間長(可達到8小時以上),且耗費人力。 At present, there is a method for using a reagent system of 2,2,6,6-tetramethylpiperidine-1-oxide (2,2,6,6-Tetramethylpiperidine-1-oxyl; TEMPO)/sodium bromide/sodium hypochlorite. The cellulosic material is oxidized and then subjected to a fiber defibration step to produce a single and intact cellulose nanofiber. However, in the oxidation process of the above manufacturing method, hydrochloric acid or sodium hydroxide is continuously added to maintain the reaction reagent system at a specific pH value, so that the processing time is long (up to 8 hours or more) and labor is required.

有另一種纖維素奈米纖維的製造方法係首先水解纖維素材料,以形成奈米微晶纖維素材料。之後,將上述奈米微晶纖維素材料於鹼性pH值之緩衝溶液中,進行氧化反應,以製得纖維素奈米纖維。利用此方法所製得之纖維素奈米纖維,可用以製造具有高抗張指數、撕裂指數以及耐折度的紙漿。上述之製造方法主要係將長條含有結晶區和非結晶區的纖維素材料,利用水解法將非結晶區去除,進而可形成長度較短但強度較高的奈米微晶纖維素材料。 Another method of making cellulose nanofibers is to first hydrolyze the cellulosic material to form a nanocrystalline cellulose material. Thereafter, the above nanocrystalline microcrystalline cellulose material is subjected to an oxidation reaction in a buffer solution of an alkaline pH to obtain a cellulose nanofiber. The cellulose nanofibers produced by this method can be used to produce pulp having a high tensile index, a tear index, and a folding resistance. The above-mentioned manufacturing method mainly comprises removing a non-crystalline region by a hydrolysis method using a cellulose material containing a crystal region and an amorphous region, and further forming a nanocrystalline cellulose material having a short length but a high strength.

然而,上述水解法製成奈米微晶纖維素材料的步驟不但耗時耗工,水解過程中會減損纖維素材料,且在氧化反應中也會因奈米微晶纖維素材料的接觸面積大,使得副反應發生的機率增加,故此法的纖維素奈米纖維產率低。 However, the step of preparing the nanocrystalline cellulose material by the above hydrolysis method is not only time-consuming and labor-intensive, but also degrades the cellulosic material during the hydrolysis process, and also has a large contact area of the nanocrystalline cellulose material in the oxidation reaction. In order to increase the probability of occurrence of side reactions, the cellulose nanofiber yield of this method is low.

因此,目前亟需提出一種纖維素奈米纖維的製造方法,其可有效縮短製程時間並提高纖維素奈米纖維的產率。 Therefore, there is a need to propose a method for producing cellulose nanofibers, which can effectively shorten the processing time and increase the yield of cellulose nanofibers.

因此,本發明之一態樣是在提供一種纖維素奈米纖維的製造方法,以在短時間內製得高產率的纖維素奈米纖維。 Accordingly, an aspect of the present invention provides a method for producing a cellulose nanofiber to produce a high-yield cellulose nanofiber in a short time.

根據本發明之上述態樣,提出一種纖維素奈米纖維的製造方法。在一實施例中,上述製造方法首先將纖維素材料分散於反應溶液系統中,以形成第一分散溶液,其中反應溶液系統可包含pH值為9至11之緩衝溶液、烷基哌啶氧化物以及金屬鹵化物。接著,進行纖維氧化處理,其係於第一分散溶液中加入氧化劑,氧化前述纖維素材料達1至2小時,以形成氧化纖維。之後,進行分散步驟,其係將氧化纖維分散於中性溶液中,以形成第二分散溶液。接下來,對上述第二分散溶液進行物理性分離處理,即可製得纖維素奈米纖維。 According to the above aspect of the invention, a method for producing a cellulose nanofiber is proposed. In one embodiment, the above manufacturing method first disperses a cellulosic material in a reaction solution system to form a first dispersion solution, wherein the reaction solution system may include a buffer solution having a pH of 9 to 11, an alkyl piperidine oxide. And metal halides. Next, a fiber oxidation treatment is carried out by adding an oxidizing agent to the first dispersion solution, and oxidizing the aforementioned cellulose material for 1 to 2 hours to form an oxidized fiber. Thereafter, a dispersion step of dispersing the oxidized fibers in the neutral solution to form a second dispersion solution is performed. Next, the second dispersion solution is subjected to physical separation treatment to obtain a cellulose nanofiber.

依據本發明之一實施例,上述之烷基哌啶氧化物可為2,2,6,6-四甲基哌啶-1-氧化物(2,2,6,6-Tetramethylpiperidine-1-oxyl;TEMPO)。 According to an embodiment of the present invention, the alkyl piperidine oxide may be 2,2,6,6-tetramethylpiperidine-1-oxide (2,2,6,6-Tetramethylpiperidine-1-oxyl ;TEMPO).

依據本發明之一實施例,上述金屬鹵化物可為溴化銅。 According to an embodiment of the invention, the metal halide may be copper bromide.

依據本發明之一實施例,上述氧化劑可包含次氯酸鈉、亞氯酸鈉、氧氣、過氧化氫或氯氣。 According to an embodiment of the present invention, the oxidizing agent may comprise sodium hypochlorite, sodium chlorite, oxygen, hydrogen peroxide or chlorine.

依據本發明之一實施例,上述氧化劑可為氧氣,且氧氣可以100mL/min至200mL/min之流速通入前述第一分散溶液中。 According to an embodiment of the present invention, the oxidizing agent may be oxygen, and the oxygen may be introduced into the first dispersion solution at a flow rate of from 100 mL/min to 200 mL/min.

依據本發明之一實施例,纖維素材料可為紙漿纖維、纖維素粉末或微晶纖維素粉末。 According to an embodiment of the invention, the cellulosic material may be a pulp fiber, a cellulose powder or a microcrystalline cellulose powder.

依據本發明之一實施例,基於上述纖維素材料之使用量為100重量份,烷基哌啶氧化物之使用量可為2.5重量份至5重量份,且金屬鹵化物之使用量可為25重量份至50重量份。 According to an embodiment of the present invention, the alkyl piperidine oxide may be used in an amount of from 2.5 parts by weight to 5 parts by weight based on 100 parts by weight of the above-mentioned cellulosic material, and the metal halide may be used in an amount of 25 parts by weight. Parts by weight to 50 parts by weight.

依據本發明之一實施例,上述中性溶液可包含水或中性緩衝溶液。 According to an embodiment of the invention, the neutral solution may comprise water or a neutral buffer solution.

依據本發明之一實施例,物理性分離處理可為超音波震盪處理或均質化處理。 According to an embodiment of the invention, the physical separation process may be an ultrasonic oscillation process or a homogenization process.

依據本發明之一實施例,在上述纖維氧化處理和分散步驟之間,可更包含對氧化纖維進行過濾清洗步驟。 According to an embodiment of the present invention, between the fiber oxidation treatment and the dispersion step, the step of filtering and cleaning the oxidized fibers may be further included.

應用本發明之纖維素奈米纖維的製造方法,於特定酸鹼值之緩衝溶液中,利用特定種類之烷基哌啶氧化物、金屬鹵化物以及氧化劑,氧化纖維素材料,可有效縮短製程時間,並提高纖維素奈米纖維的產率。 The method for producing the cellulose nanofiber of the present invention can effectively shorten the process time by using a specific type of alkyl piperidine oxide, a metal halide and an oxidizing agent to oxidize the cellulose material in a buffer solution of a specific pH value. And increase the yield of cellulose nanofibers.

本發明之目的在於提供一種纖維素奈米纖維的製造方法,其係於特定pH值之緩衝溶液中,利用烷基哌啶氧化物、金屬鹵化物以及氧化劑,氧化纖維素材料,以縮短纖維素奈米纖維的製程時間,並提高其產率。此外,本發明 之製造方法不需使用奈米化之纖維素材料,且調整物理性分離處理進行的順序,故可簡化纖維素材料奈米化的製程步驟。 The object of the present invention is to provide a method for producing cellulose nanofibers, which is used in a buffer solution of a specific pH, using an alkyl piperidine oxide, a metal halide and an oxidizing agent to oxidize a cellulose material to shorten cellulose. The processing time of nanofibers and increase their yield. Further, the present invention The manufacturing method does not require the use of a nano-sized cellulosic material, and the order of the physical separation process is adjusted, so that the process steps of nanocrystallization of the cellulosic material can be simplified.

在一實施例中,本發明之纖維素奈米纖維的製造方法如下所述。首先,將纖維素材料分散於反應溶液系統中,以形成第一分散溶液。反應溶液系統可包含pH值為9至11之緩衝溶液、烷基哌啶氧化物以及金屬鹵化物。 In one embodiment, the method for producing the cellulose nanofiber of the present invention is as follows. First, the cellulosic material is dispersed in a reaction solution system to form a first dispersion solution. The reaction solution system may comprise a buffer solution having a pH of from 9 to 11, an alkyl piperidine oxide, and a metal halide.

申言之,本發明此處所稱之緩衝溶液並無特別限制,pH值9至11之緩衝溶液皆可適用於本發明。在一例子中,可使用含有磷酸二氫鉀-氫氧化鈉、磷酸氫二鈉-磷酸二氫鉀、磷酸二氫鈉-磷酸氫二鈉-氯化鈉、磷酸二氫鈉-磷酸氫二鈉、乙酸-乙酸鈉、硼酸-硼砂或硼砂(Na2B4O7)-氫氧化鈉等酸鹼對鹽之緩衝溶液。 It is to be noted that the buffer solution referred to herein as the present invention is not particularly limited, and a buffer solution having a pH of from 9 to 11 can be suitably used in the present invention. In one example, potassium dihydrogen phosphate-sodium hydroxide, disodium hydrogen phosphate-potassium dihydrogen phosphate, sodium dihydrogen phosphate-disodium hydrogen phosphate-sodium chloride, sodium dihydrogen phosphate-disodium hydrogen phosphate can be used. A buffer solution of an acid-base to salt such as acetic acid-sodium acetate, boric acid-borax or borax (Na 2 B 4 O 7 )-sodium hydroxide.

本發明此處所稱之烷基哌啶氧化物可例如為2,2,6,6-四甲基哌啶-1-氧化物(2,2,6,6-Tetramethylpiperidine-1-oxyl;TEMPO)。 The alkyl piperidine oxide referred to herein may be, for example, 2,2,6,6-tetramethylpiperidine-1-oxide (2,2,6,6-Tetramethylpiperidine-1-oxyl; TEMPO) .

本發明此處所稱之金屬鹵化物可例如為溴化銅。 The metal halide referred to herein as a metal halide may, for example, be copper bromide.

上述之纖維素材料可為紙漿纖維、纖維素粉末或微晶纖維素粉末。 The above cellulosic material may be pulp fiber, cellulose powder or microcrystalline cellulose powder.

特別說明的是,本發明此處所稱之纖維素材料為未奈米化之長度較長,且同時具有非晶區和結晶區的纖維素材料。因此,使用本發明之纖維素材料製造纖維素奈米纖維,可避免長度短的纖維素材料(例如:僅具有結晶區的奈 米微晶纖維素)在製程中損失,並降低纖維氧化處理時,副反應發生的機率,因此可有效提高產率。此外,由於本發明之製造方法不需進行將纖維素材料奈米化之製程步驟(換言之,本發明排除進行纖維素材料之水解反應),更可有效簡化纖維素奈米纖維的製程。關於上述副反應之詳細說明請容後述。 In particular, the cellulosic material referred to herein as a cellulosic material having a longer length and having both an amorphous region and a crystalline region. Therefore, by using the cellulosic material of the present invention to produce a cellulose nanofiber, a cellulose material having a short length can be avoided (for example, a naphthalene having only a crystal region) Rice microcrystalline cellulose) is lost in the process and reduces the probability of side reactions occurring during fiber oxidation treatment, thereby effectively increasing the yield. Further, since the production method of the present invention does not require a process step of nanocrystallization of the cellulose material (in other words, the present invention excludes the hydrolysis reaction of the cellulose material), the process of the cellulose nanofiber can be effectively simplified. A detailed description of the above-mentioned side reactions will be described later.

在一實施例中,基於纖維素材料之使用量為100重量份,前述烷基哌啶氧化物之使用量可為2.5重量份至5重量份,前述金屬鹵化物之使用量可為25重量份至50重量份。特別說明的是,烷基哌啶氧化物作為本發明之纖維氧化處理的催化劑,而金屬鹵化物係作為纖維氧化處理的助催化劑。因此,倘若烷基哌啶氧化物或金屬鹵化物的使用量分別少於2.5重量份或25重量份,則纖維氧化處理的效率不佳,進而降低纖維素奈米纖維的產率。另一方面,若烷基哌啶氧化物或金屬鹵化物的使用量分別大於5重量份或50重量份,並無益於纖維氧化處理,反而增加纖維素奈米纖維的製造成本。 In one embodiment, the alkylpiperidine oxide may be used in an amount of from 2.5 parts by weight to 5 parts by weight based on 100 parts by weight of the cellulosic material, and the metal halide may be used in an amount of 25 parts by weight. Up to 50 parts by weight. Specifically, the alkyl piperidine oxide is used as a catalyst for the fiber oxidation treatment of the present invention, and the metal halide is used as a cocatalyst for the fiber oxidation treatment. Therefore, if the alkylpiperidine oxide or metal halide is used in an amount of less than 2.5 parts by weight or 25 parts by weight, respectively, the efficiency of the fiber oxidation treatment is poor, thereby lowering the yield of the cellulose nanofiber. On the other hand, if the alkylpiperidine oxide or the metal halide is used in an amount of more than 5 parts by weight or 50 parts by weight, respectively, it does not contribute to the fiber oxidation treatment, but increases the production cost of the cellulose nanofiber.

接著,進行纖維氧化處理,其係於前述第一分散溶液中加入氧化劑,氧化前述纖維素材料達1至2小時,以形成氧化纖維。若纖維氧化處理之時間不達1小時,無法使纖維素材料完全形成氧化纖維,因而降低纖維素奈米纖維之產率。 Next, a fiber oxidation treatment is carried out in which an oxidizing agent is added to the first dispersion solution, and the cellulose material is oxidized for 1 to 2 hours to form oxidized fibers. If the fiber oxidation treatment time is less than one hour, the cellulose material cannot be completely formed into oxidized fibers, thereby reducing the yield of the cellulose nanofiber.

在一實施例中,上述之氧化劑可例如為次氯酸鈉、亞氯酸鈉、氧氣、過氧化氫或氯氣。在一例子中,基於 纖維素材料之使用量為1克,氧化劑可例如以10莫耳/min至30莫耳/min的速度(即基於纖維素材料之使用量為1克,氧化劑的通入總量為1克至20克),通入第一分散溶液中。 In one embodiment, the oxidizing agent described above may be, for example, sodium hypochlorite, sodium chlorite, oxygen, hydrogen peroxide or chlorine. In an example, based on The cellulosic material is used in an amount of 1 gram, and the oxidizing agent can be, for example, at a rate of 10 m/min to 30 m/min (that is, 1 g based on the amount of the cellulosic material used, and the total amount of the oxidizing agent is 1 g to 20 g), passed into the first dispersion solution.

在一較佳的例子中,上述氧化劑可為氧氣,且氧氣可以100mL/min至200mL/min之流速通入第一分散溶液中。若上述流速小於100mL/min,纖維氧化處理效率不佳,使得纖維素奈米纖維的產率下降。另一方面,若上述流速大於200mL/min,並無益於整體製程,反而增加纖維素奈米纖維的製造成本。補充說明的是,使用通入氣體的方式進行纖維氧化處理,可增加氧化反應進行的均勻度,因而可幫助提升纖維素奈米纖維的產率。 In a preferred embodiment, the oxidizing agent may be oxygen, and the oxygen may be introduced into the first dispersion solution at a flow rate of from 100 mL/min to 200 mL/min. If the above flow rate is less than 100 mL/min, the fiber oxidation treatment efficiency is not good, so that the yield of the cellulose nanofiber is lowered. On the other hand, if the above flow rate is greater than 200 mL/min, it does not benefit from the overall process, but increases the manufacturing cost of the cellulose nanofiber. It is additionally explained that the fiber oxidation treatment by using a gas can increase the uniformity of the oxidation reaction, thereby helping to increase the yield of the cellulose nanofiber.

特別說明的是,本發明之纖維氧化處理排除使用超音波震盪幫助纖維素材料的分散。纖維氧化處理係利用氧化劑,使纖維素材料之一級羥基氧化為醛基或羧酸基,進而可利用相同電性互斥的原理,使纖維素材料分離為單條完整的纖維素奈米纖維。然而,上述纖維氧化處理步驟可能發生醛基進行β-氫消除反應(β-Elimination)的副反應,而使纖維素材料分解,影響纖維素奈米纖維的產率。倘若在纖維氧化處理中,以高能量之超音波震盪幫助纖維素材料的分散,會加劇上述副反應的發生,使得纖維素奈米纖維的產率下降。此外,若在纖維氧化處理中進行超音波震盪,不利於纖維素奈米纖維的純化,而影響纖維素奈米纖維的產率、增加製程時間以及限制其應用。 In particular, the fiber oxidation treatment of the present invention eliminates the use of ultrasonic oscillations to aid in the dispersion of the cellulosic material. The fiber oxidation treatment utilizes an oxidizing agent to oxidize one of the hydroxyl groups of the cellulose material to an aldehyde group or a carboxylic acid group, and the cellulose material can be separated into a single intact cellulose nanofiber by utilizing the principle of the same electrical mutual exclusion. However, the above-mentioned fiber oxidation treatment step may cause a side reaction of the aldehyde group to carry out a β-hydrogen elimination reaction (β-Elimination), which decomposes the cellulose material and affects the yield of the cellulose nanofiber. In the case of fiber oxidation treatment, high-energy ultrasonic vibration assists the dispersion of the cellulose material, which aggravates the occurrence of the above-mentioned side reaction, and the yield of the cellulose nanofiber is lowered. In addition, if ultrasonic vibration is performed in the fiber oxidation treatment, it is not conducive to the purification of the cellulose nanofiber, but affects the yield of the cellulose nanofiber, increases the processing time and limits its application.

之後,進行分散步驟,其係將氧化纖維分散於 中性溶液中,以形成第二分散溶液。所述中性溶液可例如為水或中性緩衝溶液,其中中性緩衝溶液所含的酸鹼對鹽種類並無特別限制,pH值6至8為之緩衝溶液皆可適用於本發明。分散步驟可使用習知的分散方式(例如攪拌等)進行。 Thereafter, a dispersion step is carried out which disperses the oxidized fibers in In a neutral solution to form a second dispersion solution. The neutral solution may be, for example, water or a neutral buffer solution, wherein the acid buffer contained in the neutral buffer solution is not particularly limited to the salt type, and a buffer solution having a pH of 6 to 8 may be suitable for use in the present invention. The dispersing step can be carried out using a conventional dispersion method such as stirring or the like.

在一實施例中,可於前述纖維氧化處理與分散步驟之間,進一步對氧化纖維進行過濾清洗步驟。前述過濾清洗步驟可使用習知方式、視所使用的氧化纖維之平均長度選用適合孔隙的過濾材料進行,此處不另贅述。進行過濾清洗步驟可去除氧化纖維中的氧化劑、催化劑以及助催化劑等試劑、提高所製得之纖維素奈米纖維的純度,以避免殘留的試劑限制纖維素奈米纖維的應用範圍(例如:將纖維素奈米纖維作為藥劑載體或其他生醫領域的應用)。 In one embodiment, the oxidized fiber may be further subjected to a filtration cleaning step between the fiber oxidation treatment and the dispersion step. The filter cleaning step can be carried out by using a filter material suitable for the pores according to the average length of the oxidized fibers used, which is not described here. The filtration and washing step can remove the oxidant, catalyst and cocatalyst in the oxidized fiber, and improve the purity of the prepared cellulose nanofiber to avoid the residual reagent limiting the application range of the cellulose nanofiber (for example: Cellulose nanofibers are used as pharmaceutical carriers or other applications in the biomedical field.

接下來,對上述第二分散溶液進行物理性分離處理,即可製得纖維素奈米纖維。具體而言,所述物理性分離處理可例如為超音波震盪處理或均質化處理。 Next, the second dispersion solution is subjected to physical separation treatment to obtain a cellulose nanofiber. Specifically, the physical separation process may be, for example, an ultrasonic oscillation process or a homogenization process.

在一較佳的例子中,物理性分離處理可進行至少5分鐘。更佳地,可進行物理性分離處理達5分鐘至30分鐘。特別說明的是,物理性分離處理所進行之時間與所製得之纖維素奈米纖維的截面直徑相關。一般而言,物理性分離處理的進行時間越久,所製得之纖維素奈米纖維的截面直徑越小,意即纖維素奈米纖維越細。 In a preferred embodiment, the physical separation process can be performed for at least 5 minutes. More preferably, the physical separation treatment can be carried out for 5 minutes to 30 minutes. Specifically, the time during which the physical separation treatment is carried out is related to the cross-sectional diameter of the produced cellulose nanofiber. In general, the longer the physical separation treatment is carried out, the smaller the cross-sectional diameter of the obtained cellulose nanofibers, that is, the finer the cellulose nanofibers.

本發明此處之物理性分離處理,主要是為了達到使第二溶液中的氧化纖維解纖的目的。因此,若未進行上述之物理性分離處理,則氧化纖維充分分離而形成纖維素奈 米纖維。 The physical separation treatment of the present invention is mainly for the purpose of defibrating the oxidized fibers in the second solution. Therefore, if the above physical separation treatment is not performed, the oxidized fibers are sufficiently separated to form cellulose naphthalene. Rice fiber.

以下利用製備例以及實施例具體說明本發明之纖維素奈米纖維的製造方法。 Hereinafter, a method for producing the cellulose nanofiber of the present invention will be specifically described using Preparation Examples and Examples.

製備反應溶液系統Preparation of reaction solution system 製備例1Preparation Example 1

製備例1首先提供pH值為9至11之緩衝溶液,其係以碳酸鈉-碳酸氫鈉之酸鹼對製備而得。於上述緩衝溶液中加入2.5重量份之2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)以及25重量份之溴化銅,將其充分混合後,即可製得製備例1之反應溶液系統。 Preparation Example 1 Firstly, a buffer solution having a pH of 9 to 11 was prepared, which was prepared by an acid-base pair of sodium carbonate-sodium hydrogencarbonate. 2.5 parts by weight of 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO) and 25 parts by weight of copper bromide were added to the above buffer solution, and the mixture was thoroughly mixed. The reaction solution system of Preparation Example 1.

製備例2至3以及製備比較例1至3Preparation Examples 2 to 3 and Preparation Comparative Examples 1 to 3

製備例2至3以及製備比較例1至3係使用與製備例1相同的方法進行,不同的是,製備例2至3以及製備比較例1至3係改變所使用的緩衝溶液pH值、酸鹼對,或烷基哌啶氧化物和金屬鹵化物的添加量等,製備例2至3以及製備比較例1至3具體之製備條件悉如表1所示,此處不另贅述。 Preparation Examples 2 to 3 and Preparation Comparative Examples 1 to 3 were carried out in the same manner as in Preparation Example 1, except that Preparation Examples 2 to 3 and Preparation of Comparative Examples 1 to 3 were used to change the pH, acid used in the buffer solution used. The preparation conditions of the base pair, or the alkyl piperidine oxide and the metal halide, and the preparation conditions of Preparation Examples 2 to 3 and Preparation Comparative Examples 1 to 3 are shown in Table 1, and are not described herein.

Figure TWI613220BD00001
Figure TWI613220BD00001

製備纖維素奈米纖維Preparation of cellulose nanofiber 實施例1Example 1

將100重量份之紙漿纖維加入製備例1之反應溶液系統中,並進行攪拌,使紙漿纖維可均勻分散於反應溶液系統中,以形成第一分散溶液。接下來,對上述第一分散溶液通入氧氣達1小時,以形成氧化纖維,其中氧氣的流速為100mL/min。在通入氧氣的期間持續攪拌第一分散溶液,以使氧氣與第一分散溶液充分接觸。之後,將氧化纖維抽氣過濾,並以水清洗後取出。將上述氧化纖維分散至水中,以形成第二分散溶液。然後,進行超音波震盪處理,其中超音波震盪的功率為300W,以製得實施例1之纖維素奈米纖維。 100 parts by weight of pulp fibers were added to the reaction solution system of Preparation Example 1 and stirred to uniformly disperse the pulp fibers in the reaction solution system to form a first dispersion solution. Next, oxygen was introduced into the above first dispersion solution for 1 hour to form oxidized fibers in which the flow rate of oxygen was 100 mL/min. The first dispersion solution is continuously stirred during the passage of oxygen to bring the oxygen into full contact with the first dispersion solution. Thereafter, the oxidized fiber was suction-filtered, washed with water, and taken out. The above oxidized fibers are dispersed in water to form a second dispersion solution. Then, ultrasonic vibration treatment was performed in which the power of the ultrasonic vibration was 300 W to obtain the cellulose nanofiber of Example 1.

實施例2至7以及比較例1至7Examples 2 to 7 and Comparative Examples 1 to 7

實施例2至7以及比較例1至7係使用與實施例1相同的方法進行,不同的是,實施例2至7以及比較例1至7係改變所使用的反應溶液系統、氧氣流速或超音波震盪的時間,關於實施例2至7以及比較例1至7具體之製程條件及評價結果悉如表2及表3所示,此處不另說明。 Examples 2 to 7 and Comparative Examples 1 to 7 were carried out in the same manner as in Example 1, except that Examples 2 to 7 and Comparative Examples 1 to 7 were used to change the reaction solution system, oxygen flow rate or super The process conditions and evaluation results of the examples 2 to 7 and the comparative examples 1 to 7 are shown in Table 2 and Table 3, and are not described here.

比較例8Comparative Example 8

比較例8係在未使用本發明之反應溶液系統的情況下,直接將2.5重量份TEMPO和25重量份溴化鈉添加至分散於水中的100重量份之纖維素材料中,使TEMPO、 溴化鈉與纖維素材料均勻混合。之後,於上述混合液中添加10重量份之次氯酸納進行氧化,並持續添加氫氧化鈉,以將上述分散溶液的pH值維持在pH9至11。上述氧化反應係持續進行至少4小時。之後,將氧化纖維抽氣過濾,並以水清洗後取出。將上述氧化纖維分散至水中,即製得比較例8之纖維素奈米纖維。比較例8之評價結果悉如表3所示。 Comparative Example 8 was carried out by directly adding 2.5 parts by weight of TEMPO and 25 parts by weight of sodium bromide to 100 parts by weight of the cellulose material dispersed in water without using the reaction solution system of the present invention to make TEMPO, Sodium bromide is uniformly mixed with the cellulosic material. Thereafter, 10 parts by weight of sodium hypochlorite was added to the above mixture for oxidation, and sodium hydroxide was continuously added to maintain the pH of the above dispersion solution at pH 9 to 11. The above oxidation reaction is continued for at least 4 hours. Thereafter, the oxidized fiber was suction-filtered, washed with water, and taken out. The cellulose nanofiber of Comparative Example 8 was obtained by dispersing the above oxidized fiber into water. The evaluation results of Comparative Example 8 are shown in Table 3.

比較例9Comparative Example 9

比較例9係首先將如實施例1之紙漿纖維進行酸水解達30分鐘後,以清水洗淨並進行10分鐘的超音波震盪,以製得纖維素奈米纖維膠體懸浮液。 Comparative Example 9 First, the pulp fiber of Example 1 was subjected to acid hydrolysis for 30 minutes, and then washed with water and subjected to ultrasonic vibration for 10 minutes to obtain a cellulose nanofiber colloidal suspension.

之後,將100重量份之纖維素奈米纖維膠體懸浮液分散於如實施例1之反應溶液系統中,並以流速為100mL/min的氧氣以及超音波震盪進行纖維氧化處理達5分鐘,其中超音波震盪以震盪1秒,停止8秒為一循環。接著,持續進行纖維氧化處理達1小時後,終止反應並進行透析5天,即可製得比較例9之纖維素奈米纖維。 Thereafter, 100 parts by weight of the cellulose nanofiber colloidal suspension was dispersed in the reaction solution system as in Example 1, and subjected to fiber oxidation treatment at a flow rate of 100 mL/min of oxygen and ultrasonic vibration for 5 minutes, wherein The sound wave oscillates for 1 second and stops for 8 seconds. Next, after the fiber oxidation treatment was continued for 1 hour, the reaction was terminated and dialyzed for 5 days to obtain a cellulose nanofiber of Comparative Example 9.

評價方式Evaluation method 1.製程時間Process time

本發明此處所稱之製程時間係指從纖維素材料製得纖維素奈米纖維的總時間,其包括纖維氧化處理以及超音波震盪處理等製程步驟的時間。一般而言,製程時間以小於3小時為較佳。 The process time referred to herein as the process time refers to the total time from which the cellulose nanofibers are made from the cellulosic material, including the time of the process steps such as fiber oxidation treatment and ultrasonic vibration treatment. In general, the process time is preferably less than 3 hours.

2.產率2. Yield

本發明之產率係以下列方式計算:首先,取出所製得之纖維素奈米纖維並秤重,得到初重(W0;單位為公克)。接下來,將取出的纖維素奈米纖維於80℃之烘箱中,以乾燥纖維素奈米纖維,並得到乾燥後之纖維素奈米纖維的重量(W1;單位為公克)。接著,可根據下式(I)由前述初重與乾燥後的重量,計算出所製得之纖維素奈米纖維的實際濃度(%)。 The yield of the present invention is calculated in the following manner: First, the obtained cellulose nanofibers are taken out and weighed to obtain the initial weight (W 0 ; unit is gram). Next, the taken-out cellulose nanofibers were placed in an oven at 80 ° C to dry the cellulose nanofibers, and the weight (W 1 ; unit gram) of the dried cellulose nanofibers was obtained. Next, the actual concentration (%) of the obtained cellulose nanofiber can be calculated from the above-mentioned initial weight and the weight after drying according to the following formula (I).

纖維素奈米纖維實際濃度(%)=(W1/W0)×100% (I) The actual concentration of cellulose nanofibers (%) = (W 1 /W 0 ) × 100% (I)

接下來,可根據下式(II),由前述纖維素奈米纖維實際濃度(%)、容置反應溶液系統並加入纖維素材料的容器之容積(g),及初始所加入的纖維素材料之使用量(g),計算纖維素奈米纖維的產率(%)。 Next, according to the following formula (II), the actual concentration (%) of the cellulose nanofiber, the volume (g) of the container in which the reaction solution system is accommodated and added to the cellulosic material, and the cellulosic material initially added The amount (%) of the cellulose nanofiber was calculated using the amount (g).

產率(%)=纖維素奈米纖維實際濃度(%)×容積(g)/纖維素材料之使用量(g) (II) Yield (%) = actual concentration of cellulose nanofibers (%) × volume (g) / amount of cellulose material used (g) (II)

其中上述容積係以密度為1g/cm3,將體積單位換算為重量單位。 The volume is converted to a unit of weight by a density of 1 g/cm 3 .

Figure TWI613220BD00002
Figure TWI613220BD00002

Figure TWI613220BD00003
Figure TWI613220BD00003

請參考表2,利用本發明之纖維素奈米纖維的製造方法,於特定pH值之緩衝溶液中,以特定使用量之催化劑、助催化劑以及氧化劑,氧化纖維素材料,可有效於3小時內製得纖維素奈米纖維,且其產率可達到95%以上。此外,藉由不同的超音波震盪處理時間,可簡單地獲得截面直徑不同的纖維素奈米纖維。 Referring to Table 2, the cellulose nanofiber of the present invention can be used to oxidize the cellulose material in a specific pH buffer solution with a specific amount of the catalyst, the cocatalyst and the oxidizing agent, and can be effectively used within 3 hours. A cellulose nanofiber is obtained, and its yield can reach 95% or more. In addition, cellulose nanofibers having different cross-sectional diameters can be easily obtained by different ultrasonic oscillation processing times.

另一方面,根據表3之比較例所示,倘若反應溶液系統的pH值未落於pH 9至11之間,則纖維素奈米纖維的產率不佳。此外,烷基哌啶氧化物、金屬鹵化物以及氧氣流速若未落於本發明所主張的範圍,纖維素奈米纖維的產率亦不佳。再者,若未使用本發明之反應溶液系統(如比較例8),而選用以氫氧化鈉逐步調整pH值的製造方法,則製程時間 等製程步驟,並於纖維氧化處理中進行超音波震盪,不但須先將纖維素材料進行水解,更會降低所製得之纖維素奈米纖維的產率。再者,在未將催化劑、助催化劑和氧化劑等試劑去除前,即進行超音波震盪形成纖維素奈米纖維,則無法簡單地以清水清洗來去除上述試劑,而須進行長時間的透析,進而增加製程時間。進一步而言,透析並無法完全去除前述試劑,因此也限制纖維素奈米纖維的應用。 On the other hand, according to the comparative example of Table 3, if the pH of the reaction solution system did not fall between pH 9 and 11, the yield of the cellulose nanofiber was not good. Further, if the alkyl piperidine oxide, the metal halide, and the oxygen flow rate are not within the range claimed by the present invention, the yield of the cellulose nanofiber is also poor. Furthermore, if the reaction solution system of the present invention (such as Comparative Example 8) is not used, and the manufacturing method of gradually adjusting the pH value with sodium hydroxide is selected, the process time is The process steps, and ultrasonic vibration in the fiber oxidation treatment, not only must first hydrolyze the cellulosic material, but also reduce the yield of the obtained cellulose nanofiber. Further, before the catalyst such as the catalyst, the cocatalyst, and the oxidizing agent is removed, that is, the ultrasonic fiber is oscillated to form the cellulose nanofiber, the reagent cannot be easily removed by washing with water, and dialysis for a long period of time is required. Increase process time. Further, dialysis does not completely remove the aforementioned reagents, thus also limiting the use of cellulose nanofibers.

應用本發明之纖維素奈米纖維的製造方法,藉由特定pH值之反應溶液系統,其包含緩衝溶液、特定使用量的烷基哌啶氧化物以及金屬鹵化物。配合特定通入量的氧化劑,可在較短的製程時間內製得高產率的纖維素奈米纖維。此外,本發明之纖維素奈米纖維的製造方法可使用包含非晶區和結晶區之纖維素材料進行,並調整用以解纖之物理性分離處理的順序,因此也可有效簡化纖維素奈米纖維的製程並提高其產率。 The method for producing a cellulose nanofiber of the present invention comprises a buffer solution, a specific amount of an alkyl piperidine oxide, and a metal halide by a reaction solution system of a specific pH. With a specific amount of oxidant, a high yield of cellulose nanofibers can be produced in a shorter process time. Further, the method for producing the cellulose nanofiber of the present invention can be carried out using a cellulose material comprising an amorphous region and a crystalline region, and adjusting the order of physical separation treatment for defibration, thereby also effectively simplifying the cellulose naphthalene The process of rice fiber and increase its yield.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

Claims (10)

一種纖維素奈米纖維的製造方法,包含:將一纖維素材料分散於一反應溶液系統中,以形成一第一分散溶液,其中該反應溶液系統包含:一緩衝溶液,其中該緩衝溶液之pH值為9至11;烷基哌啶氧化物;以及金屬鹵化物;進行一纖維氧化處理,於該第一分散溶液中加入氧化劑,氧化該纖維素材料達1至2小時,以形成氧化纖維,其中該纖維氧化處理排除使用超音波震盪幫助該纖維素材料的分散;進行一分散步驟,將該氧化纖維分散於一中性溶液中,以形成一第二分散溶液;以及對該第二分散溶液進行一物理性分離處理,以製得該纖維素奈米纖維。 A method for producing a cellulose nanofiber, comprising: dispersing a cellulose material in a reaction solution system to form a first dispersion solution, wherein the reaction solution system comprises: a buffer solution, wherein a pH of the buffer solution a value of 9 to 11; an alkyl piperidine oxide; and a metal halide; performing a fiber oxidation treatment, adding an oxidizing agent to the first dispersion solution, and oxidizing the cellulosic material for 1 to 2 hours to form an oxidized fiber, Wherein the fiber oxidation treatment excludes the use of ultrasonic vibration to assist dispersion of the cellulosic material; performing a dispersion step of dispersing the oxidized fiber in a neutral solution to form a second dispersion solution; and the second dispersion solution A physical separation treatment is performed to obtain the cellulose nanofiber. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該烷基哌啶氧化物為2,2,6,6-四甲基哌啶-1-氧化物(2,2,6,6-Tetramethylpiperidine-1-oxyl;TEMPO)。 The method for producing a cellulose nanofiber according to claim 1, wherein the alkyl piperidine oxide is 2,2,6,6-tetramethylpiperidine-1-oxide (2,2) , 6,6-Tetramethylpiperidine-1-oxyl; TEMPO). 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該金屬鹵化物為溴化銅。 The method for producing a cellulose nanofiber according to claim 1, wherein the metal halide is copper bromide. 如申請專利範圍第1項所述之纖維素奈米 纖維的製造方法,其中該氧化劑包含次氯酸鈉、亞氯酸鈉、氧氣、過氧化氫或氯氣。 Such as the cellulose nano as described in claim 1 A method of producing a fiber, wherein the oxidizing agent comprises sodium hypochlorite, sodium chlorite, oxygen, hydrogen peroxide or chlorine. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該氧化劑為氧氣,且該氧氣係以100mL/min至200mL/min之流速通入該第一分散溶液中。 The method for producing a cellulose nanofiber according to claim 1, wherein the oxidizing agent is oxygen, and the oxygen is introduced into the first dispersion solution at a flow rate of from 100 mL/min to 200 mL/min. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該纖維素材料為紙漿纖維、纖維素粉末或微晶纖維素粉末。 The method for producing a cellulose nanofiber according to the above aspect of the invention, wherein the cellulose material is a pulp fiber, a cellulose powder or a microcrystalline cellulose powder. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中基於該纖維素材料之使用量為100重量份,該烷基哌啶氧化物之使用量為2.5重量份至5重量份,且該金屬鹵化物之使用量為25重量份至50重量份。 The method for producing a cellulose nanofiber according to claim 1, wherein the alkyl piperidine oxide is used in an amount of from 2.5 parts by weight to 5 parts by weight based on 100 parts by weight of the cellulosic material. And the metal halide is used in an amount of from 25 parts by weight to 50 parts by weight. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該中性溶液包含水或中性緩衝溶液。 The method for producing a cellulose nanofiber according to the above aspect of the invention, wherein the neutral solution comprises water or a neutral buffer solution. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,其中該物理性分離處理為一超音波震盪處理或一均質化處理。 The method for producing a cellulose nanofiber according to claim 1, wherein the physical separation treatment is an ultrasonic vibration treatment or a homogenization treatment. 如申請專利範圍第1項所述之纖維素奈米纖維的製造方法,於該纖維氧化處理與該分散步驟之 間,更包含對該氧化纖維進行一過濾清洗步驟。 The method for producing a cellulose nanofiber according to claim 1, wherein the fiber oxidation treatment and the dispersion step are In addition, a filtration cleaning step is performed on the oxidized fiber.
TW105122113A 2016-07-13 2016-07-13 Method of producing cellulose nano fiber TWI613220B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105122113A TWI613220B (en) 2016-07-13 2016-07-13 Method of producing cellulose nano fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105122113A TWI613220B (en) 2016-07-13 2016-07-13 Method of producing cellulose nano fiber

Publications (2)

Publication Number Publication Date
TW201802123A TW201802123A (en) 2018-01-16
TWI613220B true TWI613220B (en) 2018-02-01

Family

ID=61725110

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122113A TWI613220B (en) 2016-07-13 2016-07-13 Method of producing cellulose nano fiber

Country Status (1)

Country Link
TW (1) TWI613220B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI741792B (en) * 2020-09-16 2021-10-01 臺灣塑膠工業股份有限公司 Use of prebiotic cellulose nanofiber of preparing composition for improving probiotic activities

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964454A (en) * 2012-11-29 2013-03-13 中国林业科学研究院林产化学工业研究所 Preparation method of nano-cellulose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102964454A (en) * 2012-11-29 2013-03-13 中国林业科学研究院林产化学工业研究所 Preparation method of nano-cellulose

Also Published As

Publication number Publication date
TW201802123A (en) 2018-01-16

Similar Documents

Publication Publication Date Title
CN102964454B (en) Preparation method of nano-cellulose
JP5397910B2 (en) Method for producing cellulose nanofiber dispersion
JP5351417B2 (en) Cellulose oxidation method, cellulose oxidation catalyst, and cellulose nanofiber production method
JP2009243014A (en) Method for manufacturing cellulose nanofiber
JPWO2018230354A1 (en) Method for producing cellulose nanofiber
JPWO2011074301A1 (en) Method for oxidizing cellulose and method for producing cellulose nanofiber
JP2011046793A (en) Method for producing cellulose nanofiber
JP2015101694A (en) Cellulose nanofiber dispersion and cellulose modified body and manufacturing method
WO2015096561A1 (en) Method for producing nano silicon dioxide and nano calcium carbonate by using rice hull ash and flue gas of biomass power plant
JP2010275659A (en) Method for producing cellulose nanofiber
JPWO2010134357A1 (en) Method for producing cellulose nanofiber dispersion, cellulose nanofiber dispersion, cellulose nanofiber molded body, and cellulose nanofiber composite
CN105175557A (en) Preparation method of nano cellulose
JP6143186B2 (en) Manufacturing method of composite material
JP2009209218A (en) Method for producing functional cellulose bead, and the functional cellulose bead
TWI613220B (en) Method of producing cellulose nano fiber
JP2014095159A (en) METHOD FOR PRODUCING β-1, 3-GLUCAN NANOFIBER
CN109972223B (en) Method for producing cellulose nanofibers
CN103524453A (en) Synthetic method for rubber vulcanization accelerator NS by solvent method
CN104099802A (en) Papermaking technology
JP5404131B2 (en) Method for producing cellulose nanofiber
JP2016069536A (en) Producing method of cellulose nano fiber
CN111807809B (en) Preparation method of palm nanofiber-graphene-carbon nanotube composite aerogel
JP6276550B2 (en) Method for producing oxidized cellulose
CN108928827A (en) A method of improving white carbon black specific surface area and Kong Rong
CN115246888A (en) Preparation method of hydrophobic nanocellulose