TWI378229B - Ionization gauge - Google Patents

Ionization gauge Download PDF

Info

Publication number
TWI378229B
TWI378229B TW97119083A TW97119083A TWI378229B TW I378229 B TWI378229 B TW I378229B TW 97119083 A TW97119083 A TW 97119083A TW 97119083 A TW97119083 A TW 97119083A TW I378229 B TWI378229 B TW I378229B
Authority
TW
Taiwan
Prior art keywords
ionization gauge
gate
linear
cathode
carbon
Prior art date
Application number
TW97119083A
Other languages
Chinese (zh)
Other versions
TW200949220A (en
Inventor
Lin Xiao
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97119083A priority Critical patent/TWI378229B/en
Publication of TW200949220A publication Critical patent/TW200949220A/en
Application granted granted Critical
Publication of TWI378229B publication Critical patent/TWI378229B/en

Links

Description

1378229 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種氣體壓強測量器件,尤其涉及一種電 離規。 【先前技術】 當代科技發展迅猛,在許多高新技術領域都需要真 空環境’而真空測量係其中必不可少的重要環節。電離 規係測量氣體壓強即真空度的—種重要器件。傳統的電 離規包括陰極、柵極及離子收集極三個基本的組成部分。 電離規的工作原理為在一定的氣體壓強真空環境 下,電子從陰極發射出來,在電場令往返運動,最终撞 擊在栅極上並產生栅極電流Iee在電子在電場的往返過程 中,電子會電離氣體分子從而產生帶正電的氣體離子, 這種帶正電的氣體離子被收集極吸收,產生電流η。拇極 所接受的電流Ie、收集極所接受的電流^與真空環境的壓 強P之間的關係為: P=(K'1xIi)/le ⑴ 其中,K係一個固定的比例係數,稱為電離規的靈敏度。 ^離規的靈敏度係電離規的固有性質,可以通過標^真 空計校準該電離&而得知該靈敏度。豸過測量桃極電流^ 和離子收集極離子流U就可以得出被測環境的壓強。 然而’在上述電離規的工作過程中,電子撞 上的同時,會使柵極發出χ射線,其中部分χ射線會照射 在收集極上,由於光電效應使收集極發射出電子,這就等 效於收集極測量到了一個與真空壓強無關的離子電流 6 fl378229 lx,根據公式(1),此離子電流對應於大小為(K^xIxVle的 虛擬壓強Px,電離規實際所測量的壓強為真空環境的壓強 'P與虛擬壓強Px的和,因此,這個虛擬壓強Px限制了電 離規的低壓測量極限。 P.A.Redhead等人提供一種分離電離規(請參見“New Hot-Filament Ionization Gauge With Low Residual Current” , P.A.Redhead > The Journal Of Vacuum Science And Technology,Vol3,P173 ( 1966))。該分離電離規採 用一個擋板放在收集極前面,以擋住一部分X射線,這種 方法可以一定程度的降低電離規的測量下限。然,該分離 電離規結構都比較複雜,製作成本較高,且該分離電離規 的測量下限並不能滿足太空科技、超低溫和巨型粒子加速 器等有更高真空的場合或封閉器件的要求。 另外,先前技術中的上述電離規一般採用金屬材料作 為柵極,由於金屬材料密度較大,因此電離規的質量較 大,在一些實際應用時存在一定的限制。 _ 有鑑於此,提供一種具有較低的真空壓強測量下 限、結構簡單且質量較小的電離規實為必要。 【發明内容】 一種電離規,該電離規包括陰極、柵極和離子收集 極,該柵極設置於該陰極與該離子收集極之間,陰極、 柵極和離子收集極間隔絕緣設置,其中,所述柵極包括 一奈米碳管結構。 相對于先前技術’本技術方案所提供的電離規存在 以下優點:其一,電離規的柵極採用奈米碳管結構,可 1378229 降低X射線的產生,進而降低由X射線產生的與真空壓 強無關的離子電流IX,因此,該電離規具有較低的真空 ' 壓強測量下限;其二,由於作為栅極的奈米碳管的密度 * 較低,質量輕,因此所述電離規的質量相對較小,可方 便應用於各種領域。 【實施方式】 下面將結合附圖及具體實施例對本發明作進一步的 詳細說明。 φ 請參閱圖1,本技術方案第一實施例提供一種電離規 100,該電離規100包括一外殼120及設置於該外殼120内的 線狀陰極102、柵極104和離子收集極106。該線狀陰極102 設置於外殼120内部的中心位置,該柵極104環繞於線狀陰 極102的外側,離子收集極106環繞於柵極104外側。柵極104 及離子收集極106分佈於以線狀陰極102為軸心的同心圓 上。該柵極104位於陰極102與離子收集極106之間,陰極 102、柵極104與收集極106分別間隔絕緣設置。線狀陰極102 鲁與栅極104的距離為1毫米至8毫米,線狀陰極102與離子收 集極106的距離為10毫米至15毫米。該電離規100進一步包 -括三個電極引線122,該三個電極引線122的一端分別與陰 極102,柵極104和離子收集極106連接,另一端延伸至外殼 120 外。 外殼120係一半封閉結構,具有一開口端124。外殼120 的材料為玻璃等絕緣材料。外殼120的具體形狀不限,可根 據實際需要設計。本實施例中,外殼120為一中空的類圓柱 1378229 請參閱圖2,該線狀陰極102包括熱發射陰極或場發射 陰極。本實施例中,線狀陰極102為一場發射陰極,其包括 線狀導電基體108及設置線上狀導電基體1〇8表面的電子發 •射層11〇。線狀導電基體108可選擇為鎳、鎢、銅等材料製 成的導電金屬綵。線狀導電基體1〇8直徑的範圍為〇 2毫米 至2毫米’優選為〇.3毫米。電子發射層11〇為包括電子發射 體的層狀結構,其厚度為1〇微米_1〇〇微米。電子發射層11〇 中的電子發射體包括金屬微尖、矽尖或奈米碳管,也可以 鲁採用其他電子發射體。電子發射體可通過熱熾能等方法固 定於線狀導電基體108的表面,形成電子發射層11()。本實 施例中’優選地’將一奈米碳管漿料均勻塗敷於線狀導電 基體108上,通過一定的燒結工藝及表面處理工藝,形成電 子發射層110。該奈米碳管漿料包括質量百分比為5〜15%的 奈米碳管、10〜20%的導電金屬微粒、5%的低熔點玻璃及 60〜80%的有機載體。 該栅極104包括由奈米碳管形成的線狀結構或層狀結 φ構’該線狀結構或層狀結構的柵極W4環繞於線狀陰極1〇2 的外侧。當柵極1〇4為一線狀結構時,該線狀柵極1〇4包括 一奈米破管長線結構,該奈米碳管長線結構以線狀陰極1〇2 為軸心螺旋環繞於線狀陰極102的外侧,其螺距為1〇〇微米 -1釐米。 所述奈米碳管長線結構包括至少一根奈米碳管長 線’進一步地,該奈米碳管長線結構包括由至少兩個奈 米碳管長線平行無間隙設置形成的束狀結構或相互螺旋 纏繞形成的絞線結構。請參閱圖3,所述束狀結構的奈米 9 1378229 碳管長線結構28包括平行無間隙設置的複數個奈米碳管 長線30,相鄰的奈米碳管長線之間通過凡德瓦爾力相互 連接。請參閱圖4,所述之絞線結構的奈米碳管長線結構 28包括相互螺旋纏繞複數個奈米碳管長線3〇,相鄰的奈 米碳管長線之間通過凡德瓦爾力和機械力相互連接。 所述奈米%I管長線30包括複數個首尾相連的奈米碳 管片斷,所述奈米碳管片斷包括複數個奈米碳管。依據 製備方法的不同,奈米碳管長線3〇可為束狀結構的奈米 碳管長線30或絞線結構的奈米碳管長線3〇。請參見圖 5’圖5為圖3或圖4中的束狀結構的奈米碳管長線3〇 的掃描電鏡照片’該束狀結構的奈米碳管長線3G中的奈 米碳管片斷包括複數個沿同一方向擇優取向排列的夺米 碳管。請參閱圖6,圖6為圖3或圖4中的絞線結構的夺 長線30的掃描電鏡照片,該絞線結構的奈米碳管 奈:碳管片斷包括複數個以奈末碳管長線30 的軸線為中心螺旋排列的太丰山放 絞線結構的奈米碳管長線 間通過凡德瓦爾力片斷之 徑為i微米養微米。 斤这不“官長線30的直 式不:以長線3°中的奈米碳管的排列方 或通過凡德瓦爾力相互結人二:方式,如相互纏繞 3〇具,一定的機械強度且;電心==奈米碳管長線 複數個上述奈米碳管長線;:二==極⑽包括 傅、,爲織形成的層狀結構或一 1378229 奈米碳管薄膜結構。 ^體地’當層狀栅極綱包括複數個奈米碳管長線 .:㈣,複數個奈米碳管長線結構交又編織形成一層網 2狀,構二該網格狀結構的孔徑不限,優選為⑽微米巧 只該複數個奈米石反管長線結構形成的網格狀結構的 栅極104具有-定的自支#性,可直接環繞於線狀陰極 2的周圍,形成以線狀陰極丄〇2為轴心的圓筒狀結構。 當層狀柵極104包括奈米碳管薄臈結構時,該層狀 結構的栅極1〇4形成一以線狀陰極1〇2為軸心的圓筒狀 厂構。所述之奈米碳管薄膜結構包括複數個均勻分佈的 微孔,該微孔的直徑為i微米_2〇微米。所述之奈米碳管 薄膜結構的厚度為i奈米_10微米。具體地,所述之奈米 碳管薄膜結構包括至少一層奈米碳管薄膜,該奈米碳管 薄膜包括複數個定向排列的奈米碳管。所述奈米碳管薄 膜的厚度為1奈米-100奈米。當奈米碳管薄膜結構包括 至少兩層奈米碳管薄膜時,奈米碳管薄膜重疊鋪設,相 Φ鄰兩層的奈米碳管薄膜中的奈米碳管的排列方向形成一 夾角 β,0°$ β $ 90。。 請參見圖7,所述奈米碳管薄膜為一自奈米碳管陣列 中直接拉伸得到的自支撐薄膜結構,所述奈米碳管薄膜 t的奈米碳管沿拉伸方向擇優取向排列。具體地,所述 奈米碳管薄膜包括複數個首尾相連且擇優取向排列的奈 米碳管片斷’奈米碳管片斷之間通過凡德瓦爾力緊密結 合。所述奈米碳管片斷中包括複數個長度相同平行排列 的奈米碳管’奈米碳管片斷中的奈米;6炭管通過凡德瓦爾 11 丄 力連接。由於奈米碳管薄膜 著缝隙,且奈米碳管分佈均 括複數個均勻分佈的微孔。 中相鄰的奈米碳管之間存在 勻’因此該奈米碳管薄膜包 所述之柵極104中的奈米碳管為單壁奈米碳管、雙壁 奈米碳管、多壁㈣碳管或其任意組合的混合物。所述 早壁奈米碳管的直徑為〇.5奈米_5〇奈米,雙壁奈米碳管 的直徑為1奈米-50奈米,多壁奈米碳管的直徑為丄$奈 米-50奈米,奈米碳管的長度均為1〇微米_5〇〇〇微米。1378229 IX. Description of the Invention: [Technical Field] The present invention relates to a gas pressure measuring device, and more particularly to an ionizing gauge. [Prior Art] Contemporary science and technology are developing rapidly, and in many high-tech fields, a vacuum environment is needed, and vacuum measurement is an essential part of it. The ionization gauge is an important device for measuring gas pressure, that is, vacuum. Conventional ionization gauges consist of three basic components: the cathode, the gate, and the ion collector. The working principle of the ionization gauge is that in a certain gas pressure vacuum environment, electrons are emitted from the cathode, and the electric field causes a reciprocating motion, and finally impinges on the gate and generates a gate current Iee. During the round trip of the electron in the electric field, the electrons are ionized. The gas molecules thereby produce positively charged gas ions that are absorbed by the collector to produce a current η. The relationship between the current Ie received by the thumb pole, the current received by the collector, and the pressure P of the vacuum environment is: P = (K'1xIi) / le (1) where K is a fixed proportional coefficient called ionization. The sensitivity of the gauge. The sensitivity of the detachment is an inherent property of the ionization gauge, which can be known by calibrating the ionization & By measuring the peach current ^ and the ion collector ion current U, the pressure of the measured environment can be obtained. However, during the operation of the above ionization gauge, the electrons collide with the gate, and the cathode emits a ray, some of which will illuminate the collector. The photoelectric effect causes the collector to emit electrons, which is equivalent to The collector measures an ion current 6 fl378229 lx independent of the vacuum pressure. According to formula (1), this ion current corresponds to a virtual pressure Px of size (K^xIxVle, and the actual measured pressure of the ionization gauge is the pressure of the vacuum environment. The sum of 'P and the virtual pressure Px, therefore, this virtual pressure Px limits the low voltage measurement limit of the ionization gauge. PARedhead et al. provide a separate ionization gauge (see "New Hot-Filament Ionization Gauge With Low Residual Current", PA Redhead > The Journal Of Vacuum Science And Technology, Vol3, P173 (1966). The separation ionization gauge uses a baffle placed in front of the collector to block a portion of the X-rays. This method can reduce the ionization gauge to a certain extent. Lower limit of measurement. However, the structure of the separation ionization gauge is relatively complicated, the production cost is high, and the separation ionization gauge The lower measurement limit does not meet the requirements of space technology, ultra-low temperature and giant particle accelerators with higher vacuum or closed devices. In addition, the above-mentioned ionization gauges in the prior art generally use a metal material as a gate, due to the high density of the metal material, Therefore, the quality of the ionization gauge is large, and there are certain limitations in some practical applications. _ In view of this, it is necessary to provide an ionization regulation having a lower vacuum pressure measurement lower limit, a simple structure, and a small mass. An ionization gauge comprising a cathode, a gate and an ion collector, the gate being disposed between the cathode and the ion collector, the cathode, the gate and the ion collector being spaced apart from each other, wherein the grid is The pole includes a carbon nanotube structure. Compared with the prior art, the ionization gauge provided by the technical solution has the following advantages: First, the gate of the ionization gauge adopts a carbon nanotube structure, and 1378229 can reduce the generation of X-rays, and further Reducing the ion current IX generated by X-rays independent of the vacuum pressure, therefore, the ionization gauge has a lower true The lower limit of the pressure measurement; the second, since the density of the carbon nanotubes as the gate is low and the quality is light, the quality of the ionization gauge is relatively small, and can be conveniently applied to various fields. The present invention will be further described in detail with reference to the accompanying drawings and specific embodiments. φ Referring to FIG. 1 , a first embodiment of the present invention provides an ionization gauge 100 including a housing 120 and disposed in the housing 120 . The linear cathode 102, the gate 104 and the ion collector 106. The linear cathode 102 is disposed at a central position inside the outer casing 120, the gate 104 surrounds the outer side of the linear cathode 102, and the ion collector 106 surrounds the gate. 104 outside. The gate electrode 104 and the ion collector 106 are distributed on concentric circles centered on the linear cathode 102. The gate 104 is located between the cathode 102 and the ion collector 106, and the cathode 102, the gate 104 and the collector 106 are spaced apart from each other. The line cathode 102 is at a distance of 1 mm to 8 mm from the gate electrode 104, and the line cathode 102 is spaced from the ion collector 106 by a distance of 10 mm to 15 mm. The ionization gauge 100 further includes three electrode leads 122 having one end connected to the cathode 102, the gate 104 and the ion collector 106, and the other end extending outside the housing 120. The outer casing 120 is a half-closed structure having an open end 124. The material of the outer casing 120 is an insulating material such as glass. The specific shape of the outer casing 120 is not limited and can be designed according to actual needs. In the present embodiment, the outer casing 120 is a hollow cylinder 1378229. Referring to Fig. 2, the linear cathode 102 includes a thermal emission cathode or a field emission cathode. In the present embodiment, the linear cathode 102 is a field emission cathode comprising a linear conductive substrate 108 and an electron emitting layer 11 设置 on the surface of the linear conductive substrate 1 〇 8 . The linear conductive substrate 108 may be selected from conductive metal colors made of materials such as nickel, tungsten, and copper. The diameter of the linear conductive substrate 1 〇 8 ranges from 〇 2 mm to 2 mm', preferably 〇. 3 mm. The electron emission layer 11 is a layered structure including an electron emitter having a thickness of 1 μm to 1 μm. The electron emitters in the electron-emitting layer 11A include metal microtips, tips, or carbon nanotubes, and other electron emitters can be used. The electron emitter can be fixed to the surface of the linear conductive substrate 108 by heat galvanization or the like to form an electron emission layer 11 (). In the present embodiment, a carbon nanotube slurry is uniformly applied to the linear conductive substrate 108, and the electron-emitting layer 110 is formed by a certain sintering process and surface treatment process. The carbon nanotube slurry comprises 5 to 15% by mass of carbon nanotubes, 10 to 20% of conductive metal particles, 5% of low melting glass, and 60 to 80% of an organic vehicle. The gate electrode 104 includes a linear structure or a layered structure formed of a carbon nanotube. The gate W4 of the linear structure or the layered structure surrounds the outer side of the linear cathode 1〇2. When the gate electrode 1〇4 is a linear structure, the linear gate electrode 1〇4 includes a nano tube long-length structure, and the nano-carbon tube long-line structure is spirally wrapped around the line with the linear cathode 1〇2 as an axis. The outer side of the cathode 102 has a pitch of 1 μm to 1 cm. The nano carbon tube long-line structure includes at least one nano carbon tube long line 'further, the nano carbon tube long-line structure includes a bundle structure or a mutual spiral formed by a parallel arrangement of at least two carbon nanotube long lines without gaps A twisted wire structure formed by winding. Referring to FIG. 3, the bundle structure of the nano 9 1378229 carbon tube long-line structure 28 includes a plurality of carbon nanotube long lines 30 arranged in parallel without gaps, and the adjacent carbon nanotubes pass the van der Waals force between the long lines. Connected to each other. Referring to FIG. 4, the carbon nanotube long-line structure 28 of the stranded structure comprises a plurality of carbon nanotube long wires 3 turns spirally wound with each other, and the adjacent carbon nanotubes pass the van der Waals force and the mechanical line between the long wires. Forces are connected to each other. The nano%I tube long line 30 includes a plurality of end-to-end carbon nanotube segments, the carbon nanotube segments including a plurality of carbon nanotubes. Depending on the preparation method, the long carbon nanotubes of the carbon nanotubes may be a bundle of 30 carbon nanotube long lines or a twisted-line nanocarbon tube long line 3〇. Please refer to FIG. 5'. FIG. 5 is a scanning electron micrograph of the long carbon wire 3 奈 of the bundle structure of FIG. 3 or FIG. 4 'The carbon nanotube segment in the long carbon 3G of the bundle structure includes A plurality of carbon nanotubes arranged in a preferred orientation in the same direction. Please refer to FIG. 6. FIG. 6 is a scanning electron micrograph of the extension line 30 of the stranded structure of FIG. 3 or FIG. 4, wherein the carbon nanotube section of the stranded structure includes a plurality of long carbon nanotubes. The axis of the 30-centered spiral arrangement of the Taifengshan stranded-line structure of the long carbon nanotubes through the van der Waals force segment is i micron. This is not the direct type of the official line 30: the arrangement of the carbon nanotubes in the long line 3° or the two sides of the van der Waals force: the way, such as intertwining 3 cookware, a certain mechanical strength and Electrocardiogram == nano carbon tube long line multiple of the above-mentioned nano carbon tube long line;: two == pole (10) including Fu, a layered structure formed by weaving or a 1378229 carbon nanotube film structure. When the layered gate series includes a plurality of long carbon nanotubes. (4), the plurality of carbon nanotube long-line structures are woven and formed into a layer of mesh 2, and the aperture of the grid-like structure is not limited, preferably (10) The gate 104 of the grid-like structure formed by the plurality of nano-stone reverse-pipe long-line structures has a self-supporting property, and can directly surround the linear cathode 2 to form a linear cathode. 2 is a cylindrical structure of the axial center. When the layered gate 104 includes a carbon nanotube thin crucible structure, the gate electrode 1〇4 of the layered structure forms a circle having a linear cathode 1〇2 as an axis a tubular structure comprising a plurality of uniformly distributed micropores having a diameter of i micrometers _2 The thickness of the carbon nanotube film structure is i nanometer _10 micrometers. Specifically, the carbon nanotube film structure comprises at least one layer of carbon nanotube film, and the carbon nanotube film comprises a plurality of aligned carbon nanotubes, wherein the carbon nanotube film has a thickness of from 1 nm to 100 nm. When the carbon nanotube film structure comprises at least two layers of carbon nanotube film, the carbon nanotubes The film is overlapped and laid, and the arrangement direction of the carbon nanotubes in the adjacent two layers of the carbon nanotube film forms an angle β, 0°$β $90. Referring to Fig. 7, the carbon nanotube film is a self-supporting film structure obtained by direct stretching from a carbon nanotube array, wherein the carbon nanotubes of the carbon nanotube film t are arranged in a preferred orientation along the stretching direction. Specifically, the carbon nanotube film comprises A plurality of carbon nanotube segments of the end-to-end and preferred orientations are closely combined by a van der Waals force. The carbon nanotube segments include a plurality of carbon nanotubes of the same parallel length. 'Nemi in the carbon nanotube segment; 6 carbon tube through Vander Val 11 is connected by force. Because the carbon nanotube film has a gap, and the distribution of the carbon nanotubes includes a plurality of uniformly distributed micropores. There is a uniform between the adjacent carbon nanotubes. Therefore, the carbon nanotubes The carbon nanotubes in the gate 104 of the film package are a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled (four) carbon tube or a mixture of any combination thereof. The early-walled carbon nanotube The diameter is 〇.5 nm _5 〇 nanometer, the diameter of the double-walled carbon nanotube is 1 nm-50 nm, and the diameter of the multi-walled carbon nanotube is 奈N nm-50 nm, nanometer The length of the carbon tube is 1 〇 micrometer _ 5 〇〇〇 micrometer.

可選擇地,所述之層狀栅極1〇4可進一步包括一支 撐體(圖未示),支撐體用於支撐奈米碳管薄膜結構。所 述支撐體的材料為原子序數較小的材料,優選為鈹、硼 或碳。具體地,所述支撐體可選擇為鈹絲、硼絲、奈米 石厌官長線結構以線狀陰極1〇2為軸心螺旋環繞於線狀陰 極102的周圍形成的螺旋結構。或者所述支撐體可選擇 為由鈹網、硼網或奈米碳管長線結構形成的網狀結構以 線狀陰極102為軸心形成的圓筒狀結構。所述支撐體的 具體形狀不限,只需確保當奈米碳管薄膜結構設置於該 支撐體表面上時’可形成以線狀陰極1〇2為軸心的圓筒 狀結構即可。 所述之離子收集極106的材料為導電金屬,如鎳、鶴、 銅等’離子收集極106結構為金屬絲、金屬環,或者金屬網 等結構。 本實施例所提供的電離規1〇〇在應用時,將電離規 100置於待測環境中,電離規1〇〇的陰極102為零電位, 柵極104加上正電位,收集極1〇6為負電位,外殼的開 12 1378229 口端124與被測環境相通。通過測量柵極電流Ie和離子 收集極離子流Π就可以得出被測環境的壓強。 * 請參見圖8,本技術方案第二實施例提供一種電離規 200,該電離規200包括一外殼220及設置於該外殼220内的 陰極202、栅極204和線狀離子收集極206。該線狀離子收集 極206位於外殼220的中心位置,該柵極204以線狀離子收集 極206為軸心環繞於線狀離子收集極206的外側,該陰極202 設置於柵極204的外側,該栅極204位於陰極202與線狀離子 收集極206之間,陰極202、柵極204與線狀收集極206分別 間隔絕緣設置。該陰極202為熱發射陰極或場發射陰極,其 為一線狀或帶狀。離子收集極206的材料為導電金屬,如 鎳、鎢、銅等,離子收集極106結構為金屬絲。陰極202與 柵極204的距離為1毫米至8毫米,陰極202與線狀離子收集 極206的距離為10毫米至15毫米。電離規200進一步包括三 個電極引線222,該三個電極引線222的一端分別與陰極 202,柵極204和線狀離子收集極206連接,另一端延伸至外 書殼220外。外殼220係半封閉的,具有一開口端224。 本技術方案第二實施例所提供的電離規200採用的柵 -極204的形狀、材質和結構與第一實施例所提供的電離規 100完全相同。 本實施例所提供的電離規的柵極採用奈米碳管結構, 故電離規具有以下優點:其一,由於電子撞擊柵極時激發 產生X射線的效率與柵極材料的原子序數的二分之一次方 成正比,而離子電流lx的大小與柵極X射線的激發效率 成正比,因此,選用原子序數較低的柵極材料成為降低電 13 1378229 離規測罝下限的一種有效途徑,本技術方案實施例所提供 的電離規的柵極的材料為碳、鈹或硼,由於碳、鈹或硼的 .原子序數遠小於先前技中的栅極材料鎢、鎳等,故該電離 *規具有較低的真空虔強測量下限;其=,由於作為拇極的 奈米碳管的密度較低,質量輕,因此所述電離規的質量相 對較小,可方便應用於各種領域。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 鲁自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 ^人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案第一實施例所提供的電離規的側視 截面結構示意圖; 圖2為本技術方案第一實施例所提供的電離規的俯視 截面結構示意圖; _ 圖3為本技術方案第一實施例所提供的束狀結構的奈 •米碳管長線結構的示意圖; 圖4為本技術方案第一實施例所提供的絞線結構的奈 米石反管長線結構的示意圖; ^圖5為本技術方案第一實施例所提供的束狀結構的奈 米碳管長線的掃描電鏡照片; 圖6為本技術方案第一實施例所提供的絞線結構的奈 米碳管長線的掃描電鏡照片; 圖7為本技術方案第一實施例所提供的奈米碳管薄膜 14 1378229 的掃描電鏡照片; 圖8為本技術方案第二實施例所提供的電離規的側視 戴面結構示意圖。 【主要元件符號說明】Alternatively, the layered gate electrode 1 4 may further include a support (not shown) for supporting the carbon nanotube film structure. The material of the support is a material having a small atomic number, preferably ruthenium, boron or carbon. Specifically, the support body may be selected from a spiral structure in which a wire, a boron wire, a nanowire, and a nanowire structure are formed around the linear cathode 102 with a linear cathode 1〇2 as an axis. Alternatively, the support may be a cylindrical structure formed by a mesh structure formed by a long wire structure of a mesh, a boron mesh or a carbon nanotube, with the linear cathode 102 as an axis. The specific shape of the support is not limited, and it is only necessary to ensure that a cylindrical structure having a linear cathode 1〇2 as an axis can be formed when the carbon nanotube film structure is disposed on the surface of the support. The material of the ion collector 106 is a conductive metal, such as nickel, crane, copper, etc. The structure of the ion collector 106 is a wire, a metal ring, or a metal mesh. In the application, the ionization gauge 100 provided in this embodiment places the ionization gauge 100 in the environment to be tested, the cathode 102 of the ionization gauge 1 is at a zero potential, the gate 104 is positively charged, and the collector is 1 〇. 6 is a negative potential, and the opening 12 of the outer casing 12 1378229 is connected to the environment to be tested. The pressure of the measured environment can be obtained by measuring the gate current Ie and the ion collector ion current. * Referring to FIG. 8, a second embodiment of the present invention provides an ionization gauge 200. The ionization gauge 200 includes a housing 220 and a cathode 202, a gate 204, and a linear ion collector 206 disposed in the housing 220. The linear ion collector 206 is located at a center of the outer casing 220. The gate 204 surrounds the outer side of the linear ion collector 206 with the linear ion collector 206 as an axis. The cathode 202 is disposed outside the gate 204. The gate 204 is located between the cathode 202 and the linear ion collector 206, and the cathode 202, the gate 204 and the linear collector 206 are spaced apart from each other. The cathode 202 is a thermal emission cathode or a field emission cathode which is in the form of a line or a strip. The material of the ion collector 206 is a conductive metal such as nickel, tungsten, copper, etc., and the ion collector 106 is structured as a wire. The distance between the cathode 202 and the gate 204 is 1 mm to 8 mm, and the distance between the cathode 202 and the linear ion collector 206 is 10 mm to 15 mm. The ionization gauge 200 further includes three electrode leads 222 having one end connected to the cathode 202, the gate 204 and the linear ion collector 206, and the other end extending outside the outer casing 220. The outer casing 220 is semi-closed and has an open end 224. The shape, material and structure of the gate electrode 204 employed in the ionization gauge 200 provided by the second embodiment of the present technical solution are completely the same as those of the ionization gauge 100 provided in the first embodiment. The gate of the ionization gauge provided in this embodiment adopts a carbon nanotube structure, so the ionization gauge has the following advantages: First, the efficiency of the X-ray generated by the excitation of the electron when striking the gate and the atomic number of the gate material are two. The primary current is proportional to the square, and the magnitude of the ion current lx is proportional to the excitation efficiency of the gate X-ray. Therefore, the selection of the gate material with a lower atomic number is an effective way to reduce the lower limit of the electrical measurement of the 13 13378229. The material of the gate of the ionization gauge provided by the embodiment of the present technical solution is carbon, germanium or boron. Since the atomic number of carbon, germanium or boron is much smaller than that of the gate material tungsten, nickel, etc. in the prior art, the ionization* The gauge has a lower vacuum bareness measurement lower limit; it =, since the density of the carbon nanotube as the thumb pole is low and the quality is light, the quality of the ionization gauge is relatively small, and it can be conveniently applied to various fields. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and Lu can not limit the scope of patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side cross-sectional structural view of an ionization gauge according to a first embodiment of the present invention; FIG. 2 is a schematic cross-sectional structural view of an ionization gauge according to a first embodiment of the present invention; 3 is a schematic view showing a long-line structure of a nano-carbon tube of a bundle structure according to a first embodiment of the present invention; FIG. 4 is a long-line nanowire reverse tube of a stranded structure provided by the first embodiment of the present technical solution. Schematic diagram of the structure; ^ FIG. 5 is a scanning electron micrograph of the long carbon nanotube line of the bundle structure provided by the first embodiment of the present technical solution; FIG. 6 is a twisted wire structure of the first embodiment of the present technical solution. FIG. 7 is a scanning electron micrograph of a carbon nanotube film 14 1378229 provided by a first embodiment of the present invention; FIG. 8 is an ionization gauge provided by a second embodiment of the present technical solution. Schematic diagram of the side view of the wearing surface. [Main component symbol description]

100 電離規 102 線狀陰極 104 棚極 106 離子收集極 108 線狀基底 110 電子發射層 120 外殼 122 電極引線 124 開口端 28 奈米碳管長線結構 30 奈米碳管長線 15100 Ionization gauge 102 Linear cathode 104 Shed pole 106 Ion collector 108 Linear substrate 110 Electron emission layer 120 Housing 122 Electrode lead 124 Open end 28 Carbon nanotube long-line structure 30 Carbon nanotube long line 15

Claims (1)

1378229 、申請專利範圍 -種電離規’包括陰極’柵極和離子收集極 置於陰極與離子收集極之間,^梅 〇Λ 〇χ 分別間隔絕緣設置,其改良在二 和離子收集極 碳管結構。 1在於’所核極包括-奈来 2.如申請專利範圍第1項所述 <〈电離規,其中,所述之栅 極包括線狀結構栅極或層狀結構栅極。 3.如申請專利範圍第2項所述之電離規,其中,所述之陰 極為線狀,所述線狀結構的拇極以線狀陰極為轴心螺旋 環繞於該線狀陰極的周圍。 4.如申請專利範圍第2項所述之電離規,其中,所述之陰 極為線狀’所述層狀結構的栅極以線狀陰極為軸心形成 一圓筒狀結構。 5. 如申請專利範圍第2項所述之電離規,其令,所述之線 狀結構的柵極包括至少一個奈米碳管長線結構。 6. 如申請專利範圍第2項所述之電離規,其中,所述之層 # 狀結構的栅極包括複數個奈米碳管長線結構或,個奈 . 米碳管薄膜結構。 7. 如申凊專利範圍第6項所述之電離規,其中,所述之複 數個奈米碳管長線結構交叉編織形成一網格狀結構。 8. 如申凊專利範圍第6項所述之電離規,其令,所述之層 : 狀結構的栅極進一步包括一支撐體,該奈米碳管薄膜結 構設置於該支撐體上,該支撐體的材料為鈹、硼戒碳。 9·如申請專利範圍第6項所述之電離規,其_,所述之奈 米碳官薄臈結構包括至少一層奈米碳管薄膜。 16 如專利範圍第9項所述之電離規,其中,所述之奈 薄膜包括複數個沿同-方向擇優取向排列的奈 米碳管。 t如trf利範圍第9項所述之電離規,其中,所述之奈 :石:官薄臈結構包括至少兩層奈米碳管薄膜相鄰兩層 的:米碳管薄財的奈米碳管的排列 β 5 〇°< β < 90° 〇 申請專利範圍第5項或第6項所述之電離規,其中, =米長線結構包括至少一個奈米碳管長威。 太、,明利範圍第12項所述之電離規,其中,所述之 二 =長線結構為由至少兩個奈求碳管長線平行無 14如由:形成的束狀結構或相互纏繞形成的絞線結構。 太、π,利範圍第12項所述之電離規,;其中,所述之 管長線為由複數個奈米碳管組成的束狀結構或 、’父、’、、、Ό構,其直徑為J微米J000微米。 5·^申清專利範圍第2項所述之電離規,其中,所述之離 =集極輕狀,所料狀結構的柵極m狀離子收集 16 j 螺旋環繞於該線狀離子收集極的周圍。 1申請專利範圍第2項所述之電離規,其中,所述之離 ^集極為線狀,所述層狀結構的柵極以線狀離子收集 蚀為軸心形成一圓筒狀結構。 17·^申請專利範圍第丄項所述之電離規,其中,所述之陰 蛋包括熱發射陰極或場發射陰極。 171378229, the scope of patent application - a kind of ionization gauge 'including the cathode' gate and the ion collector are placed between the cathode and the ion collector, and the 〇Λ 〇Λ 〇χ are respectively spaced apart and insulated, and the modified in the second and the ion collecting carbon tubes structure. 1 is the 'nuclear pole of the core'. 2. The ionization gauge according to the first aspect of the invention, wherein the gate includes a linear structure gate or a layered structure gate. 3. The ionization gauge of claim 2, wherein the cathode is substantially linear, and the thumb of the linear structure is spirally surrounded by the linear cathode around the linear cathode. 4. The ionization gauge according to claim 2, wherein the cathode is substantially linear. The gate of the layered structure forms a cylindrical structure with a linear cathode as an axis. 5. The ionization gauge of claim 2, wherein the gate of the linear structure comprises at least one carbon nanotube long-line structure. 6. The ionization gauge of claim 2, wherein the gate of the layered structure comprises a plurality of carbon nanotube long-line structures or a carbon nanotube film structure. 7. The ionization gauge of claim 6, wherein the plurality of carbon nanotube long-line structures are cross-woven to form a grid-like structure. 8. The ionization gauge of claim 6, wherein the gate of the layer-like structure further comprises a support body, and the carbon nanotube film structure is disposed on the support body, The material of the support is bismuth, boron or carbon. 9. The ionization gauge of claim 6, wherein the carbon carbon thin crucible structure comprises at least one layer of carbon nanotube film. The ionization gauge of claim 9, wherein the film comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. The ionization gauge according to item 9 of the trf range, wherein the neat: stone: the official thin crucible structure comprises at least two layers of carbon nanotube film adjacent to two layers: rice carbon tube thin money of the nanometer The arrangement of the carbon tubes is β 5 〇° < β < 90° 电 The ionization gauge described in claim 5 or 6, wherein the long line structure includes at least one carbon nanotube. The ionization gauge according to Item 12 of the present invention, wherein the second-length structure is a long-line structure in which at least two carbon nanotubes are parallel to each other without 14 as follows: a bundle structure formed or a twist formed by intertwining Line structure. The ionization gauge of item 12, wherein the length of the tube is a bundle structure composed of a plurality of carbon nanotubes or a 'parent,', or a crucible, the diameter of which is It is J micron J000 micron. 5. The invention relates to an ionization gauge according to item 2 of the patent scope, wherein the ion collector is lightly collected, and the gate m-shaped ions of the material structure are collected 16 j spiral around the linear ion collector. Around. The ionization gauge of claim 2, wherein the set is extremely linear, and the gate of the layered structure forms a cylindrical structure with linear ion collecting as an axis. The ionization gauge of the invention of claim 1, wherein the yin egg comprises a thermal emission cathode or a field emission cathode. 17
TW97119083A 2008-05-23 2008-05-23 Ionization gauge TWI378229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97119083A TWI378229B (en) 2008-05-23 2008-05-23 Ionization gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97119083A TWI378229B (en) 2008-05-23 2008-05-23 Ionization gauge

Publications (2)

Publication Number Publication Date
TW200949220A TW200949220A (en) 2009-12-01
TWI378229B true TWI378229B (en) 2012-12-01

Family

ID=44870856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97119083A TWI378229B (en) 2008-05-23 2008-05-23 Ionization gauge

Country Status (1)

Country Link
TW (1) TWI378229B (en)

Also Published As

Publication number Publication date
TW200949220A (en) 2009-12-01

Similar Documents

Publication Publication Date Title
CN101576423B (en) Ionization gauge
Shin et al. High performance field emission of carbon nanotube film emitters with a triangular shape
TWI320026B (en) Field emission componet and method for making same
TWI467616B (en) Field emission cathode device and field emission equipment using the same
TWI529771B (en) Electron emission device and display
Han et al. High-performance cold cathode X-ray tubes using a carbon nanotube field electron emitter
CN102087949B (en) Vacuum gauge
US9196450B2 (en) X-ray tube
TW201601183A (en) Reflex klystron and electron emission device
JP2012134119A (en) Electric field emission display device
Sun et al. The design and fabrication of carbon-nanotube-based field emission X-ray cathode with ballast resistor
Huang et al. A dual-functional micro-focus X-ray source based on carbon nanotube field emission
TWI447368B (en) Ionization gauge
CN103762146B (en) Ionization gauge
TWI378229B (en) Ionization gauge
TWI362684B (en) Method of making field emission electron source
TWI356438B (en) Field emission pixel tube
TW201123250A (en) Field emission cathode structure and display using the same
TWI415158B (en) Vacuum gauge
TWI309428B (en) Emission source having carbon nanotube
TWI309055B (en) Method for making emission source having carbon nanotube
JP3488411B2 (en) Field emission chip
TW200935485A (en) Thermionic emission device
Lee Performance of Point-Typed Carbon Nanotube Field Emitters
TWI383420B (en) Electron emitter and displaying device using the same