TWI381623B - Step-up conversion circuit and step-up conversion device - Google Patents

Step-up conversion circuit and step-up conversion device Download PDF

Info

Publication number
TWI381623B
TWI381623B TW099106914A TW99106914A TWI381623B TW I381623 B TWI381623 B TW I381623B TW 099106914 A TW099106914 A TW 099106914A TW 99106914 A TW99106914 A TW 99106914A TW I381623 B TWI381623 B TW I381623B
Authority
TW
Taiwan
Prior art keywords
output
switch
capacitor
coupled
inductor
Prior art date
Application number
TW099106914A
Other languages
Chinese (zh)
Other versions
TW201131957A (en
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW099106914A priority Critical patent/TWI381623B/en
Publication of TW201131957A publication Critical patent/TW201131957A/en
Application granted granted Critical
Publication of TWI381623B publication Critical patent/TWI381623B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Dc-Dc Converters (AREA)

Description

升壓轉換電路及升壓轉換裝置Boost conversion circuit and boost converter

本發明是有關於一種電壓轉換電路,特別是指一種升壓轉換電路。The present invention relates to a voltage conversion circuit, and more particularly to a boost conversion circuit.

大多數的電子裝置在使用時,往往需要利用升壓轉換電路將低電壓轉換為高電壓,以提供自身所需之電源,例如:個人數位助理(PDA)、MP3播放器等可攜式影音設備或其它的可攜式通訊設備等。Most electronic devices often need to use a boost converter circuit to convert a low voltage to a high voltage to provide their own power supply, such as a portable digital audio device such as a personal digital assistant (PDA) or an MP3 player. Or other portable communication devices, etc.

然而,一般常用的升壓型轉換器(Boost Converter)及升降壓型轉換器(Buck-Boost Converter),其輸出電流皆為脈動電流(即輸出電流漣波較大),故導致相對應之輸出電壓漣波較大,而影響到電子裝置的運作,目前有三種解決方式:第一種方式是加大輸出電容值與降低ESR(equivalent series resistance,等效串聯電阻);第二種方式是使用電感電容濾波器;第三種方式是提高切換頻率。關於第一種方式與第二種方式的缺點是會造成成本增加;而第三種方式的缺點是會造成開關切換損失增加,且對周邊電路的電磁干擾增加。此外,亦可運用KY轉換器來解決此問題,不過KY轉換器的輸出電壓最大值只能是輸入電壓的兩倍。However, the commonly used boost converters (Boost Converters) and buck-boost converters (Buck-Boost Converter) have output currents that are pulsating currents (ie, the output current is chopped), resulting in a corresponding output. There are three solutions for the voltage ripple, which affects the operation of the electronic device: the first method is to increase the output capacitance value and reduce the ESR (equivalent series resistance); the second way is to use Inductor-capacitor filter; the third way is to increase the switching frequency. The disadvantage of the first mode and the second mode is that it causes an increase in cost; and the third mode has the disadvantage that the switching loss is increased and the electromagnetic interference to the peripheral circuits is increased. In addition, KY converters can also be used to solve this problem, but the output voltage of the KY converter can only be twice the input voltage.

有鑑於此,對於如何改善升壓轉換電路的輸出電流漣波,以及顧及升壓轉換電路的升壓效果,將是一值得深入研究的課題。In view of this, how to improve the output current ripple of the boost converter circuit and the boosting effect of the boost converter circuit will be a subject worthy of further study.

因此,本發明之目的,即在提供一種升壓效果佳的升壓轉換電路。Accordingly, it is an object of the present invention to provide a boost converter circuit having a good boosting effect.

本發明之另一目的,在於提供一種輸出電流漣波小的升壓轉換電路。Another object of the present invention is to provide a boost converter circuit having a small output current ripple.

於是,本發明升壓轉換電路,適用於將一輸入電壓進行升壓轉換以輸出一輸出電壓,升壓轉換電路包含一輸入電感、一儲能電容、一第一開關、一第二開關、一二極體、一緩衝電容、一輸出電感及一輸出電容。輸入電感具有一接收該輸入電壓的第一端及一第二端;儲能電容具有一與該輸入電感之第二端耦接的第一端及一第二端;第一開關具有一與該輸入電感之第二端耦接的第一端及一第二端;第二開關具有一接地的第一端及一與該輸入電感之第二端耦接的第二端;二極體具有一與該第一開關之第二端耦接的陽極及一與該儲能電容之第二端耦接的陰極;緩衝電容具有一與該二極體之陽極耦接的第一端及一接地的第二端;輸出電感具有一與該二極體之陰極耦接的第一端及一第二端;輸出電容具有一與該輸出電感之第二端耦接的第一端及一接地的第二端。Therefore, the boost converter circuit of the present invention is suitable for boosting an input voltage to output an output voltage. The boost converter circuit includes an input inductor, a storage capacitor, a first switch, a second switch, and a A diode, a snubber capacitor, an output inductor, and an output capacitor. The input inductor has a first end and a second end that receive the input voltage; the storage capacitor has a first end and a second end coupled to the second end of the input inductor; the first switch has a The first end of the input inductor is coupled to the first end and the second end; the second switch has a grounded first end and a second end coupled to the second end of the input inductor; the diode has a An anode coupled to the second end of the first switch and a cathode coupled to the second end of the storage capacitor; the snubber capacitor has a first end coupled to the anode of the diode and a grounded a second end; the output inductor has a first end and a second end coupled to the cathode of the diode; the output capacitor has a first end coupled to the second end of the output inductor and a grounded Two ends.

當該第一開關導通且該第二開關不導通時,該輸入電壓對該緩衝電容充電,且該儲能電容對該輸出電感充電;當該第一開關不導通且該第二開關導通時,該緩衝電容與該輸出電感對該輸出電容充電,使該輸出電容輸出該輸出電壓。When the first switch is turned on and the second switch is not turned on, the input voltage charges the buffer capacitor, and the storage capacitor charges the output inductor; when the first switch is not turned on and the second switch is turned on, The snubber capacitor and the output inductor charge the output capacitor, and the output capacitor outputs the output voltage.

本發明之另一目的在於,提供一種利用上述電路的升壓轉換裝置。Another object of the present invention is to provide a boost converter using the above circuit.

於是,本發明升壓轉換裝置,包含一上述的升壓轉換電路及一控制電路,該控制電路根據該輸出電壓對應控制該第一開關與該第二開關的啟閉,以增加系統的穩定度。Therefore, the boost converter device of the present invention comprises a boost converter circuit and a control circuit, and the control circuit controls the opening and closing of the first switch and the second switch according to the output voltage to increase the stability of the system. .

本發明之功效在於,藉由升壓轉換電路及控制電路相互配合而產生一較習知升壓效果更佳的輸出電壓,並且藉由輸入電感與輸出電感的設置,有效地改善了輸出電流脈動的情形,此外,整個控制電路皆是利用數位的方式實現,以增加系統的穩定度。The utility model has the advantages that the boost voltage conversion circuit and the control circuit cooperate with each other to generate a better output voltage than the conventional boosting effect, and the output current ripple condition is effectively improved by the input inductor and the output inductor. In addition, the entire control circuit is implemented by digital means to increase the stability of the system.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

參閱圖1,為本發明升壓轉換裝置之較佳實施例,升壓轉換裝置1包含一升壓轉換電路1及一控制電路2,藉由升壓轉換電路1與控制電路2的相配合,使得一輸入升壓轉換電路1的輸入電壓V i 進行升壓轉換以輸出一電壓值較高的輸出電壓V o ,上述的輸入電壓V i 可由一電壓源(圖未示)提供。升壓轉換電路1包含一輸入電感L i 、一輸入電容C i 、一儲能電容C b 、一第一開關S 1 、一第二開關S 2 、一二極體D b 、一緩衝電容C m 、一輸出電感L o 、一輸出電容C o 及一輸出負載R L 1 is a preferred embodiment of a boost converter device of the present invention. The boost converter device 1 includes a boost converter circuit 1 and a control circuit 2. The boost converter circuit 1 cooperates with the control circuit 2, The input voltage V i of an input boost converter circuit 1 is boost-converted to output a higher voltage output voltage V o , and the input voltage V i can be provided by a voltage source (not shown). The boost converter circuit 1 includes an input inductor L i , an input capacitor C i , a storage capacitor C b , a first switch S 1 , a second switch S 2 , a diode D b , and a snubber capacitor C. m , an output inductor L o , an output capacitor C o and an output load R L .

輸入電感L i 具有一接收輸入電壓V i 的第一端111及一與儲能電容C b 耦接的第二端112;輸入電容C i 具有一與輸入電感L i 之第一端111耦接的第一端101及一接地的第二端102;儲能電容C b 具有一與輸入電感L i 之第二端112耦接的第一端121及一第二端122;第一開關S 1 具有一與輸入電感L i 之第二端112耦接的第一端131及一第二端132,第二開關S 2 具有一接地的第一端141及一與輸入電感L i 之第二端112耦接的第二端142;二極體D b 具有一與第一開關S 1 之第二端132耦接的陽極151及一與儲能電容C b 之第二端122耦接的陰極152;緩衝電容C m 具有一與二極體D b 之陽極151耦接的第一端161及一接地的第二端162;輸出電感L o 具有一與二極體D b 之陰極152耦接的第一端171及一與輸出負載R L 耦接的第二端172;輸出電容C o 具有一與輸出電感L o 之第二端172耦接的第一端181及一接地的第二端182;輸出負載R L 具有一與輸出電感L o 之第二端172耦接的第一端191及一接地的第二端192,而輸出電壓V o 產生於輸出負載R L 的第一端191。The input inductor L i has a first end 111 receiving the input voltage V i and a second end 112 coupled to the storage capacitor C b ; the input capacitor C i has a first end 111 coupled to the input inductor L i The first end 101 and the grounded second end 102; the storage capacitor C b has a first end 121 and a second end 122 coupled to the second end 112 of the input inductor L i ; the first switch S 1 The first end 131 and the second end 132 are coupled to the second end 112 of the input inductor L i , and the second switch S 2 has a grounded first end 141 and a second end of the input inductor L i The second end 142 is coupled to the second end 142. The diode D b has an anode 151 coupled to the second end 132 of the first switch S 1 and a cathode 152 coupled to the second end 122 of the storage capacitor C b . The snubber capacitor C m has a first end 161 coupled to the anode 151 of the diode D b and a grounded second end 162 ; the output inductor L o has a cathode 152 coupled to the diode D b The first end 171 and a second end 172 coupled to the output load R L ; the output capacitor C o has a first end 181 coupled to the second end 172 of the output inductor L o and a grounded second end 182 ; output load R L A second terminal of the output inductor L o of the first terminal 172 coupled to a ground 191 and a second end 192, and the output voltage V o is generated at the output terminal of a first load R L 191.

在本實施例中,升壓轉換電路1操作於連續導通模式(Continuous Conduction Mode,CCM),而第一開關S 1 與第二開關S 2 為N型金氧半場效電晶體(N-MOS),兩者的第一端131、141為源極,而第二端132、142為汲極,並且兩者的第一端131、141與第二端132、142之間分別連接一個二極體D 1D 2 ,以利兩者未導通時放電之用。另外,第一開關S 1 與第二開關S 2 還分別具有一為閘極的第三端133、143,此第三端133、143係受控制電路2控制以決定第一開關S 1 與第二開關S 2 的導通與否,而以下將詳細說明各個元件的作動及如何產生輸出電壓V o In this embodiment, the boost converter circuit 1 operates in a continuous conduction mode (CCM), and the first switch S 1 and the second switch S 2 are N-type MOS field-effect transistors (N-MOS). The first ends 131, 141 of the two are the source, and the second ends 132, 142 are the drains, and a diode is connected between the first ends 131, 141 and the second ends 132, 142 of the two ends. D 1 , D 2 , for the purpose of discharging when both are not conducting. In addition, the first switch S 1 and the second switch S 2 respectively have a third end 133, 143 which is a gate, and the third end 133, 143 is controlled by the control circuit 2 to determine the first switch S 1 and the first Whether the two switches S 2 are turned on or not, and the operation of each element and how to generate the output voltage V o will be described in detail below.

配合參閱圖2,當第一開關S 1 不導通且第二開關S 2 導通時,電流路徑方向如圖2中之虛線所示,儲能電容C b 之第一端121被接到地,使得二極體D b 順偏導通。此時,緩衝電容C m 進行放電、儲能電容C b 進行充電;輸入電感L i 以跨壓為V i 進行激磁(充電),而輸出電感L o 以跨壓為(v Cm -v o )進行去磁(放電),並且流經輸出電容C o 之電流為i Lo 減去流經輸出負載R L 之電流,於是,由上述可得知對應的微分方程式為:Referring to FIG. 2, when the first switch S 1 is non-conductive and the second switch S 2 is turned on, a current path in the direction of a broken line shown in FIG. 2, a first end of the storage capacitance C b 121 is to ground, such that The diode D b is turned on. At this time, the buffer capacitor C m discharge, charge storage capacitance C b; input inductor L i is V i to cross voltage energizing the (charging), and the output voltage across the inductance L o as in (v Cm - v o) Demagnetization (discharge) is performed, and the current flowing through the output capacitor C o is i Lo minus the current flowing through the output load R L . Thus, the corresponding differential equation can be known from the above:

配合參閱圖3,當第一開關S 1 導通且第二開關S 2 不導通時,電流路徑方向如圖3中之虛線所示,二極體D b 因逆偏而截止。此時,緩衝電容C m 進行充電、儲能電容C b 進行放電;輸入電感L i 以跨壓為(v i -v Cm )進行去磁(放電),而輸出電感L o 以跨壓為(v Cm +v Cb -v o )進行激磁(充電),並且流經輸出電容C o 之電流為i Lo 減去流經輸出負載R L 之電流,於是,由上述可得知對應的微分方程式為:Referring to FIG. 3, when the first switch S 1 is turned on and the second switch S 2 is not turned on, the current path in the direction of the broken line in FIG. 3, a diode D b is turned off by a reverse bias. At this time, the snubber capacitor C m is charged, and the storage capacitor C b is discharged; the input inductor L i is demagnetized (discharged) with a voltage across ( v i - v Cm ), and the output inductor L o is at a voltage across ( v Cm + v Cb - v o ) is excited (charged), and the current flowing through the output capacitor C o is i Lo minus the current flowing through the output load R L , so that the corresponding differential equation is :

因此,藉小漣波近似假設(small-ripple approximation)以及符合伏秒平衡(Volt-Second Balance),上述(1)至(6)式可得出升壓轉換電路1的電壓轉換比為:Therefore, with the small-ripple approximation and the Volt-Second Balance, the above equations (1) to (6) can be used to derive the voltage conversion ratio of the boost converter circuit 1 as:

其中,D 為第一開關S 1 與第二開關S 2 的責任週期(duty cycle)。值得說明的是,由第(7)式可得知透過升壓轉換電路1的架構,可使輸出電壓V o 大於輸入電壓V i 的兩倍以上,而獲得良好的升壓效果。Where D is the duty cycle of the first switch S 1 and the second switch S 2 . It should be noted that, by the equation (7), it can be known that the structure of the boost converter circuit 1 can make the output voltage V o greater than twice the input voltage V i to obtain a good boosting effect.

再者,參閱圖1,本實施例之控制電路2包含一分壓器(voltage divider) 21、一比較器(comparator) 22、一比例積分(Proportional Integral,PI)控制器23及一閘極驅動器(gate driver) 24。Furthermore, referring to FIG. 1, the control circuit 2 of the present embodiment includes a voltage divider 21, a comparator 22, a Proportional Integral (PI) controller 23, and a gate driver. (gate driver) 24.

分壓器21耦接於升壓轉換電路1的輸出端(即輸出負載R L 的第一端191)以接收輸出電壓V o ,並且根據一分壓比例將其進行分壓。比較器22耦接於分壓器21以接收分壓器21所輸出的電壓,並與一參考電壓相互比較而輸出一數位邏輯訊號,即邏輯1及邏輯0所組成之資料流(data stream)。比例積分控制器23耦接於比較器22,並且根據比較器22的數位邏輯訊號輸出一控制訊號,以決定第一開關S 1 與第二開關S 2 的責任週期D ,在本實施例中,比例積分控制器23係應用場效可規劃邏輯閘陣列(Field Programmable Gate Array,FPGA)。閘極驅動器24耦接於比例積分控制器23,並將比例積分控制器2的控制訊號轉換成足以驅動第一開關S 1 與第二開關S 2 啟閉的驅動訊號M 1M 2The voltage divider 21 is coupled to the output of the boost converter circuit 1 (ie, the first terminal 191 of the output load R L ) to receive the output voltage V o and divides it according to a voltage division ratio. The comparator 22 is coupled to the voltage divider 21 to receive the voltage output by the voltage divider 21, and is compared with a reference voltage to output a digital logic signal, that is, a data stream composed of logic 1 and logic 0. . Proportional-integral controller 23 is coupled to the comparator 22, and outputs a control signal according to the digital logic signal of the comparator 22, to determine a first switch S 1 and S 2 of the second switching duty cycle of D, in this embodiment, The proportional integral controller 23 is a Field Programmable Gate Array (FPGA). The gate driver 24 is coupled to the proportional-integral controller 23 and converts the control signal of the proportional-integral controller 2 into driving signals M 1 and M 2 sufficient to drive the first switch S 1 and the second switch S 2 to open and close.

也就是說,分壓器21接收升壓轉換電路1的輸出電壓V o ,透過比較器22比較後傳送至比例積分控制器23,比例積分控制器23根據輸出電壓V o 產生下一週期的責任週期D 以維持輸出電壓V o 。值得一提的是,本實施例之比較器22利用輸出電壓V o 與參考電壓進行多次比較,而產生串列式的控制訊號(即資料流),以取代類比數位轉換器(Analog-to-Digital Converter,ADC)。That is, the voltage divider 21 receives the output voltage V o of the boost converter circuit 1 and compares it to the proportional-integral controller 23 after comparison by the comparator 22, and the proportional-integral controller 23 generates the responsibility for the next cycle based on the output voltage V o . Cycle D to maintain the output voltage V o . It is worth mentioning that the comparator 22 of the embodiment uses the output voltage V o to compare the reference voltage multiple times to generate a serial control signal (ie, data stream) instead of the analog digital converter (Analog-to -Digital Converter, ADC).

參閱圖4,為升壓轉換裝置100的實際量測波形圖,其表示在滿載下第一開關S 1 與第二開關S 2 的驅動訊號M 1M 2 ,以及輸出電感L o 與輸入電感L i 的波形,值得一提的是,由圖4觀之輸出電感L o 的漣波較小,故藉由輸入電壓V i 端連接輸入電感L i 以及輸出電壓V o 端連接輸出電感L o ,的確有效地改善了輸出電流脈動的情形,也就是降低了電流漣波,使得升壓轉換電路1具有低輸出的電壓漣波。Referring to Figure 4, is a waveform diagram measured actual amount of boost converter 100, which represents a first switch S 1 and the second switch driving signal S 1 and M 2 M 2, and an output with the input inductor inductance L o at full load The waveform of L i is worth mentioning. The chopping of the output inductor L o of FIG. 4 is small, so the input inductor L i and the output voltage V o are connected to the output inductor L o through the input voltage V i terminal. Indeed, the situation of the output current ripple is effectively improved, that is, the current ripple is reduced, so that the boost converter circuit 1 has a low output voltage chopping.

綜上所述,本發明升壓轉換裝置100藉由升壓轉換電路1及控制電路2相互配合而產生一較習知升壓效果更佳的輸出電壓V o ,並且藉由輸入電感L i 與輸出電感L o 的設置,有效地改善了輸出電流脈動的情形,此外,整個控制電路2皆是利用數位的方式實現,可改善輸出電壓V o 隨著溫度變化或是控制電路2中元件的老化等因素所產生的誤差,以增加系統的穩定度,故確實能達成本發明之目的。In summary, the boost converter device 100 of the present invention cooperates with the boost converter circuit 1 and the control circuit 2 to generate a better output voltage V o than the conventional boost effect, and the input inductor L i and the output inductor The setting of L o effectively improves the situation of the output current pulsation. In addition, the entire control circuit 2 is implemented by using a digital method, which can improve the output voltage V o as a function of temperature or the aging of components in the control circuit 2 and the like. The resulting error increases the stability of the system and indeed achieves the objectives of the present invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

100...升壓轉換裝置100. . . Boost converter

1...升壓轉換電路1. . . Boost converter circuit

101...輸入電容的第一端101. . . First end of the input capacitor

102...輸入電容的第二端102. . . The second end of the input capacitor

111...輸入電感的第一端111. . . First end of the input inductor

112...輸入電感的第二端112. . . Input the second end of the inductor

121...儲能電容的第一端121. . . First end of the storage capacitor

122...儲能電容的第二端122. . . Second end of the storage capacitor

131...第一開關的第一端131. . . First end of the first switch

132...第一開關的第二端132. . . Second end of the first switch

133...第一開關的第三端133. . . Third end of the first switch

141...第二開關的第一端141. . . First end of the second switch

142...第二開關的第二端142. . . Second end of the second switch

143...第二開關的第三端143. . . Third end of the second switch

151...陽極151. . . anode

152...陰極152. . . cathode

161...緩衝電容的第一端161. . . First end of the snubber capacitor

162...緩衝電容的第二端162. . . Second end of the snubber capacitor

171...輸出電感的第一端171. . . First end of the output inductor

172...輸出電感的第二端172. . . Second end of the output inductor

181...輸出電容的第一端181. . . First end of the output capacitor

182...輸出電容的第二端182. . . Second end of the output capacitor

191...輸出負載的第一端191. . . First end of the output load

192...輸出負載的第二端192. . . The second end of the output load

2...控制電路2. . . Control circuit

21...分壓器twenty one. . . Voltage divider

22...比較器twenty two. . . Comparators

23...比例積分控制器twenty three. . . Proportional integral controller

24...閘極驅動器twenty four. . . Gate driver

圖1是一架構圖,說明本發明升壓轉換裝置之較佳實施例;1 is a block diagram showing a preferred embodiment of the boost converter of the present invention;

圖2是一電路示意圖,說明該升壓轉換裝置之第一開關不導通且第二開關導通的狀態;2 is a circuit diagram illustrating a state in which the first switch of the boost converter device is non-conducting and the second switch is turned on;

圖3是一電路示意圖,說明該升壓轉換裝置之該第一開關導通且該第二開關不導通的狀態;及3 is a circuit diagram illustrating a state in which the first switch of the boost converter device is turned on and the second switch is not turned on;

圖4是數據圖,說明該升壓轉換裝置的實際量測結果。Figure 4 is a data diagram illustrating the actual measurement results of the boost converter.

100...升壓轉換裝置100. . . Boost converter

1...升壓轉換電路1. . . Boost converter circuit

101...輸入電容的第一端101. . . First end of the input capacitor

102...輸入電容的第二端102. . . The second end of the input capacitor

111...輸入電感的第一端111. . . First end of the input inductor

112...輸入電感的第二端112. . . Input the second end of the inductor

121...儲能電容的第一端121. . . First end of the storage capacitor

122...儲能電容的第二端122. . . Second end of the storage capacitor

131...第一開關的第一端131. . . First end of the first switch

132...第一開關的第二端132. . . Second end of the first switch

133...第一開關的第三端133. . . Third end of the first switch

141...第二開關的第一端141. . . First end of the second switch

142...第二開關的第二端142. . . Second end of the second switch

143...第二開關的第三端143. . . Third end of the second switch

151...陽極151. . . anode

152...陰極152. . . cathode

161...緩衝電容的第一端161. . . First end of the snubber capacitor

162...緩衝電容的第二端162. . . Second end of the snubber capacitor

171...輸出電感的第一端171. . . First end of the output inductor

172...輸出電感的第二端172. . . Second end of the output inductor

181...輸出電容的第一端181. . . First end of the output capacitor

182...輸出電容的第二端182. . . Second end of the output capacitor

191...輸出負載的第一端191. . . First end of the output load

192...輸出負載的第二端192. . . The second end of the output load

2...控制電路2. . . Control circuit

21...分壓器twenty one. . . Voltage divider

22...比較器twenty two. . . Comparators

23...比例積分控制器twenty three. . . Proportional integral controller

24...閘極驅動器twenty four. . . Gate driver

Claims (7)

一種升壓轉換電路,適用於將一輸入電壓進行升壓轉換以輸出一輸出電壓,該升壓轉換電路包含:一輸入電感,具有一接收該輸入電壓的第一端及一第二端;一儲能電容,具有一與該輸入電感之第二端耦接的第一端及一第二端;一第一開關,具有一與該輸入電感之第二端耦接的第一端及一第二端;一第二開關,具有一接地的第一端及一與該輸入電感之第二端耦接的第二端;一二極體,具有一與該第一開關之第二端耦接的陽極及一與該儲能電容之第二端耦接的陰極;一緩衝電容,具有一與該二極體之陽極耦接的第一端及一接地的第二端;一輸出電感,具有一與該二極體之陰極耦接的第一端及一第二端;及一輸出電容,具有一與該輸出電感之第二端耦接的第一端及一接地的第二端,當該第一開關導通且該第二開關不導通時,該輸入電壓對該緩衝電容充電,且該儲能電容對該輸出電感充電;當該第一開關不導通且該第二開關導通時,該緩衝電容與該輸出電感對該輸出電容充電,使該輸出電容輸出該輸出電壓。A boost converter circuit is adapted to boost convert an input voltage to output an output voltage, the boost converter circuit comprising: an input inductor having a first end and a second end receiving the input voltage; The storage capacitor has a first end and a second end coupled to the second end of the input inductor; a first switch having a first end coupled to the second end of the input inductor and a first end a second switch having a grounded first end and a second end coupled to the second end of the input inductor; a diode having a second end coupled to the first switch An anode and a cathode coupled to the second end of the storage capacitor; a buffer capacitor having a first end coupled to the anode of the diode and a grounded second end; an output inductor having a first end and a second end coupled to the cathode of the diode; and an output capacitor having a first end coupled to the second end of the output inductor and a grounded second end When the first switch is turned on and the second switch is not turned on, the input voltage charges the buffer capacitor And the charge storage capacitor to the output inductor; when the first switch is non-conductive and the second switch is turned on, the snubber capacitor to the inductor and the output charge output capacitor, the output capacitor so that the output of the output voltage. 依據申請專利範圍第1項所述之升壓轉換電路,還包含用以濾波的一輸入電容,該輸入電容具有一與該輸入電感之第一端耦接的第一端及一接地的第二端。The boost converter circuit of claim 1, further comprising an input capacitor for filtering, the input capacitor having a first end coupled to the first end of the input inductor and a second grounded end. 一種升壓轉換裝置,包含:一升壓轉換電路,包括:一輸入電感,具有一接收一輸入電壓的第一端及一第二端;一儲能電容,具有一與該輸入電感之第二端耦接的第一端及一第二端;一第一開關,具有一與該輸入電感之第二端耦接的第一端及一第二端;一第二開關,具有一接地的第一端及一與該輸入電感之第二端耦接的第二端;一二極體,具有一與該第一開關之第二端耦接的陽極及一與該儲能電容之第二端耦接的陰極;一緩衝電容,具有一與該二極體之陽極耦接的第一端及一接地的第二端;一輸出電感,具有一與該二極體之陰極耦接的第一端及一第二端;一輸出電容,具有一與該輸出電感之第二端耦接的第一端及一接地的第二端;及一控制電路,根據該輸出電壓對應控制該第一開關與該第二開關的啟閉,當該第一開關導通且該第二開關不導通時,該輸入電壓對該緩衝電容充電,且該儲能電容對該輸出電感充電;當該第一開關不導通且該第二開關導通時,該緩衝電容與該輸出電感對該輸出電容充電,使該輸出電容輸出該輸出電壓。A boost converter includes: a boost converter circuit comprising: an input inductor having a first end and a second end receiving an input voltage; and a storage capacitor having a second input inductor a first end and a second end coupled to the first end; a first switch having a first end and a second end coupled to the second end of the input inductor; and a second switch having a grounded end a second end coupled to the second end of the input inductor; a diode having an anode coupled to the second end of the first switch and a second end of the storage capacitor a coupled capacitor; a buffer capacitor having a first end coupled to the anode of the diode and a grounded second end; an output inductor having a first coupled to the cathode of the diode And a second end; an output capacitor having a first end coupled to the second end of the output inductor and a grounded second end; and a control circuit for correspondingly controlling the first switch according to the output voltage And opening and closing with the second switch, when the first switch is turned on and the second switch is not turned on, The input voltage charges the buffer capacitor, and the storage capacitor charges the output inductor; when the first switch is not turned on and the second switch is turned on, the buffer capacitor and the output inductor charge the output capacitor to make the output The capacitor outputs the output voltage. 依據申請專利範圍第3項所述之升壓轉換裝置,其中,該升壓轉換電路還包括用以濾波的一輸入電容,該輸入電容具有一與該輸入電感之第一端耦接的第一端及一接地的第二端。The boost converter device of claim 3, wherein the boost converter circuit further includes an input capacitor for filtering, the input capacitor having a first coupling coupled to the first end of the input inductor The end and a grounded second end. 依據申請專利範圍第4項所述之升壓轉換裝置,其中,該控制電路包括一比較器及一比例積分控制器,該比較器比較該輸出電壓與一參考電壓以產生一數位邏輯訊號,該比例積分控制器根據該數位邏輯訊號產生一控制該第一開關與該第二開關啟閉的控制訊號。The boost converter device of claim 4, wherein the control circuit includes a comparator and a proportional integral controller, the comparator comparing the output voltage with a reference voltage to generate a digital logic signal, The proportional integral controller generates a control signal for controlling the opening and closing of the first switch and the second switch according to the digital logic signal. 依據申請專利範圍第5項所述之升壓轉換裝置,其中,該控制電路還包括一耦接於該升壓轉換電路與該比較器之間的分壓器,該分壓器根據一分壓比例將該輸出電壓進行分壓。The boost converter of claim 5, wherein the control circuit further includes a voltage divider coupled between the boost converter circuit and the comparator, the voltage divider being divided according to a voltage divider The ratio divides the output voltage. 依據申請專利範圍第6項所述之升壓轉換裝置,其中,該控制電路還包括一耦接於該比例積分控制器與該升壓轉換電路之間的閘極驅動器,用以將該控制訊號轉換成足以驅動該第一開關與該第二開關的驅動訊號。The boost converter device of claim 6, wherein the control circuit further includes a gate driver coupled between the proportional integral controller and the boost converter circuit for using the control signal Converted into a driving signal sufficient to drive the first switch and the second switch.
TW099106914A 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device TWI381623B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Publications (2)

Publication Number Publication Date
TW201131957A TW201131957A (en) 2011-09-16
TWI381623B true TWI381623B (en) 2013-01-01

Family

ID=50023210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Country Status (1)

Country Link
TW (1) TWI381623B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456881B (en) * 2011-12-06 2014-10-11 Univ Nat Taipei Technology Improved boost converter
TWI455465B (en) * 2012-01-17 2014-10-01 Univ Nat Taipei Technology High pressurization device
TWI448059B (en) * 2012-01-17 2014-08-01 Univ Nat Taipei Technology Low voltage to high voltage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200910744A (en) * 2007-08-23 2009-03-01 Univ Nat Taipei Technology Voltage boost circuit
TW200909819A (en) * 2007-08-14 2009-03-01 Fluke Corp Digital multimeter having case panel structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200909819A (en) * 2007-08-14 2009-03-01 Fluke Corp Digital multimeter having case panel structure
TW200910744A (en) * 2007-08-23 2009-03-01 Univ Nat Taipei Technology Voltage boost circuit

Also Published As

Publication number Publication date
TW201131957A (en) 2011-09-16

Similar Documents

Publication Publication Date Title
TWI622260B (en) Buck-boost converter with ramp compensation and controller and control method thereof
US10763748B2 (en) Buck-boost DC-DC converter
US9035640B2 (en) High efficient control circuit for buck-boost converters and control method thereof
US9698690B2 (en) Control method and control circuit for four-switch buck-boost converter
TWI536723B (en) Efficient control circuit for buck-boost converters and control method thereof
US9647541B2 (en) Hysteretic control DC/DC converter switching frequency with reduced dependence on voltage and current
US9385603B2 (en) Control method and control circuit for switching power supply
US20100007318A1 (en) Buck converter threshold detection for automatic pulse skipping mode
TW201136114A (en) Power supply converter and method
US10326366B2 (en) Zero-voltage switch-mode power converter
US20090168460A1 (en) Apparatus for controlling h-bridge dc-ac inverter
US11469672B2 (en) Interleaved multi-level buck-boost switching power converter with pulse-width modulation
CN101459381A (en) Control apparatus and method for Boost type switch converter
US20200119635A1 (en) Resonant switched capacitor dc/dc converter
Reverter et al. Optimal inductor current in boost DC/DC converters operating in burst mode under light-load conditions
US8674673B2 (en) Switching power converter
TWI381623B (en) Step-up conversion circuit and step-up conversion device
TWI412221B (en) High boost ratio converter
TWI497890B (en) Series cascaded converter with single zero-voltage-transition auxiliary circuit
WO2017117367A1 (en) Methods and apparatus for resonant energy minimization in power converters
TW201421873A (en) An enhanced light-load circuit for high-speed DC-DC buck converter
TWI444811B (en) High boost ratio circuit
JP2010273446A (en) Power supply device
TWI398085B (en) Step-up and down-voltage conversion device and step-up and down conversion circuit
TWI440290B (en) Boost converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees