TW201131957A - Boost converter circuit and boost converter - Google Patents

Boost converter circuit and boost converter Download PDF

Info

Publication number
TW201131957A
TW201131957A TW099106914A TW99106914A TW201131957A TW 201131957 A TW201131957 A TW 201131957A TW 099106914 A TW099106914 A TW 099106914A TW 99106914 A TW99106914 A TW 99106914A TW 201131957 A TW201131957 A TW 201131957A
Authority
TW
Taiwan
Prior art keywords
output
switch
capacitor
inductor
input
Prior art date
Application number
TW099106914A
Other languages
Chinese (zh)
Other versions
TWI381623B (en
Inventor
Guo-Ying Hu
yu-tong Yao
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW099106914A priority Critical patent/TWI381623B/en
Publication of TW201131957A publication Critical patent/TW201131957A/en
Application granted granted Critical
Publication of TWI381623B publication Critical patent/TWI381623B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A boost converter circuit is adapted for boosting and converting an input voltage into an output voltage for outputting and includes an input inductance, an energy-saving capacitor, a first switch, a second switch, a diode, a buffer capacitor, an output inductance and an output capacitor. The buffer capacitor and the output inductance are charged by the input voltage while the first switch is conducted and the second switch is not conducted. The output capacitor is charged by the buffer capacitor and the output inductance so that the output capacitor outputs the output voltage while the first switch is not conducted and the second switch is conducted.

Description

201131957 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電壓轉換電路,特別是指# 壓轉換電路。 【先前技術】 大多數的電子裝置在使用時’往往需要利用升壓轉換 電路將低電壓轉換為高電壓,以提供自身所需之電源,例 如:個人數位助理(PDA)、MP3播放器等可攜式影音設備 或其它的可攜式通訊設備等。 然而,一般常用的升壓型轉換器(Boost C〇nverter)及升 降壓型轉換器(Buck_Bo〇st C〇nverter),其輸出電流皆為脈動 電流(即輸出電流漣波較大),故導致相對應之輸出電壓漣波 較大,而影響到電子裝置的運作,目前有三種解決方式: 第一種方式是加大輸出電容值與降低ESR(equivalent sedes resistance,等效串聯電阻);第二種方式是使用電感電容濾 波器,第—種方式是提高切換頻率。關於第一種方式與第 一種方式的缺點是會造成成本增加;而第三種·方式的缺點 疋會造成開關切換損失增加,且對周邊電路的電磁干擾增 加此外’亦可運用KY轉換器來解決此問題,不過KY轉 換器的輸出電壓最大值只能是輸入電壓的兩倍。 有鑑於此’對於如何改善升壓轉換電路的輸出電流漣 波’以及顧及升壓轉換電路的升壓效果將是一值得深入 研究的課題。 【發明内容】 201131957 本發明之目的,即在提供一種升壓效果佳的升 壓轉換電路。 本發明之另一目的,+ # • 在於提供一種輸出電流漣波小的 升壓轉換電路。 一於是,本發明升壓轉換電路適用於將一輸入電壓進 打升壓轉換以輸出一輸出電壓’升壓轉換電路包含一輸入 電感、一儲能電容、-第-開關、-第二開關、-二極體 、"一緩衝電容、一輪出雷式a j. r出電感及一輸出電容。輸入電感具赛 一接收該輸入電壓的第一嫂B 咕 电至扪弟鈿及一第二端;儲能電容具有一 與§亥輸入電感之第二端叙垃沾笛 峒耦接的第一端及一第二端;第一屏 關具有一與該輸入電感之笛_ . 电以之第一端耦接的第一端及一第二 ,第二開關具有一接地的第一 罘鳊及一與S亥輸入電感之第二 4搞接的第二端;二極體昱古 办丄务吐 體具有—料第—_之第二端相 接的陽減-與該儲能電容之第二端㈣㈣極;緩衝電 容具有-與該二極體之陽軸接的第—端及—接地的第二 鳊,輸出電感具有一與該二極體之陰極耗接的第—端及一 第二端’;輸出電容具有一盥該給屮 一忒输出電感之第二端耦接的第 一端及一接地的第二端。 β 當該第一開關導通且該第-門Μ Τβ * 邊弟—開關不導通時,該輸入 壓對該緩衝電容充電,且該儲自 A X储月b電谷對該輸出電感充電; ::第-開關不導通且該第二開關導通時,該緩衝電容盘 出電感對該輸出電容充電’使該輸出電容輸出該輸’出 本發明之另一目的在於,提供一種利用上述電路的升 201131957 壓轉換裝置。 於是,本發明升壓轉換裝置,包含一上述的升壓轉換 電路及一控制電路,該控制電路根據該輸出電壓對應控制 該第開關與該第二開關的啟閉’以增加系統的穩定度。 本發明之功效在於,藉由升壓轉換電路及控制電路相 互配合而產生一較習知升壓效果更佳的輸出電壓,並且藉 由輸入電感與輸出電感的設置,有效地改善了輸出電流脈 自的情形’此外,整個控制電路皆是利用數位的方式實現 ’以增加系統的穩定度。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之一個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖1,為本發明升壓轉換裝置之較佳實施例,升壓 轉換裝置1包含一升壓轉換電路丨及一控制電路2,藉由升 _ 壓轉換電路1與控制電路2的相配合,使得一輸入升壓轉 換電路1的輸入電壓γ進行升壓轉換以輸出一電壓值較高的 輸出電壓ρς,上述的輸入電壓γ可由一電壓源(圖未示)提供 。升壓轉換電路丨包含一輸入電感々、一輸入電容ς、一儲 能電容c4、一第一開關&、一第二開關& ' 一二極體a ' 一 緩衝電容Q、一輸出電感尤。、一輸出電容〇1。及一輸出負載& 輸入電感A具有一接收輸入電壓κ的第一端111及一與 儲能電容<:,耦接的第二端112;輸入電容。#有一與輸入電 201131957 ;儲能電容c具有 端101及一接地的第二端收 端121:第與輸入電感R第二端112輕接的第- 一第二端122·,第-開關㈣-與輸入電感R 一蜢112耦接的第—端131 具有一接地的第一端141乃奸第-端132’第二開關。 鹆丨41及一與輸入電感£.之第二 接的第二端142;二搞目女 輕 —極體A具有一與第一開關&之 132耦接的陽極151及—與儲 陰極152;緩衝電容……^第—^ 122耦接的 ”,具有一與二極體A之陽極151耦接的 第-端及一接地的第二端162;輸出電感z具有一與二 之陰極152_的第—端171及—與輸出負載凡_ 的第一鳊172,輸出電容。具有一與輸出電感々之第二端 :接的第一端181及一接地的第二端ΐδ2;輸出負載凡 具有-與輸出電“之第二端172耦接的第一端ΐ9ι及一接 地的第二端192’而輸出電壓匕產生於輸出負载尺的第一端 191 〇 在本實施例中,升壓轉換電路!操作於連績導通模式 (Continuous Conduction M〇de ’ CCM) ’ 而第一開關 & 與第二 開關&為N型金氧半場效電晶體(N_M〇s),兩者的第一端 131、141為源極,而第二端132、142為沒極,並且兩者的 第-端131、141與第二端132、142之間分別連接一個二 極體A、A,以利兩者未導通時放電之用。另外,第一開關 S與第二開關叉還分別具有一為閘極的第三端133、⑷,此 第三端Π3、M3係'受控制電路2㈣以決定第一開關. 第二開心的導通與否,而以下將詳細說明各個元件的作動 201131957 及如何產生輸出電壓ρς。 配合參閱圖2,當第一開關'不導通且第二開關&導通時 ,電流路徑方向如圖2中之虛線所示,儲能電容q之第一端 121被接到地,使得二極料順偏導通^此時,緩衝電容^ 進行放電、储能電容Q進行充電;輸人電感£,以跨壓為^進 行激磁(充電),而輸出電感A以跨壓為(%”。)進行去磁(放電 ),並且流經輸出電容c。之電流為。咸去流經輸出負載凡之 電流,於是,由上述可得知對應的微分方程式 • \T diu ------------(i) <ι〇^Γ=ΓΈνι~^-——⑵ 配合參閱圖3’當第-開關^導通且第二開關^不導通時 ,電流路徑方向如圖3中之虛線所示,二極體¥逆偏而截 止。此時,緩衝電容匕進行充電、儲能電容q進行放電;輸 入電感A以跨壓為(v;-vcj進行去磁(放電),而輸出電感{以 跨壓為(vCm+Vci)-ve)進行激磁(充電),並且流經輪出電容匚之 電流為L減去流經輸出負載尺之電流,於是, 田上迷可传知 對應的微分方程式為: 1 ^L = Li dt -D --V.---- 1-D 1 ------(4) L ^ 0 dt 2v(. ---—v-- l-D 0 (5) C么 ° dt — v〇 一 ί /Λ 一---— rl -----(6) 7 201131957 因此’藉小漣波近似假設(Small_ripple appr〇ximati〇n) 以及符合伏秒平衡(V〇U_Sec〇nd Balance),上述(1)至(6)式可 得出升壓轉換電路1的電壓轉換比為:201131957 VI. Description of the Invention: [Technical Field] The present invention relates to a voltage conversion circuit, and more particularly to a #voltage conversion circuit. [Prior Art] Most electronic devices often need to use a boost converter circuit to convert low voltage to high voltage to provide their own power supply, such as personal digital assistant (PDA), MP3 player, etc. Portable audio-visual equipment or other portable communication equipment. However, the commonly used boost converters (Boost C〇nverter) and buck-boost converters (Buck_Bo〇st C〇nverter) have output currents that are pulsating currents (ie, large output current ripples), resulting in The corresponding output voltage ripple is large, which affects the operation of the electronic device. Currently, there are three solutions: The first method is to increase the output capacitance value and reduce the ESR (equivalent sedes resistance); One way is to use an inductor-capacitor filter. The first way is to increase the switching frequency. The disadvantage of the first method and the first method is that it will increase the cost; and the shortcomings of the third method will increase the switching loss of the switch and increase the electromagnetic interference to the peripheral circuits. In addition, the KY converter can also be used. To solve this problem, but the output voltage of the KY converter can only be twice the input voltage. In view of this, it is a subject worthy of further study on how to improve the output current ripple of the boost converter circuit and to take into account the boosting effect of the boost converter circuit. SUMMARY OF THE INVENTION 201131957 The object of the present invention is to provide a boost converter circuit with a good boosting effect. Another object of the present invention is to provide a boost converter circuit having a small output current ripple. Therefore, the boost converter circuit of the present invention is suitable for boosting an input voltage to output an output voltage. The boost converter circuit includes an input inductor, a storage capacitor, a -first switch, a second switch, - Diode, " a snubber capacitor, a round of lightning-type a j. r output inductance and an output capacitor. The input inductor has a first 嫂B receiving the input voltage to the second 端 and a second end; the storage capacitor has a first coupling with the second end of the §hai input inductor a first end and a second end; the first switch has a first end coupled to the first end of the input inductor and a second, the second switch has a first ground connected to the ground a second end that is connected to the second 4th of the Shai input inductor; the dipole body has a positive side of the second end of the second-end and the first of the storage capacitors a two-terminal (four) (four) pole; the snubber capacitor has a first end connected to the anode of the diode and a second 接地 grounded, the output inductor has a first end and a first phase that are connected to the cathode of the diode The second end of the output capacitor has a first end coupled to the second end of the output inductor and a second end connected to the ground. β When the first switch is turned on and the first threshold Τββ — —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— —— When the first switch is not turned on and the second switch is turned on, the snubber capacitor pulls out the inductor to charge the output capacitor 'to output the output capacitor'. Another object of the present invention is to provide a boost using the above circuit 201131957 Pressure conversion device. Therefore, the boost converter device of the present invention comprises a boost converter circuit and a control circuit, and the control circuit controls the opening and closing of the switch and the second switch correspondingly according to the output voltage to increase the stability of the system. The utility model has the advantages that the boost voltage conversion circuit and the control circuit cooperate with each other to generate a better output voltage than the conventional boosting effect, and the output current and the output inductance are effectively improved by the input inductor and the output inductor. In the case of 'in addition, the entire control circuit is implemented in a digital manner' to increase the stability of the system. The above and other technical contents, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. 1 is a preferred embodiment of a boost converter device of the present invention. The boost converter device 1 includes a boost converter circuit and a control circuit 2, and the boost-to-voltage converter circuit 1 cooperates with the control circuit 2. The input voltage γ of an input boost converter circuit 1 is boost-converted to output a higher voltage output voltage ρ, which may be provided by a voltage source (not shown). The boost converter circuit 丨 includes an input inductor 々, an input capacitor ς, a storage capacitor c4, a first switch & a second switch & 'a diode a ' a snubber capacitor Q, an output inductor especially. An output capacitor 〇1. And an output load & input inductor A having a first end 111 receiving an input voltage κ and a second end 112 coupled to a storage capacitor <:; an input capacitor. #有与输入电201131957; the storage capacitor c has a terminal 101 and a grounded second end receiving end 121: a first second terminal 122·, which is lightly connected to the second end 112 of the input inductor R, the first switch (four) - The first end 131 coupled to the input inductor R-112 has a grounded first end 141 and a first end 132' second switch.鹆丨41 and a second end 142 connected to the second end of the input inductor; the second body 142 has an anode 151 coupled to the first switch & 132, and a storage cathode 152 The snubber capacitor is coupled to the first end coupled to the anode 151 of the diode A and the second end 162. The output inductor z has one and two cathodes 152. The first end 171 of the _ and the output 凡 of the first 鳊 172, the output capacitor has a second end of the output inductor :: the first end 181 and a grounded second end ΐ δ2; the output load The output voltage 匕 is generated at the first end 191 of the output load scale with the first end ΐ 9 ι coupled to the second end 172 of the output power and the grounded second end 192 ′. In this embodiment, liter Pressure conversion circuit! The first switch & and the second switch & is an N-type metal oxide half field effect transistor (N_M〇s), the first end 131 of which is operated in a continuous conduction mode (Continuous Conduction M〇de 'CCM)' 141 is a source, and the second ends 132, 142 are infinite, and a diode A, A is connected between the first end 131, 141 and the second end 132, 142 of the two to facilitate the two Discharge when not conducting. In addition, the first switch S and the second switch fork respectively have a third end 133, (4) which is a gate, and the third end Π3, M3 is 'controlled circuit 2 (4) to determine the first switch. The second happy conduction Whether or not, and the operation of each component 201131957 and how to generate the output voltage ρς will be described in detail below. Referring to FIG. 2, when the first switch 'is non-conductive and the second switch & is turned on, the current path direction is as shown by the broken line in FIG. 2, and the first end 121 of the storage capacitor q is grounded, so that the two poles At this time, the snubber capacitor ^ discharges and the storage capacitor Q is charged; the input inductor is £, the excitation is performed by the voltage across the voltage, and the output inductor A is (%). Demagnetization (discharge), and the current flowing through the output capacitor c. The salt flows through the output load current, so the corresponding differential equation can be known from the above. • \T diu ------- -----(i) <ι〇^Γ=ΓΈνι~^-——(2) Referring to Figure 3' when the first switch is turned on and the second switch is not turned on, the current path direction is as shown in Figure 3. As shown by the dotted line, the diode is reversed and turned off. At this time, the snubber capacitor 匕 is charged, and the storage capacitor q is discharged; the input inductor A is demagnetized (discharged) with a voltage across (v; -vcj, and the output is output. The inductor {excitation (charging) with a voltage across (vCm+Vci)-ve), and the current flowing through the output capacitor is L minus the current flowing through the output load scale Therefore, the field fans can know that the corresponding differential equation is: 1 ^L = Li dt -D --V.---- 1-D 1 ------(4) L ^ 0 dt 2v(. ----v-- lD 0 (5) C?° dt — v〇一ί /Λ one---- rl -----(6) 7 201131957 Therefore 'borrowing wavelet approximation hypothesis (Small_ripple appr 〇ximati〇n) and the volt-second balance (V〇U_Sec〇nd Balance), the above equations (1) to (6) can be found that the voltage conversion ratio of the boost converter circuit 1 is:

V。 2-D m--------⑺ 其中,β為第一開關&與第二開關&的責任週期(duty cycle)。值得說明的是,由第(7)式可得知透過升壓轉換電路 1的架構,可使輸出電壓厂。大於輸入電壓γ的兩倍以上,而 獲得良好的升壓效果。 再者’參閱圖1 ’本實施例之控制電路2包含一分壓器 (voltage divider)21、一 比較器(comparator)22、一比例積分 (Proportional Integra卜 PI)控制器 23 及一閘極驅動器(gate driver)24。 分壓器21耦接於升壓轉換電路1的輸出端(即輸出負載 尽的第一端191)以接收輸出電壓F。,並且根據一分壓比例將 其進行分壓。比較器22耦接於分壓器21以接收分壓器21 所輸出的電壓’並與一參考電壓相互比較而輸出一數位邏 輯訊號,即邏輯1及邏輯〇所組成之資料流(data stream)。 比例積分控制器23耦接於比較器22,並且根據比較器22 的數位邏輯訊號輸出一控制訊號,以決定第一開關$與第二 開關S2的責任週期D,在本實施例中,比例積分控制器23 係應用場效可規劃邏輯閘陣列(Field Programmable Gate Array,FPGA)。閘極驅動器24耦接於比例積分控制器23, 並將比例積分控制器2的控制訊號轉換成足以驅動第一開 關S,與第二開關&啟閉的驅動訊號Μι及。 201131957 也就是說,分壓器21接收升壓轉換電路丨的輸出電壓 乙’透過比較器22比較後傳送至比例積分控制器23,比例 積刀控制器23根據輸出電壓ρς產生下一週期的責任週期〇 以維持輸出電壓G。值得一提的是,本實施例之比較器22 利用輸出電壓Κ與參考電壓進行多次比較,而產生串列式的 控制訊號(即資料流),以取代類比數位轉換器(Anal〇g_t〇·V. 2-D m--------(7) where β is the duty cycle of the first switch & and the second switch & It is worth noting that it can be known from the equation (7) that the structure of the boost converter circuit 1 can be used to make the output voltage factory. It is more than twice the input voltage γ, and a good boosting effect is obtained. Furthermore, referring to FIG. 1 , the control circuit 2 of the present embodiment includes a voltage divider 21 , a comparator 22 , a proportional integral Integral PI controller 23 and a gate driver. (gate driver) 24. The voltage divider 21 is coupled to the output of the boost converter circuit 1 (ie, the first end 191 of the output load) to receive the output voltage F. And divide it according to a partial pressure ratio. The comparator 22 is coupled to the voltage divider 21 to receive the voltage 'output from the voltage divider 21 and is compared with a reference voltage to output a digital logic signal, that is, a data stream composed of logic 1 and logic 〇. . The proportional integral controller 23 is coupled to the comparator 22, and outputs a control signal according to the digital logic signal of the comparator 22 to determine the duty cycle D of the first switch $ and the second switch S2. In this embodiment, the proportional integral The controller 23 applies a Field Programmable Gate Array (FPGA). The gate driver 24 is coupled to the proportional-integral controller 23, and converts the control signal of the proportional-integral controller 2 into a drive signal that is sufficient to drive the first switch S and the second switch & 201131957 In other words, the voltage divider 21 receives the output voltage B of the boost converter circuit ' and compares it to the proportional-integral controller 23 through the comparison of the comparator 22, and the proportional-product knife controller 23 generates the responsibility for the next cycle according to the output voltage ρς. The period 〇 is to maintain the output voltage G. It is worth mentioning that the comparator 22 of the embodiment uses the output voltage Κ and the reference voltage to perform multiple comparisons to generate a serial control signal (ie, data stream) instead of the analog digital converter (Anal〇g_t〇 ·

Digital Converter,ADC)。 參閱圖4,為升壓轉換裝置1〇〇的實際量測波形圖其 表示在滿載下第一開關&與第二開關&的驅動訊號恥與軋, 以及輸出電感忍與輸入電感Z,的波形,值得一提的是,由圖 4觀之輸出電感4的漣波較小,故藉由輸入電壓γ端連接輸 入電感Α以及輸出電壓端連接輸出電感上。,的確有效地改 善了輸出電流脈動的情形,也就是降低了電流漣波,使得 升壓轉換電路1具有低輸出的電壓漣波。 综上所述,本發明升壓轉換裝置100藉由升壓轉換電 路1及控制電路2相互配合而產生一較習知升壓效果更佳 的輸出電壓[,並且藉由輸人電感^與輸出電感L的設置, ^效地改善了輸出電流脈動的情形,此外,整個控制電路2 白疋利用數位的方式實現,可改善輸出電壓[隨著溫度變化 或是控制電路2中元件的老化等因素所產生的誤差,以增 加系統的穩定度’故確實能達成本發明之目的。 准乂上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明眚綠夕 貫%之範圍,即大凡依本發明申請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 201131957 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一架構圖,說明本發明升壓轉換裝置之較佳實 施例; 圖2是一電路示意圖,說明該升壓轉換裝置之第一開 關不導通且第二開關導通的狀態; 圖3疋一電路示意圖,說明該升壓轉換裝置之該第一 開關導通且該第二開關不導通的狀態;及 圖4是數據圖,說明該升壓轉換裝置的實際量測結果鲁Digital Converter, ADC). Referring to FIG. 4, an actual measurement waveform diagram of the boost converter device 1A indicates that the first switch & and the second switch & drive signal shame and roll, and the output inductor endurance and input inductor Z, at full load, The waveform is worth mentioning. The output inductor 4 of Fig. 4 has a small chopping wave. Therefore, the input inductor γ is connected to the input inductor Α and the output voltage terminal is connected to the output inductor. Indeed, the situation of the output current ripple is effectively improved, that is, the current ripple is reduced, so that the boost converter circuit 1 has a low output voltage chopping. In summary, the boost converter device 100 of the present invention cooperates with the boost converter circuit 1 and the control circuit 2 to generate a better output voltage than the conventional booster effect [and through the input inductor ^ and the output inductor L The setting, ^ effectively improves the output current pulsation situation, in addition, the entire control circuit 2 is realized by digital means, which can improve the output voltage [with temperature changes or aging of components in the control circuit 2, etc.) The error is to increase the stability of the system, so it is indeed possible to achieve the object of the present invention. The above description is only for the preferred embodiment of the present invention, and the scope of the present invention cannot be limited thereto, that is, the simple scope of the patent application scope and the description of the invention according to the present invention. The effects and modifications are still within the scope of this invention patent 201131957. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a preferred embodiment of a boost converter of the present invention; FIG. 2 is a circuit diagram showing that the first switch of the boost converter is non-conducting and the second switch is turned on. FIG. 3 is a circuit diagram illustrating a state in which the first switch of the boost converter device is turned on and the second switch is not turned on; and FIG. 4 is a data diagram illustrating actual measurement results of the boost converter device Lu

10 201131957 【主要元件符號說明】 100… •…升壓轉換裝置 152…·· …··陰極 1…… •…升壓轉換電路 161… …··緩衝電容的第一端 101… •…輸入電容的第一端 162… ••…緩衝電容的第二端 102…·· •…輸入電容的第二端 171…·· …··輸出電感的第一端 111 .…· •…輸入電感的第一端 172…·· …··輸出電感的第二端 112 …·. ····輸入電感的第二端 181….· …··輸出電容的第端 121 … •…儲能電容的第一端 182… …··輸出電容的第二端 122…·. •…儲能電容的第二端 191 ··· …·輸出負載的第一端 131 …· ••…第一開關的第一端 192… …·輸出負載的第二端 132… …··第一開關的第二端 2…… •…控制電路 133 …· …··第一開關的第三端 21 ·...· …·分壓器 141 …· ••…第二開關的第一端 22••… •…比較器 142…· ••…第二開關的第二端 23·...· •…比例積分控制器 143 …· ••…第二開關的第三端 24·.··· …·閘極驅動器 151 ..·· •…·陽極10 201131957 [Description of main component symbols] 100... •...Boost converter 152...····Cathode 1...•...Boost converter circuit 161... The first end 101 of the snubber capacitor...... Input capacitance The first end 162... ••...the second end 102 of the snubber capacitor...the second end of the input capacitor 171...the first end of the output inductor 111 ..... One end 172...····· The second end 112 of the output inductor ...···· The second end of the input inductor 181....··· The first end of the output capacitor 121 ... • The first of the storage capacitor One end 182...the second end of the output capacitor 122...·....the second end of the storage capacitor 191.....the first end of the output load 131 ...· ••...the first of the first switch Terminal 192...the second end 132 of the output load...the second end of the first switch 2...the control circuit 133 ...the third end of the first switch 21 ..... ... · Divider 141 ...· ••... The first end of the second switch 22••... •... Comparator 142...·••...The second switch Two-end 23·...· •...Proportional integral controller 143 ...· ••...The third end of the second switch 24·······Gate driver 151 ..·· •·· anode

Claims (1)

201131957 七、申請專利範圍: κ 一種升壓轉換電路’適用於將一輸入電壓進行升壓轉換 以輸出一輸出電壓,該升壓轉換電路包含: —輸入電感,具有一接收該輸入電壓的第—端及— 第二端; —儲能電容,具有一與該輸入電感之第二端輕接的 第一端及一第二端;201131957 VII. Patent application scope: κ A boost converter circuit is adapted to boost convert an input voltage to output an output voltage. The boost converter circuit comprises: - an input inductor having a first receiving the input voltage - And a second end; a storage capacitor having a first end and a second end that are lightly coupled to the second end of the input inductor; —第—開關,具有一與該輸入電感之第二端搞接的 第一端及一第二端; —第二開關,具有一接地的第一端及一與該輸入電 感之第二端耦接的第二端; 一二極體,具有一與該第一開關之第二端耦接的陽 極及一與該儲能電容之第二端耦接的陰極; 一緩衝電容,具有一與該二極體之陽極耦接的第一 端及一接地的第二端;a first switch having a first end and a second end coupled to the second end of the input inductor; a second switch having a grounded first end coupled to a second end of the input inductor a second end; a diode having an anode coupled to the second end of the first switch and a cathode coupled to the second end of the storage capacitor; a buffer capacitor having a a first end coupled to the anode of the diode and a second end connected to the ground; 一輪出電感,具有一與該二極體之陰極耦接的 端及一第二端;及 一輸出電容,具有一與該輸出電感之第二端耦接 第一端及-接地的第二端’當該第—開關導通且該第 開關不導通時,該輸人電壓對該緩衝電容充電,且該 能電容對該輸出電感充電;當該第一開關不導通且: 二開關導通時,該緩衝電容與該輸出電感對該輸出電 充電,使該輸出電容輸出該輸出電壓。 2.依據申請專利範圍帛〗項所述之升壓轉換電路,還包 12 201131957 3. :以濾波:―輸人電容,該輸入電容具有-與該輪入電 感之第-端耦接的第一端及一接地。 -種升壓轉換裝置,包含: 第-端 一升壓轉換電路,包括: 輸入電感’具有_接收—輸人電壓的第 一第二端; 崎久 一儲能電容,具有一盥哕銓 的第 端及-第二端;—接 的第-:ΓΓ:具有一與該輸入電感之第二端耗接 ^ 粮及一第二端; 第'—開關,具有—AA ^ 雷成吨 接地的第一端及一與該輸入 電感之第一端耦接的第二端; -二極體,具有—與該第一開關之第二 陽極及一與該儲能電容笛 接的 省私電谷之第二端耦接的陰極; 一緩衝電容,具有—$ 一… 興該一極體之陽極耦接的第 知及一接地的第二端; 一輸出電感,具有—盥該_ — ,、该一極體之陰極耦接的第 缟及一第二端; ^ 一輸出電容,具有―办#〜, 的坌 ^ 、忒輸出電感之第二端耦接 的第—端及一接地的第二端;及 狗伐 —控制電路’根據該輪 與該m 1 出電壓對應控制該第一開關 ^ 第一開關導通且該第二開關 +導通時’該輸入電壓對兮 ^衝電容充電,且該儲能電 各對戎輸出電感充電;當該第一 弟開關不導通且該第二開 13 201131957 關導通時,該緩衝電容與該輸出電感對該輸出電容充電 ’使該輸出電容輸出該輸出電壓。 4.依據申請專利範圍第3項所述之升昼轉換裝置,其中, 該升遷轉換電路還包括用以錢的_輸人電容,該輸入 電容具有一與該輸人電感之第—端㈣的第—端及一接 地的第二端。 5·㈣申請專利範圍第4項所述之升壓轉換㈣,其中, ,控制電路包括一比較器及一比例積分控制器,該比較 '比較該輸出電壓與一參考電壓以產生一數位邏輯訊號 -玄比例積刀控制器根據該數位邏輯訊號產生一控制該 第—開關與該第二開關啟閉的控制訊號。 6·依據申請專利範圍第5項所述之升壓轉換裝置,宜中, 該控制電路還包括接於該升壓轉換電路與該比較器 之間的分壓器,該分壓器根據—分壓比例將該輸出電壓 進行分壓。 7.依射請專利範圍第6項所述之升壓轉換裝置其中, 該控制電路還包括—耗接於該比例積分控制器與該升壓 轉換電路之間的閘㈣動器,用以將該控制訊號轉換成 足以驅動該第一開關與該第二開關的驅動訊號。 14An output inductor having a terminal coupled to the cathode of the diode and a second terminal; and an output capacitor having a first end coupled to the second end of the output inductor and a second end grounded When the first switch is turned on and the first switch is not turned on, the input voltage charges the buffer capacitor, and the energy capacitor charges the output inductor; when the first switch is not turned on and: the second switch is turned on, The snubber capacitor and the output inductor electrically charge the output such that the output capacitor outputs the output voltage. 2. According to the patent application scope 帛 〗 〖Boost conversion circuit, also package 12 201131957 3. : Filter: "input capacitor, the input capacitor has - coupled with the first end of the wheeled inductor One end and one ground. a boost converter device comprising: a first-end-boost conversion circuit, comprising: an input inductor 'having a first second end of a receiving-input voltage; and a second-storage storage capacitor having a turn The first end and the second end; the first -: 具有: has a second end of the input inductor and a second end; the first switch has a -AA ^ Thunder to ground a first end and a second end coupled to the first end of the input inductor; a diode having a second anode of the first switch and a provincial private valley connected to the storage capacitor a second end coupled to the cathode; a snubber capacitor having -$ a... the anode of the one pole coupled to the first and a grounded second end; an output inductor having -盥 the _ - , The first end of the one-pole body is coupled to the second end and the second end; ^ an output capacitor having a first end coupled to the second end of the output inductor, and a grounded end The second end; and the dog cutting-control circuit 'controls the first switch according to the voltage corresponding to the m 1 output ^ When the switch is turned on and the second switch is turned on, the input voltage charges the capacitor, and the pair of stored energy charges the output inductor; when the first switch is not turned on and the second switch 13 201131957 When turned on, the snubber capacitor and the output inductor charge the output capacitor 'to output the output capacitor. 4. The upswing conversion device according to claim 3, wherein the upshift conversion circuit further comprises an input capacitor for money, the input capacitor having a first end (four) of the input inductor The first end and a second end of the ground. 5. The boosting conversion (4) of claim 4, wherein the control circuit comprises a comparator and a proportional integral controller, the comparison 'compares the output voltage with a reference voltage to generate a digital logic signal The meta-scale integrated knife controller generates a control signal for controlling the opening and closing of the first switch and the second switch according to the digital logic signal. 6. The boost converter according to claim 5, wherein the control circuit further comprises a voltage divider connected between the boost converter circuit and the comparator, the voltage divider according to the minute The output voltage is divided by the voltage ratio. 7. The boost converter device of claim 6, wherein the control circuit further includes: a gate (four) actuator that is coupled between the proportional integral controller and the boost converter circuit for The control signal is converted into a driving signal sufficient to drive the first switch and the second switch. 14
TW099106914A 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device TWI381623B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Publications (2)

Publication Number Publication Date
TW201131957A true TW201131957A (en) 2011-09-16
TWI381623B TWI381623B (en) 2013-01-01

Family

ID=50023210

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099106914A TWI381623B (en) 2010-03-10 2010-03-10 Step-up conversion circuit and step-up conversion device

Country Status (1)

Country Link
TW (1) TWI381623B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448059B (en) * 2012-01-17 2014-08-01 Univ Nat Taipei Technology Low voltage to high voltage device
TWI455465B (en) * 2012-01-17 2014-10-01 Univ Nat Taipei Technology High pressurization device
TWI456881B (en) * 2011-12-06 2014-10-11 Univ Nat Taipei Technology Improved boost converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911200B2 (en) * 2007-08-14 2011-03-22 Fluke Corporation Digital multimeter having case panel structure
TW200910744A (en) * 2007-08-23 2009-03-01 Univ Nat Taipei Technology Voltage boost circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456881B (en) * 2011-12-06 2014-10-11 Univ Nat Taipei Technology Improved boost converter
TWI448059B (en) * 2012-01-17 2014-08-01 Univ Nat Taipei Technology Low voltage to high voltage device
TWI455465B (en) * 2012-01-17 2014-10-01 Univ Nat Taipei Technology High pressurization device

Also Published As

Publication number Publication date
TWI381623B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
Baek et al. High boost converter using voltage multiplier
EP3553928B1 (en) Snubber circuit and power conversion system using same
US8488346B2 (en) Power conversion apparatus and method
JP6134479B2 (en) Active step-down power factor correction device
US9531281B2 (en) AC-DC power converter
TW201401748A (en) Control circuit and control method of flyback convertor and alternating current-direct current power converting circuit applying control circuit of flyback convertor
US8824180B2 (en) Power conversion apparatus
US20200119635A1 (en) Resonant switched capacitor dc/dc converter
KR20090044137A (en) Transformer-less boost converter
Kim et al. Soft-switching step-up converter with ripple-free output current
TW201101659A (en) Boost/buck converting device, boost/buck converter, and control module thereof
TWI447554B (en) Dual-mode power factor correction circuit
TWI575857B (en) Step up dc converter
TW201131957A (en) Boost converter circuit and boost converter
TWI412221B (en) High boost ratio converter
TWI528696B (en) Single-stage high step-down dc-dc converter
Axelrod et al. Cockroft-Walton voltage multiplier combined with switched-coupled-inductor boost converter
WO2014063591A1 (en) Power factor correction circuit
KR101456654B1 (en) A common-core power factor correction resonant converter
CN115811235A (en) Power supply circuit, device and system suitable for wide-range output and control method
TW201720040A (en) Bridgeless AC-DC converter comprising an output circuit, a power control module, and an output control module
TWI441430B (en) High step-up dc-dc converter with leakage inductance energy recycled
TW201509093A (en) DC-DC power converter with high step-down ratio
CN108075669B (en) DC-DC converter with integrated cascade structure
TWI625922B (en) Wide-range voltage conversion ratios dc-dc converter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees