TW201034206A - A thermal dissipating structure with diamond and its manufacture method are provided - Google Patents

A thermal dissipating structure with diamond and its manufacture method are provided Download PDF

Info

Publication number
TW201034206A
TW201034206A TW98107702A TW98107702A TW201034206A TW 201034206 A TW201034206 A TW 201034206A TW 98107702 A TW98107702 A TW 98107702A TW 98107702 A TW98107702 A TW 98107702A TW 201034206 A TW201034206 A TW 201034206A
Authority
TW
Taiwan
Prior art keywords
diamond
metal layer
substrate
film
manufacturing
Prior art date
Application number
TW98107702A
Other languages
Chinese (zh)
Other versions
TWI398956B (en
Inventor
Yen-Kang Liu
Yi-Tsang Lee
Chien-Wei Kao
Cheng-Yi Liu
Po-Han Chen
Original Assignee
Kinik Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinik Co filed Critical Kinik Co
Priority to TW98107702A priority Critical patent/TWI398956B/en
Publication of TW201034206A publication Critical patent/TW201034206A/en
Application granted granted Critical
Publication of TWI398956B publication Critical patent/TWI398956B/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A thermal dissipating structure with diamond and its manufacture method are provided. The method includes following steps. Firstly, form a diamond film on a substrate, and one surface of the diamond film constructs a rough surface. Form a first metal layer on the rough surface of the substrate by physical vapor deposition. Then, form a second metal layer on the first metal layer. Finally, remove all of the substrate or portion of the substrate, so as to form the thermal dissipating structure with high performance of thermal dissipation.

Description

201034206 '六、發明說明: -【發明所屬之技術領域】 月關於一種散熱結構及其製造方法,特別是一種具有 鑽石材’4之散熱結構及其製造方法。 【先前技術] 〇过%又的逄勃發展,電子元件的體積趨於微小化,而且 單位囬積4錢度也愈來愈高,其效能更是不斷增強,在這些 ® 电子元件的總發熱量則幾乎逐年升高,以中央處理單 7L為例’目前卿發的中央處理單元之運算效率已可達數十億赫 ()、所產生的局熱已非傳統散熱器所能迅速散除。倘若沒 j好的錢方式來排除電子元件所產生的熱,這些過高的溫度 將‘致包十几件產生電子游離與熱應力等現象產生,而造成整體 的敎性降低以及縮短電子元件本身的壽命,因此如何排除這些 熱里以避免电子讀的過熱,—直是不容忽視的問題。 ⑩ 」而未來的半導體構農將趨向於更高功率及更高密度,相 對的,熱能的排散即是騎者未來持續必需面對的問題,而目前 。-牛在作中所發出的南密度能量(h_p〇wer _卿)所帶來 -的间么度熱,就當前的散熱方式,是以銅、銘來當散熱片(細 • Spread_基礎材料,或是更進-步的將熱管_mpe)埋入基礎 材^内以加快熱擴散的速度,但此種做法所須之成本也相對的 提南了許多。且_電子元件的進步與改良,單位面積上的密集 度也愈來愈高,使得必須讓熱擴散速度也隨之加快,而銅^的 4 201034206 導熱係數約為4⑻物每公尺_文(爾)及瓦特海公 尺開爾文(W她),在發熱量不斷升高的電子元件上,已漸漸的 不敷使H贿公鱗衫公分(»及 2.7公克駐方公分(gW),所以當電子元件與銅、賴製成之 散熱器組合後’域器的錢往往會對電子元件產生—應力,長 時間下來㈣破壞料元件始構,而造錢子元件的使用壽命 減短或損壞。 Ο 〇 由於銅、链為基礎材料所製成之散熱器有上述之問題,所以 新的散熱材料之研發,便成為非常重要的-環。目前,鑽石為自 二”中具的〜性’如深紫外光到遠紅外線的穿透性極佳、 最高表面聲波速、最高敎僂莫玄^ . 、1寻¥卞、取面物理硬度、高輻射抵抗能 力、良好化學惰性及優異絕緣性特性等,已被廣泛應用至傳統的 切削工具及研細4,,隨著化物目_ (Chemid Vapor D—’ CVD)技術的發展,使得鑽石成為良好的電導體及熱 導體,鑽石在室溫下熱傳導係練高可達2,_瓦特海公尺開爾 文(W/mk)顏轉如翻紐科導體及光 結構上。 、 傳統的鑽石薄膜如平面S圓从制‘ 作方法,係提供-金屬或非 透舰學氧她積(CVD)等_,_石 材料沉積於基材上,進而彡 八雜竹/上、而形成—鐵石晶圓’再將鑽石晶圓與基材 刀離,就可以製成無基材的鑽石曰圓,,^ 作方法仍有尚待解決的技㈣韻以而’傳統的鑽石晶圓製 解决的技_題。轉是不論紐如熱膨脹係 5 201034206 數高的金屬或是熱膨脹係數較低的非金屬製作,其鑽石材料的熱 Ο 膨脹係數減遠小於基材的觸難數,使賴邱料與基材存 在著晶格尺寸上的不匹’,加讀碑料的鍍難序都是在高 溫環境下完成,以熱燈絲化學氣相沉積(HFCVD)為例,其工作 孟度高達_〜9〇o°c ’在完成鍍膜程序後,從製程溫度中降低至 常溫的環境下,基材的收縮率會遠大於鑽石晶_收縮率,而容 易形成鑽石關與基材間的熱應力(ihennal strcss),以及鑽石成 長過程中產生之内應力(intemal stress),進而導致鑽石晶圓彎曲: 變形,嚴重者甚至破損,無論對於任何應㈣言缺會造成極大 影響。因此縱使鑽石有很好的躲,到實際朗還有—段距離。201034206 'VI. Description of the invention: - [Technical field to which the invention pertains] A monthly heat dissipation structure and a method of manufacturing the same, in particular, a heat dissipation structure having a diamond material '4 and a method of manufacturing the same. [Prior Art] After the development of the 逄 % , , , , , , , , , , , , , , , 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子 电子The amount is almost increasing year by year, taking the central processing single 7L as an example. [The current processing efficiency of the central processing unit of Qingfa has reached billions of angstroms (), and the generated heat has been quickly dissipated by conventional radiators. . If there is no good way to eliminate the heat generated by electronic components, these excessive temperatures will cause more than a dozen pieces of electrons to generate electrons and thermal stress, resulting in overall imperfection and shortening of the electronic components themselves. The longevity, so how to eliminate these heats to avoid overheating of electronic readings - is a problem that cannot be ignored. 10) The future semiconductor farmers will tend to have higher power and higher density. Relatively, the dissipation of heat is a problem that the rider must continue to face in the future. - The heat density of the South Density energy (h_p〇wer_qing) from the cattle in the work, the current heat dissipation method is copper and Ming as the heat sink (fine • Spread_ basic material) Or, step by step, the heat pipe _mpe is buried in the base material to speed up the heat diffusion, but the cost of this method is relatively large. And _ electronic components of the progress and improvement, the density of the unit area is also getting higher and higher, so that the heat diffusion rate must also be accelerated, and the thermal conductivity of copper ^ 4 201034206 is about 4 (8) per metric _ text ( And the Walter sea meter Kelvin (W her), on the electronic components with increasing heat, has gradually become insufficient to make the bribes (» and 2.7 grams of resident centimeters (gW), so when After the electronic components are combined with the heat sink made of copper and Lai, the money of the domain device tends to generate stress on the electronic components, and the material components are destroyed for a long time (4), and the service life of the money-making components is shortened or damaged. Ο 〇 Because the heat sink made of copper and chain-based materials has the above problems, the development of new heat-dissipating materials has become very important - the ring. At present, the diamond is a kind of Excellent penetration from deep ultraviolet light to far infrared ray, highest surface acoustic wave velocity, highest 敎偻 Mo Xuan ^, 1 卞 卞 卞, physical hardness, high radiation resistance, good chemical inertness and excellent insulation properties Has been widely used Traditional cutting tools and grinding 4, with the development of Chemid Vapor D-' CVD technology, make diamonds become good electrical conductors and thermal conductors, and diamonds can reach up to 2 at room temperature. , _ Watt sea meter Kelvin (W / mk) Yan Zhuan such as Turning Newcastle conductor and light structure., the traditional diamond film such as the plane S round from the method of making, is provided - metal or non-transparent oxygen _, _ stone materials such as CVD, deposited on the substrate, and then formed into a stone wafer, and then the diamond wafer is separated from the substrate, and can be made into a substrate-free Diamonds are round, and there are still technologies to be solved (4) rhyme and 'traditional diamond wafer system technology. 】 The problem is that regardless of the thermal expansion system 5 201034206 high metal or thermal expansion coefficient The low non-metal production, the thermal expansion coefficient of the diamond material is much smaller than the difficulty of the substrate, so that the Laiqiu material and the substrate have a different lattice size, and the plating of the tablet is difficult. They are all done in a high temperature environment, taking hot filament chemical vapor deposition (HFCVD) as an example. Mengdu is up to _~9〇o°c ' After the coating process is completed, the shrinkage rate of the substrate is much larger than that of the diamond crystal _ shrinkage rate after the process temperature is lowered to the normal temperature, and it is easy to form the diamond off and the substrate. The thermal stress (ihennal strcss) and the internal stress generated during the growth of the diamond, which in turn leads to the bending of the diamond wafer: deformation, severe or even damage, which will have a great impact on any (4) deficiency. Even if the diamond has a good hiding, there is still a distance to the actual Lang.

另外’舉例來說,習知技術如美國專利第7339別號,揭露 -種微處理器的散熱系統,此散熱系統中包括了—化學氣相沉: (CVD)製成之鑽石散熱片(heat s卿㈣,此鑽石片的兩面分 別接觸微歧訊航㈣触)觀。纽翻巾觸露的實施 例中,鑽石片的厚度為㈣微来(帅)及75q微米㈣,並以 焊料銲接或以錢合金反應方式將此鑽石散㈣鑲埋在—金屬熱 〉儿中。其缺點在於獨立的鑽石散熱片(厚度為670-750微米)的製 作成本非常昂貴,實在不倾—般業界所採用。 另-種習知技術如台賴_第勒侧號,揭露一種 :傳導層是以鑽石膜或麵碳成,形成於散熱片及熱傳導層 二用以將電子紐所產生賴迅速散開。此f用技術主張以化 颂相沉積(GVD)將魏曝触u^轉石與銅的 6 201034206 熱膨服係數差異大,當鐘^^…1 s ±' 、攸攝氏600度以上的製成溫度降低 主主/皿%,鑽石的收縮志各 破列其δwf 丁θ达小於鋼的收縮率,使得鑽石膜容易 皮衣甚至彳之銅基板上剥離。 有-種習知技術如美國專利第⑹嚮號,揭露一種微電 亍兀rr、4構,此結構包含一其 .^ 、—金屬中間層及一微電子元件, 其中的基板是由一鑽石盥一今 /、 i屬座所組成。且鑽石可以是獨立的 鑽石片或是以鑽石膜沉積在金In addition, for example, a conventional technique, such as U.S. Patent No. 7,339, discloses a heat dissipation system for a microprocessor, which includes a chemical vapor deposition (CVD) heat sink (heat). S Qing (four), the two sides of the diamond piece are in contact with the micro-disc (four) touch). In the embodiment where the neon towel is exposed, the thickness of the diamond piece is (4) micro (handsome) and 75q micron (four), and the diamond is scattered in the metal heat by soldering or by means of a carbon alloy reaction. . The disadvantage is that the independent diamond heat sink (thickness 670-750 microns) is very expensive to manufacture and is not used in the industry. Another conventional technique, such as the Tailai_Dile side, reveals that the conductive layer is formed of a diamond film or a surface carbon, and is formed on the heat sink and the heat conducting layer. This f is technically claimed to have a large difference in the coefficient of thermal expansion of the 6 201034206 between the 曝 颂 phase deposition (GVD) and the 曝 ^ ^ , , , , , , , , , , , , , , , , , , , , , , ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The temperature is reduced by the main main / dish%, the shrinkage of the diamond is broken, and its δwf θ is less than the shrinkage of the steel, making the diamond film easy to peel off even on the copper substrate. There is a conventional technique such as U.S. Patent No. (6), which discloses a micro-electric rr, 4 structure, which comprises a metal layer and a microelectronic component, wherein the substrate is made of a diamond.盥一今/, i is a group of seats. And the diamond can be a separate piece of diamond or deposited as a diamond film in gold

❹ .預隹至屬座上。如同雨述,由於熱膨脹係 a白、々鑽石膜不易附著於金屬座上。若是以獨立的鑽石片放 屬应上$中間無任何結合#料,二者間的接觸情況勢必 不佳,因此在_料效轉會大打折扣。 又有一種習知技術如日本專利第奶⑻7腦71號,揭露一種 鑽石膜的生長製程。係利_基板作為支撐鑽石層的支樓材,形 成一厚度約為a5mm的鑽石膜。並在鑽石膜表面進行氬離子㈤ 活化處理再;X紐方絲成—金伽(如鋪特質),之後對 金屬膜進行化學機械拋光(Chemicai Mechanicai Pdishing, CMP)。並且金屬縣面與散熱器表面均以氬離子活化處理 U心最後移除大部抑基板,再-錢行化學機械拋 光(CMP)使其石夕膜表面粗糙度小於%麵。最後再將晶片表面 和石夕膜表面進行氬離子(Ar)活化處理並相互接合。故,此種習 知技術需要錢多次的進行氬離子(Ar)活域理以及化學機械 拖光(CMP)等步驟,而導致整體輕紗程繁瑣且相當耗時費 201034206 力外’上述各習知技術中鑽石膜與金屬層的結合,必須對鑽 :謂進㈣光處理至所需的平坦度,以利鑽石膜與金屬層之間的 〜然叩鑽石材料具有最高的硬度,故,鑽石膜的抛光製程將 餘費相當多的時間及縣,這些都形成了難喊破的問題點。 〜以要如何使鑽a膜與金屬層之間具有良好的結合性,以及避 免鑽石膜在降溫的過程中與基材縮率不同而造成鑽石族麵曲 甚至於破裂,即為從事此行業之相_商所級研究改善之方向 © 所在者。 【發明内容】 鐘於習知技術的製程中以化學氣相沉積方式形成鑽石膜, △匕谷易產生鑽;5财細著、因I轉的差異*造成鑽石膜麵 曲甚一於破A^對鑛石膜進行搬光處理等問題。鑒於以上 的問題,本發明的主要目的在於提供—種具有鑽石材料之散熱結❹ . Pre-ordered to the seat. As the rain says, due to thermal expansion, a white, enamel diamond film is not easy to adhere to the metal seat. If the independent diamond piece is placed on the middle of the $ no intermediate, the contact between the two is bound to be poor, so the transfer of material efficiency will be greatly reduced. There is also a conventional technique such as Japanese Patent No. (8) 7 Brain No. 71, which discloses a growth process of a diamond film. The _ substrate is used as a supporting material for supporting the diamond layer to form a diamond film having a thickness of about a5 mm. And the argon ion (5) activation treatment is carried out on the surface of the diamond film; the X-ray is formed into a gold gamma (such as a paving trait), and then the metal film is subjected to chemical mechanical polishing (Chemicai Mechanicai Pdishing, CMP). Moreover, the surface of the metal surface and the surface of the heat sink are treated with argon ions. The U core finally removes most of the substrate, and then the chemical mechanical polishing (CMP) makes the surface roughness of the stone film less than %. Finally, the surface of the wafer and the surface of the film are subjected to argon ion (Ar) activation treatment and bonded to each other. Therefore, such a conventional technique requires a lot of steps such as argon ion (Ar) and chemical mechanical polishing (CMP), resulting in a cumbersome overall light yarn process and a relatively time consuming cost of 201034206. In the prior art, the combination of the diamond film and the metal layer must be processed to the desired flatness, so that the diamond material between the diamond film and the metal layer has the highest hardness, therefore, The polishing process of the diamond film will cost a considerable amount of time and the county, which has formed a difficult problem. ~ In order to make the diamond film and the metal layer have a good bond, and to avoid the diamond film in the process of cooling and the substrate shrinkage rate is different, resulting in the diamond family face or even crack, which is for the industry Phase _ business-level research improvement direction © where. SUMMARY OF THE INVENTION In the process of the prior art, Zhong formed a diamond film by chemical vapor deposition, △ 匕 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易 易^ Problems such as moving the ore film. In view of the above problems, the main object of the present invention is to provide a heat sink having a diamond material.

構及其製造找,依產品需求絲材_謂上全部或部分移 除’可以解決鑽;5在實際_上所聽的問題。 很據本U所揭4具有鑽石材料之散熱結構之製造方法,其 包括以下的麵。提供—基材;形成―鑽石膜於基材上,鑽石膜 具有相對的第-側面及第二側面,第二側面為鑽石膜成長面;以 物理氣相方式沉積—第—金屬層於鑽石膜的第二側面·,形成一第 二金屬層於卜金屬層上;移除部分的基材,並將基材與至少一 電子元件相結合;將具有電子元件的基材以第二金屬層與-散熱 鰭片相結合。 8 201034206 根據本發_聽具_砰料之散絲構,紅相對辦 分別與至少—電子林與—散m片相互結合。絲結構包括有 -基封、-鑽石膜、―第—金屬層及—第二金屬層。其中鐵石膜 形成於基#上,且鑽石膜具有相對的第—侧面及第二側面,第一 側面係附著於基材上。第—金屬層係設置形成於鑽石膜的第二側 面上’第二金屬層係設置於第—金屬層上。如此,即可將雜部 =的基材,進而形錢有鑽邱料之韻結構,並縣材係與電 子元件相結合,而第二金屬層則與散熱鰭片相互結合。 、,根據本發明所揭露另-具有鑽石材料之散熱結構之製造方 法’其包括町的步驟。提供—基材;形成—鑽石膜於卜 鑽石膜具有相朗第—側面及第二側面,且第—麵細著=基 材上;以物理氣相方式沉積-第—金屬層於鑽石膜的第二側面土、 形成一第二金屬層於第-金屬層上;移除基材;並於鑽石膜龄 =側面與至少—f子元件減合,料有電子元件賴石駄 第一金屬層與一散熱鰭片相結合。 根據本發撕揭露另—具有鑽石材料之散熱 側係分別與至少—電子元件* /、兩相對 '、戚,…、θ片相互結合。散熱結構句 有-鑽石膜…第-金屬層及—第二金屬層。其中鑽石膜 _的第-側面及第二侧面,第―侧面係與電子树相結合 一金屬層係設置於鑽石膜的第二㈣上,第二金勒係設置 金屬層上’⑽献有齡㈣之散熱結構,並且具有電子_ 牛的鑽石膜以第一金屬層與散熱鰭片相結合。 201034206 α 4 力从在於,使用時依需求可選擇移除全部或部分基 >r反,右選擇移除4、部其γ t _ 一。土板,便以鑽石膜底部(即第一側面)直接 與電子元件結合,以陪_ * 、…>阻,進而提高整體散熱效果;若選擇 移除部分基板,則以其也^& 、基板做為與電子元件結合,並將基板設計成 可以付合各種電子 命 ^ y ^ °又1岛未的結構,例如在基板上設計有凹 槽,以供發光二極辦¥λ ^ θ ,或疋將基板切割成複數凸塊,以供發 熱晶片架橋於凸塊上。 ❹ 使得ϋ膜抛絲,麵頭職絲材馳光面後, 斜、一回5化形成一相對應的拖光面,以此簡化習知技術 中須對鑽石膜進行拗本卢 处理的衣程。並以鑽石膜的拋光面接觸, 可減:>'多餘的熱P且隔,;隹而但一甘,, 隔進而如南基材與鑽石膜之間的接觸性,以 達到提升散熱效率之目的。 、下在4方式切細敘述本發明之詳細特徵以及優點,复 内容足贼任何__技藝者了解本翻之技_容並據以實 ❿施,且根據本說明書所揭露之内容、中請專利顧及圖式,任何 熟習相關技藝者可輕祕理解本發明前述之目的及優點。 二上之_本發_容之制如下之f施方狀說明係用 •以示範與解釋本發明之原理,並且提供本發明之專利申請範圍更 . 進一步之解釋。 【實施方式】 為使對本發_目的、構造、_、及其功能有進一步的瞭 解,茲配合實施例詳細說明如下。 10 201034206 * 請參閱「第1圖」及「第2A圖」至「第2F圖」所示之示意 --圖,係分別為本發明第-實施例的製作流巷示意圖及步驟流程: 意圖。 如「第1圖」、「第2Α圖」及「第迮圖」所示,係提供—基 #(步驟100) ’並在基封10絲進行撤光,以形成有—搬光面 11。並在拋光面11上沉積有一鑽石材料,以形成一鑽石膜2〇於 基材10上(步驟1Η)),其中鑽石膜20可以化學氣相沉積(Chemicai ❹VaporizedD啊ition,CVD)或是物理氣相沉積殉⑽㈤ Deposition ’ PVD)形成於拋光面n上,此鐵石膜2〇的厚度小於 100微米(,)。且鑽石膜20的材質包括有單晶鑽石、多晶鑽石 或是類鑽碳(DLC)等材料,但並不以此為限。另外,基材1〇之 材料可選用梦(s〇、碳化石夕(Sic)、石墨(Graphite)等材料,但 並不以此為限。 此外,上述的物理氣相沉積(PVD )可以是濺鍍(Sputtering)、 © 熱蒸鍵(thermal evaporation)、電子束蒸鍍(e_gun evap〇rati〇n)筝 工法。而化學氣相沉積(CVD )可以是熱燈絲裂解法(Hot迅咖她 C VD )或微波電漿輔助化學氣相沉積法(腿⑽備於piasma_assisted • CVD)等工法’將鑽石材料沉積於基材10的拋光面11上而形成 - 鑽石膜20。 如「第1圖」、「第2B圖」及「第2C圖」所示,鑽石膜20 沉積在基材10的拋光面U後,鑽石膜2〇具有一第一侧面21及 —第二侧面22,並使第一側面21與第二側面22分別設置於鑽石 11 201034206 '·膜20的相對二侧’且第一侧面21係附著於基祐ι〇的搬光面u '上,而第二側面22係為一粗糙面或一平整面。以物理氣相方式沉 積一第一金屬層30於鑽石膜20上(步驟120),並使第一金屬層 30位於鑽石膜20的第二側面22。且第一金屬層30之材料包括鎳 (Ni)、鈦(Ti)、金(Au)、銀(Ag)、鉻(〇·)或鋁(A1)及其 合金其中,組成第一金屬層3〇之材枓的鍵能強度具有較不易因 熱處理製程後而減弱強度的特質以及較強之薄膜貼合強度。且第 ❹一金屬層30的厚度小於2,000奈罘(nm),較佳之厚度介於5〇 奈米至100奈米之間。 此外,上述的物理氣相沉積(P VD )可以是濺鍍(Sputtering )、 熱蒸鍍(thermal evaporation)、電子束蒸鍍(e_gunevap〇rati〇n)等 工法,將金屬材料沉積於鑽石膜20的第二側面22上而形成第一 金屬層30。 ❹ 如「第1圖」、「第2C圖」及「第2D圖」所示,第一金屬層 %沉積在鑽石膜20㈣第二侧面22後,形成一第二金屬層4〇於第 :金屬層3G上(步驟13〇) ’由於f—金顧3Q的形成可使表面 導電,因此可製程成本較低的電鍍法來形成第二金屬層, 例如第二金屬層40可以物理氣相沉積(pVD)、電艘(dectr〇piat㈣ 或無電化學鍵(Electroless Deposition)址丁、4· PQSltlQn ) f卫法沉積於第-金屬層 刈之上,並藉由第一金屬層3〇 ㈢强鑕石胰20與第二金屬層4〇 之間的貼合性。第二金屬層4〇之妊社叮 θ r Λ、 之材枓可以是銅(Cu)、鋁(Al)、金 (Au)、銀(Ag)、!巴(pd)、銦(工) un)鈦(τ〇、鉻(Cr)或鎳(Ni) 12 201034206 .寻,其厚度小於2微米(_) c ' 二1第1圖」及「第2E圖」所示’將基材10反轉並在基材 10表囬開設有至少—凹槽12 (步驟140),係於基板1〇上以濕式 =於基,10上。並使鑽石膜2〇位於基材1〇與第一金屬層邓之 間,而第二金屬層40則位於第一金屬層30的底面。 〜 ❿ 其^圖」及「第万圖」所示,將至少—電子元件50與 ==槽12相互結合’以及將第二金屬層4。與-散熱續片 (步驟i5G),即可構成本發·有鑽石购之散熱結 ㈣此步驟Η""中,並不限定必須先將電子树5〇與基 封^合後’再將散顏片6〇與第二金屬層4〇肢 : 將散熱鰭片60鱼筮-a® a 、、σσ,,、亦可先 1〇社人 金顧結合後,再將電子元件5〇與基封 ❿ 制,僅需將1^15G中的元件結合並沒有任何的優先順序限 結構的相==及散熱⑽分別設置於本發明之散熱 二:’電子元件5〇係為發光二極體、雷射二極體或具卿 政之先電元件,可於凹槽12 「第7圖」所干… ^應汉置有一遂鏡7〇(如 體、雷射=透鏡7〇將電子元件,^ -極㈣)所產生之絲付 散熱鰭片60結合於第二金屬層4 =1中此外, 扯、金屈人人 7万式係利用如焊料銲接、膠 …反應、物理擴散、散熱轉合等方式完成。 13 201034206 故’根據上述第—實施例中的步職程,係力 面沉積有鑽石膜2〇,而美# 材川的一側 得雷子树5G孩Γ 柄則開設有凹槽12,使 付一千疋件)〇可與凹槽12相互結合。因為第 k 理氣相沉積(刚)方式沉積在鑽石㈣ =是以物 以離子或分该_辦鑽謂屬層% ❹ ❿ 金屬㈣二者之間的結合非常緊密。及第一 產生熱源,可藉輪卿迅速卿吸子元件 β贫—人P 〜愿及‘人亚透過第一么屋M m 及昂ς屬層40有效的傳導至散熱韓請處進行散熱 ^由於鑽石㈣沉積於基材10的抱光面η 石腰20的第一侧面21可以反應出抛光面u的狀況。因此=某 材10移除後,鑽石膜20的第一側面21即為—撤光面,不;夕土 的撤光即可肋與電子元件結合。另外,若鑽純2〇之第二側面 Ί-粗_時,可增加與第—金屬層3Q之接觸面積,進:增加 與第二金屬層40的結合力。而鑽石膜20可藉由其晶格排列:梯 度差異,將電子元件5〇所產生之熱量導向散熱鰭片60,進而提升 散熱效率之目的。 攸 請參閱「第3圖」及「第4A圖」至「第4F圖」所示之示意 圖‘刀別為本發明第二實施例的製作流程示意圖及步驟流程示 意圖。 如「第3圖」、「第4A圖」及「第4B圖」所示,係提供一基 材10 (步驟200),並在基材10表面進行拋光,以形成有一拋光 面η。並在拖光面η上沉積有一鑽石材料,以形成一鑽石膜2〇 14 201034206 、 於基#〗〇上(步驟210),其中鑽石膜20係以化學氣相沉積 ·-' (Chemical Vaporized Deposition,CVD)威是以物理氣相沉積 (Physical Vapor Deposition,PVD)形成於搬光面 11 上,此鑽石 膜20的厚度小於100微米(μπι)。且鑽石膜20的材質包括有單晶 鑽石、多晶鑽石或是類鑽碳(DLC)等材料,但並不以此為限。 另外’基材1 〇之材料可選用矽(Si)、碳化矽(SiC )、石墨(Graphite ) 等材料,但並不以此為限。 © 此外’上述的物理氣相沉積(PVD )係利用如濺鍍 (Sputtering)、熱蒸鍍(thermal evaporation)、電子束蒸鍍(e-gun evaporation)等工法。而化學氣相沉積(CVD)可以是熱燈絲裂解 法(Hot filament CVD)或微波電漿輔助化學氣相沉積法 (Microwaveplasma-assisted CVD)等工法,將鑽石材料沉積於基 材10的拋光面11上而形成鑽石膜20。 如「第3圖」、「第4B圖」及「 」及第4C圖」所示,鑽石膜2〇The structure and its manufacturing look for, depending on the product requirements, the wire material _ said to remove all or part of the 'can solve the problem; 5 in the actual _ listened to the problem. According to the invention, there is disclosed a method for manufacturing a heat dissipating structure of a diamond material, which comprises the following faces. Providing a substrate; forming a diamond film on the substrate, the diamond film having opposite first side and second side, the second side being a diamond film growth surface; depositing in a physical vapor phase - the first metal layer on the diamond film a second side, forming a second metal layer on the metal layer; removing a portion of the substrate and bonding the substrate to the at least one electronic component; and the substrate having the electronic component as the second metal layer - Combination of heat sink fins. 8 201034206 According to the hair structure of the hair _ listening _ 砰 , , , , , , , , 红 红 红 红 红 红 红 红 红 红 红 红 红 红 红 红 红 红The wire structure comprises a - base seal, a - diamond film, a - metal layer and a second metal layer. The iron stone film is formed on the base #, and the diamond film has opposite first side faces and second side faces, and the first side faces are attached to the substrate. The first metal layer is formed on the second side of the diamond film. The second metal layer is disposed on the first metal layer. In this way, the substrate = substrate can be formed, and the rhyme structure of the material is drilled, and the county material is combined with the electronic component, and the second metal layer is combined with the heat dissipation fin. According to the present invention, there is disclosed a method of manufacturing a heat dissipating structure having a diamond material, which comprises the steps of a town. Providing - a substrate; forming - a diamond film having a phase-first side and a second side, and having a first side surface = a substrate; a physical vapor deposition - a metal layer on the diamond film a second side soil, forming a second metal layer on the first metal layer; removing the substrate; and reducing the diamond film age = side and at least -f sub-components, and having the first metal layer of the electronic component Lashi Combined with a heat sink fin. According to the present invention, the heat dissipation side of the diamond material is combined with at least the electronic component * /, the two opposite ', ', 戚, ..., θ sheets. The heat dissipation structure has a - diamond film... a metal layer and a second metal layer. Wherein the first side and the second side of the diamond film _, the first side is combined with the electronic tree, a metal layer is disposed on the second (four) of the diamond film, and the second metal layer is disposed on the metal layer '(10) (4) The heat dissipation structure, and the diamond film having the electron _ cow is combined with the heat dissipation fin by the first metal layer. 201034206 α 4 force depends on, when using, you can choose to remove all or part of the base >r, and right to remove 4, its γ t _ one. The earth plate is directly combined with the electronic components at the bottom of the diamond film (ie, the first side) to accompany the _*, ...> resistance, thereby improving the overall heat dissipation effect; if it is selected to remove part of the substrate, it is also ^& The substrate is combined with the electronic component, and the substrate is designed to be able to cope with various electronic structures and structures. For example, a groove is designed on the substrate for the light-emitting diode to be λ ^ θ Or, the substrate is cut into a plurality of bumps for the thermal wafer to be bridged on the bumps. ❹ 抛 抛 ϋ ϋ ϋ 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛 抛. And contact with the polished surface of the diamond film, can reduce: > 'excess heat P and septum, 隹 but but sweet, and then the contact between the south substrate and the diamond film to improve heat dissipation efficiency The purpose. The detailed features and advantages of the present invention will be described in detail in the following four ways, and any content thief will understand the skill of the thief and the implementation of the present invention, and according to the contents disclosed in the present specification, The above-mentioned objects and advantages of the present invention will be readily understood by those skilled in the art in light of the appended claims. The following is a description of the principles of the invention and is intended to provide a further understanding of the scope of the invention. [Embodiment] In order to further understand the present invention, the structure, the _, and the functions thereof will be described in detail below with reference to the embodiments. 10 201034206 * Please refer to the "Figure 1" and "2A" to "2F" diagrams, which are schematic diagrams showing the flow path and the flow of steps in the first embodiment of the present invention: Intention. As shown in "1st", "2nd drawing" and "figure", a base #(step 100)' is provided and the light is removed from the base seal 10 to form a light-receiving surface 11. And depositing a diamond material on the polishing surface 11 to form a diamond film 2 on the substrate 10 (step 1)), wherein the diamond film 20 can be chemical vapor deposited (Chemicai ❹ Vaporized D ition, CVD) or physical gas The phase deposition 殉(10)(5) Deposition 'PVD) is formed on the polishing surface n, and the thickness of the iron film 2 小于 is less than 100 μm. The material of the diamond film 20 includes single crystal diamond, polycrystalline diamond or diamond-like carbon (DLC), but is not limited thereto. In addition, the material of the substrate 1 may be selected from materials such as s〇, Sic, Graphite, etc., but not limited thereto. Further, the above physical vapor deposition (PVD) may be Sputtering, © thermal evaporation, electron beam evaporation (e_gun evap〇rati〇n) kite method, and chemical vapor deposition (CVD) can be hot filament cracking method (Hot Xun coffee C VD) or microwave plasma-assisted chemical vapor deposition (legs (10) prepared by piasma_assisted • CVD), etc. The diamond material is deposited on the polishing surface 11 of the substrate 10 to form a diamond film 20. As shown in Fig. 1 As shown in FIG. 2B and FIG. 2C, after the diamond film 20 is deposited on the polished surface U of the substrate 10, the diamond film 2 has a first side 21 and a second side 22, and is first The side surface 21 and the second side surface 22 are respectively disposed on the diamond 11 201034206 '·the opposite sides of the film 20 ′ and the first side surface 21 is attached to the light-transfer surface u ′ of the 佑 〇 , and the second side surface 22 is a rough a surface or a flat surface. A first metal layer 30 is deposited on the diamond film 20 in a physical vapor phase (step 120 And the first metal layer 30 is located on the second side 22 of the diamond film 20. The material of the first metal layer 30 comprises nickel (Ni), titanium (Ti), gold (Au), silver (Ag), chromium ( 〇·) or aluminum (A1) and its alloys, wherein the bond strength of the material constituting the first metal layer 3〇 is less susceptible to the strength after the heat treatment process and the stronger film bonding strength. The thickness of the first metal layer 30 is less than 2,000 nanometers (nm), preferably between 5 nanometers and 100 nanometers. In addition, the above physical vapor deposition (P VD ) may be sputtering (Sputtering). A method such as thermal evaporation or electron beam evaporation (e_gunevap〇rati〇n) deposits a metal material on the second side 22 of the diamond film 20 to form the first metal layer 30. ❹ As shown in FIG. 2, FIG. 2C and FIG. 2D, the first metal layer is deposited on the second side 22 of the diamond film 20 (four) to form a second metal layer 4 on the metal layer 3G (steps). 13〇) 'Because the formation of f-Golden 3Q can make the surface conductive, it can form a second electroplating method with lower process cost. The genus layer, for example, the second metal layer 40 may be deposited on the first metal layer by physical vapor deposition (pVD), electric boat (dectr〇piat (4) or electroless bond (Electroless Deposition), 4·PQSltlQn) And by the first metal layer 3 〇 (3) the adhesion between the strong vermiculite pancreas 20 and the second metal layer 4 。. The second metal layer 4 妊 妊 θ θ Λ, the material 枓 can be copper (Cu), aluminum (Al), gold (Au), silver (Ag),! Bar (pd), indium (work) un) titanium (τ〇, chrome (Cr) or nickel (Ni) 12 201034206 . Seeking, its thickness is less than 2 microns (_) c '2 1 1st picture" and "2E The substrate 10 is inverted and provided with at least a recess 12 (step 140) on the substrate 10, attached to the substrate 1 湿 on the wet = base, 10 and the diamond film 2〇 is located between the substrate 1〇 and the first metal layer Deng, and the second metal layer 40 is located at the bottom surface of the first metal layer 30. 〜 ❿ ^^^^^^^^^^^^^^^^^ The electronic component 50 and the == slot 12 are combined with each other and the second metal layer 4 and the heat sinking film (step i5G) can constitute the heat sink of the hair purchase (four). In this step, "" It is not limited to first that the electronic tree 5〇 and the base seal are combined, and then the scatter film 6 〇 and the second metal layer 4 〇 limbs: the heat sink fins 60 筮-a® a , σσ,,, It is also possible to combine the electronic components 5〇 with the base seal, and only need to combine the components in 1^15G without any priority order structure phase == and heat dissipation (10) respectively. Set in the present invention 2: 'Electronic components 5 〇 is a light-emitting diode, a laser diode or a first electrical component with Qing Zheng, which can be dried in the groove 12 "Fig. 7" ^There is a mirror 7〇 For example, the body, the laser = the lens 7 〇 the electronic component, the ^ - pole (four)) generated by the wire heat sink fin 60 is bonded to the second metal layer 4 =1, in addition, the pull, Jin Quren people 70,000-type use Such as solder welding, glue...reaction, physical diffusion, heat transfer, etc. 13 201034206 Therefore, according to the step in the above-mentioned embodiment, the force surface is deposited with a diamond film 2〇, and the beauty #材川The rib of the 5G child's shank on one side is provided with a groove 12 so that a thousand pieces of 〇 can be combined with the groove 12. Because the kth CVD deposition (rigid) way is deposited in the diamond (four) = is the object to the ion or the separation of the layer ❹ ❿ ❿ metal (four) the combination between the two is very close. And the first heat source can be borrowed from the wheel of the Qing dynasty sucker element β poor - human P ~ willing and 'human ya through the first house M m and the Angkor layer 40 effective conduction to the heat sink to cool the place ^ Since the diamond (4) is deposited on the first side 21 of the glazing surface η stone waist 20 of the substrate 10, the condition of the polishing surface u can be reflected. Therefore, after the material 10 is removed, the first side 21 of the diamond film 20 is a light-removing surface, and the light-removing light can be combined with the electronic components. Further, when the second side Ί-thickness of the pure ruthenium is drilled, the contact area with the first metal layer 3Q can be increased, and the bonding force with the second metal layer 40 can be increased. The diamond film 20 can be guided by the lattice arrangement: the difference in the gradient, and the heat generated by the electronic component 5 turns to the heat dissipation fins 60, thereby improving the heat dissipation efficiency.攸 Refer to the diagrams in "3" and "4A" to "4F" for the schematic diagram of the production flow and the flow chart of the second embodiment of the present invention. As shown in "Fig. 3", "Fig. 4A" and "Fig. 4B", a substrate 10 is provided (step 200), and the surface of the substrate 10 is polished to form a polishing surface η. And depositing a diamond material on the trailing surface η to form a diamond film 2〇14 201034206, on the base 〇 (step 210), wherein the diamond film 20 is chemical vapor deposition-- (Chemical Vaporized Deposition , CVD) is formed on the light-transfer surface 11 by physical vapor deposition (PVD), and the thickness of the diamond film 20 is less than 100 micrometers (μm). The material of the diamond film 20 includes single crystal diamond, polycrystalline diamond or diamond-like carbon (DLC), but is not limited thereto. In addition, the material of the substrate 1 may be selected from materials such as bismuth (Si), tantalum carbide (SiC), and graphite (Graphite), but is not limited thereto. © In addition, the physical vapor deposition (PVD) described above utilizes methods such as sputtering, thermal evaporation, and e-gun evaporation. The chemical vapor deposition (CVD) may be a hot filament CVD or a microwave plasma-assisted CVD method, and the diamond material is deposited on the polishing surface 11 of the substrate 10. The diamond film 20 is formed up. Diamond film 2〇 as shown in Figure 3, Figure 4B and Figure 4C

上,而第二側面22係為-粗糙面或—平整面。以物理氣相方式沉 ,並使第一金屬層30The second side 22 is a rough surface or a flat surface. Sinking in a physical vapor phase and making the first metal layer 30

積一第一金屬層30於鑽石膜20 (步騍22〇), 位於鑽石膜2 (Ni)、鈦(Ί 合金。其中, 15 201034206 ‘熱處-而減辟度的特質以及較強之_貼合強度。且第 玉屬層)〇的尽度小於2,00〇奈米(⑽),較佳之厚度介於% 奈米至100奈米之間。 ' 此外,上述的物理氣相沉積CPVD)係利用如滅鍵 (Sputtermg)、熱瘵鍍(ihermalevap〇rati〇n)、電子束蒸鍍(e_聊 evaporation)寺工法,將金屬材料沉積於鑽石膜如#第二側面ρ 上而形成該弟一金屬層30。 …如「第3圖」、「第4C圖」及「第仍圖」所示,第一金屬層 北儿積在鑽石膜20的第二侧面22後,形成一第二金屬層仞於第 =屬層30上(步驟23Q),秘第—金制3Q的形成可使表面 導包’因此可利用製程成本較低的電鍰法來形成第二金屬層· _第二金屬層4阿以物理氣相峨pVD )、電_ ___ ❿ ,無電化學鍍(Ele_less DepQsitiQn)等I法沉積於第—金‘ Μ之上’並藉由第-金屬層30增強鑽石膜2〇與第二金屬層恥 之間的貼合性。且第二金屬層40之材料包括鋼(cu)、叙⑽曰、金 (An)、銀(Ag)、鈀⑽)、銦(In)、鈦( 甘陪— 」銘CCr)或鎳(Ni), 其厚度小於2微米(μιη)。 如「第3圖」及「第4Ε圖」所示,將基材⑺ 八从《· 反轉並移除部 为的基材10而於鑽石膜20上形成有複數凸 斤 凡〈步驟240),而 弟一金屬層30位於鑽石膜20與第二金屬層4〇之門 如「第3圖」及「第4F圖」所示,將— 屬子元件50盥複數 凸塊13相互結合,以及將第二金屬層4〇盥一 ” 、 畋,、、、”,、曰片β〇相互結 16 201034206 合(女驟2:>〇),進而構成本發明具有鐄石特料之散熱結構。 此外,上述步驟250中,1不限定必須先將電子元件邓與 複數凸塊13結合後,再將散熱鰭片6〇與第二金屬岸4〇乒人.二 亦可先將㈣娜6〇與第二金顧⑼結合後,再將電子元件% 與複數凸塊丨3結合。灿在步驟⑼中的元件結合並沒有任㈣ Ο ^先順序_ ’僅鑛電子元件5G及散熱㈣⑹分別設置於本 考X明之散熱結構的相對二側即可。 再4 ’電子兀件Μ)結合於凸塊13的方式係利用如焊料鲜接、 膠結、金屬合金反應、•擴散、憾轉合轉式完成。而電 子凡件Μ)係為發光二極體、中央處理器、雷射二極體、高速半導 體元件或具有熱發散之光電元件。 故,根據上述第二實施例中的麵缝,係在鑽謂2〇上移 二^的如Q,使得基材1G鑽石膜2G上形成有複數凸塊13, :二:凡件D。可結合於複數凸塊13上。因為第,金屬層30是 相沉積(PVB)沉積在鑽石膜2〇上,使得第一金屬層% 金屬^分子狀態附著於鑽石膜2〇上,進而使鑽石顏及第一 可Ϊ=:者之間的結合非㈣密。當電子元件知產生熱源時, 屬迅速將熱源吸收並透過第—金顧3Q及第二金 有效的傳導錄熱鰭以G處進行散熱。 再者,由於鑽石膜20沉積於某刼 石膜20沾一 狀基材10的拖光面11上,使得鑽 石膜2。成Γ側面21可以反應出抛光面11的狀況。因此,當鑽 、成長於拋光面η後,其鑽石模2〇的第一制面21即形成 17 201034206 -撤纖,刪-編].與複數凸塊13岐接觸後,可请 少多餘的熱_,並提高複數凸塊13與鑽石㈣之間的接觸^ 另外,若鑽石膜如之第二側面22為祕面時,可增加與第4 屬層30之麵面積,進而增加與第二金屬層4〇的結合力。而鑽 石膜20可藉由其晶格排列之梯度差異,將電子元件%所声在之 熱直導向散熱鰭片60,進而提升散熱效率之目的。 生 Ο 請參閱「第5圖」及「第6Α圖」至「第6F圖」所示之示意 圖,係分別為本發萄三實施例的製體麵相及步驟流 意圖。 一’' 如第5圖」、「第6A圖」及「第6B圖」所示,係提供—基 封(步驟300),並在基枯1〇表面進行域,以、形成有一撤光面 11。亚在撤光面11上沉積有一鑽石材料’以形成一鑽石膜Μ於 基封10上(步驟310),其中鑽石膜2〇係以以化學氣相沉積 (Chemical Vaporized Deposition,CVD )或是物理氣相沉積 G (Physical VaP〇r Deposition,PVD)形成於抛光面 u 上,此鑽石 膜20的厚度小於1 〇〇微米(μιη ) ^且鑽石膜2〇的材質包括有單晶 鑽石、多晶鑽石或是類鑽碳(DLC)等材料,但並不以此為限。 .另外’基材1〇之材料可選用矽(si)、碳化矽(sic)、石墨(Graphite) .等材料,但並不以此為限。 此外,上述的物理氣相沉積(PVD )係利用如濺鍍 (Sputtering )、熱蒸鍍(thermal evaporation )、電子束蒸鏡(e_gun evaporation)等工法。而化學氣相沉積(CVD)可以是熱燈絲裂解 18 201034206 '法(Hot filament CVD )或微波電漿輔助化學氣相沉積法 ' (Microwaveplasma-assistedCVD)等工法,將鑽石材料沉積於基 材10的搬光面上而形成鑽石膜20。 如「第5圖」、「第6B圖」及「第6C圖」所示,鑽石膜20 沉積在基材的拋光面11後,鑽石膜20具有一第一側面21及 一第二側面22 ’並使第—侧面21與第二側面22分別設置於鑽石 膜20的相對二侧’且第一侧面21係附著於基材10的拋光面u 〇 上,而第一侧面22係為一粗糙面或一平整面。以物理氣相方式沉 積一第一金屬層30於鑽石膜20的第二側面22上(步驟32〇 )。且 第一金屬層3 0之材料包括鎳(Ni)、鈦(Ti)、金(Au )、銀(Ag )、 路(Cr)或鋁(A1)及其合金。其中,組成第一金屬層3〇之材料 的鍵能強度具有較不易因熱處理製程後而減弱強度的特質以及較 強之薄膜貼合強度。且第一金屬層30的厚度小於2,000奈米 (ran),較佳之厚度介於5〇奈米至1〇〇奈米之間。 ❹ 此外,上述的物理氣相沉積(PVD)傣利用如濺鍍 (Sputtering)、熱条鍍(themiai evap〇rati〇n)、畲子束蒸鍍(e evaporation)等工法,將金屬材料沉積於鑽石暝2〇的第二側面w . 上而形成第一金屬層30。 如「第5圖」、「第6C圖」及「第6D圖 」所不,弟一金屬層 30沉積在鑽石膜20的第二側面22後 瓦办風萆二金屬層40於第 一金屬層30上(步驟33〇),由於第― 蜀增圳的形成可#矣; 導電,因此可利用製程成本較低的| X J使衣面 絲⑽二金屬層40, 19 201034206 * 例如第二金屬層40可以物理氣相沉積(PVD)、雷參r '-^electroplating) ' 或無電化學鍍(Electroless Deposition )等工法況欲 凡積於第一金屬層 30之上,並藉甴第一金屬層30增強鑽石膜20枭* 汽罘二金屬層40 之間的貼合性。且第二金屬層40之枋料包括銅Γ〇ιλ 'lUl)、鋁(Α1)、金 (An )、銀(Ag )、|巴(pd)'銦(In)、飲(Ti)、路\ ^Cr)或鎳(M), 其厚度小於2微米(μιη)。 ❹ 如「第5圖」及「第6Ε圖」所示,將基材 .. υ久轉後,移除 三口峨材Κ)(步驟340 ),使得鑽石膜2〇位於第一金屬層利 面,而第二金屬層40則位於第一金屬層3〇底面。 如「第5圖」及「第6F圖」所示,將至少一電子元件兄盘 鑽石版20相互結合,以及將第二金屬層4〇與 钍人r半獅,、、、-、旧门60相互 …Υ ),進而構成本發明具有鑽石材料之散熱結構。 ❹ 此外,上述步驟35〇中,並不限定必須先將電子元 :膜20結合後’再將散熱則ω舆第二金屬層如結a ^ 、-0、、、S5。所以在步 5〇 序限制,僅需將雪早1 ςπ 又有任何的優先順 而將電子το件50及散熱籍片6〇分 散熱結構的相對二側即可。 刀別。又且於本發明之 也再者,電子元件50結合於鑽石膜2〇的第一側面 癌言片60結合於第_入 、 乂及散熱 金屬人入^ 層的方式係利用如焊料銲接、料、 -屬合金反應、物理擴 骖、一 5〇係為發光二極體、中2口打式兀成。而電子元件 、处理、雷射二極體、高逮半導體元件 20 201034206 或具有熱發散之光電元件。 X戒據上必第二實施例中的步驟流程,係利用基材忉的拋 冗回1]〆儿積另鑽石膜20,使得鑽石膜20的第-側面21可以反應 …抛光囬11的狀泥。因此,當鑽石膜2〇成長在拋光面η後,其 鑌乂膜20的第細21即形成—抱光狀雜,以此第一側面^與 f元件5G緊密結合。如此,當鑽石❹沉_基材Κ)後,不 于鑽石膜20表面進行平坦化的加工即可應用,進而減少 ❾加工程序’以達到降低整體的製作成本之目的。 此外,右鑽石膜20之第二側面22為粗糙面時,可增加與第〆 ^屬層如之接觸面積,進而增加與第二金屬層4〇的結合力且可 ^政一卞。另外’鑽石膜%可藉由其晶格排列之梯度差異, 一 J兀^ )〇所產生之熱量導向散熱鰭片60,進而提升散埶效率 之目的。 ❹ 再者,上述各時實施例中,因為鑽石膜如是以物理氣相沉積 〜7儿積旁第一金屬層3〇,其物理氣相沉積(PVD)均是在 ^下進行,所以不會有f知技術之鑽·於鱗脹後產生收縮 率差異過大的問題。 * =上所述’本發啊依使㈣求而選擇將基板完全移除或是 1除;若選擇移除全部基板,便崎石膜直接與電子元件結 =進而提高整體散熱效果;若選擇移除部分基板,則以基板與 凡件結合’雜_賴設計射叫合讀料藉設置 ^ ’例如在基板上設計有凹槽,以供科二_置人,或是將 21 201034206 :基板切割成複數凸塊,以供發熱晶片架橋於凸塊上。 ' 另外,鑽石膜形成於基材的拋光面上,使得鑽石膜的底面亦 形成相對應的拋光面,基材於鑽石膜上完全移除或部分移除後, 即可使鑽石膜所形成的拋光面具有良好的接觸性。 雖然本發明以前述之實施例揭露如上,然其並非用以限定本 發明。在不脫離本發明之精神和範圍内,所為之更動與潤飾,均 屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考 〇 所附之申請專利範圍。 【圖式簡皁說明】 第1圖係為根據本發明第一實施例之製作流程示意圖; 第2A圖至第2F圖係為根據本發明第—實施例之步驟漭释示音圖; 第3圖係為根據本發明第二實施例之製作流程示意圖: 第4A圖至第好圖係為根據本發明第二實施例之步驟流程示意圖; 第5圖係為根據本發明第三實施例之製作流程示意圖;〜 ©第6A圖至第6F圖係為根據本發明第三實施例之步驟流程禾意 圖,以及 第7圖係為根據本發明第一實施例中設置有透鏡的示意圖。 •【主要元件符號說明】 - 1〇 基材 抛光面 12 凹槽 13 凸塊 201034206 20 鑽石膜 21 第一侧面 22 第二侧面 30 第一金屬層 40 第二金屬層 50 電子元件 60 散熱鰭片 70 透鏡A first metal layer 30 is deposited on the diamond film 20 (step 22〇), located in the diamond film 2 (Ni), titanium (Ί alloy. Among them, 15 201034206 'hot place - and the degree of reduction and strong _ The bonding strength and the first layer of the jade layer are less than 2,00 nanometers ((10)), and the thickness is preferably between 100 nanometers and 100 nanometers. In addition, the above-mentioned physical vapor deposition (CPVD) is deposited on a metal material by means of, for example, Sputtermg, ihermalevap〇rati〇n, electron beam evaporation (e_le evaporation). The film, such as the #2 side surface ρ, forms the young metal layer 30. ... as shown in "3", "4C" and "Fig.", the first metal layer is formed on the second side 22 of the diamond film 20 to form a second metal layer. On the genus layer 30 (step 23Q), the formation of the secret-gold 3Q can make the surface guide package 'so that the second metal layer can be formed by the electroless method with lower process cost. _The second metal layer 4 Gas phase 峨pVD), electricity _ ___ ❿, no electrochemical plating (Ele_less DepQsitiQn), etc. I deposited on the first - gold 'Μ' and enhance the diamond film 2〇 and the second metal layer by the first metal layer 30 Between the fits. And the material of the second metal layer 40 includes steel (cu), ruthenium (10) ruthenium, gold (An), silver (Ag), palladium (10), indium (In), titanium (Gan — - 铭) CCr) or nickel (Ni ), the thickness is less than 2 microns (μιη). As shown in "Fig. 3" and "Fig. 4", the substrate (7) VIII is formed from the substrate 10 which is reversed and removed, and a plurality of embossings are formed on the diamond film 20 (step 240). And the metal layer 30 is located on the diamond film 20 and the second metal layer 4, as shown in "Fig. 3" and "4F", and the sub-component 50 盥 complex bumps 13 are combined with each other, and The second metal layer 4 〇盥 ” 、 畋 畋 , 〇 〇 〇 〇 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 . In addition, in the above step 250, 1 does not need to first combine the electronic component Deng with the plurality of bumps 13, and then the heat-dissipating fins 6〇 and the second metal bank 4 ping-pong people. Second, the first (4) Na 6〇 After combining with the second gold (9), the electronic component % is combined with the plurality of bumps 丨3. The combination of the elements in the step (9) does not have any (4) Ο ^ first order _ 'only the mineral electronic component 5G and the heat dissipation (4) (6) are respectively disposed on the opposite sides of the heat dissipation structure of the present invention. The manner in which the 4' electronic components are bonded to the bumps 13 is accomplished by, for example, solder soldering, cementing, metal alloy reaction, diffusion, and reflow. The electronic component is a light-emitting diode, a central processing unit, a laser diode, a high-speed semiconductor component or a photovoltaic element having heat dissipation. Therefore, according to the surface slit in the second embodiment described above, the Q, such as Q, is moved up and down, so that a plurality of bumps 13 are formed on the substrate 1G diamond film 2G, and two parts: D. It can be bonded to the plurality of bumps 13. Because the metal layer 30 is deposited by a phase deposit (PVB) on the diamond film 2, so that the first metal layer % metal is attached to the diamond film 2, thereby making the diamond and the first Ϊ =: The combination between non-(four) secrets. When the electronic component knows that a heat source is generated, it is rapidly absorbed by the heat source and transmitted through the first heat conduction fins of the first and third golds to dissipate heat at the G. Further, since the diamond film 20 is deposited on the trailing surface 11 of the substrate 10 which is adhered to a certain stone film 20, the stone film 2 is drilled. The side surface 21 of the crucible can reflect the condition of the polishing surface 11. Therefore, after drilling and growing on the polishing surface η, the first surface 21 of the diamond mold 2 is formed into a 17 201034206 - fiber removal, deletion - editing]. After contact with the plurality of bumps 13 ,, please be less redundant Heat_, and increase the contact between the plurality of bumps 13 and the diamond (four). In addition, if the diamond film such as the second side 22 is a secret surface, the area of the surface of the fourth layer 30 may be increased, thereby increasing and second. The bonding force of the metal layer 4〇. The diamond film 20 can direct the heat of the electronic component to the heat dissipation fin 60 by the difference in the gradient of the lattice arrangement, thereby improving the heat dissipation efficiency.生 Ο 「 第 第 第 第 第 第 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 As shown in Figure 5, Figure 6A and Figure 6B, a base seal is provided (step 300), and a surface is formed on the surface of the base to form a light-removing surface. 11. A diamond material is deposited on the light-removing surface 11 to form a diamond film on the base seal 10 (step 310), wherein the diamond film 2 is chemical vapor deposited (CVD) or physical. V (Physical VaP〇r Deposition, PVD) is formed on the polishing surface u, the thickness of the diamond film 20 is less than 1 〇〇 micron (μιη) ^ and the material of the diamond film 2〇 includes single crystal diamond, polycrystalline Diamonds or materials such as diamond-like carbon (DLC), but not limited to this. Further, the material of the substrate 1 may be selected from the group consisting of bismuth (si), bismuth carbide (sic), and graphite (Graphite), but is not limited thereto. Further, the physical vapor deposition (PVD) described above is carried out by a method such as sputtering, thermal evaporation, or e_gun evaporation. The chemical vapor deposition (CVD) may be a thermal filament cleavage 18 201034206 'Hot filament CVD or Microwave plasma-assisted CVD method, and the diamond material is deposited on the substrate 10 The diamond film 20 is formed on the moving surface. As shown in FIG. 5, FIG. 6B and FIG. 6C, after the diamond film 20 is deposited on the polished surface 11 of the substrate, the diamond film 20 has a first side 21 and a second side 22'. The first side surface 21 and the second side surface 22 are respectively disposed on opposite sides of the diamond film 20 and the first side surface 21 is attached to the polishing surface u of the substrate 10, and the first side surface 22 is a rough surface. Or a flat surface. A first metal layer 30 is deposited on the second side 22 of the diamond film 20 in a physical vapor phase (step 32A). And the material of the first metal layer 30 includes nickel (Ni), titanium (Ti), gold (Au), silver (Ag), road (Cr) or aluminum (A1) and alloys thereof. Among them, the bond energy of the material constituting the first metal layer 3 具有 has a property which is less likely to be weakened by the heat treatment process and a stronger film bonding strength. And the thickness of the first metal layer 30 is less than 2,000 nanometers (ran), and preferably the thickness is between 5 nanometers and 1 nanometer. ❹ In addition, the above-mentioned physical vapor deposition (PVD) 傣 uses a method such as sputtering, hot strip plating (themiai evap〇rati〇n), evaporation evaporation, etc. A first metal layer 30 is formed on the second side w of the diamond 暝 2 。. For example, in FIG. 5, FIG. 6C and FIG. 6D, a metal layer 30 is deposited on the second side 22 of the diamond film 20 to wind the second metal layer 40 on the first metal layer. 30 (step 33〇), because the formation of the first 蜀 蜀 圳 可 矣 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 导电 X X X X X X X X 40 may be physically vapor deposited (PVD), leishen r '-electroplating' or electroless plating (Electroless Deposition), etc., on the first metal layer 30, and by the first metal layer 30 The adhesion between the diamond film 20枭* and the two metal layers 40 is enhanced. And the material of the second metal layer 40 includes copper Γ〇λλ 'lUl), aluminum (Α1), gold (An), silver (Ag), |bar (pd)' indium (In), drink (Ti), road \^Cr) or nickel (M), the thickness of which is less than 2 microns (μιη). ❹ As shown in “Picture 5” and “Picture 6”, after the substrate has been rotated for a long time, the three coffins are removed (step 340), so that the diamond film 2 is located on the first metal layer. And the second metal layer 40 is located on the bottom surface of the first metal layer 3 . As shown in Figure 5 and Figure 6F, at least one electronic component diamond version 20 is combined with each other, and the second metal layer 4〇 and the 钍人r half lion, ,,, -, the old door 60 mutually... Υ), and further constitutes a heat dissipation structure of the present invention having a diamond material. Further, in the above step 35, it is not limited to firstly combine the electron elements: the film 20, and then heat-dissipating ω 舆 the second metal layer such as the junctions a ^ , -0, , S5. Therefore, in step 5, the order limit is only required to make the snow 1 ς π and any priority to divide the electronic τ ο 50 and the heat sink 6 into the opposite sides of the heat dissipation structure. Knife. Furthermore, in the present invention, the electronic component 50 is bonded to the first side of the diamond film 2, and the cancer film 60 is bonded to the first, second, and third parties, such as soldering and soldering. - It is an alloy reaction, physical expansion, a 5-inch system is a light-emitting diode, and a 2-port type is used. Electronic components, processing, laser diodes, high-capacity semiconductor components 20 201034206 or photovoltaic elements with thermal divergence. The X step is in accordance with the procedure of the second embodiment, which is to use the substrate to throw back the diamond film 20 so that the first side 21 of the diamond film 20 can react... polishing back to 11 mud. Therefore, when the diamond film 2 is grown on the polishing surface η, the thin portion 21 of the ruthenium film 20 is formed into a light-like impurity, whereby the first side surface is closely bonded to the f element 5G. Thus, when the diamond sinks _substrate Κ), it can be applied without planarizing the surface of the diamond film 20, thereby reducing the ❾ processing procedure to achieve the overall production cost reduction. In addition, when the second side surface 22 of the right diamond film 20 is a rough surface, the contact area with the second layer can be increased, and the bonding force with the second metal layer 4 can be increased and can be controlled. In addition, the % of the diamond film can be guided to the heat radiating fins 60 by the difference in the gradient of the lattice arrangement, and the heat generated by the heat sink fins 60, thereby improving the efficiency of the heat dissipation. ❹ Furthermore, in the above embodiments, since the diamond film is deposited by physical vapor deposition, the physical metal deposition (PVD) is performed under the first metal layer 3 ,, so it will not There is a problem that the difference in shrinkage rate is excessive after the swell is drilled. * = The above-mentioned 'this hair _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ When a part of the substrate is removed, the substrate and the workpiece are combined with the 'molecular design' to make a reading material, and the groove is designed, for example, on the substrate, for the purpose of the second, or 21 201034206: substrate Cutting into a plurality of bumps for the thermal wafer to be bridged on the bumps. In addition, the diamond film is formed on the polished surface of the substrate, so that the bottom surface of the diamond film also forms a corresponding polished surface. After the substrate is completely removed or partially removed on the diamond film, the diamond film can be formed. The polished surface has good contact. Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the scope of the patent application attached to 〇 for the scope of protection defined by the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a manufacturing process according to a first embodiment of the present invention; and Figs. 2A to 2F are diagrams showing the steps according to the first embodiment of the present invention; The drawing is a schematic diagram of a manufacturing process according to a second embodiment of the present invention: FIG. 4A to the first drawing are schematic diagrams of the steps according to the second embodiment of the present invention; and FIG. 5 is a third embodiment of the present invention. The flow chart is a schematic diagram of the steps according to the third embodiment of the present invention, and FIG. 7 is a schematic view showing a lens provided in the first embodiment according to the present invention. • [Main component symbol description] - 1〇 substrate polishing surface 12 Groove 13 Bump 201034206 20 Diamond film 21 First side 22 Second side 30 First metal layer 40 Second metal layer 50 Electronic component 60 Heat sink fin 70 lens

23twenty three

Claims (1)

201034206 :七、申請專利範圍: I 1. 一種具有鑽石材料之散熱結構之製造方法,其步驟包括: 提供一基材; 形成一鑽石膜於該基材上,該鑽石膜具有一第一側面及一 第二侧面,該第一側面係相對於該第二侧面,該第一側面係附 著於該基枋上; 以物理氣相方式沉積一第一金屬層於該鑽石膜的該第二 ❹ 側面上; 形成一第二金屬層於該第一金屬層上; 移除部分的該基材,且該基材結合有至少一電子元件;以 及 將具有該電子元件之該基材以該第二金屬層與一散熱鰭 片相結合。 2. 如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 Q 該鑽石膜#料係包括單晶鑽石、多晶鑽石或類鑽碳。 3. 如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 該基材材料係包括珍、碳化石夕或石墨。 ,4.如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 _ 該鑽石膜的該第二侧面係為一粗链面或一平整面。 5.如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 該第二金屬層材料係選自銅、銘、金、銀、纪、銦、鈦、鉻或 鎳0 24 201034206 ·* 6.如請求項!所述之具有鑽石封料之散熱結構之製造方法,其中 '該第一金屬層枯料係選自鱗、鈦、金、银、鉻或铭及其合金。 7. 如請求項1所述之美有鑽石#料之散熱結構之製造方法,其中 形成該鑽石膜之方法係為物理氣相沉積,該物理氣相沉積包括 有激鍍、熱蒸鍍或電子束蒸鍍。 8. 如請未項1所述之具有鑽石材料之散熱結構之製造方法,其中 形成減鑽石膜之方去係為化學氣相沉積,該化學氣相沉積包括 © 有熱燈絲裂解法或微波電漿輔助化學氣相沉積法。 9. 如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 該鑽石膜的厚度係為1〇〇微米以下。 10. 如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 該第一金屬層的厚度係為2,〇〇〇奈米以下。 11. 如請求項1所述之具有鑽石材料之散熱結構之製造方法,其中 形成該第二金屬層之方法係包括物理氣相沉積、電艘或無電化 © 學鍍。 如請求項1所述之具有_之散齡構之鱗方法,其中 移除部分絲材的之步驟包括在縣#表_設有至少一凹 ,槽,而該電子元件係為一發光二極體,並將該發光二極體與該 - 凹槽相互結合。 13·如請求項12所述之具有鑽石材料之散熱結構 方法,其 中更包括有-透鏡,該透鏡設置於_槽且與該發光二極體相 互對應。 25 201034206 14 如請求項1所述之具有鑽石封料之散熱結構之製造方法, 將該基材部分移除後而在該錐 秒除部分該基材的之步驟包括 讀上料有複數㈣,而該電子元件係為—“,該 該些凸塊相互結合。 '日日片與 15. 一 -種具有鑽石材料之散熱 與至少—f子元料-散Jtrr 晴側係分別 有: 、稍W相互結合,該散熱結構包括201034206: VII. Patent application scope: I 1. A method for manufacturing a heat dissipating structure having a diamond material, the method comprising: providing a substrate; forming a diamond film on the substrate, the diamond film having a first side and a second side, the first side is attached to the substrate with respect to the second side; and a first metal layer is deposited on the second side of the diamond film by physical vapor deposition Forming a second metal layer on the first metal layer; removing a portion of the substrate, and the substrate is bonded with at least one electronic component; and the substrate having the electronic component is the second metal The layer is combined with a heat sink fin. 2. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the diamond film# comprises a single crystal diamond, a polycrystalline diamond or a diamond-like carbon. 3. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the substrate material comprises Jane, carbon carbide or graphite. 4. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the second side of the diamond film is a thick chain surface or a flat surface. 5. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the second metal layer material is selected from the group consisting of copper, inscription, gold, silver, gold, indium, titanium, chromium or nickel. * 6. As requested! The method for manufacturing a heat dissipation structure of a diamond seal, wherein the first metal layer is selected from the group consisting of scales, titanium, gold, silver, chromium or alloys thereof. 7. The method of manufacturing a heat dissipation structure of a diamond according to claim 1, wherein the method of forming the diamond film is physical vapor deposition, including physical plating, thermal evaporation or electron beam deposition. Evaporation. 8. The method for manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the diamond-reducing film is formed by chemical vapor deposition, including: a thermal filament cracking method or microwave electric power. Slurry assisted chemical vapor deposition. 9. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the diamond film has a thickness of 1 μm or less. 10. The method of manufacturing a heat dissipating structure having a diamond material according to claim 1, wherein the first metal layer has a thickness of 2 or less. 11. The method of fabricating a heat dissipating structure having a diamond material according to claim 1, wherein the method of forming the second metal layer comprises physical vapor deposition, electric boat or electroless plating. The method of claim 1, wherein the step of removing a portion of the wire comprises: providing at least one concave groove in the county table, and the electronic component is a light emitting diode And combining the light emitting diode with the groove. 13. The method of claim 1, wherein the lens further comprises a lens disposed in the slot and corresponding to the light emitting diode. The method for manufacturing a heat dissipation structure having a diamond seal according to claim 1, wherein the step of removing the substrate portion and removing the portion of the substrate at the cone second comprises reading a plurality of materials (four), The electronic component is - ", the bumps are combined with each other. 'Japanese and 15. and - a kind of heat dissipation with diamond material and at least - f sub-material - scattered Jtrr clear side system are: W is combined with each other, and the heat dissipation structure includes ,小六^次屯卞兀件相結合; 鑽石膜’具有-第-側面及一第二侧 讀於該第二侧面,該第一側面係附著於該基侧面係 T金屬層5設置於該鑽石膜的該第二側f -弟二金屬層,設置於該第—金屬層, 及 散熱鰭片相結合。 SA,一金屬層. 其中該鑽石膜 其中該基材材 求項15所述之具有鑽石材料之散熱辱 材丹係包括單晶鑽石、多晶鑽石或類鑽碳。 17.如睛未項15所述之具有鑽石#料 丄 料係包括發、碳切或石墨。 .—6 1δ·如請求項15所述之具麵石材料之散執 的該第二側面係為-粗糙面或—平整面、叫冓,其中該鑽石膜 19. 如請求们5所述之具有鑽石材料:散熱 屬層材料係選自銅、鋁、金、鈑、鈀、金冓其中該第二金 20. 如請象項15所丞之美有鑽石材料 2、鈦、鎔或鎳。 4之成偏、,料該第—金 26 201034206 屬層祐料係選自錄、敛、金、銀、絡或链及复入金。 21·如請求項15敝具麵彻嫩棒其.中該錢石膜 係以物理緣冗積與該基#相結合,該物理氣相沉積殘 鍍、熱蒸鍍或電子束蒸鏡。 1嫂 22.如請求項丨5所述之具有鑽石材料之散熱結構,其中該鑽石膜 k以龄“目沉積與該騎域合,該化學氣相沉積包 燈絲裂解法鎌线_魏她·。 * 技如請求項丨5所述之具有鑽石材料之散熱結構,其中該鑽 的厚度係為100微米以下。 、 月U 所:4之具a鑽石㈣之散熱結構,其中該第一金 屬層的厚度係為2,000奈呆以下。 技如請求項B所述之具有鑽石村料之散熱結構,其中該第一金 屬層係以物理氣概積與_石_該第二細相結合。 ⑩ 26·如請求項15 之具麵石材料之散熱結構,其中該第二金 屬層係以物理齡沉積、電鍍或錢化學鍍_第-金屬層相 結合0 A如請求項丨5所狀科靡_之散雜構,其帽基材更 具有至少-凹槽,而該電子元件係為一發光二極體,並將該發 光二極體結合於該凹槽。 復如請求項27所狀具_石材料之散缝構,其中更包括有 —透鏡’該透絲置_浦且與該發紅極翻互對應。 攻如請求項15所述之具_石_之散熱結構,其找基材於 27 201034206 i 該鑽石膜上具有複數凸塊,TO該電子元件係為'一晶片’該晶片 : 與該些凸塊相互結合。 30. —種具有鑽石枋料之散熱結構之製造方法,其步驟包括: 提供一基材; 形成一鑽石膜於該基材上,該鑽石膜具有一第一侧面及一 第二側面,該第一側面係相對於該第二侧面,該第一侧面係附 著於該基材上, φ 以物理氣相方式沉積一第一金屬層於該鑽石膜的該第二 偵4面上; 形成一第二金屬層於該第一金屬層上; 完全移除該基材;以及 該鑽石膜的該第一侧面結合有至少一電子元件,將具有該 電子元件之該鑽石膜以該第二金屬層與一散熱鰭片相結合。 31. 如請求項30所述之具有鑽石材料之散熱結構之製造方法,其 中該鑽石膜才料係包括早晶鑽石、多晶鑽石或類鑽碳。 32. 如請求項30所述之具有鑽石材料之散熱結構之製造方法,其 中該基材材料係包括石夕、碳化梦或石墨。 .33.如請求項30所述之具有鑽石材料之散熱結構之製造方法,其 . 中該鑽石膜的該第二側面係為一粗链面或一平整面。 34.如請求項30所述之具有鑽石材料之散熱結構之製造方法,其 中該第二金屬層材料係選自銅、銘、金、銀、纪、铜、欽、絡 或錄。 28 201034206 料項%所述之具有鑽石材料之散熱結構之製造方法,其 ,中金屬層材料係選自鎳、鈦、金、銀、絡雜及其合金。 )6.如·^:貝30所述之具有鑽石椅料之散熱結樣之製造方法,豆 ^成該職膜之妓麵__沉積,鶴理氣相沉積包 括,濺鍍、熱蒸鍍或電子束蒸鍍。 ❹ ❹ 37.如請求項3〇所述之具有鑽石材料之散熱結構之製造方法,其 中形成該鑽謂之方法係純學氣相沉積,該化學氣相沉積包 括有熱燈絲裂解法或微波電聚輔助化學氣相沉積法。 讯如請求項3〇所述之具有鑽石材料之散熱結構之製造方法,1 千該鑽石關厚度係為丨⑽微米以下。 39.如請求項30所述之具有鐵石封料之散熱結構之製造方法,其 中該弟一金屬層的厚度係為2,_奈米以下。 40·==。所述之具有鑽石材料之散熱結構之製造方法,其 I學^又㈣二金屬層之方法係包括物理氣相沉積、電鍛或無電 構,該散熱結構之兩相對側係分別 41· 一種具有鑽石材料之散熱結 與至少-電子元件與一散熱 有: 鳍片相互結合,該散熱結構包括 相對於^、,具有—第1面及—第二勤,該第一側面係 H面’該第1面係與該電子元件相結合; 一=金屬層,設置於該鑽石膜的該第二側面;以及 1屬層,設1於議第一金屬層,該第二金屬層與該 29 201034206 * 散熱籍片相結合。 :42.如請求項41所述之具有鑽石#料之散熱結構,其中該鑽石膜 材料係包括單晶鑽石、多晶鑽石或類鑽碳。 43. 如請求項41所述之具有鑽石材料之散熱結構,其中該鑽石膜 的該第二側面係為一粗糙面或一平整面。 44. 如請求項41所述之具有鑽石材料之散熱結構,其中該第二金 屬層材料係選自銅、銘、金、銀、纪、銦、敍、鉻或錄。 ❹ 45.如印求項々I所述之具有鑽石封料之散熱結構,其中該第一金 屬層材料係選自鎳、鈦、金、銀、鉻或鋁及其合金。 46.如請求項41所述之具有鑽石材料之散熱結構,其中該鑽石膜 的厚度係為100微米以下。 47·如请未項41所述之具有鑽石#料之散熱結構,其中該第一金 屬層的厚度係為2,000奈米以下。 48·如晴未項41所述之具有鑽石材料之散熱結構,其中該第一金 屬層iT'以物理氣相沉積與該鑽石膜的該第二側面相結合。 尸月ί員41所述之具有鑽石材料之散熱結構,其中該第二金 讀in Μ物理氣相沉積、電賴無電化學鍍與鮮—金屬層相 30a combination of a small six-component element; a diamond film having a first side and a second side read on the second side, the first side being attached to the base side T metal layer 5 disposed thereon The second side f-di-metal layer of the diamond film is disposed on the first metal layer and the heat dissipation fins are combined. SA, a metal layer. The diamond film wherein the substrate material has the heat-dissipating material of the diamond material as described in claim 15 includes a single crystal diamond, a polycrystalline diamond or a diamond-like carbon. 17. The diamond #料料料 according to item 15 includes hair, carbon cut or graphite. - 6 1δ· The second side of the slab-like stone material of claim 15 is a rough surface or a flat surface, called 冓, wherein the diamond film 19. as described in claim 5 Having a diamond material: the heat-dissipating layer material is selected from the group consisting of copper, aluminum, gold, rhodium, palladium, and gold, wherein the second gold is 20. For example, the beauty of the diamond material 2, titanium, tantalum or nickel. 4 is biased, and the material is expected to be - gold 26 201034206 genus layer is selected from the record, convergence, gold, silver, collateral or chain and reintroduction gold. 21· If the request item 15 is a face-lifting stick, the money stone film is combined with the base # by physical edge redundancy, the physical vapor deposition residual plating, thermal evaporation or electron beam evaporation mirror. 1嫂22. The heat dissipating structure having a diamond material according to claim 5, wherein the diamond film k is combined with the riding body, and the chemical vapor deposition package filament cracking method is 镰Wei· The heat dissipation structure of the diamond material described in claim 5, wherein the thickness of the drill is 100 micrometers or less. The monthly U: 4 heat dissipation structure of a diamond (four), wherein the first metal layer The thickness of the system is less than 2,000. The heat dissipation structure of the diamond material described in claim B, wherein the first metal layer is combined with the physical gas product and the second fine phase. The heat dissipation structure of the face stone material of claim 15, wherein the second metal layer is deposited by physical age, electroplated or electroless plating. The first metal layer is combined with 0 A as claimed in Fig. 5 In the bulk structure, the cap substrate further has at least a groove, and the electronic component is a light emitting diode, and the light emitting diode is coupled to the groove. a loose structure of the material, which further includes a lens - the through-the-wire and the hair The red poles are corresponding to each other. The heat dissipation structure of the stone according to claim 15 is found on the substrate of 27 201034206 i. The diamond film has a plurality of bumps, and the electronic component is a 'wafer'. The wafer is bonded to the bumps. 30. A method for manufacturing a heat dissipation structure having a diamond crucible, the method comprising: providing a substrate; forming a diamond film on the substrate, the diamond film having a first a first side and a second side, the first side is opposite to the second side, the first side is attached to the substrate, and φ is physically and vapor-deposited to the first metal layer on the diamond film Forming a second metal layer on the first metal layer; completely removing the substrate; and the first side of the diamond film is bonded with at least one electronic component that will have the electronic component The diamond film is combined with a heat dissipating fin according to claim 30. The method for manufacturing a heat dissipating structure having a diamond material according to claim 30, wherein the diamond film material comprises an early crystal diamond, a polycrystalline Diamond or diamond-like carbon. 32 The method of manufacturing a heat dissipating structure having a diamond material according to claim 30, wherein the substrate material comprises a stone, a carbonized dream or a graphite. 33. The heat dissipating structure having a diamond material according to claim 30. The manufacturing method, wherein the second side of the diamond film is a thick chain surface or a flat surface. The method for manufacturing a heat dissipation structure having a diamond material according to claim 30, wherein the second metal layer The material is selected from the group consisting of copper, Ming, gold, silver, Ji, copper, Qin, Luo, or recorded. 28 201034206 The method for manufacturing a heat dissipating structure having a diamond material according to item %, wherein the medium metal layer material is selected from nickel , titanium, gold, silver, complex and alloys. 6. The manufacturing method of the heat sinking of the diamond chair material as described in Fig. 30, the bean is formed into the surface of the film __ deposition, the Heli vapor deposition includes, sputtering, thermal evaporation or Electron beam evaporation. ❹ ❹ 37. The method of manufacturing a heat dissipating structure having a diamond material according to claim 3, wherein the method of forming the drill is a pure vapor deposition, and the chemical vapor deposition comprises a thermal filament cracking method or microwave power. Poly-assisted chemical vapor deposition. According to the manufacturing method of the heat dissipating structure having the diamond material described in claim 3, the thickness of the diamond is less than or equal to 10 (micrometers). 39. The method of manufacturing a heat dissipating structure having a stone seal according to claim 30, wherein the thickness of the metal layer is 2 or less. 40·==. The method for manufacturing a heat dissipating structure having a diamond material, wherein the method of the fourth and second metal layers comprises physical vapor deposition, electric forging or electroless, and the two opposite side systems of the heat dissipating structure respectively have a The heat dissipation of the diamond material and the at least the electronic component and the heat dissipation are: the fins are combined with each other, and the heat dissipation structure includes a first surface and a second surface relative to the first surface, the first side is a H surface a 1 surface is combined with the electronic component; a = metal layer disposed on the second side of the diamond film; and a 1 layer being disposed on the first metal layer, the second metal layer and the 29 201034206 * Thermal film is combined. A heat dissipation structure having a diamond material as claimed in claim 41, wherein the diamond film material comprises single crystal diamond, polycrystalline diamond or diamond-like carbon. 43. The heat dissipating structure of diamond material of claim 41, wherein the second side of the diamond film is a rough surface or a flat surface. 44. The heat dissipating structure having a diamond material according to claim 41, wherein the second metal layer material is selected from the group consisting of copper, inscription, gold, silver, ge, indium, ruthenium, chromium or recorded. The heat dissipation structure having the diamond seal of claim 1, wherein the first metal layer material is selected from the group consisting of nickel, titanium, gold, silver, chromium or aluminum and alloys thereof. The heat dissipating structure having a diamond material according to claim 41, wherein the diamond film has a thickness of 100 μm or less. 47. The heat dissipation structure of the diamond material according to claim 41, wherein the first metal layer has a thickness of 2,000 nm or less. 48. The heat dissipating structure of diamond material according to claim 41, wherein the first metal layer iT' is bonded to the second side of the diamond film by physical vapor deposition. The heat dissipation structure of the diamond material described in the corpse 41, wherein the second gold reading in the physical vapor deposition, the electroless plating and the fresh metal layer 30
TW98107702A 2009-03-10 2009-03-10 A thermal dissipating structure with diamond and its manufacture method are provided TWI398956B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98107702A TWI398956B (en) 2009-03-10 2009-03-10 A thermal dissipating structure with diamond and its manufacture method are provided

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98107702A TWI398956B (en) 2009-03-10 2009-03-10 A thermal dissipating structure with diamond and its manufacture method are provided

Publications (2)

Publication Number Publication Date
TW201034206A true TW201034206A (en) 2010-09-16
TWI398956B TWI398956B (en) 2013-06-11

Family

ID=44855429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98107702A TWI398956B (en) 2009-03-10 2009-03-10 A thermal dissipating structure with diamond and its manufacture method are provided

Country Status (1)

Country Link
TW (1) TWI398956B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540962A (en) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 Laser assembly
CN113540963A (en) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 Laser assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067903B2 (en) * 2002-11-07 2006-06-27 Kabushiki Kaisha Kobe Seiko Sho Heat spreader and semiconductor device and package using the same
JP2004200346A (en) * 2002-12-18 2004-07-15 Sumitomo Electric Ind Ltd Package for accommodating semiconductor device, its manufacturing method, and semiconductor apparatus
US20070004216A1 (en) * 2005-06-30 2007-01-04 Chuan Hu Formation of assemblies with a diamond heat spreader
JP4654389B2 (en) * 2006-01-16 2011-03-16 株式会社ムサシノエンジニアリング Room temperature bonding method for diamond heat spreader and heat dissipation part of semiconductor device
JP2008263126A (en) * 2007-04-13 2008-10-30 Oki Data Corp Semiconductor apparatus, method of manufacturing the same, led head, and image formation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540962A (en) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 Laser assembly
CN113540963A (en) * 2020-04-21 2021-10-22 青岛海信激光显示股份有限公司 Laser assembly
CN113540963B (en) * 2020-04-21 2023-05-30 青岛海信激光显示股份有限公司 Laser assembly
CN113540962B (en) * 2020-04-21 2023-07-28 青岛海信激光显示股份有限公司 Laser assembly

Also Published As

Publication number Publication date
TWI398956B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
US20060258054A1 (en) Method for producing free-standing carbon nanotube thermal pads
JP4654389B2 (en) Room temperature bonding method for diamond heat spreader and heat dissipation part of semiconductor device
TWI464839B (en) Diamond particle mololayer heat spreaders and associated methods
US20070116957A1 (en) Carbon nanotube thermal pads
JP2016119489A (en) Method for manufacturing composite substrate
JP6772711B2 (en) Semiconductor laminated structures and semiconductor devices
TW201225256A (en) Electronic device for radiofrequency or power applications and process for manufacturing such a device
TW201248696A (en) Mnufacturing method for gan semiconductor device
JP2004503942A (en) Substrate manufacturing method and substrate obtained by the method
JPWO2007074720A1 (en) Semiconductor device mounting substrate, semiconductor device using the same, and method of manufacturing semiconductor device mounting substrate
TW201117415A (en) Wafer for mounting LED, method for producing the same and LED-mounted structure using the wafer
WO2013038964A1 (en) Clad material for led light-emitting element holding substrate, and method for manufacturing same
CN107039373A (en) Gallium nitride device structure and preparation method thereof
JP6369566B2 (en) Composite substrate for producing nanocarbon film and method for producing nanocarbon film
JPH08241942A (en) Thin-film laminate
TW201007973A (en) A light emitting device containing a composite electroplated substrate
TW201034206A (en) A thermal dissipating structure with diamond and its manufacture method are provided
CN207134352U (en) Gallium nitride device structure
JP7205233B2 (en) Semiconductor device, method for manufacturing semiconductor device, and method for bonding substrate
JP6912716B2 (en) Semiconductor devices and their manufacturing methods
JP6875634B2 (en) Semiconductor devices and their manufacturing methods
TWI392117B (en) Light emitting diode with a diamond film and manufacturing method thereof
TWI377708B (en)
TWI742919B (en) Heat dissipation sheet and method of manufacturing heat dissipation sheet
WO2014030040A1 (en) Methods of forming semiconductor structures and devices including graphene, and related structures and devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees