TWI451081B - Electromagnetic ray sensing system and method of the same - Google Patents

Electromagnetic ray sensing system and method of the same Download PDF

Info

Publication number
TWI451081B
TWI451081B TW100127085A TW100127085A TWI451081B TW I451081 B TWI451081 B TW I451081B TW 100127085 A TW100127085 A TW 100127085A TW 100127085 A TW100127085 A TW 100127085A TW I451081 B TWI451081 B TW I451081B
Authority
TW
Taiwan
Prior art keywords
module
ray imaging
electromagnetic ray
image capturing
electromagnetic
Prior art date
Application number
TW100127085A
Other languages
Chinese (zh)
Other versions
TW201305555A (en
Inventor
Jhihyuan Chen
Jhekai Chen
Chihtien Tsai
Shihliang Chen
Kuangpu Wen
Original Assignee
Test Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Test Research Inc filed Critical Test Research Inc
Priority to TW100127085A priority Critical patent/TWI451081B/en
Publication of TW201305555A publication Critical patent/TW201305555A/en
Application granted granted Critical
Publication of TWI451081B publication Critical patent/TWI451081B/en

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

電磁射線攝像系統及方法Electromagnetic ray camera system and method

本揭示內容是有關於一種電磁射線攝像之裝置,且特別是有關於一種電磁射線攝像系統及其方法。The present disclosure relates to an apparatus for electromagnetic ray imaging, and more particularly to an electromagnetic ray imaging system and method thereof.

積體電路晶片之連接結構常需藉由焊錫或其他技術進行連接。這些連接技術是否能夠穩固地積體電路晶片的模組進行電性連接,將影響到運作之正常與否。因此,現有之技術常藉由X射線之顯影方式來對晶片進行拍攝,以得知積體電路晶片的接點狀況。The connection structure of the integrated circuit chip is often connected by solder or other techniques. Whether these connection technologies can firmly connect the modules of the integrated circuit chip for electrical connection will affect the normal operation or not. Therefore, the prior art often photographs a wafer by X-ray development to know the contact state of the integrated circuit wafer.

然而,習知的攝像系統常受到機構角度的限制無法對積體電路晶片進行較全面性的取像,亦或在攝像模組的移動機構進行往返的拍攝時,容易產生取像畫面不平順的問題。部份技術則藉由固定攝像模組,而使承載晶片的平台移動進行攝像的方式,亦具有不易固定待測物位置及旋轉中心的缺點。However, the conventional camera system is often limited by the mechanism angle, and the integrated circuit chip cannot be taken comprehensively, or when the moving mechanism of the camera module performs the round-trip shooting, the image capturing screen is likely to be uneven. problem. Some technologies have the disadvantage that it is difficult to fix the position of the object to be tested and the center of rotation by fixing the camera module and moving the platform on which the wafer is carried.

因此,如何設計一個新的電磁射線攝像系統及其方法,以克服上述之問題,乃為此一業界亟待解決的問題。Therefore, how to design a new electromagnetic ray camera system and its method to overcome the above problems is an urgent problem to be solved in the industry.

因此,本揭示內容之一態樣是在提供一種電磁射線攝像系統,包含:旋轉平台模組、傾斜角控制模組、待測物承載模組、射源模組以及取像模組。旋轉平台模組包含位於水平面上之環狀結構,以相對垂直於水平面之垂直中心軸進行旋轉。傾斜角控制模組包含旋轉半框,旋轉半框之兩端點分別藉由旋轉樞軸連接於環狀結構上水平直徑之兩端,俾相對水平直徑進行旋轉。待測物承載模組設置於環狀結構所環繞之中空部份,俾承載待測物。射源模組設置於待測物承載模組之第一側,以提供電磁射線。取像模組設置於旋轉半框上,俾於環狀旋轉平台模組旋轉至特定旋轉角度且傾斜角控制模組旋轉至特定傾斜角度時,於待測物承載模組之第二側對穿透待測物之電磁射線進行感測。Therefore, one aspect of the present disclosure is to provide an electromagnetic ray imaging system, comprising: a rotating platform module, a tilt angle control module, a test object carrying module, a source module, and an image capturing module. The rotating platform module includes an annular structure on a horizontal surface that rotates relative to a vertical central axis that is perpendicular to the horizontal plane. The tilt angle control module comprises a rotating half frame, and the two end points of the rotating half frame are respectively connected to the two ends of the horizontal diameter on the annular structure by a rotating pivot, and the crucible rotates relative to the horizontal diameter. The test object carrying module is disposed in a hollow portion surrounded by the annular structure, and carries the object to be tested. The source module is disposed on the first side of the object bearing module to provide electromagnetic radiation. The image capturing module is disposed on the rotating half frame, and is worn on the second side of the object bearing module when the ring rotating platform module rotates to a specific rotation angle and the tilt angle control module rotates to a specific tilt angle. The electromagnetic radiation of the object to be tested is sensed.

依據本揭示內容一實施例,其中待測物承載模組根據取像模組之特定旋轉角度及特定傾斜角度進行水平位移補償,以使射源模組、待測物以及取像模組位於直線上。According to an embodiment of the present disclosure, the load bearing module of the object to be tested performs horizontal displacement compensation according to a specific rotation angle of the image capturing module and a specific tilting angle, so that the source module, the object to be tested, and the image capturing module are located in a straight line. on.

依據本揭示內容另一實施例,其中待測物承載模組進行垂直位移,俾調整取像模組之取像倍率。According to another embodiment of the present disclosure, the object carrying module of the object to be tested performs vertical displacement, and the image capturing magnification of the image capturing module is adjusted.

依據本揭示內容又一實施例,其中傾斜角控制模組之特定傾斜角度相對旋轉平台模組之中央位置之範圍至少為0至±70度。According to still another embodiment of the present disclosure, the specific tilt angle of the tilt angle control module is at least 0 to ±70 degrees with respect to a central position of the rotary platform module.

依據本揭示內容再一實施例,其中旋轉半框為方形框或弧形框。According to still another embodiment of the present disclosure, the rotating half frame is a square frame or an arc frame.

依據本揭示內容更具有之一實施例,其中電磁射線為X射線,取像模組為X射線感測模組。待測物為積體電路晶片,取像模組係感測積體電路晶片之連接結構圖像。According to the disclosure, there is an embodiment in which the electromagnetic ray is an X-ray and the image capturing module is an X-ray sensing module. The object to be tested is an integrated circuit chip, and the image capturing module senses a connection structure image of the integrated circuit chip.

本揭示內容之另一態樣是在提供一種電磁射線攝像方法,應用於電磁射線攝像系統中,包含下列步驟。使電磁射線攝像系統之旋轉平台模組相對垂直中心軸旋轉至特定旋轉角度,其中旋轉平台模組包含位於水平面上之環狀結構,垂直中心軸垂直於水平面。使電磁射線攝像系統之傾斜角控制模組相對環狀結構上水平直徑旋轉至特定傾斜角度,其中傾斜角控制模組包含旋轉半框,其兩端點分別藉由旋轉樞軸連接於水平直徑之兩端。使電磁射線攝像系統之射源模組於設置於環狀結構所環繞之中空部份之待測物承載模組之第一側提供電磁射線。使設置於旋轉半框上之取像模組,於待測物承載模組之第二側對穿透待測物承載模組上之待測物之電磁射線進行感測。Another aspect of the present disclosure is to provide an electromagnetic ray imaging method for use in an electromagnetic ray imaging system comprising the following steps. The rotating platform module of the electromagnetic ray camera system is rotated relative to the vertical central axis to a specific rotation angle, wherein the rotating platform module comprises an annular structure on a horizontal plane, the vertical central axis being perpendicular to the horizontal plane. The tilt angle control module of the electromagnetic ray camera system is rotated relative to the horizontal diameter of the annular structure to a specific tilt angle, wherein the tilt angle control module comprises a rotating half frame, and the two end points are respectively connected to the horizontal diameter by a rotating pivot Both ends. The electromagnetic source of the electromagnetic radiation imaging system is provided on the first side of the test object carrying module disposed in the hollow portion surrounded by the annular structure. The image capturing module disposed on the rotating half frame senses the electromagnetic rays of the object to be tested that penetrates the object bearing module to be tested on the second side of the object carrying module.

依據本揭示內容一實施例,電磁射線攝像方法更包含一步驟:使待測物承載模組根據取像模組之特定旋轉角度及特定傾斜角度進行水平位移補償。其中待測物承載模組藉由水平位移補償使射源模組、待測物以及取像模組位於一直線上。According to an embodiment of the present disclosure, the electromagnetic ray imaging method further includes a step of: causing the load bearing module of the object to be tested to perform horizontal displacement compensation according to a specific rotation angle of the image capturing module and a specific tilt angle. The test object carrying module is configured to position the source module, the object to be tested, and the image capturing module on a straight line by horizontal displacement compensation.

依據本揭示內容另一實施例,電磁射線攝像方法更包含一步驟:使待測物承載模組進行垂直位移,俾調整取像模組之取像倍率。According to another embodiment of the present disclosure, the electromagnetic ray imaging method further includes a step of: vertically shifting the load bearing module of the object to be tested, and adjusting the image capturing magnification of the image capturing module.

依據本揭示內容又一實施例,其中特定傾斜角度相對旋轉平台模組之中央位置之範圍至少為0至±70度。According to still another embodiment of the present disclosure, the specific tilt angle is at least 0 to ±70 degrees with respect to a central position of the rotating platform module.

依據本揭示內容再一實施例,其中電磁射線為X射線,取像模組為X射線感測模組。待測物為積體電路晶片,取像模組感測積體電路晶片之連接結構圖像。According to still another embodiment of the present disclosure, the electromagnetic ray is an X-ray, and the image capturing module is an X-ray sensing module. The object to be tested is an integrated circuit chip, and the image capturing module senses an image of the connection structure of the integrated circuit chip.

應用本揭示內容之優點係在於藉由旋轉平台模組及傾斜角控制模組之設置,使取像模組能夠以簡單的機械結構進行大角度的移動,可以進行連續平順的攝像過程,而輕易地達到上述之目的。The advantage of applying the disclosure is that the setting of the rotating platform module and the tilt angle control module enables the image capturing module to be moved at a large angle with a simple mechanical structure, and the continuous smoothing process can be performed easily. The ground achieves the above purpose.

請參照第1圖。第1圖為本揭示內容一實施例中,電磁射線攝像系統1之立體圖。電磁射線攝像系統1包含:旋轉平台模組10、傾斜角控制模組12、待測物承載模組14、射源模組16以及取像模組18。Please refer to Figure 1. 1 is a perspective view of an electromagnetic ray imaging system 1 in an embodiment of the disclosure. The electromagnetic ray imaging system 1 includes a rotating platform module 10, a tilt angle control module 12, a sample bearing module 14, a source module 16, and an image capturing module 18.

旋轉平台模組10之本體為位於一個水平面上之環狀結構,其具有轉動之機構(未繪示),以相對垂直於水平面之垂直中心軸11進行旋轉。需注意的是,上述之水平面僅是為進行各模組間相對位置說明而述,並非一特定之水平面。請同時參照第2A圖。第2A圖為本揭示內容一實施例中,電磁射線攝像系統1在旋轉平台模組10於不同旋轉角度時之示意圖。由第2A圖可知,旋轉平台模組10之環狀結構將可相對垂直中心軸11旋轉(如第1圖及第2A圖所繪示之A方向),以依需求達到一個特定之旋轉角度。需注意的是,旋轉平台模組10於不同實施例中,可以進行順時針或逆時針方向之旋轉,不為本說明書各圖式中繪示之方向所限。The body of the rotary table module 10 is an annular structure on a horizontal surface having a rotating mechanism (not shown) for rotating relative to a vertical central axis 11 perpendicular to the horizontal plane. It should be noted that the above-mentioned horizontal plane is only for the description of the relative position between the modules, and is not a specific horizontal plane. Please also refer to Figure 2A. FIG. 2A is a schematic diagram of the electromagnetic ray imaging system 1 in the rotation platform module 10 at different rotation angles according to an embodiment of the disclosure. As can be seen from Fig. 2A, the annular structure of the rotary table module 10 is rotatable relative to the vertical central axis 11 (as shown in Figures 1 and 2A) to achieve a particular angle of rotation as desired. It should be noted that in different embodiments, the rotary platform module 10 can be rotated clockwise or counterclockwise, and is not limited by the directions shown in the various drawings of the specification.

傾斜角控制模組12之本體為一個旋轉半框。於本實施例中,旋轉半框之形狀為方形框。然而於不同之實施例中,旋轉半框之形狀亦可為弧形框或是其他形狀之框架。旋轉半框之兩端點分別藉由旋轉樞軸120及122連接於旋轉平台模組10之環狀結構上一個水平直徑13的兩端。因此,傾斜角控制模組12可以相對水平直徑13進行旋轉。請參照第2B圖。第2B圖為本揭示內容一實施例中,電磁射線攝像系統1在傾斜角控制模組12於不同旋轉角度時之示意圖。由第2B圖可知,傾斜角控制模組12之旋轉半框將可相對水平直徑13旋轉(如第1圖及第2B圖所繪示之B方向),以依需求達到與旋轉平台模組10上方和水平直徑13對齊的中央位置相差之一個特定傾斜角度。需注意的是,傾斜角控制模組12於不同實施例中,可以進行順時針或逆時針方向之旋轉,不為本說明書各圖式中繪示之方向所限。於本實施例中,此特定傾斜角度之範圍至少為0至±70度。The body of the tilt angle control module 12 is a rotating half frame. In this embodiment, the shape of the rotating half frame is a square frame. However, in various embodiments, the shape of the rotating half frame may also be a curved frame or a frame of other shapes. The two end points of the rotating half frame are respectively connected to both ends of a horizontal diameter 13 on the annular structure of the rotary table module 10 by the rotating pivots 120 and 122. Therefore, the tilt angle control module 12 can be rotated relative to the horizontal diameter 13. Please refer to Figure 2B. FIG. 2B is a schematic diagram of the electromagnetic ray imaging system 1 in the tilt angle control module 12 at different rotation angles according to an embodiment of the disclosure. As can be seen from FIG. 2B, the rotating half frame of the tilt angle control module 12 can be rotated relative to the horizontal diameter 13 (such as the B direction shown in FIGS. 1 and 2B) to reach the rotating platform module 10 as needed. The central position at which the upper and horizontal diameters 13 are aligned differs by a particular angle of inclination. It should be noted that the tilt angle control module 12 can be rotated in a clockwise or counterclockwise direction in different embodiments, and is not limited by the directions illustrated in the various drawings of the specification. In this embodiment, the specific tilt angle ranges from at least 0 to ±70 degrees.

待測物承載模組14設置於旋轉平台模組10之環狀結構所環繞之中空部份100。待測物承載模組14可用以承載待測物15。於一實施例中,待測物15為一個積體電路晶片。請同時參照第3A圖及第3B圖。第3A圖及第3B圖分別為電磁射線攝像系統1中的待測物承載模組14、射源模組16以及取像模組18之側視圖。待測物承載模組14於一實施例中,包含可移動之移動機構,以進行如第3A圖所示之水平方向C的位移或是如第3B圖所示之垂直方向D的位移。The object bearing module 14 is disposed on the hollow portion 100 surrounded by the annular structure of the rotating platform module 10. The DUT 14 can be used to carry the DUT 15 . In one embodiment, the object to be tested 15 is an integrated circuit chip. Please refer to both Figures 3A and 3B. 3A and 3B are side views of the object-bearing module 14, the source module 16, and the image capturing module 18 in the electromagnetic ray imaging system 1, respectively. In one embodiment, the DUT 14 includes a movable moving mechanism for performing a displacement in the horizontal direction C as shown in FIG. 3A or a displacement in the vertical direction D as shown in FIG. 3B.

射源模組16設置於待測物承載模組14之第一側,以提供電磁射線17(繪示於第3A圖及第3B圖)。於一實施例中,此電磁射線17可為X射線。取像模組18則設置於傾斜角控制模組12之旋轉半框上。於本實施例中,取像模組18是固定於旋轉半框約略中間的位置。因此,當環狀旋轉平台模組10旋轉至特定旋轉角度,且傾斜角控制模組12旋轉至特定傾斜角度時,取像模組18自待測物承載模組14與第一側相反之第二側對由射源模組16發射後,穿透待測物15之電磁射線17進行感測。The source module 16 is disposed on the first side of the object bearing module 14 to provide electromagnetic rays 17 (shown in FIGS. 3A and 3B). In an embodiment, the electromagnetic radiation 17 can be X-rays. The image capturing module 18 is disposed on the rotating half frame of the tilt angle control module 12. In the embodiment, the image capturing module 18 is fixed at a position approximately in the middle of the rotating half frame. Therefore, when the annular rotating platform module 10 is rotated to a specific rotation angle, and the tilting angle control module 12 is rotated to a specific tilting angle, the image capturing module 18 is opposite to the first side of the object bearing module 14 After the two sides are emitted by the source module 16, the electromagnetic rays 17 penetrating the object to be tested 15 are sensed.

於一實施例中,待測物承載模組14在如第3A圖所示之水平方向C之移動可達到一水平位移補償之效果,使射源模組16、待測物15以及取像模組18位於一個直線上,以達到最佳的取像效果。而待測物承載模組14在如第3B圖所示之垂直方向D上的位移,則可以調整取像模組18的取像倍率。舉例來說,待測物承載模組14向接近取像模組18的方向移動時,將可使倍率降低,獲得較大的視野,而向背離取像模組18的方向移動時,將獲得較小的視野,可使倍率提升。In an embodiment, the movement of the DUT 14 in the horizontal direction C as shown in FIG. 3A can achieve a horizontal displacement compensation effect, so that the source module 16, the object to be tested 15, and the image capturing mode are obtained. Group 18 is located on a straight line for optimal image capture. The displacement of the image bearing module 14 in the vertical direction D as shown in FIG. 3B can adjust the image capturing magnification of the image capturing module 18. For example, when the DUT 14 is moved in the direction of approaching the image capturing module 18, the magnification can be reduced to obtain a larger field of view, and when moving away from the image capturing module 18, it will be obtained. A smaller field of view can increase the magnification.

因此,當待測物15為積體電路晶片時,取像模組18可以藉由環狀旋轉平台模組10與傾斜角控制模組12的角度控制,達到大角度範圍的取像,以感測積體電路晶片之連接結構圖像,進一步判斷積體電路晶片各連接結構的接合是否良好。除具有可藉由簡單機構達到大範圍的取像角度之優點外,本揭示內容之電磁射線攝像系統1亦可達到平順取像之功效。Therefore, when the object to be tested 15 is an integrated circuit chip, the image capturing module 18 can be controlled by the angle of the annular rotating platform module 10 and the tilting angle control module 12 to achieve image capturing in a large angle range. The connection structure image of the integrated circuit chip is further determined whether the bonding of the connection structures of the integrated circuit wafer is good. In addition to the advantages of being able to achieve a wide range of imaging angles by a simple mechanism, the electromagnetic ray imaging system 1 of the present disclosure can also achieve the effect of smooth imaging.

請參照第4圖。第4圖為本揭示內容一實施例中,一種電磁射線攝像方法之流程圖。電磁射線攝像方法可應用於如第1圖所示之電磁射線攝像系統1中。電磁射線攝像方法包含下列步驟(應瞭解到,在本實施方式中所提及的步驟,除特別敘明其順序者外,均可依實際需要調整其前後順序,甚至可同時或部分同時執行)。Please refer to Figure 4. FIG. 4 is a flow chart of an electromagnetic ray imaging method according to an embodiment of the disclosure. The electromagnetic ray imaging method can be applied to the electromagnetic ray imaging system 1 as shown in Fig. 1. The electromagnetic ray imaging method includes the following steps (it should be understood that the steps mentioned in the present embodiment can be adjusted according to actual needs, except that the order is specifically described, and may be performed simultaneously or partially simultaneously) .

於步驟401,使電磁射線攝像系統1之旋轉平台模組10相對垂直中心軸11旋轉至特定旋轉角度,其中旋轉平台模組10包含位於水平面上之環狀結構,垂直中心軸11垂直於水平面。於步驟402,使電磁射線攝像系統1之傾斜角控制模組12相對環狀結構上水平直徑13旋轉至特定傾斜角度,其中傾斜角控制模組12包含旋轉半框,其兩端點分別藉由旋轉樞軸120及122連接於環狀結構上水平直徑13之兩端。於步驟403,使電磁射線攝像系統1之射源模組16於設置於環狀結構所環繞之中空部份之待測物承載模組14之第一側提供電磁射線17。於步驟404,使設置於旋轉半框上之取像模組18,於待測物承載模組14之第二側對穿透待測物承載模組14上之待測物15之電磁射線17進行感測。In step 401, the rotating platform module 10 of the electromagnetic ray imaging system 1 is rotated relative to the vertical central axis 11 to a specific rotation angle, wherein the rotating platform module 10 includes an annular structure on a horizontal plane, and the vertical central axis 11 is perpendicular to the horizontal plane. In step 402, the tilt angle control module 12 of the electromagnetic ray imaging system 1 is rotated relative to the horizontal diameter 13 of the annular structure to a specific tilt angle, wherein the tilt angle control module 12 includes a rotating half frame, the two ends of which are respectively Rotating pivots 120 and 122 are coupled to both ends of the horizontal diameter 13 of the annular structure. In step 403, the source module 16 of the electromagnetic ray imaging system 1 is provided with electromagnetic radiation 17 on a first side of the DUT 14 disposed in the hollow portion surrounded by the annular structure. In step 404, the image capturing module 18 disposed on the rotating half frame is placed on the second side of the object bearing module 14 to penetrate the electromagnetic radiation 17 of the object to be tested 15 on the object bearing module 14 to be tested. Perform sensing.

應用本揭示內容之優點係在於藉由旋轉平台模組及傾斜角控制模組之設置,使取像模組能夠以簡單的機械結構進行大角度的移動,可以進行連續平順的攝像過程,而輕易地達到上述之目的。The advantage of applying the disclosure is that the setting of the rotating platform module and the tilt angle control module enables the image capturing module to be moved at a large angle with a simple mechanical structure, and the continuous smoothing process can be performed easily. The ground achieves the above purpose.

雖然本揭示內容已以實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of the disclosure is subject to the definition of the scope of the patent application.

1...電磁射線攝像系統1. . . Electromagnetic ray camera system

10...旋轉平台模組10. . . Rotary platform module

100...中空部份100. . . Hollow part

11...垂直中心軸11. . . Vertical central axis

12...傾斜角控制模組12. . . Tilt angle control module

120、122...旋轉樞軸120, 122. . . Rotating pivot

13...水平直徑13. . . Horizontal diameter

14...待測物承載模組14. . . DUT bearing module

15...待測物15. . . Analyte

16...射源模組16. . . Source module

17...電磁射線17. . . Electromagnetic radiation

18...取像模組18. . . Image capture module

401-404...步驟401-404. . . step

為讓本揭示內容之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:The above and other objects, features, advantages and embodiments of the present disclosure will become more apparent and understood.

第1圖為本揭示內容一實施例中,電磁射線攝像系統之立體圖;1 is a perspective view of an electromagnetic ray imaging system in an embodiment of the disclosure;

第2A圖為本揭示內容一實施例中,電磁射線攝像系統在旋轉平台模組於不同旋轉角度時之示意圖;2A is a schematic diagram of an electromagnetic ray imaging system in a rotating platform module at different rotation angles according to an embodiment of the disclosure;

第2B圖為本揭示內容一實施例中,電磁射線攝像系統在傾斜角控制模組於不同旋轉角度時之示意圖;2B is a schematic diagram of an electromagnetic ray imaging system in a tilt angle control module at different rotation angles according to an embodiment of the disclosure;

第3A圖及第3B圖分別為電磁射線攝像系統中的待測物承載模組、射源模組以及取像模組之側視圖。3A and 3B are side views of the object-bearing module, the source module, and the image capturing module in the electromagnetic ray imaging system, respectively.

第4圖為本揭示內容一實施例中,一種電磁射線攝像方法之流程圖。FIG. 4 is a flow chart of an electromagnetic ray imaging method according to an embodiment of the disclosure.

1...電磁射線攝像系統1. . . Electromagnetic ray camera system

10...旋轉平台模組10. . . Rotary platform module

100...中空部份100. . . Hollow part

11...垂直中心軸11. . . Vertical central axis

12...傾斜角控制模組12. . . Tilt angle control module

120、122...旋轉樞軸120, 122. . . Rotating pivot

13...水平直徑13. . . Horizontal diameter

14...待測物承載模組14. . . DUT bearing module

15...待測物15. . . Analyte

16...射源模組16. . . Source module

18...取像模組18. . . Image capture module

Claims (15)

一種電磁射線攝像系統,包含:一旋轉平台模組,包含位於一水平面上之一環狀結構,以相對垂直於該水平面之一垂直中心軸進行旋轉;一傾斜角控制模組,包含一旋轉半框,該旋轉半框之兩端點分別藉由一旋轉樞軸連接於該環狀結構上一水平直徑之兩端,俾相對該水平直徑進行旋轉;一待測物承載模組,設置於該環狀結構所環繞之一中空部份,俾承載一待測物;一射源模組,設置於該待測物承載模組之一第一側,以提供一電磁射線;以及一取像模組,設置於該旋轉半框上,俾於該旋轉平台模組旋轉至一特定旋轉角度且該傾斜角控制模組旋轉至一特定傾斜角度時,於該待測物承載模組之一第二側對穿透該待測物之該電磁射線進行感測。 An electromagnetic ray imaging system comprising: a rotating platform module comprising an annular structure on a horizontal surface for rotating relative to a vertical central axis perpendicular to the horizontal plane; a tilt angle control module comprising a rotating half a frame, the two ends of the rotating half frame are respectively connected to the two ends of a horizontal diameter of the annular structure by a rotating pivot, and the 俾 is rotated relative to the horizontal diameter; a sample bearing module is disposed at the a hollow portion surrounding the annular structure, the raft carrying an object to be tested; a source module disposed on a first side of the load carrying module of the object to be tested to provide an electromagnetic ray; and an image capturing module The set is disposed on the rotating half frame, and when the rotating platform module rotates to a specific rotation angle and the tilt angle control module rotates to a specific tilt angle, the second one of the load carrying modules of the object to be tested is The side senses the electromagnetic radiation that penetrates the object to be tested. 如請求項1所述之電磁射線攝像系統,其中該待測物承載模組根據該取像模組之該特定旋轉角度及該特定傾斜角度進行一水平位移補償。 The electromagnetic ray imaging system of claim 1, wherein the object bearing module performs a horizontal displacement compensation according to the specific rotation angle of the image capturing module and the specific tilt angle. 如請求項2所述之電磁射線攝像系統,其中該待測物承載模組藉由該水平位移補償使該射源模組、該待測物以及該取像模組位於一直線上。The electromagnetic ray imaging system of claim 2, wherein the test object carrying module is configured to position the source module, the object to be tested, and the image capturing module in a straight line by the horizontal displacement compensation. 如請求項1所述之電磁射線攝像系統,其中該待測物承載模組係進行一垂直位移,俾調整該取像模組之一取像倍率。The electromagnetic ray imaging system of claim 1, wherein the object to be tested carries a vertical displacement, and adjusts an image magnification of the image capturing module. 如請求項1所述之電磁射線攝像系統,其中該傾斜角控制模組之該特定傾斜角度相對該旋轉平台模組之一中央位置之範圍至少為0至±70度。The electromagnetic ray imaging system of claim 1, wherein the specific tilt angle of the tilt angle control module is at least 0 to ±70 degrees with respect to a central position of the rotary platform module. 如請求項1所述之電磁射線攝像系統,其中該旋轉半框為一方形框或一弧形框。The electromagnetic ray imaging system of claim 1, wherein the rotating half frame is a square frame or a curved frame. 如請求項1所述之電磁射線攝像系統,其中該電磁射線為X射線,該取像模組為一X射線感測模組。The electromagnetic ray imaging system of claim 1, wherein the electromagnetic ray is an X-ray, and the image capturing module is an X-ray sensing module. 如請求項7所述之電磁射線攝像系統,其中該待測物為一積體電路晶片,該取像模組係感測該積體電路晶片之一連接結構圖像。The electromagnetic ray imaging system of claim 7, wherein the object to be tested is an integrated circuit chip, and the image capturing module senses a connection structure image of the integrated circuit chip. 一種電磁射線攝像方法,應用於一電磁射線攝像系統中,包含下列步驟:使該電磁射線攝像系統之一旋轉平台模組相對一垂直中心軸旋轉至一特定旋轉角度,其中旋轉平台模組包含位於一水平面上之一環狀結構,該垂直中心軸垂直於該水平面;使該電磁射線攝像系統之一傾斜角控制模組相對該環狀結構上一水平直徑旋轉至一特定傾斜角度,其中該傾斜角控制模組包含一旋轉半框,其兩端點分別藉由一旋轉樞軸連接於該水平直徑之兩端;使該電磁射線攝像系統之一射源模組於設置於該環狀結構所環繞之一中空部份之一待測物承載模組之一第一側提供一電磁射線;以及使設置於該旋轉半框上之一取像模組,於該待測物承載模組之一第二側對穿透該待測物承載模組上之一待測物之該電磁射線進行感測。An electromagnetic ray imaging method is applied to an electromagnetic ray imaging system, comprising the steps of: rotating a rotating platform module of the electromagnetic ray imaging system to a specific rotation angle with respect to a vertical central axis, wherein the rotating platform module is located An annular structure on a horizontal plane, the vertical central axis being perpendicular to the horizontal plane; rotating the tilt angle control module of the electromagnetic radiation camera system relative to a horizontal diameter of the annular structure to a specific tilt angle, wherein the tilt The angle control module includes a rotating half frame, and the two end points are respectively connected to the two ends of the horizontal diameter by a rotating pivot; a source module of the electromagnetic ray imaging system is disposed in the annular structure Providing an electromagnetic ray on a first side of one of the test object carrying modules surrounding one of the hollow portions; and an image capturing module disposed on the rotating half frame, one of the load bearing modules of the object to be tested The second side senses the electromagnetic radiation that penetrates one of the objects to be tested on the test object carrying module. 如請求項9所述之電磁射線攝像方法,更包含一步驟:使該待測物承載模組根據該取像模組之該特定旋轉角度及該特定傾斜角度進行一水平位移補償。The electromagnetic ray imaging method of claim 9, further comprising the step of: causing the object bearing module to perform a horizontal displacement compensation according to the specific rotation angle of the image capturing module and the specific tilt angle. 如請求項10所述之電磁射線攝像方法,其中該待測物承載模組藉由該水平位移補償使該射源模組、該待測物以及該取像模組位於一直線上。The electromagnetic ray imaging method of claim 10, wherein the test object carrying module is configured to position the source module, the object to be tested, and the image capturing module in a straight line by the horizontal displacement compensation. 如請求項9所述之電磁射線攝像方法,更包含一步驟:使該待測物承載模組進行一垂直位移,俾調整該取像模組之一取像倍率。The electromagnetic ray imaging method of claim 9, further comprising the step of: performing a vertical displacement of the object bearing module to adjust the image capturing magnification of the image capturing module. 如請求項9所述之電磁射線攝像方法,其中該特定傾斜角度相對該旋轉平台模組之一中央位置之範圍至少為0至±70度。The electromagnetic ray imaging method according to claim 9, wherein the specific tilt angle is at least 0 to ±70 degrees with respect to a central position of the rotating platform module. 如請求項9所述之電磁射線攝像方法,其中該電磁射線為X射線,該取像模組為一X射線感測模組。The electromagnetic ray imaging method according to claim 9, wherein the electromagnetic ray is an X-ray, and the image capturing module is an X-ray sensing module. 如請求項14所述之電磁射線攝像方法,其中該待測物為一積體電路晶片,該取像模組係感測該積體電路晶片之一連接結構圖像。The electromagnetic ray imaging method of claim 14, wherein the object to be tested is an integrated circuit chip, and the image capturing module senses a connection structure image of the integrated circuit chip.
TW100127085A 2011-07-29 2011-07-29 Electromagnetic ray sensing system and method of the same TWI451081B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100127085A TWI451081B (en) 2011-07-29 2011-07-29 Electromagnetic ray sensing system and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100127085A TWI451081B (en) 2011-07-29 2011-07-29 Electromagnetic ray sensing system and method of the same

Publications (2)

Publication Number Publication Date
TW201305555A TW201305555A (en) 2013-02-01
TWI451081B true TWI451081B (en) 2014-09-01

Family

ID=48169118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100127085A TWI451081B (en) 2011-07-29 2011-07-29 Electromagnetic ray sensing system and method of the same

Country Status (1)

Country Link
TW (1) TWI451081B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114201A (en) * 2001-10-02 2003-04-18 Shimadzu Corp Fluoroscopic radiographic apparatus
TW200840422A (en) * 2006-12-01 2008-10-01 Shimadzu Corp X-ray fluoroscopic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114201A (en) * 2001-10-02 2003-04-18 Shimadzu Corp Fluoroscopic radiographic apparatus
TW200840422A (en) * 2006-12-01 2008-10-01 Shimadzu Corp X-ray fluoroscopic apparatus

Also Published As

Publication number Publication date
TW201305555A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
US10545102B2 (en) Coordinate alignment tool for coordinate measuring device and measuring X-ray CT apparatus
US7792242B2 (en) X-ray CT system and X-ray CT method
JPWO2009078415A1 (en) X-ray inspection apparatus and method
JP7164130B2 (en) Equipment for length measurement error evaluation of X-ray CT equipment for three-dimensional shape measurement
JP6471151B2 (en) X-ray inspection system and method for rotating a test object using such an X-ray inspection system
JP2019114542A (en) Method of sample orientation for making tem slice
CN108426901A (en) A kind of X-ray demixing scan imaging system
JP2008300394A (en) Substrate joining device and substrate joining method
JP4834373B2 (en) X-ray inspection apparatus, X-ray inspection method, and X-ray inspection program
CN111077172A (en) X-ray CT imaging device
JP6460670B2 (en) Spherical shape measuring method and apparatus
KR20170005781A (en) Microchip x-ray computed tomography system and inspection method using the same
JP2006292465A (en) X-ray inspection device, x-ray inspection method and x-ray inspection program
JP5648898B2 (en) CT equipment
TWI451081B (en) Electromagnetic ray sensing system and method of the same
JP4537090B2 (en) Tomosynthesis equipment
CN109817541A (en) Scan method, control device, detection unit and production system
JP2009063387A (en) X-ray tomographic imaging device and x-ray tomographic imaging method
WO2021118729A1 (en) Customizable probe cards, probe systems including the same, and related methods
JP5813468B2 (en) Charged particle beam device and method for measuring and correcting landing angle of charged particle beam
JP2007333596A (en) X-ray ct system
JP4058523B2 (en) Calibrator and calibration method
JP5125297B2 (en) X-ray inspection apparatus and X-ray inspection method
CN211955272U (en) X-ray CT imaging device
JP4016265B2 (en) X-ray CT system