TWI491555B - One dimensional nano structure, method for making the same and using the same as label - Google Patents

One dimensional nano structure, method for making the same and using the same as label Download PDF

Info

Publication number
TWI491555B
TWI491555B TW099110094A TW99110094A TWI491555B TW I491555 B TWI491555 B TW I491555B TW 099110094 A TW099110094 A TW 099110094A TW 99110094 A TW99110094 A TW 99110094A TW I491555 B TWI491555 B TW I491555B
Authority
TW
Taiwan
Prior art keywords
dimensional nanostructure
carbon
carbon nanotube
isotopes
reaction
Prior art date
Application number
TW099110094A
Other languages
Chinese (zh)
Other versions
TW201134750A (en
Inventor
Shou-Shan Fan
Liang Liu
Kai-Li Jiang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW099110094A priority Critical patent/TWI491555B/en
Publication of TW201134750A publication Critical patent/TW201134750A/en
Application granted granted Critical
Publication of TWI491555B publication Critical patent/TWI491555B/en

Links

Description

一維奈米結構、其製備方法及一維奈米結構作標記的方法 One-dimensional nanostructure, preparation method thereof and method for marking one-dimensional nanostructure

本發明涉及一種奈米材料、一種奈米材料的製備方法及應用該奈米材料用作標記的方法,尤其涉及一種一維奈米結構及其製備方法,以及應用該一維奈米結構用作標記的方法。 The invention relates to a nano material, a preparation method of the nano material and a method for applying the nano material as a mark, in particular to a one-dimensional nano structure and a preparation method thereof, and the use of the one-dimensional nano structure as a method The method of marking.

同位素標示方法係研究材料生長機理的有力工具,因此,同位素標記的奈米材料可以研究該奈米材料的生長機理,該同位素標記的奈米材料係利用在奈米材料的合成過程中,將含有某一特定元素(一般係輕元素,如碳、硼、氮或氧)之同位素的反應物按照預定的濃度(以純物質或混合物的形式)和順序使其參與反應,從而製備出原位生長的該同位素標示的奈米材料。 The isotope labeling method is a powerful tool for studying the growth mechanism of materials. Therefore, the isotope-labeled nanomaterial can study the growth mechanism of the nanomaterial. The isotope-labeled nanomaterial is used in the synthesis of nanomaterials. A reactant of an isotope of a particular element (generally a light element such as carbon, boron, nitrogen or oxygen) is allowed to participate in a reaction at a predetermined concentration (in the form of a pure substance or mixture) and in situ to prepare an in situ growth The isotope labeled nanomaterial.

范守善等人於2006年4月18日公告的,公告號為US 7,029,751 B2,標題為“Isotope-doped carbon nanotube and method and apparatus for forming the same”的專利揭示了一種摻有同位素之奈米碳管及其製備方法。該摻有同位素的奈米碳管包括由單一同位素組成的第一奈米碳管片段和第二奈米碳管片段,該第一奈米碳管片段和第二奈米碳管片段沿奈米碳管的縱向交替排列。該摻有同位素之奈米碳管的製備方法包括如下步驟:提供含有單 一同位素的第一碳源氣和第二碳源氣;提供其上沈積有催化劑的基底,並將該基底置入反應室中;將該反應室抽成真空,通入預定壓力之保護性氣體;於650~750℃的反應條件下,使第一碳源氣體發生反應並使反應生成的第一奈米碳管片段沈積於該基底上;反應預定時間後,將碳源切換至第二碳源氣上,於650~750℃的反應條件下,使第二碳源氣體發生反應,生成的第二奈米碳管片段生長於第一奈米碳管片段之上,從而得到摻有同位素的奈米碳管。 The patent entitled "Isotope-doped carbon nanotube and method and apparatus for forming the same" is disclosed in the patent No. 7,029,751 B2, issued on Apr. 18, 2006, the disclosure of which is incorporated herein by reference. And its preparation method. The isotope-doped carbon nanotube comprises a first carbon nanotube segment and a second carbon nanotube segment composed of a single isotope, the first carbon nanotube segment and the second carbon nanotube segment along the nanometer The longitudinal direction of the carbon tubes is alternately arranged. The preparation method of the isotope-doped carbon nanotube comprises the following steps: providing a single a first carbon source gas and a second carbon source gas of an isotope; providing a substrate on which the catalyst is deposited, and placing the substrate into the reaction chamber; evacuating the reaction chamber to a predetermined pressure of a protective gas The first carbon source gas is reacted and the first carbon nanotube fragments formed by the reaction are deposited on the substrate under a reaction condition of 650 to 750 ° C; after the reaction for a predetermined time, the carbon source is switched to the second carbon. On the source gas, under the reaction condition of 650-750 ° C, the second carbon source gas is reacted, and the generated second carbon nanotube segment is grown on the first carbon nanotube segment, thereby obtaining an isotope-doped Carbon nanotubes.

然而,上述發明中提供的奈米碳管的每個片段均係由單一之同位素組成,因此可構成不同標識的奈米碳管的種類有限,從而使得使用該奈米碳管用於標記的物質的種類有限,限制了可以標記的物質的範圍。 However, each segment of the carbon nanotube provided in the above invention is composed of a single isotope, and thus the types of carbon nanotubes constituting different labels are limited, thereby making use of the carbon nanotubes for marking substances. The limited variety limits the range of substances that can be labeled.

有鑒於此,確有必要提供一種具有較多類型之一維奈米結構及其製備方法,以及應用該一維奈米結構用作標記的方法。 In view of this, it is indeed necessary to provide a method having a more type of one of the Venn structure and a preparation method thereof, and a method of applying the one-dimensional nanostructure as a mark.

一種一維奈米結構,該一維奈米結構包含一種元素之至少兩種同位素,該一維奈米結構由一維奈米結構片段組成,其中,至少一個一維奈米結構片段包括所述元素之至少兩種同位素,且該元素之至少兩種同位素按一定的質量比均勻混合。 a one-dimensional nanostructure comprising at least two isotopes of an element, the one-dimensional nanostructure consisting of a one-dimensional nanostructure fragment, wherein at least one one-dimensional nanostructure fragment comprises the At least two isotopes of the element, and at least two isotopes of the element are uniformly mixed in a certain mass ratio.

一種一維奈米結構之製備方法,包括以下步驟:提供反應源,該反應源包括兩種以上的單一同位素;提供一基底,並將該基底置入一反應室;以及利用化學氣相沈積法,將所述反應源中的至少兩種以上的同位素於所述反應室中同時發生反應,於基底上生長至少一一維奈米結構片段。 A method for preparing a one-dimensional nanostructure, comprising the steps of: providing a reaction source comprising two or more single isotopes; providing a substrate, and placing the substrate in a reaction chamber; and utilizing chemical vapor deposition And at least two or more isotopes in the reaction source are simultaneously reacted in the reaction chamber to grow at least one Vinyon structure fragment on the substrate.

一種使用一維奈米結構用作標記的方法,包括以下步驟:提供多種已知拉曼峰值之一維奈米結構,每一種一維奈米結構為上述的一維奈米結構;提供多種已知的待標記物,於該每個待標記物內植入所述一維奈米結構;採用拉曼光譜儀檢測所述植入有一維奈米結構之待標記物中的一維奈米結構的拉曼峰值;以及根據檢測到的一維奈米結構的拉曼峰值,識別所述待標記物的類型。 A method for using a one-dimensional nanostructure as a label, comprising the steps of: providing one of a plurality of known Raman peaks, each of which has the above-described one-dimensional nanostructure; Knowing the object to be labeled, implanting the one-dimensional nanostructure in each of the to-be-marked objects; detecting the one-dimensional nanostructure of the to-be-marked object implanted with the one-dimensional nanostructure by using a Raman spectrometer Raman peak; and identifying the type of the object to be marked based on the detected Raman peak of the one-dimensional nanostructure.

與先前技術相比較,本發明提供的一維奈米結構中的至少一個一維奈米結構片段包括一元素之至少兩種同位素,該元素之至少兩種同位素按一定的質量比均勻混合;由於同位素的種類不同或各同位素的質量比不同,所述的一維奈米結構也不同,因此本發明可以提供更多種類的一維奈米結構;本發明提供的一維奈米結構之製備方法可以製備出多種一維奈米結構。故,使用本發明提供的一維奈米結構可以用於標記更多不同的種類的物質,擴大了可以標記的物質的範圍。 Compared with the prior art, at least one one-dimensional nanostructure segment in the one-dimensional nanostructure provided by the present invention includes at least two isotopes of an element, and at least two isotopes of the element are uniformly mixed according to a certain mass ratio; The type of isotope is different or the mass ratio of each isotope is different, and the one-dimensional nanostructure is different, so the present invention can provide more kinds of one-dimensional nanostructures; the preparation method of the one-dimensional nanostructure provided by the present invention A variety of one-dimensional nanostructures can be prepared. Thus, the use of the one-dimensional nanostructure provided by the present invention can be used to label a greater variety of species, expanding the range of materials that can be labeled.

10;20;30‧‧‧奈米碳管 10;20;30‧‧・nano carbon tube

100‧‧‧奈米碳管製備裝置 100‧‧‧Nano carbon tube preparation device

102;103;104‧‧‧碳源氣輸入管道 102;103;104‧‧‧carbon source gas input pipeline

106‧‧‧反應爐 106‧‧‧Reaction furnace

112;113;114‧‧‧閥門 112; 113; 114‧‧‧ valves

116‧‧‧排氣通道 116‧‧‧Exhaust passage

118‧‧‧保護氣體輸入通道 118‧‧‧Protective gas input channel

132‧‧‧基底 132‧‧‧Base

134‧‧‧催化劑 134‧‧‧ Catalyst

210;310‧‧‧第一奈米碳管片段 210; 310‧‧‧ first carbon nanotube fragments

220;320‧‧‧第二奈米碳管片段 220; 320‧‧‧Second carbon nanotube fragments

230;330‧‧‧第三奈米碳管片段 230; 330‧‧‧ third carbon nanotube fragments

圖1係本發明第一實施例提供的奈米碳管的示意圖。 1 is a schematic view of a carbon nanotube provided by a first embodiment of the present invention.

圖2係本發明提供的製備第一實施例的奈米碳管所採用的奈米碳管製備裝置示意圖。 2 is a schematic view of a carbon nanotube preparation apparatus used in the preparation of the carbon nanotube of the first embodiment provided by the present invention.

圖3係本發明第二實施例提供的奈米碳管的示意圖。 3 is a schematic view of a carbon nanotube provided by a second embodiment of the present invention.

圖4係本發明第三實施例提供的奈米碳管的示意圖。 4 is a schematic view of a carbon nanotube provided by a third embodiment of the present invention.

圖5係本發明提供的使用奈米碳管用作標記的方法流程圖。 Figure 5 is a flow chart of a method for using a carbon nanotube as a marker provided by the present invention.

下面將結合附圖及具體實施例,對本發明提供的一維奈米結構、 其製備方法及使用該一維奈米結構用作標記的方法作進一步的詳細說明。 The one-dimensional nanostructure provided by the present invention will be described below with reference to the accompanying drawings and specific embodiments. The preparation method and the method of using the one-dimensional nanostructure as a label are further described in detail.

本發明提供一種一維奈米結構,該一維奈米結構包含一種元素之至少兩種同位素,該一維奈米結構由一維奈米結構片段組成,其中,至少一個一維奈米結構片段包括所述元素之至少兩種同位素,且該元素之至少兩種同位素按一定質量比均勻混合。 The present invention provides a one-dimensional nanostructure comprising at least two isotopes of an element, the one-dimensional nanostructure consisting of a one-dimensional nanostructure fragment, wherein at least one one-dimensional nanostructure fragment At least two isotopes of the element are included, and at least two isotopes of the element are uniformly mixed in a certain mass ratio.

當所述一維奈米結構由一個一維奈米結構片段組成時,該一維奈米結構包含一種元素之至少兩種同位素,且該元素之至少兩種同位素按一定的質量比均勻混合。所謂混合係指所述元素之至少兩種同位素相互分散而達到均勻的狀態。 When the one-dimensional nanostructure consists of a one-dimensional nanostructure fragment, the one-dimensional nanostructure comprises at least two isotopes of one element, and at least two isotopes of the element are uniformly mixed at a certain mass ratio. By mixing is meant that at least two isotopes of the element are dispersed to each other to achieve a uniform state.

當所述一維奈米結構由複數個一維奈米結構片段組成時,該一維奈米結構中相鄰的兩個一維奈米結構片段的組成不同。所述一維奈米結構片段中的組成不同,那麼所述一維奈米結構片段就不同。所述組成不同具體係指:組成相鄰的兩個一維奈米結構片段的所述元素的同位素不同,其中,該元素的同位素的質量比可以相同,也可以不相同;或組成相鄰的兩個一維奈米結構片段的所述元素的同位素相同,但該元素的各同位素的質量比不同。 When the one-dimensional nanostructure is composed of a plurality of one-dimensional nanostructure fragments, the composition of two adjacent one-dimensional nanostructure fragments in the one-dimensional nanostructure is different. The composition in the one-dimensional nanostructure fragment is different, and then the one-dimensional nanostructure fragment is different. The composition differs specifically: the isotopes of the elements constituting two adjacent one-dimensional nanostructure fragments are different, wherein the mass ratio of the isotopes of the elements may be the same or different; or the adjacent ones are formed. The isotopes of the elements of the two one-dimensional nanostructure fragments are the same, but the mass ratios of the isotopes of the elements are different.

所述一維奈米結構為奈米線或奈米管。所述奈米線可以為碳奈米線、氮化物奈米線、氧化物奈米線等奈米線狀結構。所述奈米管可以為奈米碳管、氮化物奈米管、氧化物奈米管等奈米管狀結構。其中,所述氮化物奈米管可以為氮化硼奈米管。所述氮化物奈米線可以為氮化鎵奈米線、氮化鋁奈米線或氮化矽奈米線等。所述氧化物奈米管可以為氧化鈦奈米管、氧化鐵奈米管或氧化釩奈米管等。所述氧化物奈米線可以為氧化鋅奈米線、氧化鈷奈米線 、氧化矽奈米線、氧化錫奈米線或氧化鐵奈米線等。所述一維奈米結構中的元素包括輕元素,該輕元素可以為碳元素、硼元素、氮元素或氧元素等。通過控制一維奈米結構中的輕元素的同位素的質量比,就可以得到所述一維奈米結構。如,通過控制碳元素的同位素的質量比,可以得到所述奈米碳管。所述氮化硼奈米管可以通過控制硼元素的同位素的質量比或氮元素的同位素的質量比得到。所述氮化鎵奈米線可以通過控制氮元素的同位素的質量比得到。所述氧化鋅奈米線可以通過控制氧元素的同位素的質量比得到。 The one-dimensional nanostructure is a nanowire or a nanotube. The nanowire may be a nanowire-like structure such as a carbon nanowire, a nitride nanowire, or an oxide nanowire. The nanotube tube may be a nano tubular structure such as a carbon nanotube, a nitride nanotube, or an oxide nanotube. Wherein, the nitride nanotube can be a boron nitride nanotube. The nitride nanowire may be a gallium nitride nanowire, an aluminum nitride nanowire, or a tantalum nitride nanowire. The oxide nanotube can be a titanium oxide nanotube, an iron oxide nanotube or a vanadium oxide nanotube. The oxide nanowire may be a zinc oxide nanowire or a cobalt oxide nanowire , yttrium oxide nanowire, tin oxide nanowire or iron oxide nanowire. The elements in the one-dimensional nanostructure include light elements, which may be carbon elements, boron elements, nitrogen elements or oxygen elements, and the like. The one-dimensional nanostructure can be obtained by controlling the mass ratio of the isotope of the light element in the one-dimensional nanostructure. For example, the carbon nanotube can be obtained by controlling the mass ratio of the isotope of carbon. The boron nitride nanotube can be obtained by controlling the mass ratio of the isotope of the boron element or the mass ratio of the isotope of the nitrogen element. The gallium nitride nanowire can be obtained by controlling the mass ratio of the isotope of the nitrogen element. The zinc oxide nanowire can be obtained by controlling the mass ratio of the isotope of the oxygen element.

下面以奈米碳管為例,進一步闡述本發明。 Hereinafter, the present invention will be further illustrated by taking a carbon nanotube as an example.

請參閱圖1,本發明第一實施例提供一奈米碳管10,該奈米碳管10由一個奈米碳管片段組成,該奈米碳管片段由碳元素之至少兩種同位素組成,且該碳元素之至少兩種同位素按一定的質量比均勻混合。所述碳元素之至少兩種同位素的質量比可以根據實際需要而確定。所述奈米碳管10的長度不限,根據需要確定,優選地,該奈米碳管10的長度為10~1000微米。所述碳元素的同位素包括12C、13C和14C。本實施例中,所述奈米碳管10由12C、13C及14C組成,且12C、13C及14C的質量比為7.2:6.5:5.6;該奈米碳管10的長度為10~50微米,直徑為0.5~50奈米。 Referring to FIG. 1, a first embodiment of the present invention provides a carbon nanotube 10, which is composed of a carbon nanotube segment composed of at least two isotopes of carbon. And at least two isotopes of the carbon element are uniformly mixed at a certain mass ratio. The mass ratio of at least two isotopes of the carbon element can be determined according to actual needs. The length of the carbon nanotube 10 is not limited, and it is determined as needed. Preferably, the carbon nanotube 10 has a length of 10 to 1000 μm. The carbon element isotope includes 12 C, 13 C and 14 C. In this embodiment, the carbon nanotubes 10 are composed of 12 C, 13 C and 14 C, and the mass ratio of 12 C, 13 C and 14 C is 7.2:6.5:5.6; the length of the carbon nanotubes 10 It is 10~50 microns and has a diameter of 0.5~50nm.

本發明提供一種利用化學氣相沈積法製備上述奈米碳管10的方法,該製備方法包括以下步驟:(s11)提供一奈米碳管製備裝置100以及一碳源氣,該碳源氣包含有三種碳元素的同位素;(s12)提供一沈積有催化劑134的基底132,並將該基底132置入奈米碳管製備裝置100中;(s13)利用化學氣相沈積法,將所述碳源氣按 照三種同位素預定的質量比同時通入所述奈米碳管製備裝置100中並發生反應,從而得到摻有同位素的奈米碳管10(圖未示)。 The present invention provides a method for preparing the above carbon nanotube 10 by chemical vapor deposition, the preparation method comprising the steps of: (s11) providing a carbon nanotube preparation device 100 and a carbon source gas, the carbon source gas comprising There are three carbon isotopes; (s12) a substrate 132 on which a catalyst 134 is deposited, and the substrate 132 is placed in the carbon nanotube preparation apparatus 100; (s13) the carbon is deposited by chemical vapor deposition Source gas press At the same time, a predetermined mass ratio of the three isotopes is introduced into the carbon nanotube preparation apparatus 100 and reacted, thereby obtaining an isotope-doped carbon nanotube 10 (not shown).

於所述步驟(s11)中,如圖2所示,奈米碳管製備裝置100包括一反應室110、一用於加熱該反應室110的反應爐106、一保護氣體輸入通道118、三個碳源氣輸入通道102、103、104、以及一排氣通道116。所述碳源氣輸入通道102有一閥門112,所述碳源氣輸入通道103有一閥門113,所述碳源氣輸入通道104有一閥門114。所述碳源氣為三種單獨的乙烯氣體,該三種乙烯氣體分別由單一之12C、13C和14C組成。 In the step (s11), as shown in FIG. 2, the carbon nanotube preparation apparatus 100 includes a reaction chamber 110, a reaction furnace 106 for heating the reaction chamber 110, a shielding gas input passage 118, and three The carbon source gas input channels 102, 103, 104, and an exhaust passage 116. The carbon source gas input passage 102 has a valve 112, the carbon source gas input passage 103 has a valve 113, and the carbon source gas input passage 104 has a valve 114. The carbon source gas is three separate ethylene gases, each consisting of a single 12 C, 13 C and 14 C.

於所述步驟(s12)中,所述催化劑134係厚度為5nm的鐵膜。該鐵膜可以通過沈積法、濺射法或蒸鍍法等方法形成於所述基底132上。 In the step (s12), the catalyst 134 is an iron film having a thickness of 5 nm. The iron film can be formed on the substrate 132 by a deposition method, a sputtering method, or an evaporation method.

於所述步驟(s13)中,首先,通過排氣通道116將反應室110抽真空後,通過保護氣體輸入通道118通入壓強為1個大氣壓的氬氣,同時通過反應爐106加熱反應室110至其溫度達700℃;其次,同時打開閥門112、113及114,通過碳源氣輸入通道102向反應室110內通入流量為120sccm(標準狀態下,每分鐘每立方釐米)由12C組成的乙烯氣體;通過碳源氣輸入通道103向反應室110內通入流量為100sccm,由13C組成的乙烯氣體;通過碳源氣輸入通道104向反應室110內通入流量為80sccm由14C組成的乙烯氣體;反應生成奈米碳管10,該奈米碳管10沈積於該催化劑134上;該奈米碳管10的由12C、13C及14C組成。 In the step (s13), first, after the reaction chamber 110 is evacuated through the exhaust passage 116, argon gas having a pressure of 1 atm is introduced through the shield gas input passage 118 while the reaction chamber 110 is heated by the reaction furnace 106. Until the temperature reaches 700 ° C; secondly, simultaneously open the valves 112, 113 and 114, through the carbon source gas input channel 102 into the reaction chamber 110 flow rate of 120sccm (standard state, per cubic centimeter per minute) consists of 12 C Ethylene gas; an ethylene gas having a flow rate of 100 sccm and consisting of 13 C is introduced into the reaction chamber 110 through the carbon source gas input passage 103; a flow rate of 80 sccm is introduced into the reaction chamber 110 through the carbon source gas input passage 104 by 14 C The ethylene gas is composed; the reaction produces a carbon nanotube 10, and the carbon nanotube 10 is deposited on the catalyst 134; the carbon nanotube 10 is composed of 12 C, 13 C and 14 C.

可以理解,所述碳源氣也可以為由12C、13C和14C組成的乙烯混合氣體;且該乙烯混合氣體中的12C、13C和14C的質量比為7.2:6.5 :5.6。然後,通過上述碳源氣輸入通道將該乙烯混合氣體通入所述反應室110進行反應,從而得到所述奈米碳管10。 It can be understood that the carbon source gas may also be an ethylene mixed gas composed of 12 C, 13 C and 14 C; and the mass ratio of 12 C, 13 C and 14 C in the ethylene mixed gas is 7.2:6.5:5.6. . Then, the ethylene mixed gas is introduced into the reaction chamber 110 through the carbon source gas input passage to carry out a reaction, thereby obtaining the carbon nanotubes 10.

可以理解,本製備方法中的催化劑134可以用鈷、鎳或其他合適的催化劑代替鐵;也可用其他含有單一碳元素同位素的碳氫化合物,如甲烷、乙炔、丙二烯等代替乙烯作為碳源氣使用,也可以採用氦氣、氮氣或者係氫氣等代替氬氣作為保護氣使用。 It can be understood that the catalyst 134 in the preparation method can replace iron with cobalt, nickel or other suitable catalyst; other hydrocarbons containing a single carbon isotope such as methane, acetylene, propadiene or the like can be used as a carbon source instead of ethylene. For gas use, helium, nitrogen or hydrogen may be used instead of argon as a shielding gas.

請參閱圖3,本發明第二實施例提供一種奈米碳管20。該奈米碳管20包括一第一奈米碳管片段210、一生成於該第一奈米碳管片段210上的第二奈米碳管片段220及一生長於該第二奈米碳管片段220上的第三奈米碳管片段230;即,該第二奈米碳管片段220位於所述第一奈米碳管片段210及第三奈米碳管片段230之間。所述第一奈米碳管片段210由12C及14C的組成,且12C及14C的質量比為8:7。所述第二奈米碳管片段220由12C、13C和14C組成,且12C、13C和14C的質量比為8:8:7。所述第三奈米碳管片段230由單一之12C組成。所述奈米碳管20的長度為30~50微米。 Referring to FIG. 3, a second embodiment of the present invention provides a carbon nanotube 20. The carbon nanotube 20 includes a first carbon nanotube segment 210, a second carbon nanotube segment 220 formed on the first carbon nanotube segment 210, and a second carbon nanotube segment grown on the second carbon nanotube segment. The third carbon nanotube segment 230 on 220; that is, the second carbon nanotube segment 220 is located between the first carbon nanotube segment 210 and the third carbon nanotube segment 230. The first carbon nanotube segment 210 is composed of 12 C and 14 C, and the mass ratio of 12 C and 14 C is 8:7. The second carbon nanotube section 220 is composed of 12 C, 13 C and 14 C, and the mass ratio of 12 C, 13 C and 14 C is 8:8:7. The third carbon nanotube segment 230 consists of a single 12 C. The carbon nanotubes 20 have a length of 30 to 50 microns.

可以理解,所述奈米碳管20不僅可以只包括上述三個奈米碳管片段,還可以包括其他組成的奈米碳管片段。而且各個片段的成分不限於此,質量比也不限於此,如所述第二奈米碳管片段220也可以由13C和14C的組成,13C和14C的質量比也可以為8:7。 It can be understood that the carbon nanotubes 20 may include not only the above three carbon nanotube segments but also other constituent carbon nanotube segments. Further, the composition of each segment is not limited thereto, and the mass ratio is not limited thereto. For example, the second carbon nanotube segment 220 may also be composed of 13 C and 14 C, and the mass ratio of 13 C to 14 C may also be 8 :7.

本發明還提供一種製備上述奈米碳管20的方法,該製備方法包括以下步驟:(s21)提供一奈米碳管製備裝置100以及三種碳源氣,該三種碳源氣均包含有單一同位素;(s22)提供一沈積有催化劑134的基底132,並將該基底132置入奈米碳管製備裝置100中;以及(s23)通過多次改變同時通入所述奈米碳管製備裝置100中 的碳源氣的組成,利用化學氣相沈積法,依次反應預定時間後,從而得到摻有同位素的奈米碳管20(圖未示),該奈米碳管20包括複數個奈米碳管片段。該製備方法與第一實施例的奈米碳管10的第一種製備方法基本相同,不同之處在於:步驟(s23)不同。 The invention also provides a method for preparing the above carbon nanotube 20, the preparation method comprising the steps of: (s21) providing a carbon nanotube preparation device 100 and three carbon source gases, each of which contains a single isotope (s22) providing a substrate 132 on which the catalyst 134 is deposited, and placing the substrate 132 in the carbon nanotube preparation device 100; and (s23) simultaneously introducing the carbon nanotube preparation device 100 by multiple changes in The composition of the carbon source gas is sequentially reacted by chemical vapor deposition for a predetermined time to obtain an isotope-doped carbon nanotube 20 (not shown), and the carbon nanotube 20 includes a plurality of carbon nanotubes Fragment. This preparation method is basically the same as the first preparation method of the carbon nanotube 10 of the first embodiment, except that the step (s23) is different.

請參閱圖2,所述步驟(s21)及(s22)與製備奈米碳管10的方法中的步驟(s11)及(s12)相同。 Referring to FIG. 2, the steps (s21) and (s22) are the same as the steps (s11) and (s12) in the method of preparing the carbon nanotube 10.

所述步驟(s23)具體包括以下步驟:首先,通過排氣通道116將反應室110抽真空後,通過保護氣體輸入通道118通入壓強為1個大氣壓的氬氣,同時通過反應爐106加熱反應室110至其溫度達700℃。 The step (s23) specifically includes the following steps. First, after the reaction chamber 110 is evacuated through the exhaust passage 116, argon gas having a pressure of 1 atm is introduced through the protective gas input passage 118 while heating the reaction through the reaction furnace 106. Chamber 110 to a temperature of 700 ° C.

其次,同時打開閥門112及114,通過碳源氣輸入通道102向反應室110內通入流量為120sccm由12C組成的乙烯氣體;通過碳源氣輸入通道104向反應室110內通入流量為90sccm由14C組成的乙烯氣體;反應生成第一奈米碳管片段210(圖未示),該第一奈米碳管片段210沈積於所述催化劑134上;該第一奈米碳管片段210由12C及14C組成。 Next, the valves 112 and 114 are simultaneously opened, and the ethylene gas composed of 12 C having a flow rate of 120 sccm is introduced into the reaction chamber 110 through the carbon source gas input passage 102; the flow rate is introduced into the reaction chamber 110 through the carbon source gas input passage 104. 90 sccm of ethylene gas consisting of 14 C; reacting to form a first carbon nanotube segment 210 (not shown), the first carbon nanotube segment 210 is deposited on the catalyst 134; the first carbon nanotube segment 210 consists of 12 C and 14 C.

再次,反應預定時間後,輸入到反應室110內的由12C和14C組成的乙烯氣體的流量保持不變,並打開閥門113,通過碳源氣輸入通道103向反應室110內通入流量為110sccm由13C組成的乙烯氣體,反應生成第二奈米碳管片段220(圖未示),該第二奈米碳管片段220生長於所述第一奈米碳管片段210上;該第二奈米碳管片段220由12C、13C和14C組成。 Further, after the predetermined reaction time, the flow rate of the ethylene gas composed of 12 C and 14 C input into the reaction chamber 110 is kept constant, and the valve 113 is opened, and the flow rate is introduced into the reaction chamber 110 through the carbon source gas input passage 103. An ethylene gas composed of 13 C is 110 sccm, and reacts to form a second carbon nanotube segment 220 (not shown), and the second carbon nanotube segment 220 is grown on the first carbon nanotube segment 210; The second carbon nanotube section 220 is composed of 12 C, 13 C and 14 C.

然後,反應預定時間後,同時關閉閥門113及114,閥門112依然 打開,氣體輸入通道102內的由12C組成的乙烯氣體繼續通入反應室110內;反應生成第三奈米碳管片段230(圖未示),該第三奈米碳管片段230生長於所述第二奈米碳管片段220上;該第三奈米碳管片段230由12C組成。 Then, after the reaction for a predetermined time, the valves 113 and 114 are simultaneously closed, the valve 112 is still opened, and the ethylene gas consisting of 12 C in the gas input passage 102 continues to pass into the reaction chamber 110; the reaction generates a third carbon nanotube segment 230. (not shown), the third carbon nanotube segment 230 is grown on the second carbon nanotube segment 220; the third carbon nanotube segment 230 is composed of 12 C.

最後,繼續反應預定時間後,將反應室110冷卻至室溫,於催化劑134上得到摻有同位素的奈米碳管20。 Finally, after the reaction is continued for a predetermined period of time, the reaction chamber 110 is cooled to room temperature, and an isotope-doped carbon nanotube 20 is obtained on the catalyst 134.

所述奈米碳管30也可以通過先將上述三種碳源氣中碳元素的同位素分別按照12C及14C的質量比為8:7,12C、13C和14C的質量比為8:8:7,以及單一之12C進行混合,得到三種碳源氣混合氣體;然後再將該三種碳源氣混合氣體按照需要的順序依次通入所述奈米碳管製備裝置100中進行反應的方法來製備。 The carbon nanotubes 30 may also have a mass ratio of carbon atoms of the above three carbon source gases to a ratio of 12 C to 14 C of 8:7, 12 C, 13 C and 14 C, respectively. : 8:7, and a single 12 C is mixed to obtain three carbon source gas mixed gases; and then the three carbon source gas mixed gases are sequentially introduced into the carbon nanotube preparation device 100 in the desired order for reaction. The method to prepare.

請參閱圖4,本發明第三實施例提供一奈米碳管30,該奈米碳管30包括一第一奈米碳管片段310、一第二奈米碳管片段320以及一第三奈米碳管片段330,所述第二奈米碳管片段320設置於所述第一奈米碳管片段310及第三奈米碳管片段330之間。所述第一奈米碳管片段310由12C、13C和14C組成,且12C、13C及14C的質量比為14:14:13。所述第二奈米碳管片段320由12C、13C和14C組成,且12C、13C及14C的質量比為7.2:6.5:5.6。所述第三奈米碳管片段330由12C、13C和14C組成,且12C、13C及14C的質量比為5.5:6.5:7。所述奈米碳管30的長度為50~100微米。 Referring to FIG. 4, a third embodiment of the present invention provides a carbon nanotube 30. The carbon nanotube 30 includes a first carbon nanotube segment 310, a second carbon nanotube segment 320, and a third nanotube. The carbon nanotube segment 330, the second carbon nanotube segment 320 is disposed between the first carbon nanotube segment 310 and the third carbon nanotube segment 330. The first carbon nanotube segment 310 is composed of 12 C, 13 C and 14 C, and the mass ratio of 12 C, 13 C and 14 C is 14:14:13. The second carbon nanotube section 320 is composed of 12 C, 13 C and 14 C, and the mass ratio of 12 C, 13 C and 14 C is 7.2:6.5:5.6. The third carbon nanotube segment 330 is composed of 12 C, 13 C and 14 C, and the mass ratio of 12 C, 13 C and 14 C is 5.5:6.5:7. The carbon nanotubes 30 have a length of 50 to 100 microns.

可以理解,所述奈米碳管30不僅可以只包括上述三個奈米碳管片段,還可以包括其他組成的奈米碳管片段;而且各個片段的成分不限於此,質量比也不限於此,如;所述奈米碳管30還可以包括一生長於所述第三奈米碳管片段330上的第四奈米碳管片段,即 所述第三奈米碳管片段330生長於所述第二奈米碳管片段320及第四奈米碳管片段之間;所述第四奈米碳管片段340由13C和14C組成,且13C及14C的質量比為1:1。 It can be understood that the carbon nanotubes 30 may include not only the above three carbon nanotube segments but also other constituent carbon nanotube segments; and the composition of each segment is not limited thereto, and the mass ratio is not limited thereto. The carbon nanotube 30 may further include a fourth carbon nanotube segment grown on the third carbon nanotube segment 330, that is, the third carbon nanotube segment 330 is grown in the Between the second carbon nanotube segment 320 and the fourth carbon nanotube segment; the fourth carbon nanotube segment 340 is composed of 13 C and 14 C, and the mass ratio of 13 C and 14 C is 1:1. .

可以理解,本發明提供的奈米碳管30也可以採用製備奈米碳管20的方法製備,通過多次改變通入所述反應室110中的碳源氣中的同位素的質量比,使所述碳源氣發生反應,來製備該奈米碳管30;具體地,可以通過控制通入反應室110中的碳源氣的流量來改變通入所述反應室110中的碳源氣中的同位素的質量比。 It can be understood that the carbon nanotube 30 provided by the present invention can also be prepared by the method for preparing the carbon nanotube 20 by changing the mass ratio of the isotope in the carbon source gas introduced into the reaction chamber 110 a plurality of times. The carbon source gas is reacted to prepare the carbon nanotube 30; specifically, the carbon source gas introduced into the reaction chamber 110 can be changed by controlling the flow rate of the carbon source gas introduced into the reaction chamber 110. The mass ratio of isotopes.

另外,也可以利用化學氣相沈積法來製備其他的一維奈米結構,如,氮化物奈米線、氮化物奈米線、氧化物奈米線或氧化物奈米管等。這些一維奈米結構之製備方法,可以包括以下步驟:提供反應源,該反應源包括兩種以上的單一同位素;提供一基底,並將該基底置入一反應室;以及利用化學氣相沈積法,將所述反應源中的至少兩種以上的同位素於所述反應室中同時發生反應,於基底上生長至少一一維奈米結構片段。 In addition, other one-dimensional nanostructures such as nitride nanowires, nitride nanowires, oxide nanowires or oxide nanotubes can also be prepared by chemical vapor deposition. The method for preparing the one-dimensional nanostructure may include the steps of: providing a reaction source comprising two or more single isotopes; providing a substrate, and placing the substrate in a reaction chamber; and utilizing chemical vapor deposition In the method, at least two or more isotopes in the reaction source are simultaneously reacted in the reaction chamber to grow at least one Vinyon structure fragment on the substrate.

其中,只要控制參加反應的輕元素的同位素的質量比,就可以得到所述一維奈米結構。所述反應源所包括的物質的種類根據所述一維奈米結構來決定。如,製備氮化鎵奈米線的反應源就包括氮源氣和鎵源。具體地,當所述一維奈米結構為氮化鎵奈米線,該氮化鎵奈米線為一個氮化鎵奈米線片段,且包括兩種氮元素的同位素時,通過控制通入所述反應室中的氮源氣中氮元素的兩種同位素的質量比,於催化劑的作用下,使該氮源氣中的兩種同位素同時與鎵源反應,從而生成所述氮化鎵奈米線。所述氮源氣可以為氨氣、氮氣等。所述鎵源可以為氧化鎵等鎵的化合物。 Among them, the one-dimensional nanostructure can be obtained by controlling the mass ratio of the isotope of the light element participating in the reaction. The kind of the substance included in the reaction source is determined according to the one-dimensional nanostructure. For example, a reaction source for preparing a gallium nitride nanowire includes a nitrogen source gas and a gallium source. Specifically, when the one-dimensional nanostructure is a gallium nitride nanowire, the gallium nitride nanowire is a gallium nitride nanowire segment, and includes two isotopes of nitrogen, through control access The mass ratio of the two isotopes of the nitrogen element in the nitrogen source gas in the reaction chamber is such that the two isotopes in the nitrogen source gas simultaneously react with the gallium source under the action of the catalyst, thereby generating the gallium nitride naphthalene Rice noodles. The nitrogen source gas may be ammonia gas, nitrogen gas or the like. The gallium source may be a compound of gallium such as gallium oxide.

同理,通過控制通入所述反應室中的氮源氣中氮元素的同位素的組成,於催化劑的作用下,使該氮源氣中的兩種同位素同時與硼源反應,就可以生成所述氮化硼奈米管。通過控制通入所述反應室中的氧源氣中氧元素的同位素的組成,使該氧源氣中的兩種同位素同時與鋅源反應,就可以生成所述氧化鋅奈米線。 Similarly, by controlling the composition of the isotope of the nitrogen element in the nitrogen source gas introduced into the reaction chamber, the two isotopes in the nitrogen source gas are simultaneously reacted with the boron source under the action of the catalyst, thereby generating a A boron nitride nanotube. The zinc oxide nanowire can be produced by controlling the composition of the isotope of the oxygen element in the oxygen source gas introduced into the reaction chamber so that the two isotopes in the oxygen source gas simultaneously react with the zinc source.

請參閱圖5,本發明還提供一種採用一維奈米結構用作標記的方法,該方法包括以下步驟:提供多種已知拉曼峰值之一維奈米結構,每一種一維奈米結構包含一種元素之至少兩種同位素,該一維奈米結構由一維奈米結構片段組成,至少一個一維奈米結構片段包括所述元素之至少兩種同位素,且該元素之至少兩種同位素按一定的質量比均勻混合;提供多種已知的待標記物,於該每個待標記物內植入所述一維奈米結構;採用拉曼光譜儀檢測所述植入有一維奈米結構的待標記物中的一維奈米結構的拉曼峰值;以及根據檢測到的一維奈米結構的拉曼峰值,識別所述待標記物的類型。 Referring to FIG. 5, the present invention also provides a method for using a one-dimensional nanostructure as a mark, the method comprising the steps of: providing one of a plurality of known Raman peaks, each of which comprises a one-dimensional nanostructure At least two isotopes of an element, the one-dimensional nanostructure consisting of a one-dimensional nanostructure fragment, at least one one-dimensional nanostructure fragment comprising at least two isotopes of the element, and at least two isotopes of the element a certain mass ratio is uniformly mixed; a plurality of known to-be-labeled materials are provided, and the one-dimensional nanostructure is implanted in each of the to-be-labeled objects; and the one-dimensional nanostructure is implanted by Raman spectroscopy a Raman peak of the one-dimensional nanostructure in the marker; and identifying the type of the marker to be marked based on the detected Raman peak of the one-dimensional nanostructure.

其中,所述待標記物含有活性基團;該活性基團為羥基(-OH)、羧基(-COOH)、氨基(-NH2或-NH-)、醯基(-CO-)或硝基(-NO2)。具體地,所述待標記物可以為DNA、蛋白質、葡萄糖、葡萄糖酸、澱粉、生物酶、山梨醇或有機胺等含有活性基團的物質。 Wherein the label to be labeled contains a reactive group; the reactive group is a hydroxyl group (-OH), a carboxyl group (-COOH), an amino group (-NH 2 or -NH-), a thiol group (-CO-) or a nitro group. (-NO 2 ). Specifically, the label to be labeled may be a substance containing a reactive group such as DNA, protein, glucose, gluconic acid, starch, biological enzyme, sorbitol or organic amine.

請一併參閱圖1,圖3及圖4,本實施例提供一種檢測葡萄糖酸、葡萄糖、山梨醇的方法,具體包括以下步驟: Please refer to FIG. 1 , FIG. 3 and FIG. 4 . The embodiment provides a method for detecting gluconic acid, glucose, and sorbitol, and specifically includes the following steps:

(1)提供第一實施例的奈米碳管10,第二實施例的奈米碳管20及第三實施例的奈米碳管30;其中,奈米碳管10的拉曼峰值為L1 ,奈米碳管20的拉曼峰值為L2,奈米碳管30的拉曼峰值為L3。 (1) The carbon nanotube 10 of the first embodiment, the carbon nanotube 20 of the second embodiment, and the carbon nanotube 30 of the third embodiment are provided; wherein the Raman peak of the carbon nanotube 10 is L1 The Raman peak of the carbon nanotube 20 is L2, and the Raman peak of the carbon nanotube 30 is L3.

(2)提供三個已知待標記物葡萄糖酸、葡萄糖、山梨醇,把奈米碳管10植入待標記物葡萄糖酸中,奈米碳管20植入待標記物葡萄糖中,奈米碳管30植入待標記物山梨醇中,其中,奈米碳管10、20、30並不影響待標記物的特性。 (2) Providing three known markers to be labeled gluconic acid, glucose, sorbitol, implanting the carbon nanotube 10 into the gluconic acid to be labeled, and implanting the carbon nanotube 20 into the glucose to be labeled, nanocarbon The tube 30 is implanted into the sorbitol to be labeled, wherein the carbon nanotubes 10, 20, 30 do not affect the characteristics of the label to be labeled.

(3)採用拉曼光譜儀對含有植入奈米碳管的葡萄糖酸、葡萄糖、山梨醇進行檢測,得到奈米碳管的拉曼峰值;檢測到的拉曼峰值分別為L1、L2、L3。 (3) Raman spectroscopy was used to detect gluconic acid, glucose and sorbitol containing implanted carbon nanotubes to obtain the Raman peak of the carbon nanotubes; the detected Raman peaks were L1, L2 and L3, respectively.

(4)根據檢測到的奈米碳管的拉曼峰值,識別所述葡萄糖酸、葡萄糖、山梨醇。 (4) The gluconic acid, glucose, and sorbitol are identified based on the Raman peak of the detected carbon nanotubes.

具體地,奈米碳管不同,所得的拉曼峰值也不同;奈米碳管相同,所得到的拉曼峰值也相同;拉曼峰值為L1的奈米碳管為奈米碳管10,由步驟(2)可知,奈米碳管10植入葡萄糖中,因此,步驟(3)中檢測到的拉曼峰值為L1的待標記物為葡萄糖酸。同理,步驟(3)中檢測到的拉曼峰值為L2的待標記物為葡萄糖;拉曼峰值為L3的待標記物為山梨醇。 Specifically, the carbon nanotubes are different, and the obtained Raman peaks are also different; the carbon nanotubes are the same, and the obtained Raman peaks are also the same; the carbon nanotubes having the Raman peak of L1 are the carbon nanotubes 10, In step (2), the carbon nanotube 10 is implanted in the glucose. Therefore, the analyte to be labeled having the Raman peak of L1 detected in the step (3) is gluconic acid. Similarly, the target to be labeled having the Raman peak value of L2 detected in the step (3) is glucose; the object to be labeled having the Raman peak of L3 is sorbitol.

通過上述的標記方法,可以研究所述待標記物葡萄糖酸、葡萄糖、山梨醇於同一環境中的變化狀態,有利於科學研究。 Through the above-mentioned labeling method, the state of change of the gluconic acid, glucose, and sorbitol to be labeled in the same environment can be studied, which is favorable for scientific research.

可以理解,上述用作標記的奈米碳管不限於上述奈米碳管10、20、30;本發明提供的標記待標記物的方法可以同時標記兩種或兩種以上物質,只要係能提供多少種奈米碳管即能標記多少種待標記物。上述標記待標記物的方法也可以應用到其他領域中,如藥品。 It can be understood that the above-mentioned carbon nanotubes used as labels are not limited to the above-mentioned carbon nanotubes 10, 20, 30; the method for labeling the labels provided by the present invention can simultaneously mark two or more substances as long as they can provide How many kinds of carbon nanotubes can mark how many markers to mark. The above method of labeling a label to be labeled can also be applied to other fields such as medicines.

本發明實施例提供的一維奈米結構中的至少一個一維奈米結構片段包括一元素之至少兩種同位素,該元素之至少兩種同位素按一定的質量比均勻混合;由於同位素的種類不同或各同位素的質量比不同,所述的一維奈米結構也不同,因此,本發明實施例可以提供更多種類的一維奈米結構;本發明實施例提供的一維奈米結構之製備方法也可以製備出多種的一維奈米結構。故,使用本發明實施例提供的一維奈米結構可以同時標記更多種類的物質,不但擴大了可以標記的物質的範圍;而且有利於研究待標記物的性能,以及該多種待標記物於同一環境下的狀態變化。 At least one one-dimensional nanostructure segment in the one-dimensional nanostructure provided by the embodiment of the present invention includes at least two isotopes of an element, at least two isotopes of the element are uniformly mixed according to a certain mass ratio; Or the mass ratio of each isotope is different, and the one-dimensional nanostructure is different. Therefore, the embodiment of the present invention can provide more kinds of one-dimensional nanostructures; the preparation of the one-dimensional nanostructure provided by the embodiment of the present invention A variety of one-dimensional nanostructures can also be prepared by the method. Therefore, the one-dimensional nanostructure provided by the embodiment of the present invention can simultaneously mark a wider variety of substances, which not only expands the range of substances that can be labeled, but also facilitates research on the properties of the objects to be labeled, and the plurality of objects to be labeled. State changes in the same environment.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

20‧‧‧奈米碳管 20‧‧‧Nano Carbon Tube

210‧‧‧第一奈米碳管片段 210‧‧‧First carbon nanotube fragment

220‧‧‧第二奈米碳管片段 220‧‧‧Second carbon nanotube fragments

230‧‧‧第三奈米碳管片段 230‧‧‧ third carbon nanotube fragments

Claims (13)

一種一維奈米結構,該一維奈米結構包含一種元素之至少兩種同位素,該一維奈米結構由複數個一維奈米結構片段組成,其改良在於,至少兩個相鄰的一維奈米結構片段中每一個一維奈米結構片段包括所述元素之至少兩種同位素,且該元素之至少兩種同位素按一定的質量比均勻混合,且該至少兩個相鄰的一維奈米結構片段的組成不同。 A one-dimensional nanostructure comprising at least two isotopes of an element, the one-dimensional nanostructure consisting of a plurality of one-dimensional nanostructure fragments, the improvement being that at least two adjacent ones Each of the one-dimensional nanostructure fragments in the Vennell structure segment includes at least two isotopes of the element, and at least two isotopes of the element are uniformly mixed at a certain mass ratio, and the at least two adjacent one-dimensional The composition of the nanostructure fragments is different. 如請求項第1項所述之一維奈米結構,其中,所述至少兩個相鄰的一維奈米結構片段中的所述元素的同位素不同。 A one of the Vennian structures of claim 1, wherein the at least two adjacent one-dimensional nanostructure fragments have different isotopes of the elements. 如請求項第1項所述之一維奈米結構,其中,所述至少兩個相鄰的一維奈米結構片段中的所述元素的同位素相同,該元素的同位素的質量比不同。 The Venn structure of claim 1, wherein the at least two adjacent one-dimensional nanostructure fragments have the same isotopes of the elements, and the isotope mass ratios of the elements are different. 如請求項第1至3項中任一項所述之一維奈米結構,其中,所述一維奈米結構為奈米碳管、碳奈米線、氮化物奈米管、氮化物奈米線、氧化物奈米管或氧化物奈米線。 The one-dimensional nanostructure according to any one of claims 1 to 3, wherein the one-dimensional nanostructure is a carbon nanotube, a carbon nanowire, a nitride nanotube, or a nitride nanocap. Rice noodles, oxide nanotubes or oxide nanowires. 如請求項第1至3項中任一項所述之一維奈米結構,其中,所述元素為碳、硼、氮或氧。 The one of the above-described items of any one of claims 1 to 3, wherein the element is carbon, boron, nitrogen or oxygen. 一種一維奈米結構之製備方法,包括以下步驟:提供反應源,該反應源包括兩種以上的單一同位素;提供一基底,並將該基底置入一反應室;以及通過多次改變同時置於所述反應室中的反應源的組成,依次反應預定時間後,得到一生長於一基底的摻有同位素的一維奈米結構,該一維奈米結構包括複數個一維奈米結構片段,其中,至少相鄰的兩次進入該反應室中的反應源包含至少兩種同位素,且該至少相鄰的兩次進入該反應室 中的反應源的組成不同。 A method for preparing a one-dimensional nanostructure, comprising the steps of: providing a reaction source comprising two or more single isotopes; providing a substrate and placing the substrate in a reaction chamber; and simultaneously setting the plurality of changes The composition of the reaction source in the reaction chamber is sequentially reacted for a predetermined time to obtain an isotope-doped one-dimensional nanostructure grown on a substrate, the one-dimensional nanostructure comprising a plurality of one-dimensional nanostructure fragments, Wherein at least two adjacent reaction sources entering the reaction chamber comprise at least two isotopes, and the at least two adjacent ones enter the reaction chamber The composition of the reaction source is different. 如請求項第6項所述之一維奈米結構之製備方法,其中,所述改變同時置於所述反應室中的反應源的組成的方法為改變置於所述反應室中的反應源之同位素的種類。 The method for preparing a Venn structure according to Item 6, wherein the method of changing the composition of the reaction source simultaneously placed in the reaction chamber is to change a reaction source placed in the reaction chamber. The type of isotope. 如請求項第6項所述之一維奈米結構之製備方法,其中,所述改變同時置於所述反應室中的反應源的組成的方法為改變置於所述反應室中的反應源中的同位素的質量比。 The method for preparing a Venn structure according to Item 6, wherein the method of changing the composition of the reaction source simultaneously placed in the reaction chamber is to change a reaction source placed in the reaction chamber. The mass ratio of isotopes in the medium. 如請求項第6項所述之一維奈米結構之製備方法,其中,所述一維奈米結構為奈米碳管;所述反應源為碳源氣,該碳源氣包括兩種以上的單一碳元素的同位素;所述基底上沈積有催化劑。 The method for preparing a Venn structure according to Item 6, wherein the one-dimensional nanostructure is a carbon nanotube; the reaction source is a carbon source gas, and the carbon source gas includes two or more types. An isotope of a single carbon element; a catalyst is deposited on the substrate. 一種使用一維奈米結構用作標記的方法,包括以下步驟:提供多種已知拉曼峰值之一維奈米結構,每一種一維奈米結構為如請求項第1-5項任意一項所述之一維奈米結構;提供多種已知的待標記物,於該每個待標記物內植入所述一維奈米結構;採用拉曼光譜儀檢測所述植入有一維奈米結構之待標記物中的一維奈米結構的拉曼峰值;以及根據檢測到的一維奈米結構的拉曼峰值,識別所述待標記物的類型。 A method for using a one-dimensional nanostructure as a marker, comprising the steps of: providing one of a plurality of known Raman peaks, each of which is one of the claims 1-5 One of the Venn structure; providing a plurality of known markers to be implanted, implanting the one-dimensional nanostructure in each of the markers; detecting the implanted one-dimensional nanostructure by Raman spectroscopy a Raman peak of the one-dimensional nanostructure in the marker to be marked; and identifying the type of the marker to be marked based on the detected Raman peak of the one-dimensional nanostructure. 如請求項第10項所述之使用一維奈米結構用作標記的方法,其中,所述待標記物含有活性基團。 A method of using a one-dimensional nanostructure as a label as described in claim 10, wherein the label to be labeled contains a reactive group. 如請求項第11項所述之使用一維奈米結構用作標記的方法,其中,所述活性基團為羥基、羧基、氨基、醯基或硝基。 The method of using a one-dimensional nanostructure as the labeling as described in claim 11, wherein the reactive group is a hydroxyl group, a carboxyl group, an amino group, a thiol group or a nitro group. 如請求項第10項所述之使用一維奈米結構用作標記的方法,其中,所述待標記物為DNA、蛋白質、葡萄糖、葡萄糖酸、澱粉、生物酶、山梨醇或有機胺。 The method of using a one-dimensional nanostructure as a label according to claim 10, wherein the label to be labeled is DNA, protein, glucose, gluconic acid, starch, biological enzyme, sorbitol or organic amine.
TW099110094A 2010-04-01 2010-04-01 One dimensional nano structure, method for making the same and using the same as label TWI491555B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099110094A TWI491555B (en) 2010-04-01 2010-04-01 One dimensional nano structure, method for making the same and using the same as label

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099110094A TWI491555B (en) 2010-04-01 2010-04-01 One dimensional nano structure, method for making the same and using the same as label

Publications (2)

Publication Number Publication Date
TW201134750A TW201134750A (en) 2011-10-16
TWI491555B true TWI491555B (en) 2015-07-11

Family

ID=46751624

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099110094A TWI491555B (en) 2010-04-01 2010-04-01 One dimensional nano structure, method for making the same and using the same as label

Country Status (1)

Country Link
TW (1) TWI491555B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030141A1 (en) * 1998-11-12 2000-05-25 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
JP2003034514A (en) * 2001-07-17 2003-02-07 National Institute Of Advanced Industrial & Technology Carbon material with controlled isotope ratio and method for manufacturing the same
US20040101685A1 (en) * 2002-11-27 2004-05-27 Shou-Shan Fan Isotope-doped carbon nanotube and method and apparatus for forming the same
TW200538389A (en) * 2004-05-28 2005-12-01 Hon Hai Prec Ind Co Ltd A carbon nanotube and methods for making the same
JP2009528969A (en) * 2006-01-30 2009-08-13 本田技研工業株式会社 Method and apparatus for high quality single-walled carbon nanotube growth

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030141A1 (en) * 1998-11-12 2000-05-25 The Board Of Trustees Of The Leland Stanford Junior University Self-oriented bundles of carbon nanotubes and method of making same
JP2003034514A (en) * 2001-07-17 2003-02-07 National Institute Of Advanced Industrial & Technology Carbon material with controlled isotope ratio and method for manufacturing the same
US20040101685A1 (en) * 2002-11-27 2004-05-27 Shou-Shan Fan Isotope-doped carbon nanotube and method and apparatus for forming the same
TW200538389A (en) * 2004-05-28 2005-12-01 Hon Hai Prec Ind Co Ltd A carbon nanotube and methods for making the same
JP2009528969A (en) * 2006-01-30 2009-08-13 本田技研工業株式会社 Method and apparatus for high quality single-walled carbon nanotube growth

Also Published As

Publication number Publication date
TW201134750A (en) 2011-10-16

Similar Documents

Publication Publication Date Title
US8361803B2 (en) Isotope-doped nano-structure and isotope labeled structure using the same
US8236389B2 (en) Method for making carbon nanotube films
CN100551822C (en) A kind of preparation method of two-dimension single layer plumbago alkene
Li et al. On the origin of preferential growth of semiconducting single-walled carbon nanotubes
US20110020211A1 (en) High Throughput Carbon Nanotube Growth System, and Carbon Nanotubes and Carbon Nanofibers Formed Thereby
Mauron et al. Synthesis of oriented nanotube films by chemical vapor deposition
Ding et al. Why carbon nanotubes grow
JP2009501068A (en) Method for manufacturing and coating nanostructured components
Fan et al. Dynamic State and active structure of Ni–Co catalyst in carbon nanofiber growth revealed by in situ transmission electron microscopy
CN102092704A (en) Device and method for preparing carbon nanotube array
Li-Pook-Than et al. Phases of carbon nanotube growth and population evolution from in situ Raman spectroscopy during chemical vapor deposition
JP3537811B2 (en) Method for producing single-walled carbon nanotube
Navas et al. Unveiling the evolutions of nanotube diameter distribution during the growth of single-walled carbon nanotubes
Xiang Atomic precision manufacturing of carbon nanotube—A perspective
Nyembe et al. Indium phosphide nanowires: Synthesis and integration into a gas sensing device
Huang et al. Crystalline nanodiamond-induced formation of carbon nanotubes for stable hydrogen sensing
Su et al. Selective growth of boron nitride nanotubes by the plasma-assisted and iron-catalytic CVD methods
CN104944412B (en) A kind of preparation method of semi-conductive single-walled carbon nanotubes
TWI491555B (en) One dimensional nano structure, method for making the same and using the same as label
Kurt et al. Structure and field emission properties of decorated C/N nanotubes tuned by diameter variations
Sun et al. Solution-phase synthesis of Au@ ZnO core-shell composites
Penev et al. Mechanisms and theoretical simulations of the catalytic growth of nanocarbons
Li et al. Morphology and field emission from ZnO nanowire arrays synthesized at different temperature
Häffner et al. Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes
Nishihara et al. Statistical verification of anomaly in chiral angle distribution of air-suspended carbon nanotubes