TWI385259B - Method of manufacturing nickel silicide nano-wires - Google Patents

Method of manufacturing nickel silicide nano-wires Download PDF

Info

Publication number
TWI385259B
TWI385259B TW97114127A TW97114127A TWI385259B TW I385259 B TWI385259 B TW I385259B TW 97114127 A TW97114127 A TW 97114127A TW 97114127 A TW97114127 A TW 97114127A TW I385259 B TWI385259 B TW I385259B
Authority
TW
Taiwan
Prior art keywords
nickel
nanowire
titanium
niobium
substrate
Prior art date
Application number
TW97114127A
Other languages
Chinese (zh)
Other versions
TW200944603A (en
Inventor
Hai-Lin Sun
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97114127A priority Critical patent/TWI385259B/en
Publication of TW200944603A publication Critical patent/TW200944603A/en
Application granted granted Critical
Publication of TWI385259B publication Critical patent/TWI385259B/en

Links

Description

矽化鎳奈米線的製備方法Preparation method of deuterated nickel nanowire

本發明涉及一維奈米材料及其製備方法,尤其涉及一種矽化鎳奈米線的製備方法。The invention relates to a one-dimensional nano material and a preparation method thereof, in particular to a preparation method of a nickel germanium wire.

半導體工業的發展方向為更小、更快、更低能耗。然而,從微米電子時代進入奈米電子時代之後,先前的半導體製造技術--光刻工藝(“自上而下”的技術)顯得越來越難以滿足現在及未來的要求。由此,“自下而上”的技術,或稱為自組裝技術被認為係未來發展的趨勢。目前,人們已經利用這種自組裝技術合成了各種奈米結構,包括奈米線、奈米管,其潛在的應用領域包括奈米電子、奈米光學、奈米感測器等。The semiconductor industry is heading for smaller, faster, and lower energy consumption. However, after entering the nanoelectronics era from the microelectronics era, the previous semiconductor manufacturing technology, the lithography process ("top-down" technology), has become increasingly difficult to meet current and future requirements. Thus, "bottom-up" technology, or self-assembly technology, is considered a trend in the future. At present, various self-assembly techniques have been used to synthesize various nanostructures, including nanowires and nanotubes. Potential applications include nanoelectronics, nano-optics, and nanosensors.

金屬矽化物具有較低的電阻率,較高的熱穩定性,可以於矽基底上自對準生長,並且不易擴散於矽,有希望被用作互連材料(請參見,Single-crystal metallic nanowires and metal/semiconductor nanowires heterostructures, Nature, Vol430, P61-65 (2004))。矽化鎳奈米線具有較低的矽化溫度,且反應過程中耗矽量少,故,成為目前研究的熱點Metal halides have lower resistivity, higher thermal stability, self-aligned growth on tantalum substrates, and are less prone to diffusion in tantalum, promising as interconnect materials (see, Single-crystal metallic nanowires). And metal/semiconductor nanowires heterostructures, Nature, Vol430, P61-65 (2004)). The deuterated nickel nanowire has a lower deuteration temperature and consumes less sputum during the reaction, so it has become a hot spot of current research.

先前技術提供一種矽化鎳奈米線的製備方法,其具體包括以下步驟:提供一沈積有催化劑的矽片作為生長基底;將該生長基底置入管式爐中;向該管式爐中通入矽源氣體,同時加熱該管式爐至500~1000℃以生長矽奈米線;然後向該矽奈米線表面沈積一金屬鎳;加熱該沈積有金屬 鎳層的矽奈米線至550℃進行固相反應,得到一矽化鎳奈米線。The prior art provides a method for preparing a niobium nickel nanowire, which specifically includes the steps of: providing a crucible deposited with a catalyst as a growth substrate; placing the growth substrate into a tube furnace; and introducing the growth into the tube furnace矽 source gas, simultaneously heating the tube furnace to 500~1000 ° C to grow the 矽 nanowire; then depositing a metal nickel on the surface of the 矽 nanowire; heating the deposited metal The solid phase reaction of the nickel layer of the nanowire to 550 ° C gives a nickel-nitride nanowire.

然而,採用上述方法製備矽化鎳奈米線,由於需要先製備矽奈米線,再向該矽奈米線表面沈積一金屬鎳,然後,通過固相反應才能得到矽化鎳奈米線,故,工藝複雜,製備成本高。而且,採用上述方法製備矽化鎳奈米線,需要用矽源氣體作為反應氣體,會造成環境污染。另外,採用上述方法製備矽化鎳奈米線,無法控制矽化鎳奈米線的直徑大小。However, the nickel germanium wire prepared by the above method is prepared by first preparing a nanowire, and then depositing a metal nickel on the surface of the nanowire, and then obtaining a nickel germanium wire by a solid phase reaction. The process is complicated and the preparation cost is high. Moreover, the use of the above method for preparing a nickel germanium nanowire requires the use of a helium source gas as a reaction gas, which causes environmental pollution. In addition, the use of the above method to prepare the nickel-neutralized nickel nanowire can not control the diameter of the nickel-neutralized nickel nanowire.

有鑒於此,提供一種工藝簡單,製備成本底,不會造成環境污染,且可以控制矽化鎳奈米線的直徑大小的製備方法實為必要。In view of this, it is necessary to provide a preparation method which is simple in process, low in preparation cost, does not cause environmental pollution, and can control the diameter of the nickel-nitride nanowire.

一種矽化鎳奈米線的製備方法,其具體包括以下步驟:提供一矽基片,並於該矽基片表面形成一二氧化矽層;於上述矽基片的二氧化矽層表面沈積一鈦層;提供一生長裝置,且該生長裝置具有一反應室,並將上述沈積有鈦層的矽基片置入反應室內,並加熱至500~1000℃;濺射產生鎳團簇,並使該鎳團簇沈積到矽基片表面,生長矽化鎳奈米線。A method for preparing a niobium-nickel nanowire, which comprises the steps of: providing a tantalum substrate and forming a ceria layer on the surface of the niobium substrate; depositing a titanium on the surface of the tantalum dioxide layer of the tantalum substrate a layer; a growth device is provided, and the growth device has a reaction chamber, and the ruthenium substrate on which the titanium layer is deposited is placed in the reaction chamber and heated to 500 to 1000 ° C; sputtering generates nickel clusters, and the Nickel clusters were deposited on the surface of the ruthenium substrate to grow a niobium nickel nanowire.

相對于先前技術,本發明提供的製備矽化鎳奈米線的方法中,直接將鎳團簇沈積於矽基片上生長矽化鎳奈米線,工藝簡單,成本低廉。而且,採用上述方法製備矽化鎳奈米線,無需用到矽源氣體,不會造成環境污染。另外, 通過控制二氧化矽層與鈦層的厚度以及沈積的鎳團簇的質量數可以控制矽化鎳奈米線的直徑。Compared with the prior art, in the method for preparing a nickel germanium nanowire provided by the present invention, the nickel cluster is directly deposited on the ruthenium substrate to grow the nickel germanium nanowire, and the process is simple and the cost is low. Moreover, the use of the above method for preparing the nickel-neutralized nickel nanowire does not require the use of a helium source gas and does not cause environmental pollution. In addition, The diameter of the nickel-neutralized nickel nanowire can be controlled by controlling the thickness of the ruthenium dioxide layer and the titanium layer and the mass of the deposited nickel cluster.

以下將結合附圖對本技術方案作進一步的詳細說明。The technical solution will be further described in detail below with reference to the accompanying drawings.

請參閱圖1至圖3,本技術方案實施例提供一種矽化鎳奈米線的製備方法,其具體包括以下步驟:步驟一,提供一矽基片312,並於該矽基片312表面形成一二氧化矽層320。Referring to FIG. 1 to FIG. 3 , an embodiment of the present invention provides a method for preparing a nickel germanium nanowire, which specifically includes the following steps: Step one, providing a substrate 312 and forming a surface on the surface of the germanium substrate 312 The cerium oxide layer 320.

首先對矽基片312進行超聲波清洗5~10分鐘,然後,將乾淨的矽基片312置入含氧的氣氛中放置一段時間,使其表面形成一層二氧化矽層320。為了加快氧化速度,還可以對上述矽基片312進行加熱。其中,所述矽基片312大小與形狀不限,可以根據實際情況選擇。所述二氧化矽層320的厚度為10奈米~1微米。本實施例中,二氧化矽層320的厚度優選為500奈米。First, the ruthenium substrate 312 is ultrasonically cleaned for 5 to 10 minutes, and then the clean ruthenium substrate 312 is placed in an oxygen-containing atmosphere for a while to form a layer of ruthenium dioxide 320 on the surface. In order to accelerate the oxidation rate, the above-mentioned ruthenium substrate 312 can also be heated. The size and shape of the cymbal substrate 312 are not limited, and may be selected according to actual conditions. The ceria layer 320 has a thickness of 10 nm to 1 μm. In the present embodiment, the thickness of the ceria layer 320 is preferably 500 nm.

步驟二,於上述矽基片312的二氧化矽層320表面沈積一鈦層322。In step two, a titanium layer 322 is deposited on the surface of the ceria layer 320 of the ruthenium substrate 312.

於上述矽基片312的二氧化矽層表面沈積鈦層的方法不限,可以為濺射法、熱沈積法等。所述鈦層322的厚度為1~500奈米。本實施例中,鈦層322的厚度優選為50奈米。The method of depositing the titanium layer on the surface of the ceria layer of the above-mentioned ruthenium substrate 312 is not limited, and may be a sputtering method, a thermal deposition method, or the like. The titanium layer 322 has a thickness of 1 to 500 nm. In the present embodiment, the thickness of the titanium layer 322 is preferably 50 nm.

步驟三,提供一生長裝置30,且該生長裝置30具有一反應室304,並將上述沈積有鈦層322的矽基片312置入反應室304內,並加熱至生長溫度。In the third step, a growth device 30 is provided, and the growth device 30 has a reaction chamber 304, and the ruthenium substrate 312 on which the titanium layer 322 is deposited is placed in the reaction chamber 304 and heated to a growth temperature.

所述生長裝置30包括一濺射室302以及一反應室304,且該濺射室302與反應室304通過一四極質譜儀306相連通。所述生長裝置30還進一步包括向濺射室302進行濺射粒子的濺射裝置(圖中未顯示)及對反應室304進行加熱的加熱裝置以及抽氣裝置(圖中未顯示)。The growth device 30 includes a sputtering chamber 302 and a reaction chamber 304, and the sputtering chamber 302 is in communication with the reaction chamber 304 through a quadrupole mass spectrometer 306. The growth apparatus 30 further includes a sputtering apparatus (not shown) that sputters particles to the sputtering chamber 302, and a heating apparatus that heats the reaction chamber 304 and an air suction apparatus (not shown).

將上述沈積有鈦層322的矽基片312置入反應室304後,進行抽真空,使反應室304的壓強低於1×10-3 Pa。然後,以10℃/分鐘的速度加熱反應室304至生長溫度,並保持2~10分鐘。其中,所述生長溫度為500~1000℃。After the above-described ruthenium substrate 312 on which the titanium layer 322 is deposited is placed in the reaction chamber 304, evacuation is performed to bring the pressure of the reaction chamber 304 to less than 1 × 10 -3 Pa. Then, the reaction chamber 304 was heated to a growth temperature at a rate of 10 ° C/min and held for 2 to 10 minutes. Wherein, the growth temperature is 500 to 1000 °C.

當加熱反應室304至生長溫度後,矽基片312表面的二氧化矽層320與鈦層322發生反應,於矽基片312表面形成複數個二矽化鈦(TiSi2 )島狀結構314。沒有形成二矽化鈦島狀結構314的地方,矽基片312曝露於外界。所述二矽化鈦島狀結構314的大小與二氧化矽層320及鈦層322的厚度有關。而該二矽化鈦島狀結構314的大小會影響生長的矽化鎳奈米線316的直徑。可以理解,二矽化鈦島狀結構314越大,製備的矽化鎳奈米線316直徑就越大。反之,製備的矽化鎳奈米線316直徑就越小。本實施例中,二氧化矽層320的厚度優選為500奈米,鈦層322的厚度優選為50奈米,形成的二矽化鈦島狀結構314的粒徑為500奈米~1微米。After the reaction chamber 304 is heated to the growth temperature, the ruthenium dioxide layer 320 on the surface of the ruthenium substrate 312 reacts with the titanium layer 322 to form a plurality of titanium dioxide (TiSi 2 ) island structures 314 on the surface of the ruthenium substrate 312. Where the titanium germanium island structure 314 is not formed, the germanium substrate 312 is exposed to the outside. The size of the titanium dioxide island structure 314 is related to the thickness of the ceria layer 320 and the titanium layer 322. The size of the titanium germanium island structure 314 affects the diameter of the grown germanium nitride nanowire 316. It can be understood that the larger the titanium germanium island structure 314 is, the larger the diameter of the prepared germanium nitride nanowire 316 is. On the contrary, the diameter of the prepared nickel germanium nanowire 316 is smaller. In the present embodiment, the thickness of the ruthenium dioxide layer 320 is preferably 500 nm, the thickness of the titanium layer 322 is preferably 50 nm, and the diameter of the titanium titanium island structure 314 formed is 500 nm to 1 μm.

步驟四,濺射產生鎳團簇310,並使該鎳團簇310沈積到矽基片312表面,生長矽化鎳奈米線316。In step four, a nickel cluster 310 is sputtered, and the nickel cluster 310 is deposited on the surface of the ruthenium substrate 312 to grow a nickel germanium nanowire 316.

當矽基片312表面形成複數個二矽化鈦島狀結構314 後,開始向矽基片312表面濺射沈積鎳團簇310,具體包括以下步驟:首先,濺射產生鎳團簇310。When a plurality of titanium germanium island structures 314 are formed on the surface of the germanium substrate 312 Thereafter, the nickel clusters 310 are sputter deposited on the surface of the ruthenium substrate 312, specifically including the following steps: First, the nickel clusters 310 are sputtered.

當由磁控濺射靶濺射產生鎳顆粒308後,該鎳顆粒308於濺射室302中自由運動,相互碰撞,聚集形成鎳團簇310。其中,磁控濺射法製備鎳顆粒308的工作氣體為氬氣,濺射室302的工作壓強為1×10-1 Pa~9×10-1 Pa。When the nickel particles 308 are sputtered by the magnetron sputtering target, the nickel particles 308 are free to move in the sputtering chamber 302, collide with each other, and aggregate to form a nickel cluster 310. The working gas for preparing the nickel particles 308 by the magnetron sputtering method is argon gas, and the working pressure of the sputtering chamber 302 is 1×10 -1 Pa~9×10 -1 Pa.

其次,對濺射產生鎳團簇310進行篩選。Next, the nickel clusters 310 produced by sputtering are screened.

由於反應室304的氣壓低於濺射室302氣壓,形成的鎳團簇310通過四極質譜儀306向氣壓更低的反應室304方向擴散。通過四極質譜儀306可以選擇不同質量數的鎳團簇310,使選定的鎳團簇310沈積於矽基片312表面。Since the gas pressure of the reaction chamber 304 is lower than the gas pressure of the sputtering chamber 302, the formed nickel clusters 310 are diffused by the quadrupole mass spectrometer 306 toward the lower pressure chamber 304. Different masses of nickel clusters 310 can be selected by quadrupole mass spectrometer 306 to deposit selected nickel clusters 310 on the surface of germanium substrate 312.

最後,使篩選後的鎳團簇310沈積到矽基片312上。Finally, the screened nickel clusters 310 are deposited onto the ruthenium substrate 312.

選定的鎳團簇310通過四極質譜儀306後繼續過散,當運動的鎳團簇310與矽基片312接觸後,沈積於矽基片312上。同時維持反應室304為生長溫度,使沈積的鎳團簇310與矽基片312反應生長矽化鎳奈米線316。The selected nickel clusters 310 continue to scatter after passing through the quadrupole mass spectrometer 306. When the moving nickel clusters 310 are in contact with the ruthenium substrate 312, they are deposited on the ruthenium substrate 312. At the same time, the reaction chamber 304 is maintained at a growth temperature, and the deposited nickel clusters 310 are reacted with the ruthenium substrate 312 to grow the nickel halide nanowires 316.

由於沒有形成二矽化鈦島狀結構314的地方,矽基片312曝露於外界,故,該矽基片312中的矽元素可以與沈積於該矽基片312上的鎳團簇310接觸並發生反應生長矽化鎳奈米線316。其中,矽化鎳奈米線316可以沿著二矽化鈦島狀結構314的邊緣垂直生長(請參見圖4),也可以沿著二矽化鈦島狀結構314的邊緣水平生長(請參見圖5)。Since the germanium substrate 312 is not exposed to the outside, the germanium element in the germanium substrate 312 can be in contact with the nickel cluster 310 deposited on the germanium substrate 312 and occurs. The reaction was carried out to deuterate nickel nanowire 316. Among them, the deuterated nickel nanowire 316 may grow vertically along the edge of the titanium dioxide island structure 314 (see FIG. 4) or horizontally along the edge of the titanium dioxide island structure 314 (see FIG. 5). .

可以理解,所述鎳團簇310的質量數的選擇與形成的 二矽化鈦島狀結構314的大小有關。當形成的二矽化鈦島狀結構314較大時,應當選擇質量數較大的鎳團簇310。反之,應當選擇質量數較小的鎳團簇310。且,二矽化鈦島狀結構314的大小與二氧化矽層320及鈦層322的厚度有關,故,通過選擇不同厚度二氧化矽層320與鈦層322,以及不同質量數的鎳團簇310可以製備不同直徑的矽化鎳奈米線316。可以理解,採用厚度較大的二氧化矽層320與鈦層322,則製備的矽化鎳奈米線316的直徑較大。反之,則製備的矽化鎳奈米線316的直徑較小。可以理解,製備矽化鎳奈米線316的長度不限,生長時間越長,則製備的矽化鎳奈米線316的長度越長。本實施例中,二氧化矽層320的厚度優選為500奈米,鈦層322的厚度優選為50奈米,鎳團簇310的質量數優選為7000~9000。本實施例製備的矽化鎳奈米線316的長度為100奈米~2微米,直徑為10~500奈米。It can be understood that the mass number of the nickel clusters 310 is selected and formed. The size of the titanium dioxide island structure 314 is related. When the formed titanium germanium island structure 314 is large, the nickel cluster 310 having a larger mass number should be selected. Conversely, a nickel cluster 310 having a smaller mass number should be selected. Moreover, the size of the titanium germanium island structure 314 is related to the thickness of the ceria layer 320 and the titanium layer 322. Therefore, by selecting different thicknesses of the ceria layer 320 and the titanium layer 322, and different masses of nickel clusters 310 Nickel-deposited nickel nanowires 316 of different diameters can be prepared. It can be understood that the larger diameter of the ceria layer 320 and the titanium layer 322 are used, and the prepared nickel germanium nanowires 316 have a larger diameter. On the contrary, the prepared nickel germanium nanowire 316 has a smaller diameter. It can be understood that the length of the prepared nickel germanium nanowire 316 is not limited, and the longer the growth time, the longer the length of the prepared nickel germanium nanowire 316. In the present embodiment, the thickness of the ceria layer 320 is preferably 500 nm, the thickness of the titanium layer 322 is preferably 50 nm, and the mass of the nickel cluster 310 is preferably 7000-9000. The nickel germanium nanowire 316 prepared in this embodiment has a length of 100 nm to 2 μm and a diameter of 10 to 500 nm.

本實施例提供的製備矽化鎳奈米線316的方法中,直接將鎳團簇310沈積於矽基片312上生長矽化鎳奈米線316,工藝簡單,成本低廉。而且,採用上述方法製備矽化鎳奈米線316,無需用到矽源氣體,不會造成環境污染。另,通過選擇不同厚度二氧化矽層320與鈦層322,以及不同質量數的鎳團簇310可以控制矽化鎳奈米線316的直徑大小。In the method for preparing the nickel germanium nanowire 316 provided in this embodiment, the nickel cluster 310 is directly deposited on the ruthenium substrate 312 to grow the nickel germanium nanowire 316, which is simple in process and low in cost. Moreover, the use of the above method for preparing the nickel germanium nanowire 316 does not require the use of a helium source gas and does not cause environmental pollution. In addition, the diameter of the niobium nickel nanowire 316 can be controlled by selecting different thicknesses of the ceria layer 320 and the titanium layer 322, as well as different masses of nickel clusters 310.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above is only a preferred embodiment of the present invention. It is not possible to limit the scope of patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

生長裝置‧‧‧30Growth device ‧ ‧ 30

濺射室‧‧‧302Sputtering room ‧‧ ‧

反應室‧‧‧304Reaction chamber ‧ ‧ 304

四極質譜儀‧‧‧306Quadrupole mass spectrometer ‧‧ 306

鎳顆粒‧‧‧308Nickel particles ‧‧ 308

鎳團簇‧‧‧310Nickel clusters ‧ ‧ 310

矽基片‧‧‧312矽 ‧ ‧ ‧ 312

二矽化鈦島狀結構‧‧‧314Titanium dioxide island structure ‧‧ 314

矽化鎳奈米線‧‧‧316Deuterated nickel nanowire ‧‧‧316

二氧化矽層‧‧‧320二 矽 layer ‧ ‧ 320

鈦層‧‧‧322Titanium layer ‧‧‧322

圖1為本技術方案實施例的矽化鎳奈米線的製備方法流程圖。1 is a flow chart of a method for preparing a deuterated nickel nanowire according to an embodiment of the present technical solution.

圖2為本技術方案實施例製備矽化鎳奈米線的矽基片示意圖。2 is a schematic view of a ruthenium substrate prepared by preparing a nickel germanium nanowire according to an embodiment of the present technical solution.

圖3為本技術方案實施例製備矽化鎳奈米線的裝置的結構示意圖。FIG. 3 is a schematic structural view of an apparatus for preparing a nickel germanium nanowire according to an embodiment of the present technology.

圖4及圖5為本技術方案實施例製備的矽化鎳奈米線的掃描電鏡照片。4 and FIG. 5 are scanning electron micrographs of the nickel germanium wire prepared in the embodiment of the present invention.

Claims (12)

一種矽化鎳奈米線的製備方法,其具體包括以下步驟:提供一矽基片,並於該矽基片表面形成一二氧化矽層;於上述矽基片的二氧化矽層表面沈積一鈦層;提供一生長裝置,且該生長裝置具有一反應室,並將上述沈積有鈦層的矽基片置入反應室內,並加熱至500~1000℃;以及濺射產生鎳團簇,並使該鎳團簇沈積到矽基片表面,以生長矽化鎳奈米線。A method for preparing a niobium-nickel nanowire, which comprises the steps of: providing a tantalum substrate and forming a ceria layer on the surface of the niobium substrate; depositing a titanium on the surface of the tantalum dioxide layer of the tantalum substrate Providing a growth device, the growth device having a reaction chamber, and placing the above-mentioned ruthenium substrate on which the titanium layer is deposited into the reaction chamber and heating to 500 to 1000 ° C; and sputtering to produce nickel clusters and The nickel cluster is deposited on the surface of the ruthenium substrate to grow a nickel germanium nanowire. 如申請專利範圍第1項所述的矽化鎳奈米線的製備方法,其中,所述二氧化矽層的厚度為10奈米~1微米。The method for producing a deuterated nickel nanowire according to claim 1, wherein the ceria layer has a thickness of from 10 nm to 1 μm. 如申請專利範圍第1項所述的矽化鎳奈米線的製備方法,其中,所述鈦層的厚度為1~500奈米。The method for producing a deuterated nickel nanowire according to claim 1, wherein the titanium layer has a thickness of 1 to 500 nm. 如申請專利範圍第1項所述的矽化鎳奈米線的製備方法,其中,所述反應室的壓強低於1×10-3 Pa。The method for producing a deuterated nickel nanowire according to claim 1, wherein the reaction chamber has a pressure of less than 1 × 10 -3 Pa. 如申請專利範圍第4項所述的矽化鎳奈米線的製備方法,其中,所述生長裝置進一步包括一濺射室與一四極質譜儀,且該濺射室與反應室通過一四極質譜儀相連通The method for preparing a deuterated nickel nanowire according to claim 4, wherein the growth device further comprises a sputtering chamber and a quadrupole mass spectrometer, and the sputtering chamber and the reaction chamber pass a quadrupole Mass spectrometer connected 如申請專利範圍第5項所述的矽化鎳奈米線的製備方法,其中,濺射產生鎳團簇的過程為在濺射室內濺射產生鎳顆粒,鎳顆粒自由運動,相互碰撞,聚集形成鎳團簇。The method for preparing a niobium-nickel nanowire according to claim 5, wherein the process of sputtering to produce nickel clusters is to sputter nickel particles in a sputtering chamber, and the nickel particles move freely, collide with each other, and form a cluster. Nickel clusters. 如申請專利範圍第6項所述的矽化鎳奈米線的製備方 法,其中,所述使該鎳團簇沈積到矽基片表面的步驟前,進一步包括一通過四極質譜儀對鎳團簇進行篩選的步驟。The preparation method of the niobium nickel nanowire as described in claim 6 of the patent application scope The method, wherein the step of depositing the nickel cluster onto the surface of the ruthenium substrate further comprises the step of screening the nickel cluster by a quadrupole mass spectrometer. 如申請專利範圍第7項所述的矽化鎳奈米線的製備方法,其中,篩選後的鎳團簇向壓強較低的反應室擴散,沈積到矽基片表面。The method for preparing a niobium-nickel nanowire according to claim 7, wherein the screened nickel cluster is diffused into the reaction chamber having a lower pressure and deposited on the surface of the tantalum substrate. 如申請專利範圍第1項所述的矽化鎳奈米線的製備方法,其中,所述沈積有鈦層的矽基片於500~1000℃反應2~10分鐘,從而於矽基片表面形成複數個二矽化鈦島狀結構。The method for preparing a deuterated nickel nanowire according to claim 1, wherein the ruthenium substrate on which the titanium layer is deposited is reacted at 500 to 1000 ° C for 2 to 10 minutes to form a plurality of ruthenium substrates. A titanium dioxide island structure. 如申請專利範圍第9項所述的矽化鎳奈米線的製備方法,其中,所述矽化鎳奈米線沿著二矽化鈦島狀結構的邊緣垂直生長。The method for producing a niobium-nickel nanowire according to claim 9, wherein the niobium nickel nitride wire is vertically grown along an edge of the titanium divalent titanium island structure. 如申請專利範圍第9項所述的矽化鎳奈米線的製備方法,其中,所述矽化鎳奈米線沿著二矽化鈦島狀結構的邊緣水平生長。The method for producing a niobium nickel nanowire according to claim 9, wherein the nickel neodymium nanowire is horizontally grown along an edge of the titanium dioxide island structure. 如申請專利範圍第1項所述的矽化鎳奈米線的製備方法,其中,該方法製備的矽化鎳奈米線的長度為100奈米~2微米,直徑為10~500奈米。The method for preparing a deuterated nickel nanowire according to claim 1, wherein the deuterated nickel nanowire prepared by the method has a length of 100 nm to 2 μm and a diameter of 10 to 500 nm.
TW97114127A 2008-04-18 2008-04-18 Method of manufacturing nickel silicide nano-wires TWI385259B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97114127A TWI385259B (en) 2008-04-18 2008-04-18 Method of manufacturing nickel silicide nano-wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97114127A TWI385259B (en) 2008-04-18 2008-04-18 Method of manufacturing nickel silicide nano-wires

Publications (2)

Publication Number Publication Date
TW200944603A TW200944603A (en) 2009-11-01
TWI385259B true TWI385259B (en) 2013-02-11

Family

ID=44869396

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97114127A TWI385259B (en) 2008-04-18 2008-04-18 Method of manufacturing nickel silicide nano-wires

Country Status (1)

Country Link
TW (1) TWI385259B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734733A (en) * 2004-07-21 2006-02-15 三星电子株式会社 Silica-base material layer, method, structure, device, reflector and display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734733A (en) * 2004-07-21 2006-02-15 三星电子株式会社 Silica-base material layer, method, structure, device, reflector and display

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
2004年出版,Chemical Physics Letters,V.383,p380-384,「Direct growth of amorphous silica nanowires by solid state transformation of SiO2 films 」,Ki-Hong Lee等撰寫 *
2005年出版,Thin Solid Films,V.483,p60-62,「Spontaneous nickel monosilicide nanowire formation by metal induced growth」,Joondong Kim等撰寫 【實驗】 *

Also Published As

Publication number Publication date
TW200944603A (en) 2009-11-01

Similar Documents

Publication Publication Date Title
JP6416189B2 (en) Method for directly producing graphene on a dielectric substrate, and related article / apparatus
JP6416191B2 (en) Low temperature graphene deposition method on glass, and related article / apparatus
TWI362678B (en) Method for making transmission electron microscope grid
JP2006117520A (en) Iridium oxide nanotube and method of forming the same
JP2004182581A (en) Method for producing carbon nanotube
JP2007161576A (en) Method for producing carbon nanotube array
TWI248469B (en) Manufacturing method of zinc oxide nanowires
Zhou et al. Competitive growth of Ta nanopillars during glancing angle deposition: Effect of surface diffusion
US8603304B2 (en) Method for manufacturing nickel silicide nano-wires
CN107287653A (en) A kind of cadmium iodide two-dimensional material and preparation method thereof
CN104805409B (en) Method for preparing Ag nanowire array electrode according to magnetron sputtering-masking assisted deposition
KR101151424B1 (en) The manufacturing methods of the one-dimensional nanostructure having metal nanoparticles on it
TWI385259B (en) Method of manufacturing nickel silicide nano-wires
JP2005236080A (en) Method and device for forming silicon nano crystal structure
TW201031482A (en) Manufacturing method of inorganic nano-particles and a device using the same
Zamchiy et al. Tin-catalyzed oriented array of microropes of silicon oxide nanowires synthesized on different substrates
CN108220881B (en) Method for controlling growth of metal nano-rod
CN111620340A (en) Method for in-situ growth of TiC nanotube
KR102349695B1 (en) Method of manufacturing vertically aligned carbon nanotubes
JP5052074B2 (en) Method for forming nano metal particles and nano-order wiring
CN112030109B (en) Copper oxide film/silicon wafer composite structure and preparation method thereof
JP2007203180A (en) Manufacturing method of carbon nanostructure, catalytic metal particle composite material and its manufacturing method
TWI492896B (en) Method of manufacturing silicon nano-structure
TWI314917B (en) Method for manufacturing carbon nanotubes array
KR101210958B1 (en) Fabrication Method of Ferromagnetic Single Crystal