TWI377708B - - Google Patents

Download PDF

Info

Publication number
TWI377708B
TWI377708B TW96141093A TW96141093A TWI377708B TW I377708 B TWI377708 B TW I377708B TW 96141093 A TW96141093 A TW 96141093A TW 96141093 A TW96141093 A TW 96141093A TW I377708 B TWI377708 B TW I377708B
Authority
TW
Taiwan
Prior art keywords
metal layer
diamond
substrate
vapor deposition
manufacturing
Prior art date
Application number
TW96141093A
Other languages
Chinese (zh)
Other versions
TW200919781A (en
Inventor
Jung Che Hsieh
Yen Kang Liu
Yi Tsang Lee
Original Assignee
Kinik Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinik Co filed Critical Kinik Co
Priority to TW96141093A priority Critical patent/TW200919781A/en
Publication of TW200919781A publication Critical patent/TW200919781A/en
Application granted granted Critical
Publication of TWI377708B publication Critical patent/TWI377708B/zh

Links

Landscapes

  • Led Devices (AREA)

Description

1377708 九、發明說明: f發明所屬之技術領域j 本發明係關於,發光二極體,特別是一種具有鑽 光二極體及其製造方法。 【先前技術】 運他!在-時會伴隨產生高熱,效率越高的電子元件於 令央處理單紅鮮財所開發的 熱已非傳統教熟器所能迅速散除。 ’、所產生的兩 此外’近十年來絲半導體元件,例如發光二極體(L 雷射二極體·.等,其技術突 隨產生的熱能也越來 _的功率越來越高,伴 ,、祕越來越问,業已達到半導體光源所能承受之上 制發。敎讀叫熱岐破壞,新紐料或散熱方式急 台灣補122侧號專所揭露之發光 找之間係利用透明導熱膠接合,然而透明導=在長 幅降低。 吟會加速为化情況的發生,導致接合效果大 P=,US 6,335,263號專利案所揭露之薄膜轉移方法,係 丫二屬膜作為中介層,將施、GaN、及其 S〇lutl〇n)或其合金薄 如 體(solid 及不銹鋼等基板材質,^於另基板上,例如Sl、⑽、石夕勝 ,、缺點在於所使用之基板並非高導埶俜t 之材質,ϋ此整體散熱效率並不佳。 我、、、係數 5 1377708 . 美國專利Us 6,614,05δ號專利案所揭露之以覆晶封裝結構 • 之發光二極體,其缺點在於電極係設置於發光二極體的同一側, 如此將產生電流擁擠效應(current crowding),造成發光二極體内 產生局部熱點之情況,且所使用之絕緣層係為氮化矽(SiN)、氧化 • 鋁(Al2〇3)、環氧樹脂(epoxy)、或是矽膠等材料,上述材料均非熱 .· 的良導體,導致發光二極體結構之散熱效果不佳。 【發明内容】 隹 鑑於以上的問題,本發明提供一種鑽石薄膜發光二極體及其 製造方法,藉以降低先前技術之發光二極體於使用時所產生之接 面溫度(junction temperature),避免熱點_ spots)的產生,因而提 高發光二極體之發光效率、亮度及使用壽命。 本發明所揭露之鑽石薄膜發光二極體之製造方法,首先係提 供-第-基材,其中第-基材係為組成鑽石薄膜發光二極體中應 具備之基材,故亦可稱之為需求基板’於第一基材上形成—鑽^ % 膜,接著形成一第三金屬層於鑽石膜上,再形成-第-金屬層於 • 第三金屬層上。接著,另外提供-第二基材,其中第二基材係為 組成鑽石薄膜發光二極體中因結合之需要而暫時存在之基材,故 亦可稱之為暫時基板,形成—發光層於第二基材上,於發光層上 形成-第二金屬層,接著第一基材與第二基材係以第一金屬層與 第一金屬層相互接觸之方式進行金屬_合,最後移除第二基材, 以形成一鑽石薄膜發光二極體。 本發明之频在於,藉域麵謂啸升賴效果及熱均 勻性,以有效地降低發光層的表面溫度,並可達到更佳的熱均勻 1377708 为’改善熱點之問題,達到提高發光二極體之亮度及使用壽命。 • 心之本發邮容之說明独下之實施方狀說明係 =不範與解釋本發明之精神與肩理,並且提供本發明之專利申 請範圍更進一步之解釋。 . 【實施方式】 •,參閱「第1圖」及「第2A圖」至「第迚圖」所示,係分別 • 縣發明之鑽石薄膜發光二極體製程之流程圖及步驟示意圖。如 鲁「第1圖」及「第2A圖」所示,首先形成-鑽石膜210於一第 -基材200(即需求基板)上(步驟_,其中鑽石膜训係以化學 氣相沈積(chemical VaporDeposition ’ CVD)方式形成於第一基材 2々00上,且其材質可選用單晶鑽石、多晶鑽石或是類鑽碳肌c) 等材料,但並不以此為限,而基材材料可選用石夕⑸)、碳化石夕 (SiQ、石申化鎵(GaAs)、氧化銘或藍寶石等材料,但並不以此為限。 接著’如「第!圖」及「第2B圖」所示,形成—第三金屬層細 % 於鑽石膜210上之步驟(步驟〗10),以提高鑽石膜210與第-金 -屬層220 (如「第2C圖」)間之貼合性。其中第三金屬層260係 义賤鑛、熱滅、電子束蒸鍍、化學氣相沈積或物理氣相沈積等 方式,形成於鑽石膜210與第一金屬層220之間,而第三金屬層 之材料可選用錄⑽、鈦(Ti)、金(Au)、銀(Ag)、絡⑼、鋁^ 或其合金所製成,其中’組減三金屬層之材料的鍵能強度 具有較不易因熱處理製程後而減弱強度的特質,其中本發明所揭 露之第三金屬層260厚度小於2,000nm’且較佳實施例中所揭露 之厚度介於50 nm至100 nm間,且本發明所揭露之厚度具有較 7 1377708 低之特徵接觸電阻(specific contact resistance)及較強之薄膜貼合 • 強度。 接著,如「第1圖」及「第2C圖」所示,形成一第一金屬 層220於第三金屬層26〇上(步驟12〇),其中第一金屬層22〇可 . 透過濺鍍(suPtter)' 熱蒸鐘(thermal evaporation)' 電子束蒸錢(e_gun _ evaporation)、化學氣相沈積、或物理氣相沈積1377708 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a light-emitting diode, and more particularly to a light-emitting diode and a method of manufacturing the same. [Prior Art] Transport him! At the time of - it will be accompanied by high heat, and the higher the efficiency of the electronic components, the heat developed by the central government to deal with the single red can not be quickly dispelled by the traditional teaching device. ', the two produced in addition to the last ten years of silk semiconductor components, such as light-emitting diodes (L laser diodes, etc., the technology of the resulting thermal energy is also getting more and more high, accompanied by More and more secrets have been asked, and the semiconductor light source has been able to withstand the above-mentioned hair. The reading is called enthusiasm and destruction, and the new materials or heat dissipation methods are urgent. The thermal conductive adhesive is bonded, but the transparent conductive conductor is reduced in length. The enthalpy will accelerate the occurrence of the chemical reaction, resulting in a large bonding effect. P=, the film transfer method disclosed in the US Pat. No. 6,335,263, the second genus membrane as an interposer. Applying, GaN, and its S〇lutl〇n) or its alloys as thin (substrate materials such as solid and stainless steel, on other substrates, such as Sl, (10), Shi Xisheng, the disadvantage is that the substrate used is not The material of the high conductivity 埶俜t, the overall heat dissipation efficiency is not good. I,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The disadvantage is that the electrode system is disposed on the light emitting diode On the same side of the body, current crowding will occur, causing local hot spots in the light-emitting diode, and the insulating layer used is tantalum nitride (SiN), aluminum oxide (Al2〇3). ), epoxy resin, or silicone rubber, etc., all of which are non-thermal conductors, resulting in poor heat dissipation of the light-emitting diode structure. [Invention] In view of the above problems, the present invention Providing a diamond thin film light emitting diode and a manufacturing method thereof, thereby reducing the junction temperature generated by the prior art light emitting diode during use, avoiding the generation of hot spots, thereby improving the light emitting diode Luminous efficiency, brightness and lifetime. The method for manufacturing a diamond thin film light-emitting diode disclosed in the present invention firstly provides a --substrate, wherein the first substrate is a substrate which should be provided in a diamond thin film light-emitting diode, so it can also be called A film is formed on the first substrate for the desired substrate, and then a third metal layer is formed on the diamond film, and a -metal layer is formed on the third metal layer. Then, a second substrate is provided, wherein the second substrate is a substrate which is temporarily formed in the diamond film light-emitting diode for the purpose of bonding, so it can also be called a temporary substrate, and the light-emitting layer is formed. On the second substrate, a second metal layer is formed on the light-emitting layer, and then the first substrate and the second substrate are metal-bonded in such a manner that the first metal layer and the first metal layer are in contact with each other, and finally removed. The second substrate is formed to form a diamond thin film light emitting diode. The frequency of the invention lies in that the surface surface is said to be the effect of heat absorption and thermal uniformity, so as to effectively reduce the surface temperature of the light-emitting layer, and can achieve better heat uniformity 1377708 as the problem of improving the hot spot and improving the light-emitting diode Body brightness and service life. • The description of the present invention is based on the spirit and the scope of the present invention and provides a further explanation of the scope of the patent application of the present invention. [Embodiment] • Refer to “1st Map” and “2A Map” to “Graphic Diagram” for a flow chart and a schematic diagram of the process of the diamond film light-emitting diode system invented by the county. As shown in "Fig. 1" and "Fig. 2A", the diamond film 210 is first formed on a first substrate 200 (i.e., a desired substrate) (step _, wherein the diamond film is chemical vapor deposited ( Chemical VaporDeposition ' CVD) is formed on the first substrate 2々00, and the material can be selected from single crystal diamond, polycrystalline diamond or diamond-like carbon muscle c), but not limited thereto. Material materials can be selected from Shi Xi (5)), carbonized stone (SiQ, Shi Shenhua gallium (GaAs), oxidized inscriptions or sapphire materials, but not limited to this. Then 'such as "第!图" and "2B As shown in the figure, a step of forming a third metal layer finely on the diamond film 210 (step 10) is performed to improve the adhesion between the diamond film 210 and the first-gold-based layer 220 (such as "2C"). The third metal layer 260 is formed between the diamond film 210 and the first metal layer 220 by means of yttrium ore, heat elimination, electron beam evaporation, chemical vapor deposition or physical vapor deposition. The material of the three metal layer can be made by recording (10), titanium (Ti), gold (Au), silver (Ag), complex (9), aluminum ^ or its alloy, wherein the group is reduced by three metals. The bond strength of the material has a property that is less susceptible to weakening after the heat treatment process, wherein the third metal layer 260 disclosed in the present invention has a thickness of less than 2,000 nm' and the thickness disclosed in the preferred embodiment is between 50 nm and Between 100 nm, and the thickness disclosed in the present invention has a lower specific contact resistance and a stronger film bonding strength than 7 1377708. Next, as shown in "Fig. 1" and "2C" As shown, a first metal layer 220 is formed on the third metal layer 26 (step 12A), wherein the first metal layer 22 can be passed through a sputtering (suPtter) 'thermal evaporation' electron beam evaporation Money (e_gun _ evaporation), chemical vapor deposition, or physical vapor deposition

VaporVapor

Deposition,PVD)等方式形成於第三金屬層26〇上,第一金屬層 ^ 220之材料可選用金(Au)、銀(Ag)、絶(Pd)、銦(In)、鈦(Ti)、 鉻(Cr)或錄(Ni),而本發明所揭露之第一金屬層22〇厚度小 於 2μπι。 其中,由金或銀所組成之第一金屬層220於處理程序後,所 形成之連續網狀型態可均勻分散電流,有助於_之導電性,且 本發明所揭露之厚度具有較低之特徵接觸電阻。 接著如第1圖」及「第2D圖」所示,提供一第二基材 % 23G’並且形成—發光層24G於—第二基材23G(即暫時基板)上(步 •驟⑽);接著,如「第i圖」*「第2E圖」所示,形成1第(! 金屬層250於發光層上(步驟M0).,其中第二金屬層25〇係 以_、熱蒸鍍、電子束蒸錄、化學氣相沈積或物理氣相沈積等 方以形成於發光層240上,而第二金屬層25〇之材料係可為 金(Au)、銀(Ag)、!巴⑽、銦(In)、欽㈤、絡(⑺或錄⑽), 且本發明所揭露之第二金屬層25G厚度不大於_。其中,由金 或,所組成之第二金屬層25〇於處理程序後,所形成之連續網狀 型態可均勻分散電流,有助於薄膜之導電性,且本發明所揭露之 1377708 厚度具有較低之特徵接觸電阻。 如第1圖」及「第2F圖」所示,第一金屬層22〇與第二 金屬層250以相互接觸之方式接合第一基材與二 23〇(步驟15〇):其中’依「第2F圖」中所示之箭頭方向;;一 金屬層220與第二金屬層25(^2〇(rc至3〇〇沱之溫度下 用相互熱塵約3〇分鐘,使得第一基材·與第二基^又30相互 其中因第—金屬層22()與第二金屬細之金屬組成材料 相似且能♦哪ga祕,易因鍾侧促使第 第二金屬層別間以金屬鍵結的方式岐密地接紐〇〇 =基材23:;最後如「第1圖」所示,移除第二^ 驟160) ’⑽成-鑽石薄膜發光二極體。 多閱第3圖」及「第4圖」所示,係分別為本發明實施例 之鑽石薄膜發光二極體結構之剖面示意圖。如「第3^^^ 4圖」所示,鑽石膜21〇於第—芙 鑽石膜210上,其中本發明: 一金屬層220於 ㈣、銀·、銦::=22_^ 且太路明祕姐# 鈦(Tl)、鉻(Cr)或鎳(Ni), 攻^第ΓΓίΓ金屬層220厚度不大於2师,第二金屬層 50於第-金屬層22〇上,其中本發明所揭露之第二全屬層, 或鎳(Ν!)’且本發明所揭露 發光層账綱25(^編25G厚輪於2哗, 第4圖」所示,本發明於鑽石膜210與第-金屬 物間增她金屬層,以增強鑽石㈣與第一金屬層 9 1377708 220間的貼合性。 "月參閱「第5圖」及「第6圖」,其分別表示習用發光二極 體與本發明之鑽石賴㈣二極體之表_最大溫度及溫度差 之紅外線熱影像示意圖,其中測試電流為35〇mA。如「第$圖」Deposition, PVD) or the like is formed on the third metal layer 26, and the material of the first metal layer 220 may be selected from gold (Au), silver (Ag), absolute (Pd), indium (In), and titanium (Ti). The chromium (Cr) or the recorded (Ni), and the first metal layer 22 disclosed in the present invention has a thickness of less than 2 μm. Wherein, the first metal layer 220 composed of gold or silver, after the processing procedure, forms a continuous network pattern to uniformly disperse the current, contributing to the conductivity, and the thickness of the invention is low. Characteristic contact resistance. Next, as shown in FIG. 1 and FIG. 2D, a second substrate % 23G′ is provided and a light-emitting layer 24G is formed on the second substrate 23G (ie, the temporary substrate) (step (10)); Next, as shown in "i" and "2E", a first (! metal layer 250 is formed on the light-emitting layer (step M0). wherein the second metal layer 25 is _, hot-deposited, Electron beam evaporation, chemical vapor deposition or physical vapor deposition is formed on the light-emitting layer 240, and the material of the second metal layer 25 can be gold (Au), silver (Ag), and ba (10). Indium (In), 钦(五), 络((7) or 录(10)), and the second metal layer 25G disclosed in the present invention has a thickness not greater than _. wherein the second metal layer 25 composed of gold or yttrium is processed Thereafter, the continuous network pattern formed can uniformly disperse the current, contributing to the conductivity of the film, and the thickness of 1377708 disclosed in the present invention has a low characteristic contact resistance. For example, FIG. 1 and FIG. 2F As shown, the first metal layer 22 and the second metal layer 250 are bonded to each other in a manner of mutual contact with the first substrate and the second substrate (step 15A): wherein "by" the second F The direction of the arrow shown in the middle; a metal layer 220 and a second metal layer 25 (^2〇 (with a temperature of rc to 3 用 with mutual hot dust for about 3 minutes, so that the first substrate and the second The base and the 30th are mutually similar because the first metal layer 22() is similar to the second metal thin metal composition material, and can be used to cause the second metal layer to be metal-bonded.密接接〇〇=Substrate 23: Finally, as shown in Figure 1, remove the second step 160) '(10) into a diamond film light-emitting diode. Read more on Figure 3 and 4 is a schematic cross-sectional view showing the structure of a diamond thin film light emitting diode according to an embodiment of the present invention. As shown in the "3^^^ 4", the diamond film 21 is placed on the first diamond film 210. , wherein the present invention: a metal layer 220 in (four), silver, indium:: = 22_^ and Tai Luming secret sister # titanium (Tl), chromium (Cr) or nickel (Ni), attack ^ ΓΓ Γ Γ metal layer 220 The thickness is not more than 2 divisions, and the second metal layer 50 is on the first metal layer 22, wherein the second full layer disclosed in the present invention, or nickel (Ν!)' and the luminous layer account disclosed in the present invention 25 ( ^Edit 25G thick wheel at 2 As shown in Fig. 4, the present invention adds a metal layer between the diamond film 210 and the first metal to enhance the adhesion between the diamond (4) and the first metal layer 9 1377708 220. Figure and "Figure 6" respectively show a schematic diagram of the infrared thermal image of the conventional luminescent diode and the diamond ray (four) diode of the present invention, wherein the test current is 35 mA. "The $ map"

戶^ ’習用發光二極體,其石夕薄膜上的氮化鎵(⑽)薄膜表面之」 最高溫度為mt,且表面最高溫與最低溫之_溫度差為78 °c。如「第6圖」所示’本發明之鑽石薄膜發光二極體,其中, 此實施例之組賴構係包括第三金屬層材料之厚度為%奈米至 100奈米的鎳鉻合金(Ni-Cr alloy),第一金屬層血第 料則各別為厚度¥的金㈣或銀⑽,而鑽石膜之料為 ,結果齡__上的統鎵((}&聊職面之最高溫度 為86.6°C ’且表面最高溫與最低溫之間的溫度差為4此,皆2 :第5圖」所示之f用發光二極體之溫度,其顯示鑽石薄膜可有 效降低表面溫度及達到更均勻熱分佈功效。 「第7圖」所示為習用發光二極體與本發明之鑽石薄膜發光 二極體之發光層接面溫度料圖,圖示中之χ触γ抽分料 電流及接面溫度,在相職流的情況下,本發明㈣鑽石薄膜之 發光二極體之接面溫度(虛線),係低於習用梦基板之 、 之接面溫度(實線)。㈣示可知,本發明之_發光二極體錢覆 鑽石薄膜後,可有效降低發光層之接面溫度。 -又 雖然本發明以前述之實施例揭露如上,然其並非用以 發明。在不脫縣㈣之精神和朗内,所為之更動與 屬本發明之專利保護範圍。陳本發明所界定之保護範圍請參考 1377708 所附之申請專利範圍。 【圖式簡單說明】 第1圖為本發明之鑽石薄膜發光二極體製程之步驟流程圖; 第2A圖至第2F圖為本發明一實施例之鑽石薄膜發光二極體中基 材鍵結之運作示意圖; 第3圖為本發明一實施例之鑽石薄膜發光二極體結構之剖面示意 圖,In the household light-emitting diode, the maximum temperature of the surface of the gallium nitride (10) film on the Shi Xi film is mt, and the temperature difference between the highest temperature and the lowest temperature of the surface is 78 °c. As shown in FIG. 6, the diamond thin film light-emitting diode of the present invention, wherein the group of the rutile structure of the embodiment comprises a nickel-chromium alloy having a thickness of the third metal layer of from 100 nm to 100 nm ( Ni-Cr alloy), the first metal layer of blood is the thickness of gold (four) or silver (10), and the diamond film is the result of the age of __ on the gallium ((} & The maximum temperature is 86.6 ° C ' and the temperature difference between the highest temperature and the lowest temperature of the surface is 4, both 2: Figure 5 shows the temperature of the light-emitting diode shown in Figure 5, which shows that the diamond film can effectively reduce the surface Temperature and achieve a more uniform heat distribution effect. "Figure 7" shows the temperature profile of the light-emitting layer junction of the conventional light-emitting diode and the diamond film light-emitting diode of the present invention. The material current and the junction temperature, in the case of the phase flow, the junction temperature (dashed line) of the light-emitting diode of the diamond film of the present invention is lower than the junction temperature (solid line) of the conventional dream substrate. (4) It can be seen that after the light-emitting diode of the present invention is coated with a diamond film, the junction temperature of the light-emitting layer can be effectively reduced. Further, although the present invention has been disclosed above in the foregoing embodiments, it is not intended to be invented. The spirit of the invention is defined by the scope of the invention as defined in the spirit of the invention. Please refer to the patent application scope attached to 1377708. [Simplified description of the drawings] Fig. 1 is a flow chart showing the steps of the diamond thin film light emitting diode process of the present invention; Figs. 2A to 2F are diamonds according to an embodiment of the present invention. Schematic diagram of operation of substrate bonding in a thin film light-emitting diode; FIG. 3 is a schematic cross-sectional view showing a structure of a diamond thin film light emitting diode according to an embodiment of the present invention;

第4圖為本發明另一實施例之鑽石薄膜發光二極體結構之剖面示 意圖, 第5圖為習用技術之發光二極體表面之最大溫度及溫度差之紅外 線熱影像示意圖; 第6圖為本發明之鑽石薄膜發光二極體表面之最大溫度及溫度差 之紅外線熱影像不意圖,以及 第7圖為習用技術之發光二極體與本發明之鑽石薄膜發光二極體 之接面溫度示意圖。 【主要元件符號說明】 200 第一基材 210 鑽石膜 220 第一金屬層 230 第二基材 240 發光層 250 第二金屬層 260 第三金屬層4 is a schematic cross-sectional view showing a structure of a diamond thin film light-emitting diode according to another embodiment of the present invention, and FIG. 5 is a schematic view showing an infrared thermal image of a maximum temperature and temperature difference of a surface of a light-emitting diode of the prior art; The infrared thermal image of the maximum temperature and temperature difference of the surface of the diamond thin film light-emitting diode of the present invention is not intended, and FIG. 7 is a schematic diagram showing the junction temperature of the light-emitting diode of the prior art and the diamond thin film light-emitting diode of the present invention. . [Main component symbol description] 200 First substrate 210 Diamond film 220 First metal layer 230 Second substrate 240 Light-emitting layer 250 Second metal layer 260 Third metal layer

Claims (1)

1377708 100年9月30日替換頁 十、申請專利範圍: -種鑽石_發光二極體之製造方法,包含以下步驟: 形成一鑽石膜於一第一基材上; 形成一具有連續網狀型態之第三金屬層於該鑽石膜上; 幵y成具有連續網狀型態之第一金屬層於該第三金屬層 上;- B 形成一發光層於一第二基材上; 形成一具有連續網狀型態之第二金屬層於該發光層上; 以該第一金屬層與該第二金屬層相互接觸之方式接合該 第一基材與該第二基材;以及 移除該第二基材。 2. 如申晴專纖圍第1項所述之製造方法,其中該第三金屬層係 以藏鍍(suptter)、熱蒸鍍(thermai evaporati〇n)、電子束蒸鍍(e gun evaporation)、化學氣相沈積(Chemical Vapor Deposition)或物理 氣相沈積(Physical Vapor Deposition)其中之一方式,以形成於該 第一基材上之鑽石膜與該第一金屬層間。 3. 如申請專利範圍第!項所述之製造方法,其中該第三金屬層材 料係選自鎳(Ni)、鈦(Ti)、金(Au)、銀(Ag)、鉻(Cr)、鋁(A1)或其 合金之其中之一。 如申晴專利範圍第i項所述之製造方法,其中該第三金屬層厚 度係為2000奈米(nm)以下。 如申s青專利範圍第1項所述之製造方法,其中該第三金屬層厚 度係介於50奈米至1〇〇奈米之間。 12 1377708 \ 100年9月30日替換頁 6.如申請專利範圍第1項所述之製造方法,其中該鑽石膜係以化 學氣相沈積(Chemical Vapor Deposition)方式形成於該第一基材 上。 ,7·如申请專利範圍苐1項所述之製造方法,其中該第一金屬層係 - 以藏鐘(supper)、熱蒸鍍(thermal evaporation)、電子束蒸鍍(e-gun evaPorati〇n)、化學氣相沈積(Chemical Vapor Deposition)或物理 氣相沈積(Physical Vapor Deposition)其中之一方式,以形成於該 鲁 第三金屬層上。 8. 如申請專利範圍第1項所述之製造方法,其中該第二金屬層係 以藏鏡(suptter)、熱蒸錢(thermai evap0rati〇n)、電子束蒸鐘(^皿 evaporation)、化學氟相沈積(chemicai Vapor Deposition)或物理 亂相沈積(Physical Vapor Deposition)其中之一方式,以形成於該 發光層上。 9. 如申請專利賴第丨項所述之製造方法,其中該第―金屬層材 • 料係選自金(Au)、銀(Ag)、纪㈣、銦⑽、鈦㈤、鉻(Cr)或鎳 (Ni)之其中之一。 m如中請專利範圍第1項所述之製造方法,其中該第二金屬層材 料係選自金㈣、銀(Ag)、雀巴㈣、銦⑽.、鈦(Ti)、絡(Cr)或錄 (Ni)之其中之一。 11. 一種鑽石薄膜發光二極體,包含: 一基材; . 一鑽石膜,該鑽石膜設置於該基材上; /、有連、網狀型⑮之第三金屬層,該第三金屬層設置於 13 100年9月30日替換頁 該鑽石膜上; —具有連續戦型態之第—金屬層,該第-金弱設置於 該第三金屬層上; 八有連續網狀型g之第二金屬層,該第二金屬層設置於 該第一金屬層上; 以及 一發光層,該發光層設置於該第二金屬層上。 _ 12·如申請專利範圍第11項所述之鑽;5薄膜發光二極體,其中該 鑽石膜材料鱗自單㈣石、多晶鑽石、或_碳(〗狀谢料 之其中之一。 13. 如巾π專利範圍第n項所述之鑽石薄膜發光二極體,其中該 第金屬層材料係選自金(Au)、銀(Ag)、纪㈣)、姻⑽、欽㈤、 鉻(Cr)或鎳(Ni)之其中之一。 14. ^申請專概圍第u項所述之鑽石薄膜魏二極體,其中該 鲁第金屬層材料係選自金(Au)、銀(八幻、纪㈣)、铜⑽、欽㈤、 . 鉻(Cr)或鎳(Ni)之其中之一。 15. 如申請專利範圍第11項所述之鑽石_發光二極體,其中該 第三金屬層材料係選自鎳(Ni)、鈦(Ti)、金(Au)、銀(Ag)、鉻(Cr)、 紹(A1)或其合金之其中之一。 16. 如申請專·圍第11項所述之鑽石_發光二極體,其中該 第二金屬層厚度係為2000奈米以下。 17. 如申4專利範圍第11項所述之鑽石薄膜發光二極體,其中該 第二金屬層厚度係介於5〇奈米至1〇〇奈米之間。 141377708 Replacement page on September 30, 100. Patent application scope: - A method for manufacturing a diamond-light emitting diode, comprising the steps of: forming a diamond film on a first substrate; forming a continuous mesh type a third metal layer on the diamond film; 幵y into a first metal layer having a continuous network pattern on the third metal layer; -B forming a light-emitting layer on a second substrate; forming a a second metal layer having a continuous network pattern on the light emitting layer; bonding the first substrate and the second substrate in contact with the first metal layer and the second metal layer; and removing the Second substrate. 2. The manufacturing method according to Item 1, wherein the third metal layer is made of a souptter, a thermoevaporation, or an e-beam evaporation. Or one of chemical vapor deposition (Physical Vapor Deposition) or physical vapor deposition (Physical Vapor Deposition) to form a diamond film on the first substrate and the first metal layer. 3. If you apply for a patent scope! The manufacturing method according to the item, wherein the third metal layer material is selected from the group consisting of nickel (Ni), titanium (Ti), gold (Au), silver (Ag), chromium (Cr), aluminum (A1) or alloys thereof. one of them. The manufacturing method according to the item of claim 1, wherein the third metal layer has a thickness of 2000 nm or less. The manufacturing method of claim 1, wherein the third metal layer has a thickness of between 50 nm and 1 nm. The manufacturing method of claim 1, wherein the diamond film is formed on the first substrate by chemical vapor deposition (Chemical Vapor Deposition). . 7. The manufacturing method according to claim 1, wherein the first metal layer is - a supper, a thermal evaporation, or an electron beam evaporation (e-gun eva Porati〇n) Or one of chemical vapor deposition (Physical Vapor Deposition) or physical vapor deposition (Physical Vapor Deposition) to form on the third metal layer of the Lu. 8. The manufacturing method according to claim 1, wherein the second metal layer is a Suptter, a hot steam (thermai evap0rati〇n), an electron beam steaming (chemical vapor), a chemical One of the chemicai Vapor Deposition or the Physical Vapor Deposition is formed on the luminescent layer. 9. The manufacturing method as claimed in the patent application, wherein the first metal layer material is selected from the group consisting of gold (Au), silver (Ag), Ji (four), indium (10), titanium (five), chromium (Cr). Or one of nickel (Ni). The manufacturing method of claim 1, wherein the second metal layer material is selected from the group consisting of gold (four), silver (Ag), nibble (tetra), indium (10), titanium (Ti), and complex (Cr). Or one of the records (Ni). 11. A diamond thin film light emitting diode comprising: a substrate; a diamond film disposed on the substrate; /, a third metal layer having a mesh type 15 and a third metal The layer is disposed on the diamond film on the replacement page of September 30, 1100; - the first metal layer having a continuous 戦 type, the first gold is weakly disposed on the third metal layer; and the eighth has a continuous mesh type g a second metal layer disposed on the first metal layer; and a light emitting layer disposed on the second metal layer. _ 12 · The drill of claim 11; 5 thin film light-emitting diodes, wherein the diamond film material scale is one of a single (four) stone, a polycrystalline diamond, or a carbon. 13. The diamond thin film light emitting diode according to item n of the π patent scope, wherein the metal layer material is selected from the group consisting of gold (Au), silver (Ag), Ji (4), marriage (10), Qin (5), and chromium. One of (Cr) or nickel (Ni). 14. ^Application for the diamond film Wei diode described in item u, wherein the Ludi metal layer material is selected from the group consisting of gold (Au), silver (eight illusion, Ji (4)), copper (10), and Qin (5). One of chromium (Cr) or nickel (Ni). 15. The diamond-light emitting diode according to claim 11, wherein the third metal layer material is selected from the group consisting of nickel (Ni), titanium (Ti), gold (Au), silver (Ag), and chromium. One of (Cr), Shao (A1) or an alloy thereof. 16. For the diamond-light-emitting diode described in Item 11, wherein the thickness of the second metal layer is less than 2000 nm. 17. The diamond thin film light emitting diode of claim 11, wherein the second metal layer has a thickness of between 5 nanometers and 1 nanometer. 14
TW96141093A 2007-10-31 2007-10-31 Diamond thin-film LED and its manufacturing method TW200919781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96141093A TW200919781A (en) 2007-10-31 2007-10-31 Diamond thin-film LED and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96141093A TW200919781A (en) 2007-10-31 2007-10-31 Diamond thin-film LED and its manufacturing method

Publications (2)

Publication Number Publication Date
TW200919781A TW200919781A (en) 2009-05-01
TWI377708B true TWI377708B (en) 2012-11-21

Family

ID=44727229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96141093A TW200919781A (en) 2007-10-31 2007-10-31 Diamond thin-film LED and its manufacturing method

Country Status (1)

Country Link
TW (1) TW200919781A (en)

Also Published As

Publication number Publication date
TW200919781A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
TWI385816B (en) Vertical structure semiconductor devices
JP5146256B2 (en) Sheet-like structure and manufacturing method thereof, and electronic device and manufacturing method thereof
TWI279933B (en) Semiconductor luminescent device and manufacturing method therefor
TW546859B (en) Structure and manufacturing method of GaN light emitting diode
JP2018049868A (en) Semiconductor stacked structure and semiconductor device
TWI293649B (en) A method for processing a substrate
CN105518829B (en) The manufacture method of semiconductor device
JPWO2009101664A1 (en) Manufacturing method of semiconductor device
CN107039373A (en) Gallium nitride device structure and preparation method thereof
CN106449912A (en) GaN-based composite substrate with stress balance structural layer and method for preparing GaN-based composite substrate
JP6369566B2 (en) Composite substrate for producing nanocarbon film and method for producing nanocarbon film
TWI377708B (en)
JP2010192491A (en) SiC SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME
TW200826323A (en) LED and manufacture method thereof
JP2019036675A (en) Heat dissipation sheet, manufacturing method thereof, and electronic device
JP2012212838A (en) Thermoelectric thin film device
JP7205233B2 (en) Semiconductor device, method for manufacturing semiconductor device, and method for bonding substrate
JP6237231B2 (en) Sheet-like structure and manufacturing method thereof, electronic component and assembly method thereof
JP6354235B2 (en) Electronic device and assembly method thereof, and sheet-like structure and manufacturing method thereof
TWI243492B (en) Light-emitting diodes
JP2018129482A (en) Heat radiation sheet, manufacturing method of the same, and electronic device
TWI392117B (en) Light emitting diode with a diamond film and manufacturing method thereof
JP2019036566A (en) Semiconductor device and method of manufacturing the same
TW201034206A (en) A thermal dissipating structure with diamond and its manufacture method are provided
JP2012238916A (en) Sheet like structure, manufacturing method of sheet like structure, electronic apparatus, and manufacturing method of electronic apparatus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees