TWI564577B - Method for detecting a solar cell with defects - Google Patents

Method for detecting a solar cell with defects Download PDF

Info

Publication number
TWI564577B
TWI564577B TW104130071A TW104130071A TWI564577B TW I564577 B TWI564577 B TW I564577B TW 104130071 A TW104130071 A TW 104130071A TW 104130071 A TW104130071 A TW 104130071A TW I564577 B TWI564577 B TW I564577B
Authority
TW
Taiwan
Prior art keywords
solar cell
region
detecting
defective
cell according
Prior art date
Application number
TW104130071A
Other languages
Chinese (zh)
Other versions
TW201710690A (en
Inventor
張崇祐
魏慕慈
Original Assignee
英穩達科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英穩達科技股份有限公司 filed Critical 英穩達科技股份有限公司
Priority to TW104130071A priority Critical patent/TWI564577B/en
Application granted granted Critical
Publication of TWI564577B publication Critical patent/TWI564577B/en
Publication of TW201710690A publication Critical patent/TW201710690A/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Description

具有缺陷之太陽能電池的檢出方法 Method for detecting defective solar cells

本發明是關於太陽能電池的檢驗,特別是有關於一種具有缺陷之太陽能電池的檢出方法。 The present invention relates to the inspection of solar cells, and more particularly to a method for detecting a defective solar cell.

目前全球太陽能光電市場的應用,是以矽晶太陽能電池為主流。矽晶太陽能電池用的晶片可根據製程區分為單晶矽太陽能晶片及多晶矽太陽能晶片。單晶矽太陽能晶片的製造是將純化後的矽砂在拉晶機中熔融,再抽拉成為晶棒;多晶矽太陽能晶片的製造則是將純化後的矽砂熔融在方向性長晶爐的坩堝中,再冷卻鑄成晶塊,前述晶棒與晶塊必須經過線鋸(wire saw)的切割,才能得到矽晶太陽能電池用的晶片。 At present, the application of the global solar photovoltaic market is based on twin crystal solar cells. The wafers for twinned solar cells can be classified into single crystal germanium solar wafers and polycrystalline germanium solar wafers according to the process. The single crystal germanium solar wafer is manufactured by melting the purified barium sand in a crystal puller and then drawing it into an ingot; the polycrystalline silicon solar wafer is manufactured by melting the purified barium sand in a directional crystal growth furnace. In the middle, the ingot is re-cooled, and the ingot and the ingot must be cut by a wire saw to obtain a wafer for a twinned solar cell.

在太陽能電池的生產過程中,最終產品需經過檢驗方能確保其品質。需檢測的缺陷項目,包括材料瑕疵(Material defect)、燒結(Sintering wave)、製程污染(Contamination)及線路斷路(Broken finger)等。前述該等缺陷會不同程度地影響太陽能電池的轉換效率(Conversion efficiency),因此普遍是利用外觀檢測的方式,將具有缺陷之太陽能電池檢測出來,並剔除之。 In the production process of solar cells, the final product needs to be inspected to ensure its quality. Defective items to be tested include Material defect, Sintering wave, Contamination, and Broken finger. The above-mentioned defects affect the conversion efficiency of the solar cell to varying degrees. Therefore, it is common to use the appearance detection method to detect and eliminate the defective solar cell.

電致螢光(Electro-luminescence,EL)檢測是太陽能電池的外觀檢測的最佳方法之一,藉由分析電致螢光的光譜或影像,可以檢出太 陽能電池上之缺陷,從而判定太陽能電池的品質。 Electro-luminescence (EL) detection is one of the best methods for the appearance detection of solar cells. By analyzing the spectrum or image of electroluminescence, it can be detected too. The defect on the solar cell determines the quality of the solar cell.

由於單晶矽太陽能晶片的製造方式為旋轉抽拉成晶棒,故以電致螢光檢測可知以單晶矽太陽能晶片製成之太陽能電池的缺陷多發生於其中間區域(稱之為黑心片)。另外,由於多晶矽太陽能晶片的製造方式為將矽砂熔融在方向性長晶爐的坩堝中(接觸坩堝內壁),故以電致螢光檢測可知以多晶矽太陽能晶片製成之太陽能電池的缺陷多發生於其邊緣區域(稱之為黑邊片)。 Since the manufacturing method of the single crystal germanium solar wafer is rotary drawing into an ingot, it is known by electroluminescence detection that the defects of the solar cell made of the single crystal germanium solar wafer occur mostly in the middle region (referred to as a black core sheet). ). In addition, since the polycrystalline germanium solar wafer is manufactured by melting the cerium in the crucible of the directional crystal growth furnace (contacting the inner wall of the crucible), it is known by electroluminescence detection that the solar cell made of the polycrystalline silicon solar wafer has many defects. Occurs in its edge area (called a black edge).

然而,在生產線末端加裝電致螢光檢測機台會有成本增加的問題,此外,還有由於多晶矽太陽能電池的背景雜訊過大,而無法藉由電致螢光檢測來檢出其線路斷路之缺陷的問題。 However, there is a problem of increasing the cost of installing an electroluminescence detection machine at the end of the production line. In addition, since the background noise of the polycrystalline silicon solar cell is too large, it is impossible to detect the line break by electroluminescence detection. The problem of defects.

因此,有必要提供一種成本低廉且適用於單晶矽及多晶矽檢測的具有缺陷之太陽能電池的檢出方法,以解決上述之問題。 Therefore, it is necessary to provide a method for detecting a defective solar cell which is inexpensive and suitable for single crystal germanium and polycrystalline germanium detection to solve the above problems.

有鑑於此,本發明目的在於提供一種具有缺陷之太陽能電池的檢出方法,其是藉由計算出每一太陽能電池中經常發生缺陷之區塊與另一區塊的電性數據之相關性並設定適當範圍,來判斷複數個太陽能電池的其中之一是否為一具有缺陷之太陽能電池。本發明能適用於單晶矽太陽能電池及多晶矽太陽能電池的缺陷檢驗。 In view of the above, an object of the present invention is to provide a method for detecting a defective solar cell, which is to calculate the correlation between the block in which the defect often occurs in each solar cell and the electrical data of another block. An appropriate range is set to determine whether one of the plurality of solar cells is a defective solar cell. The invention can be applied to defect inspection of single crystal germanium solar cells and polycrystalline germanium solar cells.

為達成上述目的,本發明提供一種具有缺陷之太陽能電池的檢出方法,其包含以下步驟:提供複數個太陽能電池,在每一太陽能電池上定義一第一區域及一第二區域,該第二區域為經常發生缺陷之區塊; 分別對該等太陽能電池的該第一區域及該第二區域進行電性測量,而相應地得到複數個第一數值及複數個第二數值;以該等第一數值及該等第二數值分別作為X座標及Y座標,而藉由一計算機建立一迴歸分析的趨勢線,該迴歸分析的趨勢線呈現正相關,其包含線性正相關或非線性正相關;藉由該計算機計算該迴歸分析的趨勢線的標準差,再以該迴歸分析的趨勢線的預定倍數標準差建立該迴歸分析的趨勢線的管制範圍之上下界線;以及判斷各太陽能電池的第一數值與第二數值所組成的座標值是否超出該管制範圍之上下界線,若超出,則為具有缺陷之太陽能電池。 In order to achieve the above object, the present invention provides a method for detecting a defective solar cell, comprising the steps of: providing a plurality of solar cells, defining a first region and a second region on each solar cell, the second The area is a block where defects often occur; Performing electrical measurements on the first region and the second region of the solar cells, respectively, and correspondingly obtaining a plurality of first values and a plurality of second values; respectively, the first values and the second values are respectively As the X coordinate and the Y coordinate, a trend line of regression analysis is established by a computer, and the trend line of the regression analysis exhibits a positive correlation, which includes a linear positive correlation or a nonlinear positive correlation; the regression analysis is performed by the computer The standard deviation of the trend line, and then the predetermined multiple of the trend line of the regression analysis is used to establish a lower bound of the control range of the trend line of the regression analysis; and determining the coordinates of the first value and the second value of each solar cell Whether the value exceeds the lower limit above the control range, and if it is exceeded, it is a defective solar cell.

在本發明的一實施例中,該檢出方法更包括以下步驟:若存在具有缺陷之太陽能電池,移除該具有缺陷之太陽能電池的第一數值及第二數值,並由該計算機重新計算以更新該迴歸分析的趨勢線;提供另一太陽能電池,對該太陽能電池的第一區域及第二區域進行電性測量,而相應地得到一第一數值及一第二數值;將該第一數值作為X座標代入更新後的該迴歸分析的趨勢線之方程式中,得到一Y座標的理論值;以及將對該太陽能電池的該第二區域進行電性測量而得到的該第二數值(亦即實際值)除以該Y座標的理論值,得到一比值,該比值若落在一預定範圍外,則判定為具有缺陷之太陽能電池。 In an embodiment of the invention, the detecting method further comprises the steps of: removing the first value and the second value of the defective solar cell if there is a defective solar cell, and recalculating by the computer Updating a trend line of the regression analysis; providing another solar cell, electrically measuring the first region and the second region of the solar cell, and correspondingly obtaining a first value and a second value; Taking the X coordinate into the updated equation of the trend line of the regression analysis, a theoretical value of a Y coordinate is obtained; and the second value obtained by electrically measuring the second region of the solar cell (ie, The actual value) is divided by the theoretical value of the Y coordinate to obtain a ratio, and if the ratio falls outside a predetermined range, it is determined to be a defective solar cell.

在本發明的一實施例中,該預定範圍為0.5至1.5。 In an embodiment of the invention, the predetermined range is from 0.5 to 1.5.

在本發明的一實施例中,該預定範圍為0.8至1.2。 In an embodiment of the invention, the predetermined range is from 0.8 to 1.2.

在本發明的一實施例中,該等太陽能電池之數量減掉該具有缺陷之太陽能電池之後,剩下的數量為至少三片。 In an embodiment of the invention, after the number of solar cells is reduced by the defective solar cell, the remaining amount is at least three.

在本發明的一實施例中,該等太陽能電池之數量為至少三十片。 In an embodiment of the invention, the number of the solar cells is at least thirty.

在本發明的一實施例中,該第一區域為全區域。 In an embodiment of the invention, the first area is a full area.

在本發明的一實施例中,該第一區域為不會發生缺陷之區塊。 In an embodiment of the invention, the first area is a block in which no defects occur.

在本發明的一實施例中,該預定倍數標準差為正負二倍標準差。 In an embodiment of the invention, the predetermined multiple standard deviation is plus or minus two standard deviations.

在本發明的一實施例中,該預定倍數標準差為正負三倍標準差。 In an embodiment of the invention, the predetermined multiple standard deviation is plus or minus three standard deviations.

在本發明的一實施例中,該等太陽能電池是單晶矽太陽能電池。 In an embodiment of the invention, the solar cells are single crystal germanium solar cells.

在本發明的一實施例中,該第二區域是該單晶矽太陽能電池的中間區域,且該中間區域是一圓形。 In an embodiment of the invention, the second region is an intermediate region of the single crystal germanium solar cell, and the intermediate region is a circular shape.

在本發明的一實施例中,該中間區域所佔之面積是該單晶矽太陽能電池全區域的50%。 In an embodiment of the invention, the area occupied by the intermediate region is 50% of the entire area of the single crystal germanium solar cell.

在本發明的一實施例中,該中間區域所佔之面積是該單晶矽太陽能電池全區域的20%。 In an embodiment of the invention, the area occupied by the intermediate region is 20% of the entire area of the single crystal germanium solar cell.

在本發明的一實施例中,該等太陽能電池是多晶矽太陽能電池。 In an embodiment of the invention, the solar cells are polycrystalline solar cells.

在本發明的一實施例中,該第二區域是該多晶矽太陽能電池 的邊緣區域,該邊緣區域圍繞該多晶矽太陽能電池的中間區域。 In an embodiment of the invention, the second region is the polycrystalline solar cell An edge region surrounding the intermediate region of the polycrystalline solar cell.

在本發明的一實施例中,該邊緣區域為該多晶矽太陽能電池之邊緣向內縮40%之區域。 In an embodiment of the invention, the edge region is an area in which the edge of the polycrystalline solar cell is inwardly contracted by 40%.

在本發明的一實施例中,該邊緣區域為該多晶矽太陽能電池之邊緣向內縮15%之區域。 In an embodiment of the invention, the edge region is an area in which the edge of the polycrystalline solar cell is inwardly contracted by 15%.

在本發明的一實施例中,該電性測量是藉由對該第一區域及該第二區域照射光源所量測之電性的數據。 In an embodiment of the invention, the electrical measurement is data of electrical properties measured by illuminating the first region and the second region with a light source.

在本發明的一實施例中,該第一區域及該第二區域是以相同光強度的光源來進行該電性測量。 In an embodiment of the invention, the first region and the second region are electrically measured by a light source of the same light intensity.

在本發明的一實施例中,該第一區域及該第二區域是以不同光強度的光源來進行該電性測量。 In an embodiment of the invention, the first region and the second region are electrically measured by light sources of different light intensities.

在本發明的一實施例中,該第一區域及該第二區域是以相同波長的光源來進行該電性測量。 In an embodiment of the invention, the first region and the second region are electrically measured by a light source of the same wavelength.

在本發明的一實施例中,該第一區域及該第二區域是以不同波長的光源來進行該電性測量。 In an embodiment of the invention, the first region and the second region are electrically measured by light sources of different wavelengths.

在本發明的一實施例中,該電性包括短路電流、開路電壓、填充因子、串聯電阻或能量轉換效率。 In an embodiment of the invention, the electrical property includes a short circuit current, an open circuit voltage, a fill factor, a series resistance, or an energy conversion efficiency.

相較於先前技術,本發明是提供一種新的具有缺陷之太陽能電池的檢出方法,其是藉由計算出每一太陽能電池中經常發生缺陷之區塊與另一區塊(亦即,全區域或不會發生缺陷之區塊)的電性數據之相關性並設定適當範圍,來判斷複數個太陽能電池的其中之一是否為一具有缺陷之太陽能電池。由於本發明不需額外增加設備,只需以原有的電性量測設 備分析該等太陽能電池的不同區域,並透過計算其相關性來判斷該太陽能電池是否為一具有缺陷之太陽能電池,因此分析成本低廉。此外,本發明還能夠適用於單晶矽太陽能電池或多晶矽太陽能電池的檢驗。 Compared with the prior art, the present invention provides a new method for detecting a defective solar cell by calculating a block in which defects often occur in each solar cell and another block (ie, The correlation of the electrical data of the area or the block in which the defect does not occur is set and an appropriate range is set to determine whether one of the plurality of solar cells is a defective solar cell. Since the invention does not require additional equipment, it is only necessary to measure the original electrical quantity. It is necessary to analyze different regions of the solar cells, and calculate the correlation to determine whether the solar cell is a defective solar cell, so the analysis cost is low. Furthermore, the present invention is also applicable to the inspection of single crystal germanium solar cells or polycrystalline germanium solar cells.

1‧‧‧單晶矽太陽能電池 1‧‧‧ Single crystal germanium solar cell

1a‧‧‧中間區域 1a‧‧‧Intermediate area

1b‧‧‧剩餘區域 1b‧‧‧ remaining area

2‧‧‧多晶矽太陽能電池 2‧‧‧Polysilicon solar cells

2a‧‧‧邊緣區域 2a‧‧‧Edge area

2b‧‧‧中間區域 2b‧‧‧Intermediate area

S11~S19‧‧‧步驟 S11~S19‧‧‧Steps

第1圖係本發明實施例中具有缺陷之太陽能電池的檢出方法之第一階段的步驟流程圖。 Fig. 1 is a flow chart showing the steps of the first stage of the method for detecting a defective solar cell in the embodiment of the present invention.

第2圖係本發明實施例中具有缺陷之太陽能電池的檢出方法之第二階段的步驟流程圖。 Fig. 2 is a flow chart showing the steps of the second stage of the method for detecting a defective solar cell in the embodiment of the present invention.

第3圖係本發明實施例中單晶矽太陽能電池及多晶矽太陽能電池中經常發生缺陷之區塊的示意圖。 Fig. 3 is a schematic view showing a block in which a defect often occurs in a single crystal germanium solar cell and a polycrystalline germanium solar cell in the embodiment of the present invention.

為詳細說明本發明之技術內容、構造特徵、所達成目的及功效,以下茲舉例並配合圖式詳予說明。 In order to explain the technical content, structural features, objectives and effects of the present invention in detail, the following detailed description is given by way of example.

請參閱第1圖,其是本發明實施例中具有缺陷之太陽能電池的檢出方法之第一階段的步驟流程圖,該檢出方法包括下列步驟(步驟S11-S15):在步驟S11中,提供複數個太陽能電池,所提供之該等太陽能電池的數量較佳為至少三十片。在每一太陽能電池上定義一第一區域及一第二區域,該第二區域為經常發生缺陷之區塊。在本實施例中,每一太陽能電池上所定義的第一區域(或第二區域)皆是相同位置。該第一區域可以為每一太陽能電池的全區域,或可以為每一太陽能電池中不會發生缺 陷之區塊。該等太陽能電池可以是單晶矽太陽能電池或多晶矽太陽能電池,但所提供之該等太陽能電池須為同類型的太陽能電池。當該等太陽能電池為單晶矽太陽能電池1時(請參照第3-(A)圖),該第二區域是該單晶矽太陽能電池1的中間區域1a,且該中間區域1a為一圓形,該中間區域1a所佔的面積是該單晶矽太陽能電池1全區域的20%至50%,但本發明不受限於此;該第一區域可以是剩餘區域1b或該單晶矽太陽能電池1的全區域(亦即,1a+1b)。當該等太陽能電池為多晶矽太陽能電池2時(請參照第3-(B)圖),該第二區域是該多晶矽太陽能電池2的邊緣區域2a,該邊緣區域2a圍繞該多晶矽太陽能電池2的中間區域2b,該邊緣區域2a是該多晶矽太陽能電池2之邊緣向內縮15%至40%之區域,但本發明不受限於此;該第一區域可以是中間區域2b或該多晶矽太陽能電池2的全區域(亦即,2a+2b)。 Referring to FIG. 1 , which is a flow chart of the first stage of the method for detecting a defective solar cell according to an embodiment of the present invention, the detecting method includes the following steps (steps S11-S15): in step S11, A plurality of solar cells are provided, and the number of such solar cells is preferably at least thirty. A first area and a second area are defined on each solar cell, and the second area is a block in which defects often occur. In this embodiment, the first area (or the second area) defined on each solar cell is the same position. The first area may be the entire area of each solar cell, or may not be missing in each solar cell Blocked by the block. The solar cells may be single crystal germanium solar cells or polycrystalline germanium solar cells, but the solar cells provided must be the same type of solar cells. When the solar cells are single crystal germanium solar cells 1 (refer to Fig. 3-(A)), the second region is the intermediate region 1a of the single crystal germanium solar cell 1, and the intermediate region 1a is a circle The area occupied by the intermediate portion 1a is 20% to 50% of the entire area of the single crystal germanium solar cell 1, but the invention is not limited thereto; the first region may be the remaining region 1b or the single crystal germanium The entire area of the solar cell 1 (i.e., 1a+1b). When the solar cells are polycrystalline solar cells 2 (refer to Figure 3-(B)), the second region is an edge region 2a of the polycrystalline solar cell 2, the edge region 2a surrounding the middle of the polycrystalline solar cell 2 The region 2b is an area in which the edge of the polycrystalline solar cell 2 is inwardly contracted by 15% to 40%, but the invention is not limited thereto; the first region may be the intermediate portion 2b or the polycrystalline solar cell 2 The whole area (ie, 2a+2b).

在步驟S12中,分別對該等太陽能電池的該第一區域及該第二區域進行電性測量,而相應地得到複數個第一數值及複數個第二數值。該電性測量是藉由對該第一區域及該第二區域照射光源(例如為一可見光源)所量測之電性的數據,該電性包括短路電流(Short-circuit current)、開路電壓(Open-circuit voltage)、填充因子(Fill factor,FF)、串聯電阻(Series resistance)或能量轉換效率(Power conversion efficiency,PCE)等,但本發明不受限於此。該第一區域及該第二區域可以依所需而以相同或不相同的光強度(Light intensity)的光源來進行該電性測量。另外,該第一區域及該第二區域亦可以依所需而以相同或不相同的波長的光源來進行該電性測量。 In step S12, the first region and the second region of the solar cells are respectively electrically measured, and a plurality of first values and a plurality of second values are obtained correspondingly. The electrical measurement is electrical data measured by illuminating the first region and the second region with a light source (for example, a visible light source), and the electrical property includes a short-circuit current and an open circuit voltage. (Open-circuit voltage), fill factor (FF), series resistance or power conversion efficiency (PCE), etc., but the invention is not limited thereto. The first region and the second region can perform the electrical measurement with a light source of the same or different light intensity as desired. In addition, the first region and the second region may also perform the electrical measurement with light sources of the same or different wavelengths as needed.

在步驟S13中,以該等第一數值及該等第二數值分別作為X 座標及Y座標的值,而藉由一計算機建立一迴歸分析的趨勢線,該迴歸分析的趨勢線呈現正相關,其可由一方程式表示,由於第一區域與第二區域的電性通常為線性正相關,因此該迴歸分析的趨勢線應可由一線性方程式(Y=aX+b)表示。 In step S13, the first value and the second value are respectively taken as X The values of coordinates and Y coordinates, and a trend line of regression analysis is established by a computer. The trend line of the regression analysis is positively correlated, which can be represented by one program, since the electrical properties of the first region and the second region are usually linear. Positive correlation, so the trend line of this regression analysis should be represented by a linear equation (Y = aX + b).

在步驟S14中,藉由該計算機計算該迴歸分析的趨勢線的標準差,再以該迴歸分析的趨勢線的預定倍數標準差建立該迴歸分析的趨勢線的管制範圍之上下界線。該預定倍數標準差可為正負二倍標準差,較佳為正負三倍標準差,但本發明不受限於此。 In step S14, the standard deviation of the trend line of the regression analysis is calculated by the computer, and the lower limit of the control range of the trend line of the regression analysis is established by the predetermined multiple standard deviation of the trend line of the regression analysis. The predetermined multiple standard deviation may be plus or minus two standard deviations, preferably plus or minus three standard deviations, but the invention is not limited thereto.

在步驟S15中,判斷該等太陽能電池的其中之一的第一區域與第二區域所測得的第一數值與第二數值所組成的座標值是否超出該管制範圍之上下界線,若超出,則為具有缺陷之太陽能電池。 In step S15, it is determined whether the coordinate values formed by the first value and the second value measured by the first region and the second region of one of the solar cells exceed a lower limit above the control range, and if exceeded, It is a defective solar cell.

上述具有缺陷之太陽能電池的檢出方法之步驟S11-S15可適用於太陽能電池的批次檢驗。如需對太陽能電池做連續式的檢驗,可以步驟S11-S15作為基礎而後進行下述步驟(步驟S16-S19,請參閱第2圖): The steps S11-S15 of the above-described method for detecting a defective solar cell can be applied to batch inspection of a solar cell. If you want to perform continuous inspection on the solar cell, you can follow the steps S11-S15 and then perform the following steps (steps S16-S19, see Figure 2):

在步驟S16中,若存在具有缺陷之太陽能電池,移除該具有缺陷之太陽能電池的第一數值及第二數值,並由該計算機重新計算以更新該迴歸分析的趨勢線,亦即更新表示該迴歸分析的趨勢線的線性方程式。 In step S16, if there is a defective solar cell, the first value and the second value of the defective solar cell are removed, and the computer recalculates to update the trend line of the regression analysis, that is, the update indicates that The linear equation of the trend line for regression analysis.

在步驟S17中,提供一待檢太陽能電池,對該待檢太陽能電池的第一區域及第二區域進行電性測量,而相應地得到一第一數值及一第二數值。 In step S17, a solar cell to be inspected is provided, and the first region and the second region of the solar cell to be inspected are electrically measured, and a first value and a second value are obtained accordingly.

在步驟S18中,將該待檢太陽能電池的該第一數值作為X座標代入更新後的該迴歸分析的趨勢線之線性方程式中,得到一Y座標的理論 值。 In step S18, the first value of the solar cell to be inspected is substituted into the linear equation of the updated trend line of the regression analysis as the X coordinate to obtain a Y coordinate theory. value.

在步驟S19中,將該待檢太陽能電池的第二區域進行電性測量所得的第二數值(亦即實際值)除以該Y座標的理論值,得到一比值,該比值若落在一預定範圍外,則判定為具有缺陷的太陽能電池。於本實施例中,該預定範圍較佳例如為0.5至1.5,更佳而言,為0.8至1.2。 In step S19, the second value (ie, the actual value) obtained by electrically measuring the second region of the solar cell to be inspected is divided by the theoretical value of the Y coordinate to obtain a ratio, and the ratio falls on a predetermined value. Outside the range, it is determined to be a defective solar cell. In the present embodiment, the predetermined range is preferably, for example, from 0.5 to 1.5, and more preferably from 0.8 to 1.2.

在本發明的一較佳實施例中,對於太陽能電池的檢驗而言,先進行習知的太陽能電池之全區域(亦即第一區域)電性測量的篩分,再對篩分後的太陽能電池中的經常發生缺陷之區塊(亦即第二區域)進行電性測量,接續進行上述步驟S13-S15(或S13-S19),而完成本發明的具有缺陷之太陽能電池的檢出方法。 In a preferred embodiment of the present invention, for the inspection of the solar cell, the screening of the electrical measurement of the entire area (ie, the first region) of the conventional solar cell is performed, and then the solar energy after the screening is performed. The block in which the defect frequently occurs in the battery (i.e., the second region) is electrically measured, and the above steps S13-S15 (or S13-S19) are successively performed to complete the method for detecting the defective solar cell of the present invention.

如上所述,本發明具有缺陷之太陽能電池的檢出方法是提供一種新的檢出方法,其是藉由計算出每一太陽能電池中經常發生缺陷之區塊與另一區塊(亦即,全區域或不會發生缺陷之區塊)的電性數據之相關性並設定適當範圍,來判斷複數個太陽能電池的其中之一是否為一具有缺陷之太陽能電池。由於本發明不需額外增加設備,只需以原有的電性量測設備分析該等太陽能電池的不同區域,並透過計算其相關性來判斷該太陽能電池是否為一具有缺陷之太陽能電池,因此分析成本低廉。除此之外,本發明還能夠適用於單晶矽太陽能電池或多晶矽太陽能電池的檢驗。 As described above, the method for detecting a defective solar cell of the present invention provides a new detecting method by calculating a block in which defects are frequently generated in each solar cell and another block (that is, Whether or not one of the plurality of solar cells is a defective solar cell is determined by determining the correlation of the electrical data of the entire region or the block in which the defect does not occur and setting an appropriate range. Since the present invention does not require additional equipment, it is only necessary to analyze different regions of the solar cells with the original electrical measuring device, and calculate the correlation to determine whether the solar cell is a defective solar cell. The analysis cost is low. In addition, the present invention can also be applied to the inspection of single crystal germanium solar cells or polycrystalline germanium solar cells.

雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of the preferred embodiments, the invention is not intended to limit the invention, and the invention may be practiced without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

S11~S15‧‧‧步驟 S11~S15‧‧‧Steps

Claims (24)

一種具有缺陷之太陽能電池的檢出方法,其包含以下步驟:提供複數個太陽能電池,在每一太陽能電池上定義一第一區域及一第二區域,該第二區域為經常發生缺陷之區塊;分別對該等太陽能電池的該第一區域及該第二區域進行電性測量,而相應地得到複數個第一數值及複數個第二數值;以該等第一數值及該等第二數值分別作為X座標及Y座標,而藉由一計算機建立一迴歸分析的趨勢線,該迴歸分析的趨勢線呈現正相關;藉由該計算機計算該迴歸分析的趨勢線的標準差,再以該迴歸分析的趨勢線的預定倍數標準差建立該迴歸分析的趨勢線的管制範圍之上下界線;以及判斷各太陽能電池的第一數值與第二數值所組成的座標值是否超出該管制範圍之上下界線,若超出,則為具有缺陷之太陽能電池。 A method for detecting a defective solar cell, comprising the steps of: providing a plurality of solar cells, defining a first region and a second region on each solar cell, wherein the second region is a block in which defects often occur Performing electrical measurements on the first region and the second region of the solar cells, respectively, and correspondingly obtaining a plurality of first values and a plurality of second values; and the first values and the second values As the X coordinate and the Y coordinate respectively, a trend line of regression analysis is established by a computer, and the trend line of the regression analysis is positively correlated; the standard deviation of the trend line of the regression analysis is calculated by the computer, and then the regression is performed. The predetermined multiple standard deviation of the analyzed trend line establishes a lower boundary above the control range of the trend line of the regression analysis; and determines whether the coordinate value composed of the first value and the second value of each solar cell exceeds a lower limit above the control range, If it is exceeded, it is a defective solar cell. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該檢出方法更包括以下步驟:若存在具有缺陷之太陽能電池,移除該具有缺陷之太陽能電池的第一數值及第二數值,並由該計算機重新計算以更新該迴歸分析的趨勢線;提供另一太陽能電池,對該太陽能電池的第一區域及第二區域進行電性測量,而相應地得到一第一數值及一第二數值;將該第一數值作為X座標代入更新後的該迴歸分析的趨勢線之方程式中,得到一Y座標的理論值;以及將對該太陽能電池的該第二區域進行電性測量而得到的該第二數值除以該Y座標的理論值,得到一比值,該比值若落在一預定範圍外,則判定為具有缺陷之太陽能電池。 The method for detecting a defective solar cell according to claim 1, wherein the detecting method further comprises the following steps: if there is a defective solar cell, removing the first value of the defective solar cell and a second value, and is recalculated by the computer to update the trend line of the regression analysis; providing another solar cell, electrically measuring the first region and the second region of the solar cell, and correspondingly obtaining a first value And a second value; the first value is substituted into the updated equation of the trend line of the regression analysis as an X coordinate to obtain a theoretical value of a Y coordinate; and the second region of the solar cell is electrically The second value obtained by the measurement is divided by the theoretical value of the Y coordinate to obtain a ratio, and if the ratio falls outside a predetermined range, it is determined to be a defective solar cell. 如申請專利範圍第2項所述之具有缺陷之太陽能電池的檢出方法,該預定範圍為0.5至1.5。 The method for detecting a defective solar cell as described in claim 2, the predetermined range is 0.5 to 1.5. 如申請專利範圍第2項所述之具有缺陷之太陽能電池的檢出方法,該預定範圍為0.8至1.2。 The method for detecting a defective solar cell as described in claim 2, the predetermined range is 0.8 to 1.2. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該等太陽能電池之數量減掉該具有缺陷之太陽能電池之後,剩下的數量為至少三片。 The method for detecting a defective solar cell according to claim 1, wherein after the number of the solar cells is reduced by the defective solar cell, the remaining amount is at least three. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該等太陽能電池之數量為至少三十片。 The method for detecting a defective solar cell according to claim 1, wherein the number of the solar cells is at least thirty. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該第一區域為全區域。 The method for detecting a defective solar cell according to claim 1, wherein the first region is a full region. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該第一區域為不會發生缺陷之區塊。 The method for detecting a defective solar cell according to claim 1, wherein the first region is a block in which no defect occurs. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該預定倍數標準差為正負二倍標準差。 The method for detecting a defective solar cell according to claim 1, wherein the predetermined multiple standard deviation is plus or minus two standard deviations. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該預定倍數標準差為正負三倍標準差。 The method for detecting a defective solar cell according to claim 1, wherein the predetermined multiple standard deviation is plus or minus three standard deviations. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該等太陽能電池是單晶矽太陽能電池。 The method for detecting a defective solar cell according to claim 1, wherein the solar cell is a single crystal germanium solar cell. 如申請專利範圍第11項所述之具有缺陷之太陽能電池的檢出方法,該第二區域是該單晶矽太陽能電池的中間區域,且該中間區域為一圓形。 The method for detecting a defective solar cell according to claim 11, wherein the second region is an intermediate portion of the single crystal germanium solar cell, and the intermediate region is a circular shape. 如申請專利範圍第12項所述之具有缺陷之太陽能電池的檢出方法,該中間區域所佔之面積是該單晶矽太陽能電池全區域的50%。 The method for detecting a defective solar cell according to claim 12, wherein the area occupied by the intermediate region is 50% of the entire area of the single crystal germanium solar cell. 如申請專利範圍第12項所述之具有缺陷之太陽能電池的檢出方法,該中 間區域所佔之面積是該單晶矽太陽能電池全區域的20%。 A method for detecting a defective solar cell as described in claim 12, wherein The area occupied by the inter-region is 20% of the entire area of the single crystal germanium solar cell. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該等太陽能電池是多晶矽太陽能電池。 The method for detecting a defective solar cell according to claim 1, wherein the solar cell is a polycrystalline silicon solar cell. 如申請專利範圍第15項所述之具有缺陷之太陽能電池的檢出方法,該第二區域是該多晶矽太陽能電池的邊緣區域,該邊緣區域圍繞該多晶矽太陽能電池的中間區域。 The method for detecting a defective solar cell according to claim 15, wherein the second region is an edge region of the polycrystalline solar cell, the edge region surrounding an intermediate region of the polycrystalline solar cell. 如申請專利範圍第16項所述之具有缺陷之太陽能電池的檢出方法,該邊緣區域為該多晶矽太陽能電池之邊緣向內縮40%之區域。 The method for detecting a defective solar cell according to claim 16, wherein the edge region is an area in which the edge of the polycrystalline solar cell is inwardly contracted by 40%. 如申請專利範圍第16項所述之具有缺陷之太陽能電池的檢出方法,該邊緣區域為該多晶矽太陽能電池之邊緣向內縮15%之區域。 The method for detecting a defective solar cell according to claim 16, wherein the edge region is an area in which the edge of the polycrystalline solar cell is inwardly contracted by 15%. 如申請專利範圍第1項所述之具有缺陷之太陽能電池的檢出方法,該電性測量是藉由對該第一區域及該第二區域照射光源所量測之電性的數據。 The method for detecting a defective solar cell according to claim 1, wherein the electrical measurement is data measured by illuminating the first region and the second region with a light source. 如申請專利範圍第19項所述之具有缺陷之太陽能電池的檢出方法,該第一區域及該第二區域是以相同光強度的光源來進行該電性測量。 The method for detecting a defective solar cell according to claim 19, wherein the first region and the second region are electrically measured by a light source of the same light intensity. 如申請專利範圍第19項所述之具有缺陷之太陽能電池的檢出方法,該第一區域及該第二區域是以不同光強度的光源來進行該電性測量。 The method for detecting a defective solar cell according to claim 19, wherein the first region and the second region are electrically measured by light sources of different light intensities. 如申請專利範圍第19項所述之具有缺陷之太陽能電池的檢出方法,該第一區域及該第二區域是以相同波長的光源來進行該電性測量。 The method for detecting a defective solar cell according to claim 19, wherein the first region and the second region are electrically measured by a light source of the same wavelength. 如申請專利範圍第19項所述之具有缺陷之太陽能電池的檢出方法,該第一區域及該第二區域是以不同波長的光源來進行該電性測量。 The method for detecting a defective solar cell according to claim 19, wherein the first region and the second region are electrically measured by light sources of different wavelengths. 如申請專利範圍第19項所述之具有缺陷之太陽能電池的檢出方法,該電性包括短路電流、開路電壓、填充因子、串聯電阻或能量轉換效率。 The method for detecting a defective solar cell according to claim 19, wherein the electrical property includes a short circuit current, an open circuit voltage, a fill factor, a series resistance, or an energy conversion efficiency.
TW104130071A 2015-09-11 2015-09-11 Method for detecting a solar cell with defects TWI564577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104130071A TWI564577B (en) 2015-09-11 2015-09-11 Method for detecting a solar cell with defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104130071A TWI564577B (en) 2015-09-11 2015-09-11 Method for detecting a solar cell with defects

Publications (2)

Publication Number Publication Date
TWI564577B true TWI564577B (en) 2017-01-01
TW201710690A TW201710690A (en) 2017-03-16

Family

ID=58408014

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104130071A TWI564577B (en) 2015-09-11 2015-09-11 Method for detecting a solar cell with defects

Country Status (1)

Country Link
TW (1) TWI564577B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030063008A1 (en) * 1998-04-08 2003-04-03 Canon Kabushiki Kaisha Method and apparatus for detecting failure in solar cell module, and solar cell module
TW201144843A (en) * 2009-12-22 2011-12-16 Nisshinbo Mechatronics Inc Inspecting apparatus, inspecting method and inspecting program for photovoltaic devices
CN102262698B (en) * 2011-07-27 2013-03-20 上海交通大学 Method for detecting defect state density of emission layer and buffer layer based on solar cell performance impact estimation
CN103454459A (en) * 2013-09-03 2013-12-18 常州兆阳光能科技有限公司 Multi-angle detecting platform for solar cell panel
TW201505357A (en) * 2013-07-31 2015-02-01 Ind Tech Res Inst Method for inspecting defects of solar cells and system thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030063008A1 (en) * 1998-04-08 2003-04-03 Canon Kabushiki Kaisha Method and apparatus for detecting failure in solar cell module, and solar cell module
TW201144843A (en) * 2009-12-22 2011-12-16 Nisshinbo Mechatronics Inc Inspecting apparatus, inspecting method and inspecting program for photovoltaic devices
CN102262698B (en) * 2011-07-27 2013-03-20 上海交通大学 Method for detecting defect state density of emission layer and buffer layer based on solar cell performance impact estimation
TW201505357A (en) * 2013-07-31 2015-02-01 Ind Tech Res Inst Method for inspecting defects of solar cells and system thereof
CN103454459A (en) * 2013-09-03 2013-12-18 常州兆阳光能科技有限公司 Multi-angle detecting platform for solar cell panel

Also Published As

Publication number Publication date
TW201710690A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI609177B (en) Wafer imaging and processing method and apparatus
US8698083B2 (en) Solar cell evaluation method, evaluation device, maintenance method, maintenance system, and method of manufacturing solar cell module
US8355563B2 (en) Photovoltaic devices inspection apparatus and method of determining defects in photovoltaic device
US20150039270A1 (en) Method for inspecting defects of solar cells and system thereof
TWI468670B (en) Apparatus and methods for setting up optical inspection parameters
US20140039820A1 (en) Quantitative series resistance imaging of photovoltaic cells
TWI641961B (en) Method and system for design-based fast in-line defect diagnosis, classification and sample
TW201513249A (en) Inspection system, inspection method, and readable recording medium
JP6691705B2 (en) Defective cell detection method and device
TW201909011A (en) Regional analysis for formulation optimization and measurement
CN115565902A (en) Solar cell semi-finished product state evaluation method
TWI564577B (en) Method for detecting a solar cell with defects
TW202229898A (en) Testing method and apparatus for metal pollution of a silicon slice
CN105136819A (en) Method for detecting appearance contour of air conditioner
CN108508053A (en) A kind of detection method of the atomic physical imperfection of systematicness
TWI670469B (en) Crystal quality determination method
CN106531650B (en) Has the method for detecting of defective solar battery
JP5653370B2 (en) Method for inspecting cracks in solar cells
CN102074454A (en) Monitoring method and system of etching process
CN103604755A (en) Method for detecting ageing of umbrella skirt of silicon rubber composite insulator
JP6206380B2 (en) Evaluation method of silicon single crystal wafer
CN104237244A (en) Silicon ingot quality detection method
JP2013217903A (en) Sample analyzer and sample analysis program
KR101050518B1 (en) Multi unification measuring and inspection equipment
US9888236B2 (en) Liquid crystal panel and the detection method on image sticking of the liquid crystal panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees