TWI432253B - 臭氧製造方法及其於工業製程上之用途 - Google Patents

臭氧製造方法及其於工業製程上之用途 Download PDF

Info

Publication number
TWI432253B
TWI432253B TW96115320A TW96115320A TWI432253B TW I432253 B TWI432253 B TW I432253B TW 96115320 A TW96115320 A TW 96115320A TW 96115320 A TW96115320 A TW 96115320A TW I432253 B TWI432253 B TW I432253B
Authority
TW
Taiwan
Prior art keywords
ozone
oxygen
stream
gas stream
exhaust
Prior art date
Application number
TW96115320A
Other languages
English (en)
Other versions
TW200808432A (en
Inventor
Naresh Suchak
Ravi Jain
Kelly Visconti
Steven J Finley
Original Assignee
Boc Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boc Group Inc filed Critical Boc Group Inc
Publication of TW200808432A publication Critical patent/TW200808432A/zh
Application granted granted Critical
Publication of TWI432253B publication Critical patent/TWI432253B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

臭氧製造方法及其於工業製程上之用途
本發明係關於臭氧製造方法及其於工業製程上之用途。
最近的聯邦及地方環境法律需要非常顯著地減少將有害氣體物質排放至大氣中。此等有害空氣污染物質中主要污染物質係氧化氮(NOx )。回應於對此等法律之嚴格執行的成果,工業空氣污染者已作出相當大的努力來減少進入空氣中之此等有害物質在自工業來源或城市來源之氣體排出物中的量。減少NOx 在氣體排出物中之濃度之成功工作通常涉及使廢氣中之NOx 與基於氮之還原劑反應。
自氣流移除NOX之另一已知的方法涉及使NOX與臭氧接觸,藉此將其氧化為較高價氧化氮(諸如,N2 O5 )且藉由水洗器將較高價氧化物自氣流移除。
基於臭氧之NOx 氧化製程之具體細節揭示於美國專利第5,206,002號、第5,316,737號、第5,985,223號及第6,197,268號中,其揭示內容以引用方式併入本文中。
另外,環保署所提出之資訊已展示環境中之汞量已達有可能導致不利健康影響之數量。有害之人為汞排放之最大來源之一為煤炭燃燒電站鍋爐,但有害者亦包括NOx 及SOx 排放源。
由於嚴厲之空氣污染控制法令,氧化性空氣污染減少方法已變得日益重要。與工業中已實踐之許多方法相比,基於將臭氧添加至廢氣之方法對於工業尤其有吸引力,此歸因於該方法在與現有之空氣污染設備整合過程中之簡單性及容易性。但目前本業界可市購之臭氧產生器僅能將10%至12%之氧氣轉化為臭氧,因此需要之氧氣供應為臭氧需求量之8至10倍。當自產生器尋求更高之轉化率時,功率消耗及資金成本即快速增加,且對冷卻水需求亦快速增加。因此,臭氧通常成本太高而阻礙其被廣泛應用為污染處理劑。
本發明為一種改良之氧化製程,其有利地整合氧氣源、臭氧產生及其利用,且顯著地減少自工業氣流移除諸如NOx 、Hg、SOx 、Cl/HCl之各種污染物質過程中之總成本。此種基於臭氧之氧化製程亦可減少存在於廢氣流中之戴奧辛、呋喃、PCB、VOC及有氣味之物質。
在本製程中,自使用氧氣之可市購之臭氧產生器以低濃度但以顯著較高之流動速率產生臭氧。用以製造較低濃度(6 wt%或更低)之所需量之臭氧的功率可比10 wt%所需之功率低40%至60%。此外,以較低之重量濃度,臭氧產生器製造得比額定能力多60%至70%。然而,產生臭氧所需之氧氣因此更多。
本發明遂使用氧氣再循環而自可市購之臭氧產生設備製造類似或較低濃度之較大量的臭氧。分離模組將臭氧與氧氣分離且將氧氣再循環回產生器。分離床可基於吸附劑或者為允許比O2 優先而轉移O3 或比O3 優先而轉移O2 之隔膜。在使用吸附床之情況下,在較高壓力下優先地吸附臭氧,其中退出該床之氣流大體上不含臭氧,該氣流以氧氣饋料而再循環回產生器。
所使用之吸附劑包括矽膠、高矽石絲光沸石及脫鋁之Y沸石。此等吸附劑在吸附期間不破壞臭氧。一旦該床充滿臭氧,則使用諸如壓縮乾燥空氣(CDA)之載氣在較低壓力下將臭氧解吸附。更低之濃度及壓力之含臭氧之氣流本質上較穩定且更有效地分散於製程廢氣流中。現稀釋於製程廢氣流中之臭氧與污染物反應以將污染物轉化為易於在乾燥、半乾燥或濕式洗滌器中自污染物移除之良性化合物或其經氧化之形式。可較佳地在同一個容器中進行反應與洗滌。
不同於臭氧之其他應用(諸如飲用水或廢水之消毒,其中為效益起見皆宜使含臭氧之流在較高濃度下),在廢氣氧化製程中係首先稀釋臭氧且接著使其與污染物反應。事實上,已展示藉由載氣(諸如,CDA)在較低濃度下製造之相同量的臭氧在移除NOx 過程中較有效。
在本發明之另一實施例中,揭示一種產生臭氧之方法,其包含藉由將自一分離系統之氧氣再循環至送往臭氧產生裝置之含氧氣之饋料氣流,增加至該臭氧產生裝置之含氧氣之氣體的流量。
達成按重量計6%或更低之臭氧之濃度。
含氧氣之氣體饋料流係選自由氧氣、壓縮乾燥空氣及空氣組成之群。分離系統經由一隔膜分離系統或一吸附劑分離系統而分離臭氧與含氧氣之氣體的混合物。
吸附劑分離系統含有一選自由矽膠、脫鋁之Y型沸石及高矽石絲光沸石組成之群的吸附劑。
在本發明之另一實施例中,揭示一種產生臭氧之方法,其中該臭氧用於含污染物之氣流中,該方法包含:將一含氧氣之饋料氣流饋入至一臭氧產生器中;在一分離系統中,將氧氣與含臭氧之氣流分離;將該氧氣自該分離系統引導回進入該臭氧產生器之該饋料氣流;及將該臭氧引導至該等廢氣流、製程流或其他含污染物之流。
含污染物之氣流為來自化石燃料燃燒源之廢氣流;來自化學品、石油及石化產品、金屬、半導體及玻璃操作之製程氣流;及尾氣流。
含氧氣之氣體饋料流係選自由氧氣、壓縮乾燥空氣及空氣組成之群。污染物係選自由氧化氮、氧化硫、汞、氯氣及氫氯酸組成之群。
分離系統係選自由一隔膜分離系統或一吸附劑分離系統組成之群,且吸附劑係選自由矽膠、脫鋁之Y型沸石及高矽石絲光沸石組成之群。
進入該等含污染物之氣流的臭氧在約40℉至約350℉之溫度下。臭氧之濃度為約6重量百分比或更低。
在本發明之另一實施例中,揭示一種用於自一工業製程之廢氣流移除污染物之方法,其包含下列步驟:a)將一含氧氣之氣流饋入至一臭氧產生器,藉此產生一含臭氧之氣流;b)將該含臭氧之氣流引導至一氣體分離單元以將氧氣與該含臭氧之氣流分離;c)將該經分離之氧氣引導至步驟a)的該含氧氣之氣流;d)將來自一工業製程之該廢氣流饋入至廢氣載管;及e)將該含臭氧之氣流饋入至該廢氣載管,其中該臭氧將與該廢氣流中之污染物反應。
或者,提供一種用於自一工業製程之廢氣流移除污染物之方法,其包含下列步驟:a)將一含氧氣之氣流饋入至一臭氧產生器,藉此產生一含臭氧之氣流;b)將該含臭氧之氣流引導至一氣體分離單元以將氧氣與該含臭氧之氣流分離;c)將該經分離之氧氣引導至步驟a)的該含氧氣之氣流;d)將來自一工業製程之該廢氣流饋入至一廢氣載管;e)將該含臭氧之氣流饋入至該廢氣載管,其中該臭氧將與該廢氣流中之污染物反應;f)將一諸如苛性鈉之試劑液體引入至該廢氣載管以將臭氧與該等污染物之反應產物轉化為HNO3 、H2 SO3 及H2 SO4 之稀釋酸;g)將該等稀釋酸吸附至液態水中,藉此將該等稀釋酸轉化為包括硝酸鹽、亞硫酸鹽及硫酸鹽之鹽;及h)自該廢氣載管排放現大體上不含污染物之該廢氣流。
污染物係選自由氧化氮、氧化硫、酸氣及重金屬組成之群;且氧化氮係選自由一氧化氮及二氧化氮組成之群。
圖1描繪改良之方法之較佳組態中的一者。該改良之方法可處理來自化石燃料燃燒源之廢氣流;來自化學品、石油及石化產品、金屬、半導體、玻璃或含有不良污染物之任何製造過程之製程氣流;或來自含有不良污染物之各種來源之尾氣流。
經由線1將氧氣饋入至一臭氧產生裝置A。臭氧產生器通常可市購,且此等臭氧產生器中之任一者將在本發明之方法中起作用。含有臭氧及氧氣以及其他痕量氣體之氣流將經由線2退出該臭氧產生裝置A至臭氧分離系統B。臭氧分離系統將為一將氧氣與臭氧分離或將臭氧與氧氣分離使得可將氧氣經由線12再循環回氧氣饋入線1之系統。
該分離系統通常為一隔膜系統或一吸附床系統。隔膜系統為將選擇性地允許氧氣經由隔膜通過之系統。可用於本發明之方法中之典型隔膜包括自聚合物(諸如,聚碸、聚碳酸酯、聚醯亞胺、醋酸纖維素及其經改質之形式)製造之習知的氣體分離隔膜。
吸附床系統使用一床,其含有一選自由矽膠、高矽石絲光沸石及脫鋁之Y型沸石組成之群的吸附劑。當該吸附床充滿臭氧時,藉由在將經由線4進入分離系統B之諸如壓縮乾燥空氣(CDA)之氣流的低壓下之引入,將臭氧解吸附。
由臭氧產生器處A產生並與氧氣分離之臭氧作為解吸附氣體中之臭氧之混合物經由線3離開臭氧分離系統B。其進入線5,線5進入洗滌器總成E。
煤炭或其他化石燃料將經由線13進入鍋爐C且空氣經由線14進入鍋爐C。鍋爐C用以產生功率且將燃燒導致必須自鍋爐移除之廢氣的化石燃料。廢氣自鍋爐C經由線15行進至一選擇性吸附器單元D。此選擇性吸附器單元D對廢氣提供調節步驟且可選自用於灰塵、微粒或吸附劑移除之靜電集塵器或袋濾室。選擇性吸附器單元D亦可對較佳地在廢氣流接觸氧化試劑臭氧前移除之諸如SO2 之氧化硫或氫氯酸提供選擇性洗滌。水將經由線10進入選擇性吸附器單元D。該調節步驟亦可用以藉由使用間接之熱交換器、直接驟冷或蒸發冷卻而將廢氣流之溫度降低至325℉下。
選擇性吸附器單元D因此可由兩個或兩個以上的單獨單元一起組成以在廢氣接觸臭氧前對其進行調節。現經調節之廢氣流經由線5離開選擇性吸附器單元D且接觸來自線3之臭氧,其中將發生仍殘留於廢氣流中之污染物與臭氧之間的反應。若有此需要,此反應亦將繼續進行至洗滌器單元E中。
在選擇性吸附器單元D含有驟冷步驟之情況下,來自驟冷器之水將經由線6退出至儲存裝置F,儲存裝置F將含有水,但亦具有用以在該方法中將水分配於其他處之構件(諸如,幫浦構件)。
已與臭氧反應之廢氣流將經由線5進入洗滌器單元E。在此方法中之洗滌器單元為一濕式洗滌器單元,其可為填充塔、噴霧塔、具有篩盤之塔或泡盤型洗滌器。在本發明之其他方法中,洗滌器單元可為乾式或半乾式洗滌器。
經由線8自儲存單元F幫浦之水將經由線8A、8B及8C進入洗滌器單元E。此等線連接至噴嘴,其可提供各種噴霧型樣以接觸已被准許進入洗滌器單元內之氣流。此洗滌將移除諸如粒子之彼等污染物以及經氧化之污染物及現經處理之廢氣流,且將經由線7離開洗滌器單元E返回至儲存單元F。現經洗滌且清潔之廢氣流將經由線9退出洗滌器單元E。
該改良之方法中之主要步驟為調節氣流。該調節步驟可由使用一用於灰塵、微粒或吸附劑移除之靜電集塵器(ESP)或袋濾室組成。該調節步驟可使用對SO2 或HCl移除或者在曝露至氧化試劑前不必氧化或較佳地移除之污染物的選擇性洗滌。該調節步驟亦可用以藉由間接之熱交換器或藉由直接驟冷或藉由蒸發冷卻降低廢氣溫度,因為基於臭氧之氧化反應之較佳範圍小於325℉。該調節步驟可使用一或多個單元操作以達成一或多個目標。一旦氣體經預調節,則將含臭氧之載氣流(CDA)分散於大量的氣體中。在該經調節之氣體中引入含臭氧之流之較佳的溫度範圍較佳地在40℉與350℉之間。
自一子系統獲得含臭氧之載氣流,在該子系統中,藉由使較大體積之氧氣流過一可市購之臭氧產生器,接著在諸如矽膠、高矽石絲光沸石及脫鋁之Y型沸石之吸附劑上吸附臭氧,及藉由諸如壓縮乾燥空氣之載氣解吸附臭氧,而在較低重量濃度下製造臭氧。
商業用途中幾乎所有的臭氧係藉由放電(亦被稱作電暈放電)製造,其中內襯有玻璃或陶瓷之介電管裝配於在兩個表面之間具有一環形間隙(放電間隙)的水冷不銹鋼管內。使含氧氣之氣體通過此間隙,且當將高壓施加於該間隙上時,部分氧氣被轉化為臭氧。
O2 +[O]=O3
氧氣轉化為臭氧[O3 ]需要解離或破壞氧分子中之非常穩定之鍵結且將此原子或"單態"氧原子[O]與另一氧分子組合[O2 ]。當將高壓施加於放電間隙上時,在電子與氧分子之間發生碰撞。少量的此等電子具有足夠的動能(約6 eV或7 eV)來解離氧分子以形成臭氧,而剩餘電子將其能量釋放為熱。
O2 +6-7 eV(電子) → 2[O]
歸因於電暈放電,臭氧之濃度沿著管道之長度增加。退出單向臭氧產生器中之管道之臭氧的濃度有可能大約為標稱設計濃度。因此,對於作為標稱濃度之10至12 wt%的臭氧,每10至15個氧分子存在一個臭氧分子。單態氧為有效的氧化試劑以及還原試劑。單態氧[O]與臭氧[O3 ]之碰撞可將臭氧分子轉變回氧分子。快速移動之電子亦與臭氧碰撞,既而破壞其部分。此處為一簡化反應。
O3 +[O] → 2 O2
臭氧產生器內之臭氧之部分破壞的所提議之機制非常複雜且並不能非常清晰地被理解。然而,操作臭氧產生設備之實用經驗在於比功率消耗隨著所製造之臭氧之濃度增加而增加。圖2表示以技術知識之當前狀況而可用之O3 產生器之典型比功率消耗曲線。
因此,若在5或6 wt%而非在10至12 wt%下製造臭氧,則可節省40%之功率消耗,但此將需要兩倍之氧氣。
約95%或更多之商用臭氧係用於飲用水、漂白、消毒及廢水處理廠。在所有此等應用中,藉由氣體-液體接觸設備將臭氧轉變為液相。若以一半濃度且兩倍流動速率供應臭氧,此製程可能失去效率。此外,氧氣之成本使功率節省無效。相反,對於氧化在廢氣中之污染物之應用,在流動在氣流中平均地分配含臭氧之流。混合後之臭氧濃度為數百ppm,其接著與污染物反應。事實上,因為含臭氧之氣流的體積加倍,既而引起與廢氣流之較佳的混合,所以該製程之效率改良。
在該改良之方法中,退出臭氧產生器之含臭氧之氧氣流饋入至分離裝置內,該分離裝置將臭氧轉移至載氣流中且將大部分氧氣再循環回臭氧產生器之饋料流。在一實施例中,此分離系統由吸附床、開關閥、緩衝槽及製程控制器組成。臭氧在循環之第一部分期間在吸附床上於較高壓力下吸附,且當該床飽和時,臭氧在較低壓力下解吸附且由諸如壓縮乾燥空氣之載氣載運出容器。
在解吸附循環後,用氧氣沖洗該床以驅走吸附劑上之氮氣,且重複臭氧吸附循環。來自此沖洗循環之氣流富集有氧氣,且可在其他處以實現富集空氣在鍋爐或窯中之燃燒或在精煉廠之FCC操作中之價值或再循環回臭氧產生器饋入循環。將純氧饋料補充至具有較小氮氣流(0.5至3 vol%)之臭氧產生器為熟知之實踐。需要週期性地或連續地添加少量氮氣以保持產生器效率。
可將來自沖洗循環之一些氣體而非添加之氮氣再循環至產生器以節省提供單獨的N2 之饋料。可將來自分離系統之氧氣流而非再循環流用於另一對臭氧產生器及分離系統。實務上,可以逐漸縮小之大小之產生器串列地置放3至4個此等系統,因此,使用同樣之氧氣饋料而無須再循環。
淨化氣通常為壓縮乾燥空氣,其被製造為氧氣產生系統、真空變化吸附(VSA)或低溫氧氣產生器之部分,或者製造於獨立之系統中,其中使用隔膜或吸附系統來乾燥壓縮空氣。在低溫氧氣產生系統中,廢棄氮氣亦可用於淨化吸附床。
在廢氣氧化應用中,臭氧產生區可遠離使用點。因此,重要的是,所傳送之臭氧係穩定的,直至其到達使用點。可經由管道在較長距離上傳送臭氧。臭氧分解取決於壓力、濕度、濃度及用以稀釋臭氧之氣體的類型。
分解方程式如下:O3 +M ←→ O2 +[O]+M其中M為除臭氧外之平衡氣體分子。所發佈之研究表明,氮氣中之臭氧比氧氣中之臭氧穩定。同樣,當將臭氧分壓降低至一半時,存在較少在氣相中足夠靠近而碰撞之分子。因此,與在產生器壓力下之O2 中之臭氧相比,在一半分壓下之壓縮乾燥空氣中之臭氧更穩定。臭氧之穩定性尤其重要,因為許多需要廢氣處理之工業製程處於未能免受天氣影響之容器中。在管架上之導管中傳送的含臭氧之氣流曝露至日光及嚴重影響臭氧之穩定性的夏季溫度。
具有噴嘴之分配集管常用於含臭氧之載氣(當被引入至廢氣中時)。因為臭氧需求很小且產生及輸送臭氧之壓力較高(18至25 psig),所以此等噴嘴通常具有非常小之節流孔。臭氧自噴嘴傳出之高速度常導致對噴嘴之外來材料選擇。在改良之方法中,載氣之流量為習知之基於O3 之氧化製程的兩倍,且壓力較低(約10 psig),此將需要較大節流孔之選擇。經由節流孔而對載氣進行節流之速度較小,且並非氧氣之平衡氣體不需要用於噴嘴之外來材料。此外,具有較大流量之載氣較易於且均勻地在廢氣中混合。較大大小之節流孔亦減小在廢氣相中塞滿灰塵及水分之可能性。
另一隨之發生之優勢實現於改良之方法中。在習知之基於臭氧之方法中,含臭氧之集管(當置放於廢氣載管中時)升高集管之溫度且在集管自身中破壞大量之臭氧。此係歸因於較高之重量濃度、較高壓力、低流量、O2 作為平衡氣體及較高溫度之多個現象。所有五個此等因素對臭氧穩定性均產生消極影響。改良之方法抵制直接或間接地導致臭氧之較少破壞的所有此等因素。
改良之方法亦使用CFD(計算流體動力學模型化)來改良容器中的給定滯留時間之混合特徵及停留時間分配。
使用CFD確保當將臭氧引入廢氣中時已發生混合係重要的。若含臭氧之載氣不足以與廢氣混合,則臭氧分子得不到與污染物碰撞以氧化之機會,且流過一管或一容器之不適當混合之流導致較高量之未反應之臭氧及污染物,既而失去效率且使使用高效能技術之目的失敗。使臭氧與廢氣混合之最容易的方式中之一者為藉由柵格開口以管之整個橫截面而引入臭氧。另一替代為將臭氧徑向引入至管中。
在當在氣體預調節步驟中未降低廢氣溫度且在混合並不充分之情況下在高於200℉之溫度下分配臭氧時,大量的臭氧被破壞,而並未氧化污染物。一旦在管及/或容器中在預定滯留時間中臭氧氧化了污染物,則必須洗滌或吸附廢氣。N2 O5 為對溫度非常敏感之分子且具有低穩定性。然而,藉由水或鹼或鹼性材料,其形成一相當穩定之鍵結。使用CFD,該改良之方法確保以管或容器中之最小逆向混合,在預選擇之滯留時間內,將摻合臭氧之氣流之流傳送至洗滌器或吸附器。藉由跟蹤退出氧化管或氧化容積(亦稱為反應區或氧化區)之氣體的停留時間分配,而驗證此情形。
為了改良停留時間分配,轉動風標且改變廢氣流之方向(當其被引入容器中時)為常用的策略。對於臭氧與污染物之反應,發現類似塞式流動反應器之停留時間分配為最佳的。本發明之改良之方法利用停留時間分配而非駐留時間或滯留時間來達成適當之設計。
對於NOX 與臭氧之氧化,將在氣相中之反應總結如下:NO+O3 --------->NO2 +O2 NO2 +O3 --------->NO3 +O2 NO3 +NO2 <=====>N2 O5 2NO2 <=====>N2 O4 NO+NO2 <=====>N2 O3 2O3 --------->3O2 SO2 +O3 ---------->SO3 CO+O3 --------->CO2
諸如元素汞之其他污染物亦在氧化器中氧化。
Hgo +O3 --------->Hg-2 +O2
反應器可為洗滌容器之管上游、洗滌容器自身或者洗滌容器之單獨容器上游。重要的是,多數氧化在其經受洗滌介質前發生。當將洗滌容器底部區段用作氧化區段時,必須小心使洗滌介質之接觸最小化。
發現在該反應器中,SO2 至SO3 之氧化可忽略。氮之較高價氧化物(詳言之,N2 O5 )為最可溶解且最具反應性。因此,應避免與洗滌介質之任何接觸,直至在氣體體積中已發生所需之氧化量。
洗滌器可為乾式或半乾式的,其中將鹼或鹼土金屬碳酸鹽、碳酸氫鹽、氧化物或氫氧化物用作吸附劑。濕式洗滌器可為填充塔、噴霧塔、具有篩盤之塔或泡盤。填充可為任意的或經結構化的。噴霧可藉由提供水幕(諸如,平坦扇或空心圓錐)之噴嘴,或者其可為實心圓錐。洗滌器可具有經濕潤之壁以便防止灰塵及腐蝕。任一濕式或乾式洗滌器可經重組態以洗滌經氧化之污染物。氧化容積可在第一噴霧或排放用以預調節氣體之單一容器以及提供用以氧化污染物之空間的不具有噴霧之容積內。
單一容器解決方案通常被看作係節省有效的。然而,非常難以對其進行設計。不良之設計導致在氧化容積中混合洗滌器液體。在申請專利範圍陳述氧化容積不含吸附劑液體(但其實並非如此)之經公布或受專利保護之文獻中,在系統之實例中可非常容易地發現此情形。判斷此情形之最簡單的方式為檢查NOx 移除對O3 /NOx 比率曲線或NOx 移除對所移除之NOx 之KWHr功率/lb。對於50與5000 PPMV之間的進入之NOx ,若70%與90%移除之間的曲線之斜率係陡峭的,則氧化容積不含吸附劑液滴。假定所有進入之NOx 為NO,則第二觀測係:隨著O3 /NOx 比率增加,NOx 移除幾乎接近100%,然而,若曲線之斜率在70%與90%之間係平坦的,其意謂,臭氧及NO2 在氧化反應器中正被洗滌,且因為臭氧在該反應器中耗盡,所以NOx 之氧化不能夠自NO2 進一步繼續進行。
圖3說明三個實例。陡峭之連續線指示:如所期望的,在反應器中發生NOx 氧化,幾乎所有NOx 可轉化為可在洗滌器中移除之較高價氧化物。第二實例為垂直吸附器之情況,其中下部腔室為氧化區段且將吸附劑噴霧引入圓柱體外殼中之氧化容積上。使容器之吸附器部分中之噴霧朝向壁而自中心噴出且試劑吸收劑沿著此圓柱體外殼之壁流動。咸信液滴不落於反應容器中。相反,平坦虛線指示氧化反應正受到落在反應容器中之來自洗滌區段之吸附劑液滴的干擾。結果,在反應器中洗滌出一些臭氧,且增加臭氧饋料使得移除效率之邊際改良。第三實例為具有平坦扇型噴霧噴嘴之水平洗滌器的情況。將臭氧引入第一驟冷噴霧噴嘴之下游。在兩個噴霧之間,反應容積並不充足。然而,在首先兩個噴霧之間並不存在許多吸附劑液滴,因為腔室為水平的。結果,直至移除達到87%至90%之較陡峭之斜率表示兩個噴霧之間的無液滴區中之氧化。一旦使經氧化之流與吸附劑噴霧接觸,則洗滌掉經氧化之形式之NOx 以及未反應之臭氧,進而降低由臭氧進行之氧化的速度。
本文中描述之改良之方法藉由減少5%至20%之範圍內的功率需求而提高效率,或使用較少臭氧消耗而改良方法效能。
在濕式洗滌器中,當洗滌NOx 、SOx 及其他污染物時,來自廢氣之氧氣溶解於洗滌液中。雖然亞硫酸鹽及亞硫酸氫鹽與氧氣之氧化比由臭氧達成之氧化慢,但其耗盡自由亞硫酸鹽及亞硫酸氫鹽之量。該改良之方法減少需要與臭氧一起添加之氧氣之量,因此減少亞硫酸鹽及亞硫酸氫鹽之損耗。
舉例而言,在附著至一垂直置放之圓柱形洗滌器容器之內管型徑向預洗滌器中預洗滌1,000,000 lb/小時之流量的具有750 PPMv至800 PPMv之SOx 及220 PPMv之NOx 之廢氣。將預洗滌之廢氣(在約165℉下幾乎飽和)與臭氧流在載氣(壓縮乾燥空氣)中混合且引入主洗滌器容器中。洗滌器容器之底部圓柱形區段具有一液體貯槽。底部區段中之廢氣流回轉且向上朝向洗滌區段行進。分流器隔板有助於減少逆向混合,且大量NOx 在此底部區段中氧化。接著使經氧化之氣體接觸置放於洗滌器之上部區段中的洗滌區段中之含洗滌溶液之鹼類氫氧化物、碳酸鹽、碳酸氫鹽、硫酸鹽及亞硫酸氫鹽。藉由洗滌液來洗刷壁以減少腐蝕且該等壁由微粒建置。退出洗滌器之經處理之氣流具有小於10 PPMv之NOx 。圖4總結在氧化區段之流量設計中的CFD分析之益處及歸因於在改良之方法中描述之改良的功率節省。
雖然已關於本發明之特定實施例而對其進行描述,但顯然,對於熟習此項技術者而言,本發明之眾多其他形式及修改將係顯而易見的。通常應將本發明中之隨附之申請專利範圍解釋為涵蓋在本發明之真實精神及範疇內之所有此等顯而易見形式及修改。
1至15...管線
A...臭氧產生裝置
B...臭氧分離系統
C...鍋爐
D...選擇性吸附單元
E...洗滌器單元
F...儲存單元
圖1為產生臭氧之方法及其在工業製程中用於移除污染物之用途之示意性表示。
圖2為表示功率消耗對由臭氧產生設備製造之臭氧量之曲線圖。
圖3為展示本發明之方法及兩個已知方法的氧化氮之百分比移除對臭氧與氧化氮比率之曲線圖。
圖4為展示本發明之方法及已知方法的氧化氮之百分比移除對移除之每一磅氧化氮所消耗之功率量之曲線圖。
(無元件符號說明)

Claims (8)

  1. 一種用於自一工業製程之廢氣流移除污染物之方法,其包含下列步驟:a)將一選自由空氣及壓縮乾燥空氣組成之群之含氧氣之氣流饋入至一臭氧產生器,藉此產生一含臭氧之氣流;b)將該含臭氧之氣流引導至一隔膜分離單元,以將氧氣與該含臭氧之氣流分離;c)將該經分離之氧氣引導回該臭氧產生器以與步驟a)之該選自由空氣及壓縮乾燥空氣組成之群之含氧氣之氣流結合;d)將來自一工業製程之該廢氣流饋入至一廢氣載管;及e)將步驟b)之該經分離的含臭氧之氣流饋入至該廢氣載管,該經分離的含臭氧之氣流具有約6重量百分比或更小之臭氧濃度,且其中該臭氧將與該廢氣流中之該等污染物反應。
  2. 如請求項1之方法,其中需要臭氧之使用之該方法係選自由下列各物組成之群:來自化石燃料燃燒源之廢氣流;來自化學品、石油及石化產品、金屬、半導體及玻璃操作之製程氣流;及尾氣流。
  3. 如請求項1之方法,其中進入需要臭氧之該使用之該工業製程的該臭氧之溫度係藉由熱交換、洗滌或驟冷而預調節至約40°至約350℉。
  4. 如請求項1之方法,進一步包含下列步驟: f)將一試劑液體引入至該廢氣載管中以將臭氧與該等污染物之反應產物轉化為稀釋酸;g)使該等稀釋酸吸附至液態水中,藉此將該等稀釋酸轉化為鹽;及h)自該廢氣載管排放現大體上不含污染物之該廢氣流。
  5. 如請求項4之方法,其中該液態試劑為苛性鈉、鈣、鎂、鉀或銨之碳酸鹽、碳酸氫鹽或氫氧化物。
  6. 如請求項4之方法,其中該等稀釋酸係選自由HNO3 、H2 SO3 及H2 SO4 組成之群。
  7. 如請求項4之方法,其中該等鹽係選自由硝酸鹽、亞硫酸鹽及硫酸鹽組成之群。
  8. 如請求項4之方法,其中該臭氧係藉由一柵格以該管之整個橫截面而均勻地引入或者徑向地引入。
TW96115320A 2006-05-01 2007-04-30 臭氧製造方法及其於工業製程上之用途 TWI432253B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79637306P 2006-05-01 2006-05-01
US11/784,855 US7766995B2 (en) 2006-05-01 2007-04-10 Ozone production processes and its use in industrial processes

Publications (2)

Publication Number Publication Date
TW200808432A TW200808432A (en) 2008-02-16
TWI432253B true TWI432253B (zh) 2014-04-01

Family

ID=38330757

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96115320A TWI432253B (zh) 2006-05-01 2007-04-30 臭氧製造方法及其於工業製程上之用途

Country Status (9)

Country Link
US (1) US7766995B2 (zh)
EP (1) EP1852172B1 (zh)
AU (1) AU2007201920B2 (zh)
DK (1) DK1852172T3 (zh)
ES (1) ES2533560T3 (zh)
HK (1) HK1117449A1 (zh)
NO (1) NO20072213L (zh)
PL (1) PL1852172T3 (zh)
TW (1) TWI432253B (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340438B2 (en) 2004-05-25 2016-05-17 Board Of Trustees Of The University Of Arkansas Systems and methods for delivering dissolved gases into force-main and gravity sewers
US9315402B2 (en) 2004-05-25 2016-04-19 Board Of Trustees Of The University Of Arkansas Systems and methods for wastewater treatment
US9248415B2 (en) 2004-05-25 2016-02-02 Board Of Trustees Of The University Of Arkansas Systems and methods for maximizing dissolved gas concentration of a single species of gas from a mixture of multiple gases
CN102341128A (zh) * 2009-03-04 2012-02-01 株式会社赛安 具有用臭氧分解nox的废气清洁***的灭菌器
DE102010003880A1 (de) 2010-04-12 2011-10-13 Durtec Gmbh Mineralische Gasadsorber zur Beseitigung von Ozon aus Abluft/Abgas, Verfahren zu deren Herstellung und Regenerierung
US8574521B2 (en) 2010-09-29 2013-11-05 Linde Aktiengesellschaft Gas stream purification apparatus and method
US9272908B2 (en) 2010-09-29 2016-03-01 Linde Aktiengesellschaft Gas stream purification apparatus
US8784762B2 (en) 2011-02-15 2014-07-22 Ati Properties, Inc. Treatment of NOx-containing gas streams
US8795620B2 (en) 2011-02-15 2014-08-05 Ati Properties, Inc. Systems and methods for recovering nitric acid from pickling solutions
US8840705B2 (en) * 2011-07-07 2014-09-23 Linde Aktiengesellschaft Methods for the ozonolysis of organic compounds
BR112014004042A2 (pt) * 2011-08-22 2017-03-07 Linde Ag produção aprimorada de ácido nítrico
CN103127804A (zh) * 2011-11-23 2013-06-05 宝山钢铁股份有限公司 一种用于去除挥发性有机污染物的空气净化装置
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US8734741B1 (en) 2012-04-30 2014-05-27 Linde Aktiengesellschaft Methods for removing contaminants from exhaust gases
EP2659947A1 (en) 2012-04-30 2013-11-06 Linde Aktiengesellschaft Method and apparatus for removing contaminants from exhaust gases
DK2719440T3 (en) * 2012-10-15 2017-08-14 Linde Ag Process for removing contaminants from exhaust gases by the addition of ozone
US9440188B2 (en) * 2012-10-15 2016-09-13 Linde Aktiengesellschaft Method for removing contaminants from exhaust gases
GB2513300B (en) * 2013-04-04 2017-10-11 Edwards Ltd Vacuum pumping and abatement system
WO2015092547A2 (en) 2013-12-16 2015-06-25 Linde Aktiengesellschaft Methods for removing contaminants from exhaust gases
EP2883593A1 (en) 2013-12-16 2015-06-17 Linde Aktiengesellschaft Method for removing contaminants from exhaust gases
EP3012011A1 (en) 2014-10-21 2016-04-27 Linde Aktiengesellschaft Method and apparatus for partial removal of contaminants from process gas stream
US10077418B2 (en) 2015-04-15 2018-09-18 Board Of Trustees Of The University Of Arkansas Method for improved rate and control of beverage carbonation with automatic shut-off
CN105148701B (zh) * 2015-09-02 2017-07-04 北京国电龙源环保工程有限公司 气相氧化***、应用该***的烟气净化设备及其净化方法
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
GB2545759A (en) * 2015-12-21 2017-06-28 Linde Ag Methods for producing ozone
US10730004B2 (en) 2018-08-03 2020-08-04 Messer Industries Usa, Inc. Recovery of oxygen used in ozone production

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2872397A (en) * 1955-01-10 1959-02-03 Union Carbide Corp Method and apparatus for producing ozone-carrier gas mixture
JPS5643771B2 (zh) * 1973-12-18 1981-10-15
US3963625A (en) * 1975-03-12 1976-06-15 W. R. Grace & Co. Ozone generation and recovery system
JPS55158107A (en) * 1979-05-29 1980-12-09 Mitsubishi Electric Corp Oxygen recycling type ozone generating apparatus
GB9017135D0 (en) * 1990-08-04 1990-09-19 Secr Defence Method of extracting dinitrogen pentoxide from its mixture with nitric acid
US5206002A (en) 1991-08-29 1993-04-27 Cannon Boiler Works, Inc. Process for removing nox and sox from exhaust gas
AU3322393A (en) * 1991-12-17 1993-07-19 Board Of Trustees Of The Leland Stanford Junior University Transcriptional cofactor regulation of expression
CA2136265C (en) * 1993-11-22 1999-07-27 Masami Shimizu Apparatus for generating and condensing ozone
US5846298A (en) * 1997-05-09 1998-12-08 Air Products And Chemicals, Inc. Ozone recovery by zeolite adsorbents
GB9712165D0 (en) * 1997-06-11 1997-08-13 Air Prod & Chem Processes and apparatus for producing a gaseous product
US5985223A (en) 1998-06-02 1999-11-16 The Boc Group, Inc. Removal of NOx and SOx emissions form pickling lines for metal treatment
US6197091B1 (en) * 1999-03-05 2001-03-06 The Boc Group, Inc. Ozone purification process
US6190436B1 (en) * 1999-03-05 2001-02-20 The Boc Group, Inc. Ozone purification process
US6197268B1 (en) 1999-07-02 2001-03-06 The Boc Group, Inc. Reduction of toxic substances in waste gas emissions
US6136284A (en) * 1999-12-09 2000-10-24 The Boc Group, Inc. Process for the removal of nitrogen oxides from gas streams
US6761863B2 (en) 2002-01-29 2004-07-13 The Boc Group, Inc. Process for the removal of impurities from gas streams
US6916359B2 (en) * 2002-04-25 2005-07-12 The Boc Group, Inc. Ozone production processes
US6649132B1 (en) * 2002-07-23 2003-11-18 The Boc Group, Inc. Process for the removal of impurities from gas streams
US7303735B2 (en) * 2003-10-17 2007-12-04 The Boc Group, Inc. Process for the removal of contaminants from gas streams

Also Published As

Publication number Publication date
TW200808432A (en) 2008-02-16
US7766995B2 (en) 2010-08-03
NO20072213L (no) 2007-11-02
AU2007201920B2 (en) 2012-06-14
DK1852172T3 (en) 2015-03-30
ES2533560T3 (es) 2015-04-13
US20080017590A1 (en) 2008-01-24
HK1117449A1 (en) 2009-01-16
AU2007201920A1 (en) 2007-11-22
EP1852172A1 (en) 2007-11-07
EP1852172B1 (en) 2015-01-07
PL1852172T3 (pl) 2015-08-31

Similar Documents

Publication Publication Date Title
TWI432253B (zh) 臭氧製造方法及其於工業製程上之用途
AU2004220725B8 (en) Improved process for the removal of contaminants from gas
US7052662B2 (en) NOx, Hg, and SO2 removal using alkali hydroxide
CN101108300B (zh) 臭氧制造工艺及其在工业生产中的应用
CN101934191B (zh) 氨法烟气同时脱硫脱硝的方法
US8574521B2 (en) Gas stream purification apparatus and method
JP7062509B2 (ja) 炭素捕捉
US9272908B2 (en) Gas stream purification apparatus
CN105080265B (zh) 一种工业尾气回收利用大循环工艺
WO2008100317A1 (en) Scrubber system for the desulfurization of gaseous streams
CN101347709A (zh) 烟气净化***及方法
CN204619711U (zh) 一种脱除烟气中多种污染物的***及锅炉
CA2484727C (en) Improved process for the removal of contaminants from gas streams
RU2575714C2 (ru) Система очистки и утилизации дымового газа и способ
JP2022148925A (ja) 脱硫装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees