TWI427699B - Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法 - Google Patents

Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法 Download PDF

Info

Publication number
TWI427699B
TWI427699B TW98112395A TW98112395A TWI427699B TW I427699 B TWI427699 B TW I427699B TW 98112395 A TW98112395 A TW 98112395A TW 98112395 A TW98112395 A TW 98112395A TW I427699 B TWI427699 B TW I427699B
Authority
TW
Taiwan
Prior art keywords
group iii
nitride semiconductor
iii nitride
semiconductor layer
substrate
Prior art date
Application number
TW98112395A
Other languages
English (en)
Other versions
TW201037767A (en
Inventor
Yuh Jen Cheng
Ming Hua Lo
Hao Chung Kuo
Original Assignee
Academia Sinica
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Academia Sinica filed Critical Academia Sinica
Priority to TW98112395A priority Critical patent/TWI427699B/zh
Publication of TW201037767A publication Critical patent/TW201037767A/zh
Application granted granted Critical
Publication of TWI427699B publication Critical patent/TWI427699B/zh

Links

Landscapes

  • Led Devices (AREA)
  • Weting (AREA)

Description

III族氮化物半導體層、III族氮化物半導體元件及其製造方法
本發明係關於一種III族氮化物半導體層、III族氮化物半導體元件及其製造方法。
隨著光電產業的發展,以半導體元件為基礎所開發的各種光電子元件(optoelectronics devices)與微電子元件(microelectronics device devices)紛紛推陳出新,舉例來說,氮化三族半導體(group III-nitride semiconductor)中的氮化鎵(GaN)層已經廣泛地被應用在紫外光到藍綠光的發光二極體、短波長雷射二極體以及高電子流動率的元件上。
舉例來說,為了製造氮化鎵層,業者會使用一長晶基板,例如為藍寶石基板(sapphire substrate),接著以汽相合成法(vapor-phase synthesis)於長晶基板形成氮化鎵層,以供後續製造元件使用。
然而,由於氮化鎵層與長晶基板的晶格常數並不匹配,使得於藍寶石基板所形成的氮化鎵層具有很多的缺陷,其中缺陷密度可高達108-9 cm-2 。此外,長晶基板本身亦可能具有一些不良的特性,例如低熱傳導係數、不導電以及不適當的劈裂晶格面等問題。因此,在習知技術的氮化鎵層的製造方法中,當氮化鎵層已經形成於長晶基板後,會將長晶基板去除,以便將氮化鎵層作後續利用。
目前,將長晶基板去除的方法有數種,例如以機械研磨(mechanical grinding)的方式對長晶基板進行研磨,以去除長晶基板,然而此種方式不僅耗費時間,而且需要精密的操作來達到大面積的研磨平整度。又例如,以乾蝕刻或溼蝕刻(wet or dry etching)的方式對長晶基板進行蝕刻,以分離長晶基板。然而長晶基板的穩定性極高,導致蝕刻速度緩慢,再例如,以雷射熔損(laser ablating)的方式,將雷射光聚焦於氮化鎵層與長晶基板之間的介面,並對此介面進行雷射熔損,以去除長晶基板,然而雷射熔損的設備昂貴,而且每次熔損的區域狹小,導致需要耗費大量的製程時間。
因此,如何提供一種可以減少製造時間之III族氮化物半導體層及III族氮化物半導體元件,正是當前產業的重要課題之一。
有鑑於上述課題,本發明之目的為提供一種可以減少製程時間的III族氮化物半導體層、III族氮化物半導體元件及其製造方法。
為連上述目的,依本發明之一種III族氮化物半導體元件的製造方法至少包含以下步驟:形成一III族氮化物半導體層於一基板上,其中III族氮化物半導體層具有一表面與基板連接,以及由與基板連接之表面蝕刻III族氮化物半導體層。
為達上述目的,依本發明之一種III族氮化物半導體層之製造方法至少包含以下步驟:形成一III族氮化物半導體層於一基板上,其中III族氮化物半導體層具有一表面與基板連接,以及由與基板連接之表面蝕刻III族氮化物半導體層。
為達上述目的,依本發明之一種III族氮化物半導體元件包含一III族氮化物半導體層以及一另一III族氮化物半導體層。III族氮化物半導體層具有至少一穿孔或至少一溝槽,另一III族氮化物半導體層,設置於III族氮化物半導體層上,並充填穿孔或溝槽,其中III族氮化物半導體層與另一III族氮化物半導體層之間具有一連接面,其中連接面至少包含穿孔內壁或溝槽內壁。
承上所述,由於本發明III族氮化物半導體層、III族氮化物半導體元件及其製造方法是蝕刻與基板連接之III族氮化物半導體層之表面。換言之,本發明是對III族氮化物半導體與基板連接的表面進行蝕刻,以使III族氮化物半導體層與基板分離,不同於習知技術是直接對基板進行機械研磨、乾溼蝕刻或雷射熔損,因此,本發明的製造方法可以減少製程時間。
以下將參照相關圖式,說明依本發明較佳實施例之III族氮化物半導體層、III族氮化物半導體元件及其製造方法。其中,III族氮化物半導體層及III族氮化物半導體元件可被應用於各種光電子元件與微電子元件,例如,發光二極體、短波長雷射二極體以及高電子流動率的元件上。
請參照圖1所示,本發明較佳實施例之一種III族氮化物半導體元件的製造方法至少包含步驟S11~S12。
步驟S11是形成一III族氮化物半導體層於一基板上,且III族氮化物半導體層具有一表面與基板連接。其中基板可為一藍寶石基板、或一碳化矽基板、一矽基板、或一砷化鎵基板、或一氧化鋅基板等,以上僅為例舉,任何適合用於長晶的基板應屬之。另外,形成III族氮化物半導體層於基板上的方式例如可以利用汽相磊晶成長(Vapor Phase Epitaxy,VPE)、或液相磊晶成長(Liquid Phase Epitaxy,LPE)、或分子束磊晶成長(Molecular Beam Epitaxy,MBE),其中,汽相磊晶成長例如為有機金屬化學氣相沉積(Metal-Organic Chemical Vapor Deposition,MOCVD)、或鹵素氣相磊晶(Hydride Vapor Phase Epitxy,HVPE)、或有機金屬氯化物成長等,以上僅為例舉,任何形成III族氮化物半導體層於基板的方式應屬之。再者,III族氮化物半導體材料可包含氮化鋁、或氮化銦、或氮化鎵鋁、或氮化銦鎵、或氮化銦鋁、或氮化銦鎵鋁、或其組合。又,III族氮化物半導體層的厚度可以依據實際製造需要而更改,例如是數個μm。
在此特別說明的是,III族氮化物半導體層與基板連接的表面可依照實際製程不同而有不同的態樣,例如可以是連續表面或者不連續表面。舉例來說,請參照圖1A所示,其顯示III族氮化物半導體層11是以一非連續表面111而與基板12連接的態樣。其中,不連續表面111的形成方法是先設置一不連續的阻障層(barrier layer)13於基板12上,然後再形成III族氮化物半導體層11於阻障層13上,而使III族氮化物半導體層11只有部分表面與基板12接觸,也就是以非連續表面111與基板12連接。其中,阻障層13的材質可依據實際需求而有所不同,在此是以二氧化矽(SiO2 )為例。而不連續的阻障層13的形成方式亦可依據實際需求而有所不同,在此是以微影製程以及蝕刻製程為例。再者,請參照圖1B所示,其顯示III族氮化物半導體層11是以一非連續表面112而與基板12連接的另一種態樣。其中,不連續表面112的形成方法是先粗糙化基板12的表面121,例如是利用蝕刻液來粗糙化,且蝕刻時可整面蝕刻或部分蝕刻,以形成完全粗糙的表面121,或是只有部分區域粗糙化的表面121,然後再形成III族氮化物半導體層11於基板12上以使III族氮化物半導體層11是以一非連續表面112而與基板12接觸。
若製造的半導體元件為發光二極體,利用以上方式所形成的非連續表面111、112可有助於光線自發光二極體射出的萃出率(extraction)。再者,請參照圖1C所示,其顯示III族氮化物半導體層11是以一連續表面113而與基板12連接的一種態樣,連續表面113的製造方法是直接將整面III族氮化物半導體層11形成於基板12上以使III族氮化物半導體層11是以連續表面113而與基板12接觸。
步驟S12是由與基板連接的表面蝕刻III族氮化物半導體層。在本實施例中,實質上是以至少一蝕刻液,由表面對III族氮化物半導體層進行蝕刻,其中蝕刻液可以是氫氧化鉀(KOH)、硫酸(H2 SO4 )、磷酸(H3 PO4 )、鹽酸(HCl)等化學液體,上述化學液體可以依據實際製造需求,而以水溶液(aqueous)或者液態(liquid phase)的型態出現。舉例來說,可將基板以及III族氮化物半導體層可置放於大於200℃的環境下,並使用高濃度的氫氧化鉀水溶液(high concentration aqueous KOH solution)或者液態氫氧化鉀(liquid phase KOH solution)對III族氮化物半導體層與基板連接的表面進行蝕刻,以上僅為例舉,任何對III族氮化物半導體層與基板連接面部份比對長晶基板具有較佳選擇性蝕刻的蝕刻液皆應屬之。在此特別注意的是,操作時可以依據實際需求,調整適當的製程參數,於蝕刻表面(步驟S12)後,使得III族氮化物半導體層與基板之間至少部分分離,或者III族氮化物半導體層與基板之間完全分離,以便後續製造III族氮化物半導體元件。
由於本發明III族氮化物半導體元件的製造方法是蝕刻與基板連接之III族氮化物半導體層表面,換言之,本發明是對III族氮化物半導體層與基板連接的表面進行蝕刻,而不同於習知技術是對基板進行機械研磨、乾溼蝕刻或雷射熔損,因此,本發明的製造方法可以減少製程時間。
為了使本發明III族氮化物半導體元件的製造方法更為清楚,以下係例舉複數個實施例,以詳細說明上述的製造方法。此外為了方便解釋,以下僅以III族氮化物半導體層與基板連接的表面是連續表面為例來作說明。
第一實施例
請同時參照圖2及圖3A至圖3C所示,III族氮化物半導體元件的製造方法包含步驟S21~S22。
如圖2以及圖3A所示,步驟S21是形成一III族氮化物半導體層21於一基板22上,且III族氮化物半導體層21具有一表面211與基板22連接。其中,步驟S21的製造方法已於前述步驟S11中詳述,在此容不贅述。本實施例的III族氮化物半導體層21是以氮化鎵半導體層為例,表面211為一連續表面,且本實施例的基板22是以藍寶石基板為例。
請參照圖2以及圖3B所示,步驟S22是以至少一蝕刻液23,由基板22以及III族氮化物半導體層21的邊緣S1滲入III族氮化物半導體層21與基板22連接的表面211,以III族氮化物半導體層21進行蝕刻,其中,蝕刻液23的選用已於步驟S12詳述。進行蝕刻時,可將III族氮化物半導體層21及基板22一同浸泡於蝕刻液中,於讓蝕刻液的高度超過表面211。另外,在本實施例中,蝕刻III族氮化物半導體層21的步驟(步驟22)係進行直至III族氮化物半導體層21之表面211之一部分與基板22分離(如圖3C所示)為止,也就是說III族氮化物半導體層21與基板22仍可有部分連接處。因為III族氮化物半導體層21之厚度若太薄時不易進行操作,所以讓III族氮化物半導體層21與基板22仍然保持連接有操作上的好處,以方便後續製程的進行。當然,業者亦可依據實際需求而於執行步驟S22時,使得III族氮化物半導體層與基板之間完全分離(圖中未示)。
第二實施例
請同時參照圖4以及圖5A至圖5K所示,III族氮化物半導體元件的製造方法包含步驟S31~S36。
如圖4以及圖5A所示,步驟S31是形成一III族氮化物半導體層31於一基板32上,且III族氮化物半導體層31具有一表面311與基板32連接。其中,步驟S31的製造方法已於前述步驟S11中詳述,在此容不贅述。本實施例的III族氮化物半導體層31是以氮化鎵半導體層為例,且本實施例的基板32是以藍寶石基板為例。
如圖4以及圖5B至圖5E所示,步驟S32是利用一微影(Lithography)製程以及一蝕刻製程形成至少一穿孔312於III族氮化物半導體層31,使得與穿孔312對應之基板32的區域外露。形成穿孔312時,首先,可先形成一保護層33於III族氮化物半導體層31上(如圖5B所示),接著透過曝光、顯影等微影製程於保護層33中形成孔洞331(如圖5C所示),以定義出III族氮化物半導體層31的穿孔312位置,然後,再利用乾蝕刻或濕蝕刻的蝕刻製程於III族氮化物半導體層31上形成穿孔312(如圖5D所示)。其中,乾式蝕刻包含反應式離子蝕刻法(RIE)或者感應耦合電漿法(ICP),濕式蝕刻包含利用氫氧化鉀、硫酸、磷酸、鹽酸等化學液體,以對III族氮化物半導體層進行蝕刻。舉例來說,可將基板32以及III族氮化物半導體層31置放於大於200℃下,並使用高濃度的氫氧化鉀水溶液或者液態氫氧化鉀對III族氮化物半導體層32進行蝕刻,以形成穿孔312。以上僅為例舉,任何可以於III族氮化物半導體層上形成穿孔312的方式應屬之。
最後再將保護層33去除(如圖5E所示)。其中,保護層33的材質可因應實際需求而設置,例如可以是一般常見的光阻材料,當然亦可以是四氮化三矽(Si3 N4 )或鎳(Ni),其中,四氮化三矽(Si3 N4 )可以利用緩衝氧化蝕刻法(Buffered Oxide Etching,BOE)而對其進行蝕刻,而鎳(Ni)可以硝酸(HNO3 )而對其進行蝕刻。另外,微影製程為既有技術,在此容不詳述。需特別注意的是,在本實施例中,去除保護層33是在步驟S32最後執行的步驟,然而,去除保護層33的步驟亦可以是在步驟S33後以及步驟S34之前執行,因此,以上變化的態樣皆應屬於本發明的範疇。
如圖4以及圖5F至圖5G所示,步驟S33是以至少一蝕刻液34,經由III族氮化物半導體層31的穿孔312滲入III族氮化物半導體層31的表面311,以由表面311對III族氮化物半導體層31進行表面蝕刻,其中,蝕刻液34的選用係與步驟S12中的蝕刻相同,於此不再詳述。另外,在本實施例中,蝕刻III族氮化物半導體層31的步驟(步驟S33)直至III族氮化物半導體層31之表面311之一部分與基板分離(如圖5G所示),以便後續III族氮化物半導體元件的製造。在此特別說明的是,步驟S32所形成穿孔312的大小、數量、間距以及形狀(如圖5H所示,其為III族氮化物半導體層31的俯視示意圖,穿孔312以陣列排列為例)等參數可依照實際製造需求而變化,例如,若步驟S33所使用的蝕刻液34對表面311的蝕刻速率較快,則穿孔312之間的間距可較設計較寬,以上僅為例舉,不可以此限縮本發明的範圍。此外,步驟S32的穿孔亦可由溝槽所取代,其中溝槽的大小、數量、間距、形狀以及排列方式等參數可依照實際製造需求而變化,例如圖5I所示,其顯示相互間隔設置溝槽313,又例如圖5J所示,其顯示相互交錯設置的溝槽314與溝槽315。其中,溝槽設置的方式亦可依照半導體元件大小而做規劃,例如圖5J中,溝槽314與溝槽315所形成的每個區域R可為每個半導體元件基本單位,因此,業者可以透過溝槽的設計來定義半導體元件的大小。
如圖4以及圖5K所示,步驟S34為形成一另一III族氮化物半導體層35於III族氮化物半導體層31上,另一III族氮化物半導體層35的厚度可以依據實際製造需要而更改,本實施例中是以至少可以充填穿孔312的厚度為例,也可以增厚(thickening)至III族氮化物半導體層31的上表面使上表面平整。另外,形成另一III族氮化物半導體層35於III族氮化物半導體層31上的方法與步驟S11相類似,例如為汽相磊晶成長、或液相磊晶成長、或分子束磊晶成長等方式,在此容不贅述。再者,在本實施例中,另一III族氮化物半導體層35與III族氮化物半導體層31的材質可為相同,換言之,步驟S34形成另一III族氮化物半導體層35於III族氮化物半導體層31的步驟為充填穿孔312,增厚及平坦化III族氮化物半導體層的上表面。在此特別注意的是,圖5K所顯示的為另一III族氮化物半導體層35完全充填穿孔312為例,但是並不以此態樣為限,例如,另一III族氮化物半導體層35亦可僅充填部分的穿孔312為例(如圖5L所示),其製造方法可以透過控制另一III族氮化物半導體層35的橫向生長的速率低於縱向生長速率,而使得穿孔312內壁生長另一III族氮化物半導體層35的速率小於在III族氮化物半導體層31上生長另一III族氮化物半導體層35的速率。因此,業者可透過充填部分的穿孔312的設計,使得穿孔312中並未被另一III族氮化物半導體層35填滿,而仍有空隙存在,可作為各半導體元件切割製程的切割線,或是各半導體元件以外力崩斷時的斷裂處。
如圖4以及圖5M所示,步驟S35分離基板32與III族氮化物半導體層31,使得表面311外露。在本實施例中,分離基板32與III族氮化物半導體層31的步驟可以是對III族氮化物半導體層進行加熱、冷卻、蝕刻、準分子雷射(Exmier)或機械施力,以分離基板32與III族氮化物半導體層31。詳言之,由於III族氮化物半導體層31與基板32之間的熱膨脹係數不同,而且III族氮化物半導體層31之表面311已大部分與基板分離(執行步驟S33後),因此,透過加熱或冷卻的方式即可使得III族氮化物半導體層31與基板32之間完全分離。又例如,可將基板32以及III族氮化物半導體層31浸泡於蝕刻液中,蝕刻液的選用如同步驟S12所述,在此容不贅述。此時,由於III族氮化物半導體層31之表面311已大部分與基板分離(執行步驟S33後),因此,蝕刻液會經由基板32以及III族氮化物半導體層31之間的邊緣滲入表面311,使得III族氮化物半導體層31與基板32之間完全分離,其中蝕刻液已於步驟S12中詳述,在此容不贅述,舉例來說。可將基板以及III族氮化物半導體層置放於150℃的環境下,並使用液態氫氧化鉀對III族氮化物半導體層的表面進行蝕刻,約需數分鐘以完成對表面的蝕刻。另外,在利用準分子雷射的情形下,由於III族氮化物半導體層31之表面311已大部分與基板分離(執行步驟S33後),因此所需要的製程時間將比習知技術大大地減少。
如圖4以及圖5N所示,步驟S36是平坦化III族氮化物半導體層31之表面311,以便後續製造III族氮化物半導體元件。在本實施例中,平坦化表面311的步驟可因應實際需求而決定,而利用現有的平坦化技術實施,例如使用化學、機械、或者化學機械研磨(chemical mechanical polishing)等方式進行平坦化,以上僅為例舉,任何可以進行平坦化的實施方式皆應屬於本發明的範疇。
除此之外,請參照圖6所示,與圖4不同的是,圖6的III族氮化物半導體元件的製造方法更包含步驟S37,其中,請同時參照圖6、圖7A及圖7B所示,步驟S37是設置一承載板36於III族氮化物半導體層31,本實施例是以承載板36設置於另一III族氮化物半導體層35上為例。換言之,承載板36是間接地設置於III族氮化物半導體層31之上。另外,在本實施例中,承載板36是黏合的方式設置於另一III族氮化物半導體層35的上表面,因此,透過對承載板36施加外力,即可使得III族氮化物半導體層31與基板32之間完全分離。其中,承載板36的材質選用可依照業者實際需求而決定,例如為:金屬或矽基板等等,特別是可以選用高熱傳導係數、高導電以及沒有不適當的劈裂晶格面問題的基板,以提高III族氮化物半導體元件的元件特性,以上方法僅為例舉,任何可以完全分離III族氮化物半導體層與基板的方法皆應屬於本發明的範疇。
再者,圖6所述的設置承載板步驟(S37)是於步驟S34以後以及步驟S35之前執行。然而,步驟S37亦可於分離步驟(S35)以後以及平坦化步驟(S36)之前執行,當然亦可於步驟S36之後執行,業者可因應實際需求而改變製程順序,或者省略步驟S37的製程等,以上變化皆應屬於本發明之範疇。
第三實施例
請參照圖8所示,III族氮化物半導體元件的製造方法包含步驟S41~S46。其中步驟S41、S43~S46分別與步驟S31、S33~S36相同,在此容不贅述,不同的是,如圖8以及圖9所示,步驟S42是直接對III族氮化物半導體層41的至少一晶格缺陷進行蝕刻,以形成穿孔412,其中圖9中虛線部分表示III族氮化物半導體層41以及基板的部分立體放大示意圖,其顯示穿孔412的形狀可呈六方晶體(hexagonal crystal)的形狀。在本實施例中可以利用一對晶格缺陷具有選擇性的蝕刻液,以對III族氮化物半導體層進行蝕刻,而形成穿孔412。舉例來說,可將基板42以及III族氮化物半導體層41置放於大於200℃的環境下下,並使用高濃度的氫氧化鉀水溶液或者液態氫氧化鉀對III族氮化物半導體層上表面的晶格缺陷進行蝕刻,以形成穿孔412,當然亦可使用其它對缺陷具有選擇性的蝕刻液,例如硫酸或者磷酸等,以上僅為例舉,任何對對缺陷具有選擇性的蝕刻液皆應屬於本發明的範疇。此外,步驟S42的穿孔亦可由溝槽所取代,溝槽的大小、數量、間距、形狀以及排列方式等參數可依照實際製造需求而變化。
另外,請參照圖10所示,其顯示執行步驟S44後,以電子顯微鏡(scanning electron microscope,SEM)所照攝的影像圖,其中由圖10可清楚看出III族氮化物半導體層(GaN)41與基板(Sapphire)42連接之表面被蝕刻後,只剩下少部分與基板42連接的狀況,以及充填穿孔412,增厚及平坦化後的III族氮化物半導體層的上表面。
再者,在此特別說明的是,由於在本實施例中,由於步驟S42與步驟S43皆使用蝕刻液,因此,可將步驟S42與步驟S43整合為同一步驟,以加速整體製造流程。例如將基板以及III族氮化物半導體層置放於200℃的環境下,液態氫氧化鉀對III族氮化物半導體層的缺陷進行蝕刻,約25分鐘後,即會形成穿孔,再經過數分鐘後,則液態氫氧化鉀會繼續透過III族氮化物半導體層中的穿孔對表面進行蝕刻,以上僅為例舉,任何製程參數可依據實際需求而更改,不可以此限制本發明的範圍。
除此之外,上述第一實施例、第二實施例及第三實施例僅為舉例性,於完成上述步驟後,亦可繼續執行其他製造半導體元件的製程。以製造發光二極體為例,於完成步驟S21及步驟S22後,可接著再形成一層N型摻雜氮化鎵,接著再長一層是由氮化鎵銦和氮化鎵所組成的幾組量子井,最後再長一層P型摻雜氮化鎵以完成發光二極體的製造。然而,由於上述為習知技術的範疇,在此容不贅述,但是必須注意的是,上述製造發光二極體的步驟可以是在步驟S22、S36、S46後執行,亦可是在S21~S22、S31~S36、S41~S46之間執行,以上僅為例舉,任何屬於上述發明精神的態樣皆應屬於本發明之範疇。
再者,上述平坦化III族氮化物半導體層之表面的步驟(S36與S46)可以因應實際需求而決定被執行或者被省略,例如於製造發光二極體元件中,不平坦的表面311、411將有助於光線自發光二極體射出的萃出率,因此,在這個例子中,平坦化步驟(S36與S46)可不被執行。
此外,本發明更涵蓋上述三個實施例中步驟之間的搭配組合,例如,可於步驟S21~S22後執行步驟S34~S36或者執行步驟S35~S36。當然業者亦可依據商業考量,決定於其中一個步驟即完成製造,例如,業者可於執行完步驟S22後即可販賣給廠商,以便廠商作後續製造或者利用。換言之,本發明所指的III族氮化物半導體元件的製造方法亦可涵蓋半成品的III族氮化物半導體元件(包含基板以及III族氮化物半導體層)的製造方法亦可涵蓋完成品的III族氮化物半導體元件(如上所述的發光二極體元件)。
請參照圖11所示,本發明較佳實施例之一種III族氮化物半導體元件5包含一III族氮化物半導體層51以及一另一III族氮化物半導體層52。III族氮化物半導體層51具有至少一穿孔511,另一III族氮化物半導體層52設置於III族氮化物半導體層51上以充填穿孔511,其中III族氮化物半導體層51與另一III族氮化物半導體層52之間具有一連接面F1,其中連接面F1至少包含穿孔511內壁F11。在本實施例中,連接面F1更包含III族氮化物半導體層51與另一III族氮化物半導體層52之間的表面F12。另外,III族氮化物半導體層51具有一下表面512,其可為非平坦狀(如圖11所示)以及平坦狀(如圖12所示)。此外,III族氮化物半導體元件5亦可依據實際需求更包含設置於III族氮化物半導體層51下表面512的一基板(圖中未示),或者更包含設置於另一III族氮化物半導體層52上表面的另一基板(圖中未示)。
此外,III族氮化物半導體元件5可依照本發明較佳實施例之III族氮化物半導體元件的製造方法進行製造,特別可以上述第二實施例或第三實施例進行製造,在此特別一提的是,穿孔511亦可由溝槽所取代,詳細內容已於第二實施例中III族氮化物半導體元件的製造方法敘述,在此容不贅述。另外,圖11所顯示的為另一III族氮化物半導體層52完全充填穿孔511為例,但是並不以此態樣為限,例如,另一III族氮化物半導體層亦可僅充填部分的穿孔為例,其詳細內容已於第二實施例中III族氮化物半導體元件的製造方法以及圖5L中詳述,在此容不贅述。
承上,由於本發明III族氮化物半導體元件的製造方法是蝕刻與基板連接之III族氮化物半導體層表面,換言之,本發明是對III族氮化物半導體層與基板連接之表面進行蝕刻,而不同於習知技術是對基板進行機械研磨、乾蝕刻、溼蝕刻或雷射熔損,因此,本發明的製造方法可以減少製程時間。
本發明較佳實施例之一種III族氮化物半導體層之製造方法至少包含以下步驟,首先,形成一III族氮化物半導體層於一基板上,其中III族氮化物半導體層具有一連續或非連續表面與基板連接,接著,由與基板連接之表面蝕刻III族氮化物半導體層。其中上述步驟已於本發明較佳實施例III族氮化物半導體元件之製造方法中詳述,再此容不贅述。
綜上所述,由於本發明III族氮化物半導體層、III族氮化物半導體元件及其製造方法是蝕刻與基板連接之III族氮化物半導體層之表面。換言之,本發明是對III族氮化物半導體層與基板連接之表面進行蝕刻,以使III族氮化物半導體層與基板分離,不同於習知技術是直接對基板進行機械研磨、乾溼蝕刻或雷射熔損,因此,本發明的製造方法可以減少製程時間。
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
11、21、31、41、51...III族氮化物半導體層
111、112、113、211、311、411...表面
12、22、32、42...基板
121...表面
13...阻障層
23、34...蝕刻液
312、412、511...穿孔
313、314、315...溝槽
33...保護層
331...孔洞
35、52...另一III族氮化物半導體層
36...承載板
5...III族氮化物半導體元件
512...下表面
F1...連接面
F11...內壁
F12...表面
R...區域
S1...邊緣
S11~S12、S21~S22、S31~S37、S41~S46...步驟
圖1為一流程示意圖,顯示本發明較佳實施例之一種III族氮化物半導體元件的製造方法;
圖1A為一示意圖,顯示III族氮化物半導體層是以一非連續表面而與基板連接的一種態樣;
圖1B為一示意圖,顯示III族氮化物半導體層是以一非連續表面而與基板連接的另一種態樣;
圖1C為一示意圖,顯示III族氮化物半導體層是以一連續表面而與基板連接的一種態樣;
圖2為一流程示意圖,顯示圖1中III族氮化物半導體元件的製造方法的第一實施例;
圖3A~3C為一組剖面示意圖,顯示圖2中III族氮化物半導體元件的製造方法;
圖4為一流程示意圖,顯示圖1中III族氮化物半導體元件的製造方法的第二實施例;
圖5A至圖5G、圖5K以及圖5M至圖5N為一組剖面示意圖,顯示圖4中III族氮化物半導體元件的製造方法;
圖5H為圖5F的上視圖,顯示穿孔的態樣;
圖5I以及5J為一組上視示意圖,顯示溝槽的態樣;
圖5L為一剖面示意圖,顯示另一III族氮化物半導體層充填部分穿孔的態樣;
圖6為另一流程示意圖,顯示圖1中III族氮化物半導體元件的製造方法的第二實施例;
圖7A至圖7B為一組剖面示意圖,顯示圖6中的步驟S37;
圖8為一流程示意圖,顯示圖1中III族氮化物半導體元件的製造方法的第三實施例;
圖9為一剖面示意圖,顯示圖8中步驟S42的製造方法;
圖10為一剖面圖,其顯示執行步驟S44後,電子顯微鏡所照攝的影像圖;
圖11為一剖面示意圖,顯示本發明較佳實施例之一種III族氮化物半導體元件;以及
圖12為另一剖面示意圖,顯示本發明較佳實施例之一種III族氮化物半導體元件。
S11~S12...III族氮化物半導體元件的製造方法

Claims (33)

  1. 一種III族氮化物半導體元件的製造方法,包含:形成一III族氮化物半導體層於一基板上,其中該III族氮化物半導體層具有一表面與該基板連接;形成至少一穿孔或至少一溝槽於該III族氮化物半導體層;以及由該與基板連接之表面蝕刻該III族氮化物半導體層。
  2. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中該III族氮化物半導體層之材料包含氮化鋁、或氮化銦、或氮化鎵鋁、或氮化銦鎵、或氮化銦鋁、或氮化銦鎵鋁、或其組合。
  3. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中該基板為一藍寶石基板、或一碳化矽基板、一矽基板、或一砷化鎵基板、或一氧化鋅基板。
  4. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中形成該III族氮化物半導體層於該基板上的步驟是利用一氣相磊晶成長、或一分子束磊晶成長、或一液相磊晶成長。
  5. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中蝕刻該III族氮化物半導體層的步驟直至該III族氮化物半導體層之該表面之至少一部分與該基板分離。
  6. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中蝕刻該III族氮化物半導體層的步驟 實質上是以至少一蝕刻液,由該表面對該III族氮化物半導體層進行蝕刻。
  7. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中該穿孔或該溝槽實質上是利用一微影製程以及一蝕刻製程。
  8. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中於形成該穿孔於該III族氮化物半導體層的步驟實質上是直接對該III族氮化物半導體層的至少一晶格缺陷進行蝕刻,以形成該穿孔。
  9. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,其中於蝕刻該III族氮化物半導體層的步驟之後,更包含:形成一另一III族氮化物半導體層於該III族氮化物半導體層上,以充填該穿孔或該溝槽。
  10. 如申請專利範圍第9項所述之III族氮化物半導體元件的製造方法,其中該另一III族氮化物半導體層與該III族氮化物半導體層的材質相同。
  11. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,更包含:分離該基板與該III族氮化物半導體層。
  12. 如申請專利範圍第11項所述之III族氮化物半導體元件的製造方法,其中分離的步驟實質上為對該III族氮化物半導體層進行加熱、或冷卻、或蝕刻、或機械施力。
  13. 如申請專利範圍第11項所述之III族氮化物半導體元件的製造方法,其中於分離該基板的步驟之後,更包含:平坦化該III族氮化物半導體層之該表面。
  14. 如申請專利範圍第1項所述之III族氮化物半導體元件的製造方法,更包含:設置一承載板於該III族氮化物半導體層。
  15. 一種III族氮化物半導體層之製造方法,包含:形成一III族氮化物半導體層於一基板上,其中該III族氮化物半導體層具有一表面與該基板連接;形成至少一穿孔或至少一溝槽於該III族氮化物半導體層;以及由該與基板連接之表面蝕刻該III族氮化物半導體層。
  16. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中該III族氮化物半導體層之材料包含氮化鋁、或氮化銦、或氮化鎵鋁、或氮化銦鎵、或氮化銦鋁、或氮化銦鎵鋁、或其組合。
  17. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中該基板為一藍寶石基板、或一碳化矽基板、一矽基板、或一砷化鎵基板、或一氧化鋅基板。
  18. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中形成該III族氮化物半導體層於該基板上的步驟是利用一氣相磊晶成長、或一分子束磊晶 成長、或一液相磊晶成長。
  19. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中蝕刻該III族氮化物半導體層的步驟直至該III族氮化物半導體層之該表面之至少一部分與該基板分離。
  20. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中蝕刻該III族氮化物半導體層的步驟實質上是以至少一蝕刻液,由該表面對該III族氮化物半導體層進行蝕刻。
  21. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中該穿孔或該溝槽實質上是利用一微影製程以及一蝕刻製程。
  22. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中於形成該穿孔於該III族氮化物半導體層的步驟實質上是直接對該III族氮化物半導體層的至少一晶格缺陷進行蝕刻,以形成該穿孔。
  23. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,其中於蝕刻該III族氮化物半導體層的步驟之後,更包含:增厚該III族氮化物半導體層。
  24. 如申請專利範圍第23項所述之III族氮化物半導體層的製造方法,其中增厚該III族氮化物半導體層步驟至少充填該穿孔或該溝槽。
  25. 如申請專利範圍第15項所述之III族氮化物半導體層 的製造方法,更包含:分離該基板與該III族氮化物半導體層。
  26. 如申請專利範圍第25項所述之III族氮化物半導體層的製造方法,其中分離的步驟實質上為對該III族氮化物半導體層進行加熱、冷卻、蝕刻、準分子雷射或機械施力。
  27. 如申請專利範圍第25項所述之III族氮化物半導體層的製造方法,其中於分離該基板的步驟之後,更包含:平坦化該III族氮化物半導體層之該表面。
  28. 如申請專利範圍第15項所述之III族氮化物半導體層的製造方法,更包含:設置一承載板於該III族氮化物半導體層。
  29. 一種III族氮化物半導體元件,包含:一III族氮化物半導體層,具有至少一穿孔或至少一溝槽;以及一另一III族氮化物半導體層,設置於該III族氮化物半導體層上,並充填該穿孔或該溝槽,其中該III族氮化物半導體層與該另一III族氮化物半導體層之間具有一連接面,其中該連接面至少包含該穿孔內壁或該溝槽內壁;該III族氮化物半導體元件的製造方法包含形成該III族氮化物半導體層於一基板上,其中該III族氮化物半導體層具有一表面與該基板連接,形成該穿孔或該溝槽於該III族氮化物半導體層,由該與基板 連接之表面蝕刻該III族氮化物半導體層,以及形成該另一III族氮化物半導體層於該III族氮化物半導體層上以充填該穿孔或該溝槽,分離該基板與該III族氮化物半導體層。
  30. 如申請專利範圍第29項所述之III族氮化物半導體元件,其中該III族氮化物半導體層之材料包含氮化鋁、或氮化銦、或氮化鎵鋁、或氮化銦鎵、或氮化銦鋁、或氮化銦鎵鋁、或其組合。
  31. 如申請專利範圍第29項所述之III族氮化物半導體元件,其中該另一III族氮化物半導體層之材料包含氮化鋁、或氮化銦、或氮化鎵鋁、或氮化銦鎵、或氮化銦鋁、或氮化銦鎵鋁、或其組合。
  32. 如申請專利範圍第29項所述之III族氮化物半導體元件,其中該另一III族氮化物半導體層與該III族氮化物半導體層的材質相同。
  33. 如申請專利範圍第29項所述之III族氮化物半導體元件,其中該基板為一藍寶石基板、或一碳化矽基板、一矽基板、或一砷化鎵基板、或一氧化鋅基板。
TW98112395A 2009-04-14 2009-04-14 Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法 TWI427699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98112395A TWI427699B (zh) 2009-04-14 2009-04-14 Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98112395A TWI427699B (zh) 2009-04-14 2009-04-14 Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法

Publications (2)

Publication Number Publication Date
TW201037767A TW201037767A (en) 2010-10-16
TWI427699B true TWI427699B (zh) 2014-02-21

Family

ID=44856810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98112395A TWI427699B (zh) 2009-04-14 2009-04-14 Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法

Country Status (1)

Country Link
TW (1) TWI427699B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792547B (zh) * 2021-09-09 2023-02-11 國立中山大學 氮化物多孔單晶膜的製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134446A1 (en) * 2000-03-14 2003-07-17 Masayoshi Koike Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US20050124143A1 (en) * 2002-07-11 2005-06-09 Roycroft Brendan J. Defect reduction in semiconductor materials
TWI234298B (en) * 2003-11-18 2005-06-11 Itswell Co Ltd Semiconductor light emitting diode and method for manufacturing the same
TWI248691B (en) * 2005-06-03 2006-02-01 Formosa Epitaxy Inc Light emitting diode and method of fabricating thereof
US20060033119A1 (en) * 2004-08-10 2006-02-16 Hitachi Cable, Ltd. III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030134446A1 (en) * 2000-03-14 2003-07-17 Masayoshi Koike Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US20050124143A1 (en) * 2002-07-11 2005-06-09 Roycroft Brendan J. Defect reduction in semiconductor materials
TWI234298B (en) * 2003-11-18 2005-06-11 Itswell Co Ltd Semiconductor light emitting diode and method for manufacturing the same
US20060033119A1 (en) * 2004-08-10 2006-02-16 Hitachi Cable, Ltd. III-V group nitride system semiconductor self-standing substrate, method of making the same and III-V group nitride system semiconductor wafer
TWI248691B (en) * 2005-06-03 2006-02-01 Formosa Epitaxy Inc Light emitting diode and method of fabricating thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI792547B (zh) * 2021-09-09 2023-02-11 國立中山大學 氮化物多孔單晶膜的製造方法

Also Published As

Publication number Publication date
TW201037767A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
JP6234787B2 (ja) 基板再生方法及び再生基板
TWI469185B (zh) 分離基板的半導體結構及其製造方法
KR101278063B1 (ko) 나노포러스 구조를 이용한 반도체소자 분리방법
JP6258904B2 (ja) 基板分離成長のための空洞を有するエピタキシャル層ウエハ及びそれを用いて製造された半導体素子
US9711354B2 (en) Method of fabricating light emitting device through forming a template for growing semiconductor and separating growth substrate
TWI407590B (zh) Method for manufacturing thin film semiconductor structures
US9514926B2 (en) Substrate recycling method
TWI504020B (zh) 從磊晶層分離成長基板的方法、使用該方法製造發光二極體的方法以及藉由該方法製造的發光二極體
US9601661B2 (en) Epitaxial structure and epitaxial growth method for forming epitaxial layer with cavities
KR20150074516A (ko) 기판 분리 방법 및 이를 이용한 발광소자 제조 방법
US8395168B2 (en) Semiconductor wafers and semiconductor devices with polishing stops and method of making the same
CN111509095B (zh) 复合式基板及其制造方法
TWI427699B (zh) Iii族氮化物半導體層、iii族氮化物半導體元件及其製造方法
KR101984934B1 (ko) 기판 재생 방법 및 재생 기판
TWI451480B (zh) 三族氮化物半導體之製造方法
TWI843061B (zh) 具有提高的紅光量子效率之銦-鎵-氮化物發光二極體
KR20100020936A (ko) 파티션화된 기판 상에 제작되는 반도체 소자용 고품질 경계부 형성 방법
KR20150016759A (ko) 발광 소자 제조용 템플릿 재생 방법
KR102052179B1 (ko) 기판 재생 방법 및 재생 기판
US20160155628A1 (en) Substrate regeneration method and regenerated substrate
KR20150014232A (ko) 재생 가능한 발광 소자 제조용 템플릿 및 이를 이용한 발광 소자 제조 방법
KR20150048474A (ko) 기판 분리 방법 및 이를 이용한 반도체 소자 제조 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees